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Abstract

Ridge regression, least absolute shrinkage and selection operator (LASSO), and adaptive LASSO
can be employed for fitting high-dimensional count data by using the Poisson model. However, the
performance of these statistical models has not been explicitly studied under the condition of sparse
data with a multicollinearity problem. Thus, this paper aims to study the performance and compare
ridge regression, LASSO and adaptive LASSO by using the criteria of median prediction mean square
error (mMPMSE), False Negative Rate (FNR), and False Positive Rate (FPR). The correlation structures
of constant, Toeplitz, and hub Toeplitz are considered. Monte Carlo simulations with 1,000 iterations
were performed to achieve the goal. The results showed that adaptive LASSO produced the lowest
mPMSE. When the correlation was higher, ridge regression had the lowest mPMSE. Two criteria of
incorrect variable selection were analyzed (FNR and FPR). In terms of FNR, LASSO performed better
than adaptive LASSO. In terms of FPR, the opposite was true. We carried out simulations to examine
the performance of the mPMSE for ridge regression, LASSO, and adaptive LASSO. We also
compared the variable selection of LASSO and adaptive LASSO, using two criteria of incorrect
variable selection (FNR and FPR).

Keywords: Ridge regression, LASSO, adaptive LASSO, Monte Carlo simulation.

1. Introduction

The standard statistical method for analyzing count data is the Poisson regression model, which
studies the relationship between the mean of count data and explanatory variables. In reality, many
explanatory variables can be correlated in a certain degree. This creates a problem called
“multicollinearity”. Also, nowadays a situation where the number of independent variables is larger
than the number of observations can occur and it is called the “high dimensional data” problem. Very
large datasets with increasing dimensions are being generated in many fields such as genetics,
medicine, economics, engineering and social science. High-dimensional data have posed new
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challenges to statistical analysis, because modeling introduces model overfitting, estimation
instability, and computational difficulty. Many previous studies have used high and low dimensional
linear models to apply penalized estimation to data analysis and to compare the performance of each
estimator, for example, Pungpapong (2014), Oyeyemi et al. (2015), Ahmed and Yiizbas1 (2016),
Yiizbasi et al. (2017b), Gao et al. (2017), Yiizbasi et al. (2017a).

In this paper, high-dimensional data in which the number of independent variables is greater than
the sample size are of interest. Furthermore, independent variables can be highly correlated, but only
a few of them effect the mean of count data. In such cases, ordinary least squares (OLS) and maximum
likelihood estimation (MLE) might not provide a best solution. If the independent variables are highly
correlated, the variance of the MLE is increased and interpretation of results can be difficult and
complex. Hence, the MLE is not recommended when the independent variables are highly correlated
and/or high dimensional.

Penalized regression is a popular methodology for high dimensional data to estimate regression
coefficients. The estimated coefficients are derived by minimizing the objective function as

B= argﬁmin "y - exp(XB)"2 +P,(B),

where P, (P) is a penalty function. There are many forms of penalty functions and the choice depends

on the method of penalizing regression. This study investigates penalized regression using three
methods: Ridge regression, least absolute shrinkage and selection operator (LASSO), and adaptive
LASSO. These three methods can solve the multicollinearity problem as they can shrink the
coefficients of regression. The statistical qualification of LASSO in the Poisson regression model was
developed by Hossain and Ahmed (2012). This allows simultaneous coefficient estimation and
variable selection by assigning the value zero to some independent variables. For this reason, LASSO
is widely used for analysis of high-dimensional data; however, LASSO has some shortcomings. When
there is multicollinearity, LASSO may select one variable among correlated variables, violating
“consistency”. Ivanoff et al. (2016) improved the efficiency of parameter estimation and variable
selection in Poisson regression by proposing Adaptive LASSO, in which weights are used to penalize

different coefficients. The £ , -horm penalty improves variable selection and solves the problem of
LASSO when multicollinearity occurs. Zou (2006) developed and presented a qualification of ridge
regression in Poisson regression by estimating the regression coefficient using the /,-norm penalty.

