
Thailand Statistician 

July 2020; 18(3): 306-318 

http://statassoc.or.th  

Contributed paper 
 

Performance Comparison of Penalized Regression Methods in 

Poisson Regression under High-Dimensional Sparse Data with 

Multicollinearity 

Chutikarn Choosawat, Orawan Reangsephet, Patchanok Srisuradetchai and  

Supranee Lisawadi* 

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat 

University, Rangsit Campus, Pathumthani, Thailand. 

*Corresponding author; e-mail: supranee@mathstat.sci.tu.ac.th 

 

Received: 27 September 2018 

Revised: 2 January 2019 

Accepted: 3 July 2019 

 

Abstract 

Ridge regression, least absolute shrinkage and selection operator (LASSO), and adaptive LASSO 

can be employed for fitting high-dimensional count data by using the Poisson model. However, the 

performance of these statistical models has not been explicitly studied under the condition of sparse 

data with a multicollinearity problem. Thus, this paper aims to study the performance and compare 

ridge regression, LASSO and adaptive LASSO by using the criteria of median prediction mean square 

error (mPMSE), False Negative Rate (FNR), and False Positive Rate (FPR). The correlation structures 

of constant, Toeplitz, and hub Toeplitz are considered. Monte Carlo simulations with 1,000 iterations 

were performed to achieve the goal. The results showed that adaptive LASSO produced the lowest 

mPMSE. When the correlation was higher, ridge regression had the lowest mPMSE. Two criteria of 

incorrect variable selection were analyzed (FNR and FPR). In terms of FNR, LASSO performed better 

than adaptive LASSO. In terms of FPR, the opposite was true. We carried out simulations to examine 

the performance of the mPMSE for ridge regression, LASSO, and adaptive LASSO. We also 

compared the variable selection of LASSO and adaptive LASSO, using two criteria of incorrect 

variable selection (FNR and FPR). 

______________________________ 
Keywords: Ridge regression, LASSO, adaptive LASSO, Monte Carlo simulation. 

 

1. Introduction 

The standard statistical method for analyzing count data is the Poisson regression model, which 

studies the relationship between the mean of count data and explanatory variables. In reality, many 

explanatory variables can be correlated in a certain degree. This creates a problem called 

“multicollinearity”. Also, nowadays a situation where the number of independent variables is larger 

than the number of observations can occur and it is called the “high dimensional data” problem. Very 

large datasets with increasing dimensions are being generated in many fields such as genetics, 

medicine, economics, engineering and social science. High-dimensional data have posed new 
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challenges to statistical analysis, because modeling introduces model overfitting, estimation 

instability, and computational difficulty. Many previous studies have used high and low dimensional 

linear models to apply penalized estimation to data analysis and to compare the performance of each 

estimator, for example, Pungpapong (2014), Oyeyemi et al. (2015), Ahmed and Yüzbaşı (2016), 

Yüzbaşı et al. (2017b), Gao et al. (2017), Yüzbası et al. (2017a). 

In this paper, high-dimensional data in which the number of independent variables is greater than 

the sample size are of interest. Furthermore, independent variables can be highly correlated, but only 

a few of them effect the mean of count data. In such cases, ordinary least squares (OLS) and maximum 

likelihood estimation (MLE) might not provide a best solution. If the independent variables are highly 

correlated, the variance of the MLE is increased and interpretation of results can be difficult and 

complex. Hence, the MLE is not recommended when the independent variables are highly correlated 

and/or high dimensional. 

Penalized regression is a popular methodology for high dimensional data to estimate regression 

coefficients. The estimated coefficients are derived by minimizing the objective function as 

   
2ˆ arg min exp ,P



  β y Xβ β  

where ( )P β  is a penalty function. There are many forms of penalty functions and the choice depends 

on the method of penalizing regression. This study investigates penalized regression using three 

methods: Ridge regression, least absolute shrinkage and selection operator (LASSO), and adaptive 

LASSO. These three methods can solve the multicollinearity problem as they can shrink the 

coefficients of regression. The statistical qualification of LASSO in the Poisson regression model was 

developed by Hossain and Ahmed (2012). This allows simultaneous coefficient estimation and 

variable selection by assigning the value zero to some independent variables. For this reason, LASSO 

is widely used for analysis of high-dimensional data; however, LASSO has some shortcomings. When 

there is multicollinearity, LASSO may select one variable among correlated variables, violating 

“consistency”. Ivanoff et al. (2016) improved the efficiency of parameter estimation and variable 

selection in Poisson regression by proposing Adaptive LASSO, in which weights are used to penalize 

different coefficients. The 1 -norm penalty improves variable selection and solves the problem of 

LASSO when multicollinearity occurs. Zou (2006) developed and presented a qualification of ridge 

regression in Poisson regression by estimating the regression coefficient using the 2 -norm penalty. 

