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Abstract 

In this article, we propose the following approaches derive from the method of variance estimate 

recovery based on the variance- stabilizing transformation ( MOVER-VST) , Wilson score ( MOVER-

Wilson) and Jeffreys (MOVER-Jeffreys) compared with the generalized confidence interval (GCI) to 

develop the statistical estimation being confidence intervals for single and difference between two 

means in delta- lognormal distribution.  Monte Carlo simulation is used as a technique to evaluate the 

performance of these confidence intervals in terms of coverage probability and average length.  In 

simulation study, the numerical results of single mean showed that the MOVER-VST and MOVER-

Wilson can be considered as the recommended CIs to estimate the delta- lognormal mean in the 

important cases.  For the difference between two delta- lognormal means, numerical computation 

indicated that the MOVER-Jeffreys achieved the given target when the dispersion was not large for 

the large probability of additional zero. For application, we illustrate the presented confidence intervals 

with real world data sets in several fields: the airborne chlorine record for environmental problem, the 

red cod density for fishery survey and the distance traveled of mice for biology. 

______________________________ 
Keywords:  Generalized confidence interval, Jeffreys interval, method of variance estimates recovery, variance-

stabilizing transformation, Wilson score interval. 

 

1. Introduction 

Aitchison ( 1955)  first introduced a delta- lognormal distribution.  It is represented as the data 

containing both zero and positive values. The number of zero observations have a binomial distribution 

with the probability   where 0 < < 1.   The non- zero values are derived from a lognormal 

distribution with the remaining probability 1 .   Many fields utilize this distribution to apply in 

several real-word situations such as medicine, environment and fishery.  For example, it was used to 

study the medical cost in patient groups where zero corresponded to cases of no health care cost (Zhou 

and Tu 2000; Tierney et al.  2003; Tian 2005) , to analyze airborne chlorine quantity for indicating air 

contaminant at industrial sites, United State where zeros corresponded to cases of the evaluation 

cannot reveal the concentration in lunch room and break area ( Owen and DeRouen 1980; Tian 2005; 

Tian and Wu 2006) , the fatty acids of captive seabirds where zeros corresponded to cases of absent 
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diet (Stewart and Field 2011), and to estimate the red cod density for assessing their abundance where 

zeros corresponded to cases of trawls are blank ( Pennington 1983; Smith 1988; Smith 1990; Lo et al. 

1992; Fletcher 2008; Wu and Hsieh 2014). 

A mean is considered as one of the parameter of interest representing the population.  For two 

populations, the difference and ratio between two means are also the parameter of interest to compare 

two quantity in the same distribution.  These parameters regard a statistic gathering the population 

information.  Moreover, the mean has been utilized in many applications, such as environment, 

pharmacokinetics, medicine and fishery.  For example, it is used to estimate the air lead levels at the 

Alma American Labs, Colorado (Zou et al. 2009b), to assess the maximum concentration from alcohol 

interaction study in men (Tian and Wu 2007; Krishnamoorthy and Oral 2017), to analyze the medical 

charge data from the Regenstrief Medical Record System (Tian and Wu 2007; Zhou et al.  1997)  and 

to evaluate the fish densities from a fisheries New Zealand trawl survey (Fletcher 2008; Wu and Hsieh 

2014). 

These situations confirm that the delta- lognormal distribution is widely applied in several fields. 

Importantly, one of the statistical inferences is interval estimation providing the information with 

respect to the population more than point estimate (Casella and Berger 2002) .  For these reason, 

researchers have studied interval estimates for the parameters, including mean, variance and 

coefficient of variation of delta-lognormal population in the different methods. For instance, Zhou and 

Tu (2000) proposed a percentile-t bootstrap interval based on sufficient statistics and two likelihood-

based confidence intervals ( CIs)  for the mean of diagnostic test charges data containing zeros, they 

found that the bootstrap performed well for small skewness and sample size especially.  Tian ( 2005) 

presented the concepts of generalized test variables and generalized pivotal quantities (GPQs)  on the 

zero- inflated lognormal mean, whereas his GCI cannot satisfy a desired value when sample size was 

large. Tian and Wu (2006) considered the adjusted signed log-likelihood ratio statistic to produce for 

the mean of lognormal data with excess zeros, although it only provided a good coverage probability 

( CP)  performance.  Chen and Zhou ( 2006)  presented CIs for the ratio or difference of means in 

lognormal populations with zeros using four methods: a true generalized pivotal (GP), an approximate 