It is well-known that ridge regression shrinks the coefficient of independent variables but it cannot
select variables for the model. Algamal and Lee (2015) proposed the adjusted adaptive LASSO
estimator in high-dimensional Poisson regression with multicollinearity. They proposed an adjustment
of adaptive LASSO to take into account the maximum likelihood standard errors of the coefficient
parameters. Ivanoff et al. (2016) estimated the intensity function of the Poisson regression model by
using a generalization of the classical basic approach, combined with the LASSO or the group-LASSO
procedure. Selection depends on penalty weights that must be calibrated. They showed that the
associated LASSO and group-LASSO procedures satisfy fast and slow oracle inequalities.

The “sparse data” means that there are too many non-significant predictors, in which their
coefficients are zero, in the model. This is different from missing data, in which some or many of the
values are unknown. In this paper, we will assess the performance of the three estimators in cases with
different sample sizes and numbers of independent variables.
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2. Methodologies
2.1. Poisson regression model
Suppose that ¥ is a Poisson distribution with a conditional mean () which depends on the

individual characteristics of Y

P(Y =)= £() =%"f“”, (1)

where y=0,1,2,.... The conditional mean parameter in a Poisson distribution, E(Y)= g and the
variance parameter ¢ (Y) = u. However, each ¥, can have its own . Let y=(y,,...,»,)" be a
vector of the response variables, p=(5,,0,,.... ﬂp)r be a vector of unknown coefficients, and
p=(,..,4t,)" is the vector of mean of the Poisson regression, the Poisson regression model with p

available predictors for y, is given by

,uiy[ exp(—,u[)
|

where E(Y, |X,)=V(Y,|X,) =y, =exp(X/B) for i=1,2,3,...,n.
Consider the following high-dimensional sparse data model
log(E(Y, | X,) =X,

where i =1,2,...,n and p > n. Under the sparsity assumption on B, we assume that there are ¢ non-

S p, X)) = > (@)

significant predictors, where g < p. Hence, X, can be decomposed as X, =(x,,,X,) with x,, =

(x“,...,xi(pfq))T eR”? and x, = (x,.(p_qﬂ),...,x,.p)r e R? where p—gq is smaller than the sample size

n. Finally, let X:(X X, )T € R"” be the matrix that includes all predictive variables. Here,
X, =(X,»-0X,,) € R™7 and X, =(x,,...,x,,) € R are the matrices associated with x,, and

X,,, respectively.

iB>
Regression parameters can be estimated by MLE, which is based on probability. First, one must
specify the likelihood function of the random variables and find the maximum value of this function.

Under the assumption of independent observations, the log likelihood function is given by

n

(wy) = mLP) = Y (»X/B-exp(X/B)~Iny,!) 3)
i=1
The derivative of the log-likelihood with respect to B is obtained by the chain rule
a n
%lnL(ﬁ) = > (v —expX,B))X, =0. )
i=1

The result of this equation is nonlinear form in B, and ﬁ can be solved using an iterative method such
as the Newton-Raphson. Mansson and Shukur (2011) introduced the following iterative weighted least
square (IWLS) algorithm §,, = (XTVAVX)_l X"Wz, where W = diag() and Z is a vector in which
the i" element is given by

2, =log(i) + 22

i
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Under some regularity conditions of MLE, the MLE of P, has an asymptotic normal distribution, as
n— oo,

2.2. Estimation Strategies
In this study, we consider the three widely-used penalized Poisson regression (PPR). The general
formula of PPR is defined as

PPR = ((B)+ AP, (B), )
where P, (B) is the penalty function and A is a defined tuning parameter (nonnegative regularization
parameter: A > 0) and it controls the strength of the independent variables. As when A takes a larger

value, more weight will be given to the penalty term.