It is well-known that ridge regression shrinks the coefficient of independent variables but it cannot 

select variables for the model. Algamal and Lee (2015) proposed the adjusted adaptive LASSO 

estimator in high-dimensional Poisson regression with multicollinearity. They proposed an adjustment 

of adaptive LASSO to take into account the maximum likelihood standard errors of the coefficient 

parameters. Ivanoff et al. (2016) estimated the intensity function of the Poisson regression model by 

using a generalization of the classical basic approach, combined with the LASSO or the group-LASSO 

procedure. Selection depends on penalty weights that must be calibrated. They showed that the 

associated LASSO and group-LASSO procedures satisfy fast and slow oracle inequalities. 

The “sparse data” means that there are too many non-significant predictors, in which their 

coefficients are zero, in the model. This is different from missing data, in which some or many of the 

values are unknown. In this paper, we will assess the performance of the three estimators in cases with 

different sample sizes and numbers of independent variables. 
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2. Methodologies 

2.1. Poisson regression model 

Suppose that Y  is a Poisson distribution with a conditional mean ( )  which depends on the 

individual characteristics of Y  

 
exp( )

( ) ( ) ,
!

y

P Y y f y
y

 
                   (1) 

where 0,1,2,...y  . The conditional mean parameter in a Poisson distribution, ( )E Y    and the 

variance parameter 2 ( ) .Y   However, each iY  can have its own .i  Let 1( ,..., )T
ny yy be a 

vector of the response variables, 1 2( , ,..., )   T
pβ  be a vector of unknown coefficients, and 

1( ,..., )T
n μ  is the vector of mean of the Poisson regression, the Poisson regression model with p  

available predictors for iy  is given by 

 
exp( )

( ; , ) ,
!

iy
i i

i i i

i

f y
y

 



X                 (2) 

where ( | ) ( | )  = exp( )T
i i i i i iE Y V Y  X X X β  for 1, 2,3,..., .i n  

Consider the following high-dimensional sparse data model 

log( ( | )) ,T
i i iE Y X X β      

where 1,2,...,i n  and .p n  Under the sparsity assumption on ,β  we assume that there are q  non-

significant predictors, where .q p  Hence, iX  can be decomposed as ( , )i iA iBX x x  with iA x  

1 ( )( ,..., )T p q
i i p q


 x x   and  1

( ,..., )T q
iB ipi p q 

 x x x   where p q  is smaller than the sample size 

.n  Finally, let   ,
T n p

A B
 Χ Χ Χ  be the matrix that includes all predictive variables. Here, 

( )( ,..., )T n p q
A iA nA

   x x   and ( ,..., )T n q
B iB nB

 X x x   are the matrices associated with iAx  and 

,iBx  respectively. 

 Regression parameters can be estimated by MLE, which is based on probability. First, one must 

specify the likelihood function of the random variables and find the maximum value of this function. 

Under the assumption of independent observations, the log likelihood function is given by 

  
1

( ; )  ln ( )   exp( ) ln ! .
n

T T
i i i i

i

l L y y


   μ y β X β X β                (3) 

The derivative of the log-likelihood with respect to β is obtained by the chain rule  

    
1

ln   exp( ) 0.
n

T
i i i

i

L y



  


β X β X

β
               (4) 

The result of this equation is nonlinear form in ,β and β̂ can be solved using an iterative method such 

as the Newton-Raphson. Månsson and Shukur (2011) introduced the following iterative weighted least 

square (IWLS) algorithm  
1

ˆ ˆ ˆ ˆ,ML



 T Tβ X WX X Wz  where ˆ W ˆdiag( )i  and ẑ  is a vector in which 

the thi  element is given by 

ˆ
ˆˆ log( ) .