GP, a signed log- likelihood ratio ( SLLR)  and modified SLLR method.  Fletcher ( 2008)  proposed a 

profile- likelihood for delta- lognormal mean.  Harvey and Merwe ( 2012)  presented a Bayesian 

approach with both the equal- tail and highest posterior density ( HPD)  using the different priors for 

single mean, variance and the ratio of delta- lognormal means, however they have studied in the 

situation of having large zero observations. Li et al. (2013) found that the fiducial approach had high 

performance in terms of coverage probability and low bias in CIs for mean of lognormal data with 

excess zeros.  Later, Wu and Hsieh (2014)  adjusted asymptotic GPQ to construct GCI based on 

variance stabilized transformation (VST)  for the mean of the delta-lognormal population, their 

research results reveals that the GCI lengths were not less than the existing profile likelihood of 

Fletcher (2008) .  Rosales and Naranjo (2016)  studied the pooled- t, Weleh’ s t and Wilson- Hogdes-

Lehmann in the constructing of CIs for mean difference between two delta-lognormal data.  Recently, 

Hasan and Krishnamoorthy (2018)  improved the fiducial CIs for the mean and a percentile based on 

delta-lognormal distribution, although their numerical evaluation have not reported for occurring zero 

values with the probability of 0.5. 

As mentioned above, many studies have examined focusing on CIs for delta- lognormal mean, 

meanwhile they extended to study the mean difference.  Unfortunately, these research studies still had 

restriction in a few aspects.  To our knowledge, this paper considers interval estimates for the single 

and difference between two means of delta- lognormal distributions using three proposed CIs:  the 

method of variance estimates recovery based on the variance- stabilizing transformation ( MOVER-
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VST), Wilson (MOVER-Wilson) and Jeffreys (MOVER-Jeffreys). These proposed CIs are compared 

with the existing GCI of Wu and Hsieh (2014) .  The theories and methods are elaborated to establish 

CIs for delta- lognormal mean in Section 2.  Those methodologies are expanded to construct CIs for 

the difference between two means in Section 3. The CI performances are assessed by the part of 

simulation studies in Section 4.  Real-world data are used to illustrate with our presented methods in 

Section 5. This paper is closed with the discussion and conclusions in Section 6. 

 

2. Methods for Constructing CIs for Delta-Lognormal Mean 

Let a random sample 1 2= ( , ,..., )nX X X X  be drawn from delta- lognormal distribution with the 

parameters 2,    and ,  denoted as 2( , , ).    Aitchison (1955)  presented the distribution 

function of ,X  given by 
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The maximum likelihood estimates ( MLEs)  of 2,   and    are proved as 
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In this study, CIs for   are investigated using the following methods. 

 

2.1. GCI for the mean 

 The GCI first presented by Weerahandi (1993) being the general approach to establish CI based 

on the GPQ concept defined as follows. Let 1 2= ( , ,..., )nX X X X  be a random variables with the 

probability density function ( ; , ).Xf x    The   and 2  are the parameter of interest and the vector 

of nuisance parameter, respectively. Given 1 2= ( , ,..., )nx x x x  be a observed values of .X  The GCI for 

  is calculated by using the percentile of GPQ ( ; , , )R X x    as if the following conditions are 

satisfied as 
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(i) Given ,X  the distribution of ( ; , , )R X x    is free of all unknown parameters. 

(ii) The observed value of ( ; , , ),R X x    depend on the parameter of interest .  

If ( ; , , )R X x    is followed by the conditions (i)  and (ii) , the 100(1 )% GCI for   is 

/2 1 /2[ , ]R R   where R  be the th  percentile of ( ; , , ).R X x    For   and 2 ,  Krishnamoorthy and 

Mathew (2003) proposed the GPQs for both, given by 
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where  ˆ= 2 arcsin arcsin (0,1).
d

Z n N    By the information of three pivots, the equivalent 

of   is defined as 
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It can be expressed as 
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where ,W U  and Z  are independent random variables.  The GPQ in ( 1)  satisfies the two conditions 

of Weerahandi (1993) for being a GPQ. Then, the 100(1 )%  GCI for   is given as 

= [ , ] = [ ( /2), (1 /2)],gci gci gciCI L U R R    

where ( )R   denotes the th  percentile of .R  

 