1) Ridge regression

When the independent variables are a highly correlated matrix of cross products, X"WX is ill-
conditioned. This leads to instability and high covariance in the MLE. In this situation, the MLE loses
its efficiency and it becomes very hard to interpret the estimated parameter, since the vector of
estimated coefficients is on average too large. However, when multicollinearity occurs in model (3),
the ridge regression method can be applied to count data (Mansson et al. 2011). The ridge regression
can produce the coefficients that minimize the negative log-likelihood, subject to the L, penalty on

B. The ridge regression estimation of P is given by

ﬁzRidge = argmin [_i (iniTﬁ —exp(X,"B)—1ny, !) + }“Z B ]5

B i=1 Jj=1

P
and L, = Z ,sz <t. Here, A is the ridge tuning parameter which controls the shrinkage estimates of
Jj=1

B. Its values can be obtained by using cross validation.

2) LASSO

The application of LASSO to the Poisson regression model was first proposed by Park and Hastie
(2007). It is a widely-used technique for simultaneous variable selection and parameter estimation.
This method is in some sense similar to ridge regression but more shrinks some coefficients to zero.

P A
For moderate values of tuning parameter ¢ in L, = Zﬂj <t, many . ’s go to zero. The use of
Jj=1
LASSO is most appropriate when one believes that the effect is sparse, so that the response can be
explained by the small number of predictors and the rest of them have no effect. This means that

LASSO can be regarded as a type of variable selection method, in which the responding predictor X,
is effectively eliminated from the regression when ,Bl =0. In contrast, ridge regression does not

eliminate any variables, but simply makes ,Bl smaller. It computes the coefficients that minimize the
negative log-likelihood, subject to the L, penalty on B. The LASSO estimation of B is given by

n

Aiasso = argmin[_z(Y;XiTﬁ —eXp(XiTﬁ) —Iny, !)+ ﬁzﬂi]’

Y i=1 j=1
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P
therefore L, = Z B; <t and 4 is the tuning parameter.
j=1

3) Adaptive LASSO

Adaptive LASSO for a Poisson regression model was proposed by Park and Hastie (2007) based
on Fan and Li (2001). It improves the efficiency of parameter estimation and increases variable
selection by applying weights. The idea of adaptive LASSO is to give large weights to inactive
variables (or variable having no effect), and thus to heavily shrink their associated coefficients. By
giving small weights to active variables, it slightly shrinks the corresponding coefficients. It computes
the coefficients that minimize the negative log-likelihood subject to the L, penalty on the B. The

adaptive LASSO estimation of B is given by

0 Adap Lasso __ .
2 = argmin
B

_Zn:(yixi'ﬁ _ exp(Xf’B) —Iny, !) + li|ﬁi|wi ],

i=l1

P
where L, :Zﬂ . <t and A is the tuning parameter. Here w, is an adaptive weight defined as
j=1

i

x| .- SE . . .
w, = ‘ ,Bf‘ for some positive 7 and f; is a root-n-consistent estimator of /.

2.3. Correlation structure
In this study, we consider the following three correlation structure, which are widely applied in
many fields.

1) Constant correlation structure

Our first correlation structure assumes that there is a constant correlation between any two
variables. The correlation matrix is shown below. This might be more realistic than simply assuming
that all of these entries are zero. Let

1 p opop Pl
p 1 pp p
Z_pplp p
kT )
pp p 1 p
PP PP o 1,

where k£ denote a positive integer (the number of explanatory variables) and p < [0, 1].

2) Toeplitz correlation structure
This correlation structure assumes that each pair of adjacent variables is highly correlated and the
correlations are reduced when the members of the pair are widely separated. The correlations between

the i" and ;" observations decay exponentially with respect to |i - j|. The corresponding correlation

structure is
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1 p pZ p3 pkfl
p 1 p P P
s _ pz P 1 P pk—3
e e e P
k- k- k- k-
Pt Pttt ptt ptt .,

where £ denote a positive integer (the number of explanatory variables) and p €[0,1].