ˆ
i i

i i

i

y
z







   
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Under some regularity conditions of MLE, the MLE of ,β has an asymptotic normal distribution, as 

.n    

 

2.2. Estimation Strategies 

In this study, we consider the three widely-used penalized Poisson regression (PPR). The general 

formula of PPR is defined as 
 ( ) ( ),PPR P β β                  (5) 

where ( )P β  is the penalty function and   is a defined tuning parameter (nonnegative regularization 

parameter: 0)   and it controls the strength of the independent variables. As when   takes a larger 

value, more weight will be given to the penalty term. 

 

 1) Ridge regression 

When the independent variables are a highly correlated matrix of cross products, ˆTX WX  is ill-

conditioned. This leads to instability and high covariance in the MLE. In this situation, the MLE loses 

its efficiency and it becomes very hard to interpret the estimated parameter, since the vector of 

estimated coefficients is on average too large. However, when multicollinearity occurs in model (3), 

the ridge regression method can be applied to count data (Månsson et al. 2011). The ridge regression 

can produce the coefficients that minimize the negative log-likelihood, subject to the 2L   penalty on 

.β  The ridge regression estimation of β  is given by 

 Ridge 2

1 1

ˆ  =  exp( ) ln ! ,argmin

pn
T T

i i i
i j

y y


 
 

 
    

 
 i iβ X β X β  

and 2
2

1

.
p

j
j

L t


   Here,   is the ridge tuning parameter which controls the shrinkage estimates of 

.β  Its values can be obtained by using cross validation. 

 

 2) LASSO 

The application of LASSO to the Poisson regression model was first proposed by Park and Hastie 

(2007). It is a widely-used technique for simultaneous variable selection and parameter estimation. 

This method is in some sense similar to ridge regression but more shrinks some coefficients to zero. 

For moderate values of tuning parameter t  in 1
1

,
p

j
j

L t


   many ˆ
i ’s go to zero. The use of 

LASSO is most appropriate when one believes that the effect is sparse, so that the response can be 

explained by the small number of predictors and the rest of them have no effect. This means that 

LASSO can be regarded as a type of variable selection method, in which the responding predictor iX  

is effectively eliminated from the regression when ˆ 0.i   In contrast, ridge regression does not 

eliminate any variables, but simply makes ˆ
i  smaller. It computes the coefficients that minimize the 

negative log-likelihood, subject to the 1L  penalty on .β  The LASSO estimation of β  is given by 

 Lasso

1 1

ˆ      exp( ) ln ! ,argmin

pn
T T

i i i
i j

y y


 
 

 
     

 
 i iβ X β X β  



310                                                                   Thailand Statistician, 2020; 18(3): 306-318 

therefore 1
1

p

j
j

L t


   and   is the tuning parameter.  

 

 3) Adaptive LASSO 

Adaptive LASSO for a Poisson regression model was proposed by Park and Hastie (2007) based 

on Fan and Li (2001). It improves the efficiency of parameter estimation and increases variable 

selection by applying weights. The idea of adaptive LASSO is to give large weights to inactive 

variables (or variable having no effect), and thus to heavily shrink their associated coefficients. By 

giving small weights to active variables, it slightly shrinks the corresponding coefficients. It computes 

the coefficients that minimize the negative log-likelihood subject to the 1L  penalty on the .β  The 

adaptive LASSO estimation of β  is given by 

 Adap Lasso

1 1

ˆ exp( ) ln ! ,argmin 
pn

i i i i i i
i j

y w


 
 

 
      

 
 β y X β X β  

where 1
1

p

j
j

L t


   and   is the tuning parameter.  Here iw  is an adaptive weight defined as 

*ˆ
i iw






  for some positive   and *ˆ
i  is a root-n-consistent estimator of .   

 

2.3. Correlation structure 

In this study, we consider the following three correlation structure, which are widely applied in 

many fields. 

 

 1) Constant correlation structure 

Our first correlation structure assumes that there is a constant correlation between any two 

variables. The correlation matrix is shown below. This might be more realistic than simply assuming 

that all of these entries are zero. Let 

1

1

1
,

1

1

k

k k

   

   

   

   

   


 
 
 
 
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 
 
 
  









     



 

where k  denote a positive integer (the number of explanatory variables) and [0, 1].   