2.2. MOVER for the mean 

According to Donner and Zou ( 2012) , let ˆ
k  be a estimate of ,k  = 1, 2.k  The 1  and 2  are 
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Similarly, the upper limit is obtained.  Then, the 100(1 )%  MOVER confidence interval for 

1 2   is defined as 

1 2 1 2 1 2
= [ , ],CI L U         
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Now, we focus on CIs for   so that we take log-transformation as 

 
2

1 2 3ln = ln(1 ) = .
2


                           (2) 

By substitution 2 ˆˆ ˆ, ,    in its parameter, the estimate 2
1 2 3

ˆˆ ˆ ˆ ˆ ˆ= ln(1 )           becomes 

the estimate of 1 2 3.     For considering CI for 2 ,  the unbiased estimate of 2  is 

(1)

2 2

=1(1)

1
ˆ ˆ= ( ) ,

1

n

i
i

X
n

 


  

which is transformed as 

(1)

2
(1) 2

12

ˆ( 1)
,n

n 






  
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where W  be the th  of (0,1).N  The MOVER confidence interval for   is constructed.  From ( 2) , 

the 100(1 )%  MOVER confidence interval for 2 3   is given by 
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2 3 2 3 2 3
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The previous step is combined so that the 100(1 )%  MOVER confidence interval for   is 

given by 
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For 1l  and 1u  derive from three methods for establish CIs for :  the VST, Wilson score and 

Jeffreys confidence intervals, as can be seen below. 

 

1) MOVER-VST 
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Then, 100(1 )%  MOVER-VST confidence interval for   is given by 
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2)  MOVER-Wilson 

The Wilson interval for   was improved by Wilson (1927). After that Wilk (1938) proposed by 

the score method, called Wilson score method. Donner and Zou (2011) found that it can perform well 

for small to moderate sample sizes. Thus, the 100(1 )%  Wilson CI for   is 
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where (0)= ( ) / (1 ) (0,1).T n n n N      Then, 100(1 )%  MOVER-Wilson confidence interval 
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3) MOVER-Jeffreys 

The Jeffreys method was developed from Brown et al. (2001) for using beta prior in inference on 
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where (0)= 1/2n   and (1)= 1/ 2.n    Then, 100(1 )%  MOVER-Jeffreys confidence interval 
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ˆ ˆ ˆ ˆ ˆ ˆ= exp ( ) ( ) (( ) )m J JL l L       
       
 

 and 

2 2
. 1 2 3 1. 1 2 32 3

ˆ ˆ ˆ ˆ ˆ ˆ= exp ( ) ( ) ( ( )) .m J JU u U      
       
 

 

 

3. Methods for the Difference between Two Delta-Lognormal Means 

The CIs for the difference between two means are expanded from the previous section using the 

concepts of MOVER based on VST, Wilson score and Jeffreys, compared with GCI.  Let 

1 2= ( , ,..., )nX X X X  and 1 2= ( , ,..., )mV V V V  be two non-negative and independent random variables 

of delta-lognormal distribution, denoted as 2( , , )    and 2
2 2 2( , , ),    respectively.  The 

maximum likelihood estimators for 2
2 2,   and 2  are 

(1)

2
1(1)

1
ˆ = ln ,

m

j
j

v
m



   

(1)
22

2 2
1(1)

1
ˆ ˆ= ln

m

j
j

v
m

 


  

and 
(0)

2
ˆ = ;

m

m
  (0) (1) = ,m m m  respectively.  Then, the difference between two delta- lognaormal 

means is given by 

2= ,    
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where 
2
2

2 2 2= (1 ) exp .
2


  

 
  

 
 The 2

ˆ ˆ ˆ=    is the point estimate of .  

 

3.1. GCI for the difference between two means 

The GCI conditions are detailed in Section 2. The importance is the GPQ for   used to establish 

GCI. Since that   is the function of parameters 2
2 2,   and 2.  By random variable ,V  the GPQs for 

2
2 2,   and 2  are defined as 

2
(1) 2

22
(1)

ˆ( 1)
ˆ= ,

mW
R

Um




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


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2
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ˆ( 1)
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m
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U




 

2
22

ˆ= arcsin( ) ,sin
2

Z
R

m
 

 
 

 
 

where 
2

(1) 2

2 2

(1) 2

ˆ( 1)
ˆ= ( ) (0,1),

m
W N

m U


 


    2 2

ˆ= 2 (arcsin arcsin ) (0,1)Z m N     and 

2
1(1)
.mU  

  By the pivots of 2 2
2 22

, , , , , ,R R R R R R    
 the equivalent of   is given by 

22
2

2 2
= (1 )exp (1 )exp .