3) Hub Toeplitz correlation structure
The hub correlation structure assumes a known correlation between a hub observation (typically
the first variable) and each of the other variables. Moreover, it is typically assumed that the correlation

between the 1% and the i" observation decays as i increases. As a typical example from the
literature, suppose that the first row (and hence column) of a (gx g) correlation matrix (A4) has the

. e
prescribed values 4, =1, 4, = p,.. —( P — pmm)(l;zz] , which decreases linearly if y =1 from
g

Ay = P t0 A4, = p,, for 2<i < g. This model is considered by Zhang et al. (2005) and Langfelder
et al. (2007). For the sake of simplicity, we consider the linear case y =1 and adopt a more convenient
notation. Rather than specifying p__ and p ., we specify only p . and work instead with the step
size 7 =(p,.. — Puin) /(g —2). After specifying the first row, there are a variety of ways to generate

the remainder of such a correlation matrix. So, the correlation matrix is

1 ak,Z ak,} ak,4 .o ak,gk
a, 1 a, Qs oo O
s = 3 % 1 Qs v O g
P =
Ura (7% 7% 1 cee g3
_a/c,gk -1 ak,gk -1 ak,gk -2 ak,gk -3 1 iexk

3. Simulations

The simulations were carried out to examine the median of mean square error (mPMSE) for ridge
regression, LASSO, and adaptive LASSO; the mPMSE could be an indicator of the performance. The
variable selections were also compared by using two criteria of incorrect variable selection: False
Negative Rate (FNR) and False Positive Rate (FPR) defined as

FNR ={;: §, #0but §, =0} and FPR ={j: f, =0but 3 #0}.
FNR and FPR are so-called Identify Criterion 1 (IC1) and Identify Criterion 2 (IC2), respectively. In
simulations, sample sizes (n) are 25 and 50, and the number of independent variables (p) is set to be

50, 100, and 200. Each configuration was run 5,000 times to get a stable result, implemented in R
program (R Core Team 2015). Four cases are created as following: 1) For Cases 1 and 2, the
independent variables were divided into two groups. The first group contains only independent
variables whose S, #0 and the corresponding variables are so-called “active”. Among these
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variables, the correlation value is set to be 0.5 or 0.9. The second group has only independent variables
whose £, =0 and they will be called “inactive” variables. The same correlation is given to this group;

2) For Cases 3 and 4, the active and inactive independent variables are combined to 1 group and the
correlation value is set to be 0.5 or 0.9. All cases depended on three correlation models: the constant,
Toeplitz, and hub Toeplitz correlation models.

4. Results
The results will be divided into 3 cases according to the correlation models. We noted that ridge
regression does not perform the variable selection. Its FNR and FPR results then did not present.

4.1. Constant correlation model

The mPMSE values for different configurations of » and p are summarized in Table 1 and
graphically represented in Figures 1 and 2 for aid comparison. As can be seen, the adaptive LASSO
tended to the lowest mPMSE followed by LASSO and ridge regression, respectively. When r
increased, the performance of all estimators improved, as their mPMSE decreased. For fixed p, the
mPMSEs of all estimators increased as n increased in 1 group cases, but not in 2 group cases.
Considering Cases 1, 2, or 3 (except Case 4) with » of 0.5 or 0.9, the highest mPMSE occurred when
n=50, p=50.

Table 1 Median of prediction mean square error of three methods in constant correlation model

2 groups 1 group
" 7 Ridge  rasso  QGPUF Ridge  Lasso  HGPIve
r=0.5
Case 1 Case 3

25 50 9.193113  7.315495 6.273284"  10.65240  6.189153  5.076029"
25 100 14.87306  10.01593 8.624981"  7.086174  6.230699  4.965397"
25 200 10.44676  9.609530 6.869651%  11.21742  10.12269 7.63458"
50 50 17.00520  10.86592 8.985308"  23.89061  14.69172  13.18459"
50 100 10.63253  8.413216 6.737952°  10.47410  8.080800  6.840008"
50 200 11.62968  9.861743 7.209156°  13.36298  10.86931 8.42348"
r=09
Case 2 Case 4
25 50 3.516828  2.832158 2.606889" 4.59058 3.95301 3.76701"
25 100 5.072896  4.570755 4.219117" 4.64637 3.95966 3.78637"
25 200 4.420250  3.665096 3.500912" 4.33225 3.65982 3.53580"
50 50 7.983044  6.146937 5.742676" 7.18089 5.97884 6.07353"
50 100 7.369058  6.107473 5.450372" 9.28073 7.48053 7.17576"
50 200 4.897087  3.461501 3.307722" 6.66773 5.65949 5.26692"
“The lowest value of median of prediction mean square error