 

 2) Toeplitz correlation structure 

This correlation structure assumes that each pair of adjacent variables is highly correlated and the 

correlations are reduced when the members of the pair are widely separated. The correlations between 

the thi  and thj observations decay exponentially with respect to .i j  The corresponding correlation 

structure is 
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where k  denote a positive integer (the number of explanatory variables) and [0,1].   

 

 3) Hub Toeplitz correlation structure 

The hub correlation structure assumes a known correlation between a hub observation (typically 

the first variable) and each of the other variables. Moreover, it is typically assumed that the correlation 

between the st1  and the thi  observation decays as i  increases. As a typical example from the 

literature, suppose that the first row (and hence column) of a ( )g g  correlation matrix ( )A  has the 

prescribed values  11 1 max max min

2
1,  ,

2
i

i
A A

g



  
 

     
 

 which decreases linearly if 1   from 

12 maxA  to 1 mingA   for 2 .i g   This model is considered by Zhang et al. (2005) and Langfelder 

et al. (2007). For the sake of simplicity, we consider the linear case 1   and adopt a more convenient 

notation. Rather than specifying max  and min ,  we specify only max  and work instead with the step 

size max min( ) /( 2).g      After specifying the first row, there are a variety of ways to generate 

the remainder of such a correlation matrix. So, the correlation matrix is 

,2 ,3 ,4 ,

,2 ,2 ,3 , 1

,3 ,2 ,2 , 2

,4 ,3 ,2 , 3
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1
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1
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1
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k
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




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 
 
 
 
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 
 
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




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3. Simulations 

The simulations were carried out to examine the median of mean square error (mPMSE) for ridge 

regression, LASSO, and adaptive LASSO; the mPMSE could be an indicator of the performance. The 

variable selections were also compared by using two criteria of incorrect variable selection: False 

Negative Rate (FNR) and False Positive Rate (FPR) defined as 

 ˆ:  0 butFNR  0j jj      and  ˆ:  0 but  FPR 0 .j jj      

FNR and FPR are so-called Identify Criterion 1 (IC1) and Identify Criterion 2 (IC2), respectively. In 

simulations, sample sizes ( )n  are 25 and 50, and the number of independent variables ( )p  is set to be 

50, 100, and 200. Each configuration was run 5,000 times to get a stable result, implemented in R 

program (R Core Team 2015). Four cases are created as following: 1) For Cases 1 and 2, the 

independent variables were divided into two groups. The first group contains only independent 

variables whose 0j   and the corresponding variables are so-called “active”. Among these 
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variables, the correlation value is set to be 0.5 or 0.9. The second group has only independent variables 

whose 0j   and they will be called “inactive” variables. The same correlation is given to this group; 

2) For Cases 3 and 4, the active and inactive independent variables are combined to 1 group and the 

correlation value is set to be 0.5 or 0.9. All cases depended on three correlation models: the constant, 

Toeplitz, and hub Toeplitz correlation models.  

 

4. Results 

The results will be divided into 3 cases according to the correlation models. We noted that ridge 

regression does not perform the variable selection. Its FNR and FPR results then did not present.  

 

4.1. Constant correlation model 

The mPMSE values for different configurations of n  and p  are summarized in Table 1 and 

graphically represented in Figures 1 and 2 for aid comparison. As can be seen, the adaptive LASSO 

tended to the lowest mPMSE followed by LASSO and ridge regression, respectively. When r  

increased, the performance of all estimators improved, as their mPMSE decreased. For fixed ,p  the 

mPMSEs of all estimators increased as n  increased in 1 group cases, but not in 2 group cases. 