2 2

RR
R R R R


   

  
      

   
 

It can be written as 

2 2
(1) (1)2

(1)

ˆ ˆ1) ( 1)
ˆ ˆ= 1 arcsin( ) expsin

22

n nZ
R W

n U Un


 
 

    
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2 2
(1) 2 (1) 22

2 2

(1)

ˆ ˆ1) ( 1)
ˆ ˆ1 arcsin( ) exp ,sin

22

m mZ
W

m U Um

 
 

    
              

                       (3) 

where the random variables , , , ,U U W W Z   and Z   are independent. The GPQ in (3) satisfies the two 

conditions for being a GPQ. As a result, the 100(1 )%  GCI for   is 

= [ , ] = [ ( /2), (1 /2)],dgci dgci dgciCI L U R R    

where ( )R   denotes the th  percentile of .R  

 

3.2. MOVERs for the difference between two means 

The MOVER idea based on Zou et al.(2009a) was described to construct the CIs for 1 1 2 2 ;c c   

1c  and 2c  are constants, defined as 

= [ , ],dm dm dmCI L U    

where 

2 2

1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2
ˆ ˆ ˆ ˆmin( , ) min( , )dmL c c c c l c u c c l c u                 and 

2
2

1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2
ˆ ˆ ˆ ˆmax( , ) [ max( , )] .dmU c c c c l c u c c l c u             
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This leads to construct MOVER confidence interval for 1 2 ,   given by 

= [ , ],dm dm dmCI L U  

where 

2 2
2 1 1 2 2 2

ˆ ˆ ˆ ˆ( ) [ min( , )] [ min( , )]dmL l u l u             and 

2 2
2 1 1 2 2 2

ˆ ˆ ˆ ˆ( ) [ max( , )] [ max( , )] .dmU l u l u             

For kl  and ,ku  = 1,2k  are depend on the CIs for   and 2 ,  meanwhile CIs for   consist of 

three methods: VST, Wilson score and Jeffreys elaborated as the previous section. 

 

1) MOVER-VST 

CIs for 2,   and   were presented in Section 2. Furthermore, setting  
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Then, the 100(1 )% MOVER-VST confidence intervals for    is given by 

. . .= [ , ],dm v dm v dm vCI L U  

where 

2 2

. 2 1 1 2 2 2
ˆ ˆ ˆ ˆ( ) min( , ) min( , )dm v v v v vL l u l u                   and 
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2 2
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2) MOVER-Wilson 

Similarly, given 

 

 

and  

2
2

2
2

2 2. 2

2 2. 2

= (1 )exp ,
2

= (1 )exp ,
2

w w

w w

l
l u l

u
u l l









 
  

 

 
  

 

 

where  

2 2
(0)

1
(0) (1)2 2 2

.2. 2. 2. 2 2

2 2

/2

= [ , ] =
4

w w w

m T T T
m m

CI l u
mm T m T

  



 



  
  

  
       

  


   and  

(0)= ( )/ (1 ) (0,1)T m m m N     . 

Hence, the 100(1 )%  MOVER-Wilson confidence interval for   is 

. . .= [ , ],dm w dm w dm wCI L U  

where 
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3) MOVER-Jeffreys 
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.2. 2. 2. 2 2 2 2= [ , ] = beta ; , , beta 1 ; , ,
2 2

J J JCI l u

 
   

    
        

 

2 (0)= 1/2m   and 2 (1)= 1/2.m   

Therefore, the 100(1 )%  MOVER-Jeffreys confidence interval for   is  

. . .= [ , ],dm J dm J dm JCI L U  

where  

2 2
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ˆ ˆ ˆ ˆ( ) ( min( , ) min( , )dm J J J J JL l u l u                   and 
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4. Simulation Studies 

This section shows that Monte Carlo simulation is proceeded using R statistical programming 

(Venables et al. 2015) to examine the proposed CI performances in terms of coverage probability (CP) 

and average length (AL). At the nominal confidence level 0.95, all methods are used 10,000 

replications and 5,000 GPQs for the GCI. In general, there are two important properties to find the 

recommended CI: CP with close or greater than a nominal coverage level and providing the shortest 

AL. 

