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Abstract

In this article, we propose the following approaches derive from the method of variance estimate
recovery based on the variance- stabilizing transformation (MOVER-VST), Wilson score (MOVER-
Wilson) and Jeffreys (MOVER-Jeffreys) compared with the generalized confidence interval (GCI) to
develop the statistical estimation being confidence intervals for single and difference between two
means in delta- lognormal distribution. Monte Carlo simulation is used as a technique to evaluate the
performance of these confidence intervals in terms of coverage probability and average length. In
simulation study, the numerical results of single mean showed that the MOVER- VST and MOVER-
Wilson can be considered as the recommended Cls to estimate the delta- lognormal mean in the
important cases. For the difference between two delta- lognormal means, numerical computation
indicated that the MOVER-Jeffreys achieved the given target when the dispersion was not large for
the large probability of additional zero. For application, we illustrate the presented confidence intervals
with real world data sets in several fields: the airborne chlorine record for environmental problem, the
red cod density for fishery survey and the distance traveled of mice for biology.

Keywords: Generalized confidence interval, Jeffreys interval, method of variance estimates recovery, variance-
stabilizing transformation, Wilson score interval.

1. Introduction

Aitchison (1955) first introduced a delta-lognormal distribution. It is represented as the data
containing both zero and positive values. The number of zero observations have a binomial distribution
with the probability & where 0<06 <1. The non- zero values are derived from a lognormal
distribution with the remaining probability 1—J. Many fields utilize this distribution to apply in
several real- word situations such as medicine, environment and fishery. For example, it was used to
study the medical cost in patient groups where zero corresponded to cases of no health care cost (Zhou
and Tu 2000; Tierney et al. 2003; Tian 2005), to analyze airborne chlorine quantity for indicating air
contaminant at industrial sites, United State where zeros corresponded to cases of the evaluation
cannot reveal the concentration in lunch room and break area (Owen and DeRouen 1980; Tian 2005;
Tian and Wu 2006), the fatty acids of captive seabirds where zeros corresponded to cases of absent
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diet (Stewart and Field 2011), and to estimate the red cod density for assessing their abundance where
zeros corresponded to cases of trawls are blank (Pennington 1983; Smith 1988; Smith 1990; Lo et al.
1992; Fletcher 2008; Wu and Hsieh 2014).

A mean is considered as one of the parameter of interest representing the population. For two
populations, the difference and ratio between two means are also the parameter of interest to compare
two quantity in the same distribution. These parameters regard a statistic gathering the population
information. Moreover, the mean has been utilized in many applications, such as environment,
pharmacokinetics, medicine and fishery. For example, it is used to estimate the air lead levels at the
Alma American Labs, Colorado (Zou et al. 2009b), to assess the maximum concentration from alcohol
interaction study in men (Tian and Wu 2007; Krishnamoorthy and Oral 2017), to analyze the medical
charge data from the Regenstrief Medical Record System ( Tian and Wu 2007; Zhou et al. 1997) and
to evaluate the fish densities from a fisheries New Zealand trawl survey (Fletcher 2008; Wu and Hsieh
2014).

These situations confirm that the delta-lognormal distribution is widely applied in several fields.
Importantly, one of the statistical inferences is interval estimation providing the information with
respect to the population more than point estimate (Casella and Berger 2002). For these reason,
researchers have studied interval estimates for the parameters, including mean, variance and
coefficient of variation of delta-lognormal population in the different methods. For instance, Zhou and
Tu (2000) proposed a percentile-t bootstrap interval based on sufficient statistics and two likelihood-
based confidence intervals (Cls) for the mean of diagnostic test charges data containing zeros, they
found that the bootstrap performed well for small skewness and sample size especially. Tian (2005)
presented the concepts of generalized test variables and generalized pivotal quantities (GPQs) on the
zero-inflated lognormal mean, whereas his GCI cannot satisfy a desired value when sample size was
large. Tian and Wu (2006) considered the adjusted signed log-likelihood ratio statistic to produce for
the mean of lognormal data with excess zeros, although it only provided a good coverage probability
(CP) performance. Chen and Zhou (2006) presented Cls for the ratio or difference of means in
lognormal populations with zeros using four methods: a true generalized pivotal (GP), an approximate
GP, a signed log-likelihood ratio (SLLR) and modified SLLR method. Fletcher (2008) proposed a
profile- likelihood for delta- lognormal mean. Harvey and Merwe (2012) presented a Bayesian
approach with both the equal-tail and highest posterior density (HPD) using the different priors for
single mean, variance and the ratio of delta- lognormal means, however they have studied in the
situation of having large zero observations. Li et al. (2013) found that the fiducial approach had high
performance in terms of coverage probability and low bias in CIs for mean of lognormal data with
excess zeros. Later, Wu and Hsieh (2014) adjusted asymptotic GPQ to construct GCI based on
variance stabilized transformation (VST) for the mean of the delta-lognormal population, their
research results reveals that the GCI lengths were not less than the existing profile likelihood of
Fletcher (2008). Rosales and Naranjo (2016) studied the pooled-t, Weleh’s t and Wilson- Hogdes-
Lehmann in the constructing of Cls for mean difference between two delta-lognormal data. Recently,
Hasan and Krishnamoorthy (2018) improved the fiducial CIs for the mean and a percentile based on
delta-lognormal distribution, although their numerical evaluation have not reported for occurring zero
values with the probability of 0.5.