Considering Cases 1, 2, or 3 (except Case 4) with r  of 0.5 or 0.9, the highest mPMSE occurred when 

50, 50.n p   

 

Table 1 Median of prediction mean square error of three methods in constant correlation model 

 
n  

 
p  

2 groups  1 group 

Ridge LASSO 
Adaptive 
LASSO 

Ridge LASSO 
Adaptive 
LASSO 

                                                                                0.5r   
                       Case 1                           Case 3  

25 50 9.193113 7.315495 6.273284* 10.65240 6.189153 5.076029* 
25 100 14.87306 10.01593 8.624981* 7.086174 6.230699 4.965397* 
25 200 10.44676 9.609530 6.869651* 11.21742 10.12269 7.63458* 
50 50 17.00520 10.86592 8.985308* 23.89061 14.69172 13.18459* 
50 100 10.63253 8.413216 6.737952* 10.47410 8.080800 6.840008* 
50 200 11.62968 9.861743 7.209156* 13.36298 10.86931 8.42348* 

                     0.9r   

    Case 2      Case 4 

25 50 3.516828 2.832158 2.606889* 4.59058 3.95301 3.76701* 
25 100 5.072896 4.570755 4.219117* 4.64637 3.95966 3.78637* 
25 200 4.420250 3.665096 3.500912* 4.33225 3.65982 3.53580* 
50 50 7.983044 6.146937 5.742676* 7.18089 5.97884 6.07353* 
50 100 7.369058 6.107473 5.450372* 9.28073 7.48053 7.17576* 
50 200 4.897087 3.461501 3.307722* 6.66773 5.65949 5.26692* 

*The lowest value of median of prediction mean square error  

 

The FNR and FPR values of LASSO and adaptive LASSO results are reported in Table 2. Overall, 

the FNR of both methods increased as p  increased for fixed ,n  in contrast to the FPR. The FNR and 

FPR behaviors were similar when n  increases for fixed .p  In almost all situations, LASSO performed 

better in terms of FNR, indicating that adaptive LASSO eliminated too many significant predictors. 

However, LASSO also kept too many noises in the resulting model, in which it had higher FPR. 
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Figure 1 Comparisons of mPMSE for constant correlation model for 2 groups, r  = 0.5 and 0.9 

 

 

 

Figure 2 Comparisons of mPMSE for constant correlation model for 1 group, r  = 0.5 and 0.9 

 

Table 2 Probability of incorrect selection by LASSO and adaptive LASSO 

n  p  

Independent variables divided into 
2 groups 

Independent variables not divided  
(1 group) 

LASSO 
     Adaptive 
      LASSO 

LASSO 
     Adaptive    
      LASSO 

FNR FPR FNR FPR FNR FPR FNR FPR 
                       0.5r   

 Case 1 Case 3 
25 50 0.1093 0.4000 0.1467 0.3920 0.1717 0.3913 0.1892 0.3886 
25 100 0.1640 0.1652 0.1693 0.1611 0.1759 0.1699 0.2521 0.1679 
25 200 0.1887 0.0779 0.3013 0.0764 0.2327 0.0792 0.3030 0.0789 
50 50 0.2453 0.3549 0.2927 0.3566 0.3049 0.3441 0.2561 0.3413 

50 100 0.3133 0.1587 0.3060 0.1514 0.3095 0.1600 0.3780 0.1546 
50 200 0.3207 0.0760 0.4673 0.0744 0.3321 0.0771 0.4984 0.0747 

                            0.9r   

     Case 2     Case 4 

25 50 0.0573 0.3911 0.0973 0.3909 0.1071 0.4090 0.1002 0.4087 
25 100 0.0720 0.1652 0.1167 0.1640 0.1451 0.1719 0.1465 0.1719 
25 200 0.1413 0.0759 0.1720 0.0750 0.1631 0.0793 0.1773 0.0792 
50 50 0.0707 0.3734 0.1267 0.3694 0.1679 0.3837 0.1235 0.3930 
50 100 0.1440 0.1578 0.1507 0.1519 0.2599 0.1653 0.2437 0.1658 
50 200 0.1933 0.0732 0.2507 0.0700 0.2953 0.0786 0.3083 0.0785 

 

4.2. Toeplitz correlation model 

The mPMSE values for different configurations of n  and p  are summarized in Table 3 and 

graphically represented in Figures 3 and 4. 