For focusing on CIs for delta-lognormal mean, the random samples are generated from 
2( , , ).     The mean   set to 0. All CIs for   are the comparison between sample size 

= 20, 50, 100,n  the probability of having zero = 0.2, 0.5, 0.8  and the coefficient of variation 

= 0.2, 0.5, 1.0, 2.0.   In this study, the cases of = 20, = 0.8n   and = 0.2, 0.5,1.0, 2.0  are 

excluded because the number of positive value (1)( )E n  is less than 10. Fletcher (2008), Wu and Hsieh 

(2014) claimed that these combination affecting the CI performances. To construct CIs for ,  we 

propose the MOVER-VST, MOVER-Wilson and MOVER-Jeffreys which are compared with the 

existing GCI. Table 1, the numerical results revealed that the MOVER-VST and MOVER-Wilson 

provided their CPs over the nominal level excluding cases of = 2  and small sample sizes. Both were 

also excepted for = 0.8,  = 2  and large sample sizes. On the contrary, the MOVER-Jeffreys 

performance gave the CPs being less than 0.95 for = 2.  The CP performance of GCI tended to close 

a desired value, although its ALs were wider than other methods for = 2  and small sample sizes. 

For examining on CIs for the difference between two delta-lognormal means, the random samples 

are generated from 2( , , )    and 2
2 2 2( , , )    to establish CIs for .  All parameters is relative 

with 2
2 2 2( , , )    which are similarly fixed as mentioned above.  Table 2 showed that the CP from 

three MOVER were closer or greater than a given target almost all cases, however the situations of 

2= = 0.2   and 2= = 1,2   were omitted.  Importantly, MOVER- Jeffreys became the lowest AL. 

The GCI can maintain the target for the rest cases. 
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Table 1 The CPs and AL performances of 95% CIs for   