The FNR and FPR values of LASSO and adaptive LASSO results are reported in Table 2. Overall,
the FNR of both methods increased as p increased for fixed 7, in contrast to the FPR. The FNR and

FPR behaviors were similar when 7 increases for fixed p. In almost all situations, LASSO performed

better in terms of FNR, indicating that adaptive LASSO eliminated too many significant predictors.
However, LASSO also kept too many noises in the resulting model, in which it had higher FPR.
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Constant 2 Groups, r = 0.5 Constant 2 Groups, r = 0.9
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Figure 1 Comparisons of mPMSE for constant correlation model for 2 groups, » = 0.5 and 0.9
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Figure 2 Comparisons of mPMSE for constant correlation model for 1 group, » = 0.5 and 0.9

Table 2 Probability of incorrect selection by LASSO and adaptive LASSO

Independent variables divided into Independent variables not divided
2 groups (1 group)
n p Adaptive Adaptive
LASSO LASSO LASSO LASSO
FNR FPR FNR FPR FNR FPR FNR FPR
r=0.5
Case 1 Case 3

25 50 0.1093 0.4000 0.1467 03920 0.1717 0.3913  0.1892  0.3886
25 100  0.1640 0.1652 0.1693 0.1611 0.1759  0.1699  0.2521 0.1679
25 200 0.1887 0.0779 0.3013 0.0764  0.2327  0.0792  0.3030 0.0789
50 50 0.2453 0.3549 0.2927 03566  0.3049  0.3441 0.2561 0.3413
50 100 0.3133 0.1587 03060 0.1514 03095 0.1600 0.3780  0.1546
50 200 03207 0.0760 0.4673 0.0744  0.3321 0.0771 0.4984  0.0747
r=0.9
Case 2 Case 4
25 50 0.0573 03911 0.0973 0.3909 0.1071 0.4090 0.1002  0.4087
25 100  0.0720 0.1652 0.1167 0.1640  0.1451 0.1719  0.1465 0.1719
25 200 0.1413 0.0759 0.1720 0.0750  0.1631 0.0793 0.1773  0.0792
50 50 0.0707 03734 0.1267 03694 0.1679  0.3837 0.1235  0.3930
50 100 0.1440 0.1578 0.1507 0.1519  0.2599  0.1653 0.2437  0.1658
50 200 0.1933 0.0732  0.2507 0.0700 0.2953  0.0786  0.3083  0.0785

4.2. Toeplitz correlation model
The mPMSE values for different configurations of » and p are summarized in Table 3 and

graphically represented in Figures 3 and 4.
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Table 3 Median of prediction mean square error of three methods in Toeplitz correlation model

Independent variables divided into Independent variables not divided

2 groups (1 group)
" r . Adaptive . Adaptive
Ridge LASSO LASSO Ridge LASSO LASSO
r=0.5
Case 1 Case 3
25 50 21.495140 14.501810 12.049180" 16.153980 11.829430  8.670539"
25 100 7.173000  6.938153  5.175408"  5.411574 4.330981  3.507906"
25 200  8.346166 9.250106  5.660197°  8.194067  8.516340  5.741609"
50 50 15.700180 10.457520  9.403252" 29.174740  20.41302  14.77027"
50 100 16.843000 10.795610  8.288666" 21.060200  15.97994  12.22886"
50 200 19.179300 16.364800 10.478430° 20.860800  17.23301 12.59359"
r=0.9
Case 2 Case 4
25 50  4.524129  4.248000  3.423570"  4.303445 3.923764  3.483195"
25 100 3.201618  3.007115  2.431623" 4.786392  4.681250  3.264642"
25 200 5307936  4.837770  4.139178"  5.655110  5.745000  4.407430"
50 50 6.229060  5.248282  4.718587°  5.583285  5.517457  4.928481"
50 100 6.146114  5.650000  4.329029"  6.607350  6.140578  5.245554"
50 200  6.549703  6.637454  5.035816"  7.230346  6.871357  5.275375"

“The lowest value of median of prediction mean square error

mPMSE

n=

v

GAILILS.