 

Constant 1 Group, r = 0.5 

Case 3 

Constant 1 Group, r = 0.9 

Case 4 

Constant 2 Groups, r = 0.5 

Case 1 

Constant 2 Groups, r = 0.9 

Case 2 
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Table 3 Median of prediction mean square error of three methods in Toeplitz correlation model 

n  p  

Independent variables divided into  
2 groups 

Independent variables not divided 
(1 group) 

Ridge LASSO 
Adaptive 
LASSO 

Ridge LASSO 
Adaptive 
LASSO 

                     0.5r   
                     Case 1                        Case 3  

25 50 21.495140 14.501810 12.049180* 16.153980 11.829430 8.670539* 
25 100 7.173000 6.938153 5.175408* 5.411574 4.330981 3.507906* 
25 200 8.346166 9.250106 5.660197* 8.194067 8.516340 5.741609* 
50 50 15.700180 10.457520 9.403252* 29.174740 20.41302 14.77027* 
50 100 16.843000 10.795610 8.288666* 21.060200 15.97994 12.22886* 
50 200 19.179300 16.364800 10.478430* 20.860800 17.23301 12.59359* 

                           0.9r   

                           Case 2                        Case 4 

25 50 4.524129 4.248000 3.423570* 4.303445 3.923764 3.483195* 
25 100 3.201618 3.007115 2.431623* 4.786392 4.681250 3.264642* 
25 200 5.307936 4.837770 4.139178* 5.655110 5.745000 4.407430* 
50 50 6.229060 5.248282 4.718587* 5.583285 5.517457 4.928481* 
50 100 6.146114 5.650000 4.329029* 6.607350 6.140578 5.245554* 
50 200 6.549703 6.637454 5.035816* 7.230346 6.871357 5.275375* 

*The lowest value of median of prediction mean square error 

  

  

 
 

Figure 3 Comparisons of mPMSE for Toeplitz correlation model, independent variable 2 groups,  

r  = 0.5 and 0.9 

 

 

 
 

Figure 4 Comparisons of mPMSE for Toeplitz correlation model, independent variable 1 group,  

r  = 0.5 and 0.9 
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The main findings were as follows: 

(i) The adaptive LASSO had the highest performance among all others across all cases. 

(ii) LASSO outperformed Ridge regression in the wider range of parameters. 

(iii) The mPMSE reduction of all estimators increased when r  became stronger for both 1 and 2 

groups. 

(iv) For fixed ,p  the performance of all estimators decreased as n  increased in all cases, except 

Case 1. 

The variable selection performance of LASSO and adaptive LASSO in terms of FNR and FPR 

are reported in Table 4.  The LASSO, having the smaller FNR, had stronger performance in selecting 

active predictors, but adaptive LASSO, having the smaller FPR, performed better in removing the 

inactive predictors from the model. Both methods significantly improved the performance in 

eliminating the noises when either p  or n  increased, however their performance in selecting the 

significant predictors also deteriorated, as FPR increased, whereas FPR decreased. These results are 

similar those from constant correlation model. 

 

4.3. Hub Toeplitz correlation model 

The mPMSE values for the hub Toeplitz correlation model are summarized in Table 5 and 

graphically represented in Figures 5 and 6.  

 

 

 

 
 

Figure 5 Comparisons of mPMSE for hub Toeplitz correlation model, independent variable  

2 groups, r  = 0.5 and 0.9 

 

 

 
 

Figure 6 Comparisons of mPMSE for hub Toeplitz correlation model, independent variable  

1 group, r  = 0.5 and 0.9 
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Table 5 Median of prediction mean square error of three methods in hub Toeplitz correlation model 

n  p  

Independent variables divided 
into 2 groups  

Independent variables not 
divided (1 group) 

Ridge LASSO 
Adaptive 
LASSO 

Ridge LASSO 
Adaptive 
LASSO 

               0.5r   
                        Case 1                        Case 3  

25 50 7.398150 6.111601 5.959504* 5.663284 4.969779 4.558758* 
25 100 7.360890 5.836827 5.079702* 4.126709 3.416840 3.144514* 
25 200 6.683900 5.975250 5.553250* 5.339324 5.004806 4.378678* 
50 50 8.662850 7.574599 7.282740* 7.452506 6.105046 6.224579* 
50 100 6.915100 6.382655 5.860514* 7.397727 7.853712 7.709643* 
50 200 7.392311 6.585958 5.960586* 7.572047 6.458922 5.999585* 