n      
CP AL 

MOVER-V MOVER-W MOVER-J   GCI  MOVER-V MOVER-W MOVER-J  GCI 

20 0.2 0.2 0.941 0.981 0.922 0.935 0.437 0.462 0.399 0.355 

   0.5 0.959 0.976 0.952 0.949 0.822 0.847 0.802 0.639 

   1.0 0.956 0.965 0.953 0.946 1.811 1.831 1.799 1.730 

   2.0 0.941 0.945 0.939 0.944 3.661 3.676 3.654 8.337 

 0.5 0.2 0.957 0.962 0.900 0.954 0.840 0.805 0.711 0.457 

   0.5 0.957 0.961 0.924 0.951 1.277 1.252 1.184 0.710 

   1.0 0.960 0.960 0.944 0.952 2.568 2.551 2.505 2.092 

   2.0 0.939 0.938 0.930 0.942 5.042 5.030 4.997 39.703 

50 0.2 0.2 0.950 0.970 0.939 0.947 0.283 0.290 0.269 0.232 

   0.5 0.957 0.968 0.954 0.945 0.519 0.527 0.512 0.378 

   1.0 0.970 0.974 0.970 0.946 1.150 1.157 1.148 0.850 

   2.0 0.974 0.975 0.974 0.946 2.372 2.376 2.371 2.704 

 0.5 0.2 0.955 0.956 0.927 0.953 0.538 0.528 0.495 0.291 

   0.5 0.952 0.954 0.935 0.947 0.766 0.759 0.737 0.403 

   1.0 0.957 0.958 0.950 0.946 1.472 1.468 1.453 0.823 

   2.0 0.949 0.949 0.945 0.943 2.870 2.867 2.857 2.754 

 0.8 0.2 0.962 0.945 0.925 0.961 1.067 1.013 0.960 0.248 

   0.5 0.967 0.953 0.942 0.961 1.427 1.373 1.339 0.344 

   1.0 0.958 0.946 0.936 0.951 2.613 2.562 2.544 0.888 

   2.0 0.943 0.934 0.932 0.944 4.994 4.951 4.940 8.484 

100 0.2 0.2 0.952 0.967 0.948 0.949 0.206 0.209 0.201 0.167 

   0.5 0.968 0.973 0.966 0.949 0.393 0.396 0.391 0.263 

   1.0 0.992 0.992 0.992 0.949 0.923 0.926 0.923 0.563 

   2.0 0.999 0.999 0.999 0.946 1.968 1.969 1.968 1.610 

 0.5 0.2 0.957 0.958 0.943 0.957 0.388 0.384 0.372 0.207 

   0.5 0.962 0.963 0.954 0.955 0.556 0.553 0.545 0.276 

   1.0 0.971 0.971 0.968 0.947 1.100 1.099 1.094 0.522 

   2.0 0.987 0.987 0.986 0.947 2.212 2.211 2.208 1.460 

 0.8 0.2 0.959 0.945 0.935 0.957 0.758 0.738 0.718 0.172 

   0.5 0.961 0.949 0.945 0.957 0.971 0.950 0.937 0.223 

   1.0 0.957 0.948 0.945 0.950 1.704 1.683 1.677 0.429 

    2.0 0.945 0.939 0.939 0.946 3.206 3.188 3.185 1.474 
Notes: MOVER-V, MOVER-W and MOVER-J denote the MOVER-VST, MOVER-Wilson, MOVER-Jeffreys, respectively. 



Table 2 The CPs and AL performances of 95% CIs for   

n  m   2    
2  CP AL 

 MOVER-V  MOVER-W  MOVER-J   GCI  MOVER-V  MOVER-W  MOVER-J   GCI 
20 20 0.2 0.2 0.2 0.2 0.969 0.973 0.971 0.983 0.473 0.475 0.443 0.505 

     0.5 0.5 0.946 0.948 0.945 0.975 0.779 0.762 0.729 0.921 
     1.0 1.0 0.932 0.930 0.929 0.965 2.298 2.234 2.191 2.676 
     2.0 2.0 0.938 0.937 0.937 0.959 12.995 12.692 12.566 14.437 
  0.5 0.5 0.2 0.2 0.994 0.993 0.990 0.994 0.651 0.624 0.598 0.648 
     0.5 0.5 0.990 0.988 0.986 0.989 1.076 1.036 0.988 1.040 
     1.0 1.0 0.979 0.977 0.975 0.978 3.588 3.491 3.354 3.385 
     2.0 2.0 0.968 0.965 0.964 0.964 48.833 47.876 46.334 46.743 

50 50 0.2 0.2 0.2 0.2 0.982 0.982 0.981 0.987 0.313 0.310 0.299 0.329 
     0.5 0.5 0.947 0.945 0.945 0.972 0.468 0.459 0.448 0.538 
     1.0 1.0 0.927 0.925 0.924 0.961 1.073 1.050 1.038 1.245 
     2.0 2.0 0.931 0.929 0.929 0.955 3.729 3.662 3.644 4.144 
  0.5 0.5 0.2 0.2 0.995 0.994 0.993 0.995 0.413 0.405 0.396 0.412 
     0.5 0.5 0.989 0.989 0.986 0.989 0.578 0.567 0.554 0.573 
     1.0 1.0 0.975 0.974 0.972 0.974 1.250 1.232 1.206 1.222 
     2.0 2.0 0.964 0.964 0.962 0.963 4.641 4.593 4.518 4.477 
  0.8 0.8 0.2 0.2 0.997 0.997 0.997 0.997 0.362 0.369 0.352 0.354 
     0.5 0.5 0.996 0.996 0.995 0.994 0.561 0.575 0.545 0.505 
     1.0 1.0 0.992 0.992 0.991 0.985 1.714 1.758 1.673 1.440 
     2.0 2.0 0.982 0.981 0.98 0.970 23.29 23.886 22.993 19.172 

100 100 0.2 0.2 0.2 0.2 0.990 0.988 0.987 0.993 0.227 0.224 0.220 0.236 
     0.5 0.5 0.957 0.955 0.955 0.979 0.329 0.324 0.32 0.373 
     1.0 1.0 0.929 0.928 0.927 0.961 0.700 0.689 0.685 0.808 
     2.0 2.0 0.923 0.922 0.922 0.952 2.145 2.119 2.113 2.389 
  0.5 0.5 0.2 0.2 0.994 0.994 0.994 0.994 0.293 0.290 0.286 0.293 
     0.5 0.5 0.989 0.989 0.988 0.989 0.393 0.389 0.385 0.392 
     1.0 1.0 0.975 0.975 0.974 0.975 0.763 0.758 0.750 0.756 
     2.0 2.0 0.960 0.959 0.958 0.960 2.257 2.245 2.227 2.210 
  0.8 0.8 0.2 0.2 0.998 0.998 0.997 0.997 0.248 0.252 0.246 0.245 
     0.5 0.5 0.996 0.996 0.995 0.993 0.34 0.346 0.337 0.320 
     1.0 1.0 0.989 0.990 0.989 0.983 0.724 0.738 0.719 0.645 
        2.0 2.0 0.980 0.980 0.979 0.971 2.807 2.857 2.789 2.460 

Notes: MOVER-V, MOVER-W and MOVER-J denote the MOVER-VST, MOVER-Wilson, MOVER-Jeffreys, respectively. 
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5. Applications 

All CIs were established by the different methods in order to apply with real world examples. 