=50 n=.

Toeplitz 2 Groups, r = 0.5

Case 1

V724

0w oo~

mPMSE

Toeplitz 2 Groups, r = 0.9

Case 2

W
V72
A
V]
V7
§V////ﬂ

TN i\\ E\

25,p=100 Nn=25,p=200 n=50,p=50 n=50,p=100 n=50,
(n.p)

u
o

V2777
o YA,

5
)

ERidge Nlasso N adaptive LASSO

~
u

_ L vy,
L i

S h

7
9
o
8
7
&
3

n,p)

BRidge ¥lasso Nadaptive LASSO

o
o

V247

L v,
L NI,

@
=
o

Figure 3 Comparisons of mPMSE for Toeplitz correlation model, independent variable 2 groups,

r =0.5and 0.9

Toeplitz 1 Group, r = 0.5

Case 3

L

mPMSE
ORNWBEGOON®

S v
L vt

° Y
V. ]

s Y

8

%

8
L
&
T

o YA

o
3
]

ERidge Nlasso N adaptive LASSO

Toeplitz 1 Group, r = 0.9

n=25,p=200 n=50,
(n,p)

Case 4

S

§ vt
I
whrs s
U,
ALY,

=50 n=50,

&
T
k<)
5
&b

EBRidge Nlasso N adaptive LASSO

k<)
T

L vt

- st

@
o

Figure 4 Comparisons of mPMSE for Toeplitz correlation model, independent variable 1 group,

r=0.5and 0.9



Chutikarn Choosawat et al. 315

The main findings were as follows:

(1) The adaptive LASSO had the highest performance among all others across all cases.

(i) LASSO outperformed Ridge regression in the wider range of parameters.

(iil) The mPMSE reduction of all estimators increased when » became stronger for both 1 and 2

groups.

(iv) For fixed p, the performance of all estimators decreased as n increased in all cases, except

Case 1.

The variable selection performance of LASSO and adaptive LASSO in terms of FNR and FPR
are reported in Table 4. The LASSO, having the smaller FNR, had stronger performance in selecting
active predictors, but adaptive LASSO, having the smaller FPR, performed better in removing the
inactive predictors from the model. Both methods significantly improved the performance in
eliminating the noises when either p or n increased, however their performance in selecting the

significant predictors also deteriorated, as FPR increased, whereas FPR decreased. These results are
similar those from constant correlation model.

4.3. Hub Toeplitz correlation model
The mPMSE values for the hub Toeplitz correlation model are summarized in Table 5 and
graphically represented in Figures 5 and 6.

Hub Toeplitz 2 Groups, r = 0.5 Hub Toeplitz 2 Groups, r = 0.9
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1 group, » =0.5 and 0.9
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Table 5 Median of prediction mean square error of three methods in hub Toeplitz correlation model

Independent variables divided Independent variables not
into 2 groups divided (1 group)
" r . Adaptive . Adaptive
Ridge LASSO LASSO Ridge LASSO LASSO
r=0.5
Case 1 Case 3