                   0.9r   

                        Case 2                        Case 4 

25 50 5.545045 4.898264 4.792709* 3.950863 3.293000 3.276790* 
25 100 4.794218 3.864274 3.781592* 5.309332 4.410250 4.140341* 
25 200 3.303360 2.941000 2.723301* 5.010201 4.326250 3.963443* 
50 50 6.033837 5.919316 6.033541* 7.220565 6.260250 6.280313* 
50 100 5.182348 4.570781 4.278688* 7.167214 6.072605 5.916763* 
50 200 6.183978 5.669062 5.151912* 4.577000 4.076177 3.898372* 

        *The lowest value of median of prediction mean square error  

 

The FNR and FPR values of LASSO and Adaptive LASSO are reported in Table 6. 

 

Table 6 Probability of incorrect selection by LASSO and adaptive LASSO 

n  p  

Independent variables divided 
into 2 groups  

Independent variables not 
divided (1 group) 

Ridge LASSO 
Adaptive 
LASSO 

Ridge LASSO 
Adaptive 
LASSO 

                    0.5r   
                          Case 1                          Case 3  

25 50 0.0557 0.3928 0.0721 0.3871 0.0902 0.4053 
25 100 0.1283 0.1639 0.1375 0.1615 0.1218 0.1690 
25 200 0.1295 0.0778 0.1583 0.0768 0.1426 0.0798 
50 50 0.1350 0.3800 0.1489 0.3776 0.1733 0.3874 
50 100 0.1531 0.1623 0.1555 0.1583 0.1948 0.1647 
50 200 0.2016 0.0743 0.1991 0.0723 0.2603 0.0778 

                            0.9r   

                          Case 2                         Case 4 

25 50 0.0777 0.3969 0.0618 0.3921 0.1201 0.4047 
25 100 0.1083 0.1651 0.1049 0.1631 0.1364 0.1707 
25 200 0.1215 0.0774 0.1280 0.0758 0.1590 0.0797 
50 50 0.1544 0.3761 0.1010 0.3742 0.1132 0.3913 
50 100 0.1810 0.1602 0.1619 0.1559 0.2305 0.1686 
50 200 0.1936 0.0739 0.1921 0.0709 0.2585 0.0772 

 

The mPMSE results and the variable selection results for the hub Toeplitz correlation model 

were similar to those from previous models, and are not reported here. 
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5. Real Data Example 

We next test the three methods using real data: These data were taken from a 2016 assessment of 

software engineering team working in an educational setting. They were used to predict the number 

of student teams based on observations. The dataset included observations of 64 teams and 79 

explanatory variables. This was split into a training set of 51 observations and a test set of 13 

observations. Model fitting and tuning parameter setting were done using 5-folds cross validation in 

the training set. 

When analyzed using mPMSE reported in Table 7, adaptive LASSO performed best in terms of 

prediction error, followed by LASSO and then ridge regression. From the FNR and FPR results 

reported in Table 8, LASSO produced FPR values equal to adaptive LASSO. However, LASSO 

showed higher performance in selecting the significant predictors. 

 

Table 7 Median of prediction mean square error of three methods 

Ridge LASSO Adaptive LASSO 

2.345 2.241 2.217 

 

Table 8 Probability of incorrect selection by LASSO and adaptive LASSO 

LASSO Adaptive LASSO 

FNR FPR FNR FPR 

0.333 0.187 0.733 0.187 

 

6. Conclusions 

We compared the performance of ridge regression, LASSO and adaptive LASSO in Poisson 

regression for high-dimensional sparse data with multicollinearity. In both simulations and tests using 

real data, adaptive LASSO was demonstrated to outperform the other two methods in terms of the 

mean squares error. Adaptive LASSO and LASSO performed similarly in terms of incorrect variable 

selection. Ridge regression was shown to have the best performance in the presence of 

multicollinearity between variables in the Poisson regression model. We conclude that Ridge 

regression performs the best in the hub Toeplitz correlation model, followed by the constant 

correlation model, and then the Toeplitz correlation model. Taking account of both prediction and the 

probability of incorrect variable selection, adaptive LASSO was shown to have the best performance 

when analyzing high-dimensional sparse data. 
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