There are the following data sets in several fields, including environmental problem, fishery survey 

and biology as seen below. 

 

Data set 1: 

The measured airborne chlorine were collected during a working day at an industrial site, United 

States.  National Research Council (US)  Committee on Toxicology had noted that chlorine was 

produced annually about 10 million tons for industrial use (Research National Council 1984). This is 

air contaminants to affect human health such as symptomatic, with cough, chest tightness, and 

shortness of breath for fourteen to sixteen hours after exposure.  Owen and DeRouen (1980) , Tian 

(2005) and Tian and Wu (2006) applied this dataset with their study. The sample sizes are 15 numbers 

of measurements including: 9 positive airborne chlorine and the rest is empty. Table 3 reveals that the 

airborne chlorine observations measured in parts per million (ppm). 

 

Table 3 Data of airborne chlorine concentrations at US industrial site in the period of a working day 

Measurement  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Chlorine reading  6 0 6 9 6.5 0 0 0 1 0.5 2 2 0 0 1 

 

 Data set 2: 

The National Institute of Water and Atmospheric Research was recorded the red cod 

( Pseudophycis bachus)  density at New Zealand trawls.  Fletcher ( 2008)  and Wu and Hsieh ( 2014) 

utilized this to illustrate in their works as well.  There are 67 trawls measured in kilograms per square 

kilometer 2(kg/km ),  including 54 positive density and the remainder is blank trawls.  The positive 

density are shown as Table 4. 

At the 5% significant level, we used the normality test being the Shapiro-Wilk test, this had a p-

value of 0.2355 for the logged positive airborne chlorine. This dataset is together with zero 

observations, then this can be summarized as delta-lognormal distribution. The estimated airborne 

chlorine mean is 2ˆ ˆˆ ˆ= 2.573, = 0.927, = 1.057, = 0.400airbone     and ˆ = 1.948.  The data was used 

to compute the 95% CIs for ,airbone  as can be seen in Table 5. This result is consistent with the 

simulation results of ˆ= 20, = 0.5n   and ˆ = 2  indicating MOVER-Wilson is the best CI 

performance. 

 

  Table 4 Data of positive red cod density in New Zealand 

Fish density  

10.8 13.2 18.2 19.6 34.2 37.0 41.5 42.3 46.1 46.3 

52.7 53.8 55.5 59.2 64.5 66.0 70.2 70.6 74.7 76.8 

77.6 78.8 85.0 88.1 89.9 90.8 95.4 100.9 114.1 123.2 

131.8 132.7 135.1 141.4 147.4 183.0 223.0 235.3 246.5 253.5 

267.1 276.4 293.7 298.6 465.2 584.2 639.2 639.3 663.3 915.7 

1004.2 1402.2 1563.2 2948.8             
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This data contain zero observations, meanwhile the non-zero observations are investigated to test 

the normality.  We found that the p-value of Shapiro-Wilk test is 0. 2544 for the log- transformed 

quantities of red cod at the 5% significant level. As a result, it fits for the delta-lognormal distribution. 

This leads to compute the red cod density mean is ˆ = 219.335fish  where ˆ = 4.864,  2ˆ = 1.485,  

ˆ = 0.194  and ˆ = 2.116.  We focus on the computation of 95% CIs for ,fish  included in Table 5. 

Furthermore, the CI results applying fish density indicate that the MOVER-Wilson is the best 

confirming with numerical computation in simulation studies section. 