25 50  7.398150 6.111601 5.959504" 5.663284 4.969779  4.558758"
25 100 7.360890 5.836827  5.079702" 4.126709 3.416840  3.144514"
25 200 6.683900 5.975250  5.553250" 5.339324 5.004806  4.378678"
50 50 8.662850 7.574599  7.282740" 7.452506 6.105046  6.224579"
50 100 6.915100 6.382655 5.860514" 7.397727 7.853712  7.709643"
50 200 7.392311 6.585958  5.960586" 7.572047 6.458922  5.999585"
r=09
Case 2 Case 4
25 50 5.545045 4.898264  4.792709" 3.950863 3.293000  3.276790"
25 100 4.794218 3.864274  3.781592" 5309332 4.410250  4.140341"
25 200 3.303360 2.941000  2.723301" 5.010201 4.326250  3.963443"
50 50 6.033837 5919316  6.033541" 7.220565 6.260250  6.280313"
50 100 5.182348 4.570781 4.278688" 7.167214  6.072605 5.916763"
50 200 6.183978 5.669062  5.151912° 4.577000 4.076177  3.898372"
“The lowest value of median of prediction mean square error

The FNR and FPR values of LASSO and Adaptive LASSO are reported in Table 6.

Table 6 Probability of incorrect selection by LASSO and adaptive LASSO

Independent variables divided Independent variables not
into 2 groups divided (1 group)
" P . Adaptive . Adaptive
Ridge LASSO LASSO Ridge LASSO LASSO
r=0.5
Case 1 Case 3
25 50 0.0557 0.3928 0.0721 0.3871 0.0902 0.4053

25 100 0.1283 0.1639 0.1375 0.1615 0.1218 0.1690
25 200 0.1295 0.0778 0.1583 0.0768 0.1426 0.0798
50 50 0.1350 0.3800 0.1489 0.3776 0.1733 0.3874
50 100 0.1531 0.1623 0.1555 0.1583 0.1948 0.1647
50 200 0.2016 0.0743 0.1991 0.0723 0.2603 0.0778
r=0.9
Case 2 Case 4
25 50 0.0777 0.3969 0.0618 0.3921 0.1201 0.4047
25 100 0.1083 0.1651 0.1049 0.1631 0.1364 0.1707
25 200 0.1215 0.0774 0.1280 0.0758 0.1590 0.0797
50 50 0.1544 0.3761 0.1010 0.3742 0.1132 0.3913
50 100 0.1810 0.1602 0.1619 0.1559 0.2305 0.1686
50 200 0.1936 0.0739 0.1921 0.0709 0.2585 0.0772

The mPMSE results and the variable selection results for the hub Toeplitz correlation model
were similar to those from previous models, and are not reported here.
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5. Real Data Example

We next test the three methods using real data: These data were taken from a 2016 assessment of
software engineering team working in an educational setting. They were used to predict the number
of student teams based on observations. The dataset included observations of 64 teams and 79
explanatory variables. This was split into a training set of 51 observations and a test set of 13
observations. Model fitting and tuning parameter setting were done using 5-folds cross validation in
the training set.

When analyzed using mPMSE reported in Table 7, adaptive LASSO performed best in terms of
prediction error, followed by LASSO and then ridge regression. From the FNR and FPR results
reported in Table 8, LASSO produced FPR values equal to adaptive LASSO. However, LASSO
showed higher performance in selecting the significant predictors.

Table 7 Median of prediction mean square error of three methods
Ridge LASSO Adaptive LASSO
2.345 2.241 2.217

Table 8 Probability of incorrect selection by LASSO and adaptive LASSO

LASSO Adaptive LASSO
FNR FPR FNR FPR
0.333 0.187 0.733 0.187

6. Conclusions

We compared the performance of ridge regression, LASSO and adaptive LASSO in Poisson
regression for high-dimensional sparse data with multicollinearity. In both simulations and tests using
real data, adaptive LASSO was demonstrated to outperform the other two methods in terms of the
mean squares error. Adaptive LASSO and LASSO performed similarly in terms of incorrect variable
selection. Ridge regression was shown to have the best performance in the presence of
multicollinearity between variables in the Poisson regression model. We conclude that Ridge
regression performs the best in the hub Toeplitz correlation model, followed by the constant
correlation model, and then the Toeplitz correlation model. Taking account of both prediction and the
probability of incorrect variable selection, adaptive LASSO was shown to have the best performance
when analyzing high-dimensional sparse data.
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