 

Table 5 The 95% CIs for delta-lognormal mean   based on two datasets: the airborne chlorine 

records and fish densities 

CIs 
Methods 

MOVER-VST MOVER-Wilson MOVER-Jeffreys GCI 

Dataset 1: Airborne chlorine 

Lower 1.080 1.147 1.079 1.115 

Upper 5.454 5.314 5.426 15.839 

Length 4.374 4.167 4.347 14.724 

Dataset 2: Red cod density 

Lower 143.193 142.996 142.976 147.69 

Upper 332.617 331.544 332.120 377.325 

Length 189.424 188.548 189.144 229.635 

 

 Data set 3: 

The distance traveled of mice is a measure how quickly mice from one place to another in meter 

( m) .  In biology, it is the study of the activity patterns of a species of field mice, divided by seasons: 

fall, winter, spring and summer.  In this study, the distance traveled data was selected as fall and 

summer seasons especially, taken from Koopmans (1981)  as shown in Table 6.  Histogram plots of 

mice distance in two seasons are displayed as Figure 1. 

  

Table 6 The distance traveled data of mice during fall and summer seasons 

Seasons Distance traveled (m) 

Fall 
0 0 21 0 15 0 15 15 0 8 0 0 15 21 

0 34 0 15 8 29 15 46 39 30 15 11 0   

Summer 
60 21 15 15 15 33 24 33 42 54 11 32 8 71 

150 18 12 0 0 21 17 0 15 106 17 21 21   

 

Table 7 Results of distance traveled of field mice on fall and summer seasons 

Fall Summer

ˆ 2.905  2
ˆ 3.245 

2ˆ 0.263  2
2

ˆ 0.534 

ˆ 0.373  2
ˆ 0.111 

27n  27m 

ˆ 1.032  2
ˆ 0.959 

ˆ 13.118  2
ˆ 29.854 
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          (a)                                 (b) 
 

Figure 1 Histogram plots of the distance of mice traveling on seasons: (a) fall and (b) summer 

 

Table 8 The 95% CIs for    based on the distance traveled of mice 

CIs  
 Methods  

 MOVER-VST   MOVER-Wilson   MOVER-Jeffreys   GCI  

Lower  −21.634 −21.338 −21.087 −33.273 

Upper  −10.781 −10.945 −11.653 −5.724 

Length  10.853 10.393 9.434 27.549 

 

To investigate the normality, the p-values of Shapiro-Wilk test are 0.1913 and 0.1122 for the log-

transformation of positive-valued distances of fall and summer seasons at 5%  significant level, 

respectively. The zero distances are carried in mentioned seasons so that both datasets are considered 

as the delta- lognormal distribution.  Table 7 is displayed the summary statistics.  Therefore, the 

estimated mean difference between summer and fall is ˆ = 16.736mice   m. Table 8 shows that 95%CIs 

for .  It can be interpreted that the mice behavior with traveled distance during fall season is less than 

summer period.  The mentioned example results show that the best performance is MOVER- Jeffreys 

following with the numerical results. 

 

6. Discussion and Conclusions 

The study aimed to develop statistical estimation as CIs for the single and difference between two 

means in delta- lognormal distributions.  There are three proposed CIs, including the MOVER-VST, 

MOVER-Wilson and MOVER-Jeffreys.  By way of comparison, these CIs were compared with the 

existing GCI of Wu and Hsieh (2014). The CP and AL performances are used to assess the proposed 

CIs through Monte Carlo simulation. 

For the single mean, the finding can be conclude that the GCI is stable CI in terms of CPs, although 

its ALs are considered indicating GCI performance is not better than other methods for the large 

coefficient of variation and small sample size. These GCI results are in agreement with Wu and Hsieh 

( 2014) .  The MOVER-VST and MOVER-Wilson performances perform well in terms of CP, unless 

caused by the large coefficient of variation for small sample size and both large zero proportion and 

coefficient of variation for large sample size.  Importantly, it is easier to compute than the GCI. 
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Therefore, both can be considered as recommended CIs for the mean.  On the other side, the CP 

performances of MOVER-Jeffreys were quite under the target for the small coefficient of variation 

and all sample sizes, it is then not suggested.  According to Donner and Zou ( 2011) , Wilson and 

Jeffreys CIs for   were recommended, although MOVER-Jeffreys for delta-lognormal mean is not a 

good performance.  It is possible that Jeffreys CI is directly generated from the probability of having 

non-zero observation.  For the difference between two means, the MOVER- Jeffreys becomes to a 

recommended CI, meanwhile the cases of small zero proportion and large dispersion are excluded. On 

the other hand, the GCI is also recommended in the reminder MOVER-Jeffreys cases. 
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