As mentioned above, many studies have examined focusing on Cls for delta-lognormal mean,
meanwhile they extended to study the mean difference. Unfortunately, these research studies still had
restriction in a few aspects. To our knowledge, this paper considers interval estimates for the single
and difference between two means of delta-lognormal distributions using three proposed Cls: the
method of variance estimates recovery based on the variance- stabilizing transformation (MOVER-
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VST), Wilson (MOVER-Wilson) and Jeffreys (MOVER-Jeffreys). These proposed Cls are compared
with the existing GCI of Wu and Hsieh (2014). The theories and methods are elaborated to establish
CIs for delta-lognormal mean in Section 2. Those methodologies are expanded to construct Cls for
the difference between two means in Section 3. The CI performances are assessed by the part of
simulation studies in Section 4. Real-world data are used to illustrate with our presented methods in
Section 5. This paper is closed with the discussion and conclusions in Section 6.

2. Methods for Constructing CIs for Delta-Lognormal Mean
Let a random sample X = (X, X,,...,X,) be drawn from delta-lognormal distribution with the

parameters 4, o~ and &, denoted as A(u, o, J). Aitchison (1955) presented the distribution
function of X, given by

o ;x=0
G(x;u,0°,08) = s y
0+(1-0)F(x;u,07) ;x>0,

where the number of zero observations has the binomial distribution, denoted to be n, ~ B(n,?),
8=P(X =0). F(x;u,c”) stands for the cumulative distribution function of lognormal distribution

and Y=InX ~ N(u,0°); u and o’ are the mean and variance of Y, respectively. Then, the

probability density function (pdf) of X is

1 1 )
| exp(-— (Inx—)?) ;x>0
fxu,0°)= x 270’ 20°
0 ;otherwise.
ay
The maximum likelihood estimates (MLEs) of u, o and & are proved as 0= LZ Vi
n(]) i=1
- K0 a2 ~ n(o) .
c =—Z(y,. —4)" and 6 =—; ng +n, =n where n,, are the number of positive observed
My =1 n

values. The population mean, variance and coefficient of variation of X are
2
9= (1—5)exp[/1+%],

K= (1-0)expu+0c”) exp(c?)+5-1],

_ lexp(c?)+6 -1
¢ 1-6

In this study, CIs for 9 are investigated using the following methods.

2.1. GCI for the mean
The GCI first presented by Weerahandi (1993) being the general approach to establish CI based
on the GPQ concept defined as follows. Let X =(X,,X,,...,X,) be a random variables with the

probability density function f, (x; 3, ). The 9 and o° are the parameter of interest and the vector
of nuisance parameter, respectively. Given x = (x,,x,,...,x,) be a observed values of X. The GCI for
4 is calculated by using the percentile of GPQ R(X; x, 3, ) as if the following conditions are

satisfied as
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(i) Given X, the distribution of R(X; x, §, &) is free of all unknown parameters.

(ii) The observed value of R(X; x, 3, &), depend on the parameter of interest .

If R(X;x,9,0) is followed by the conditions (i) and (ii), the 100(1-¢)% GCI for & is
[R.,,R ;] where R, be the ¢™ percentile of R(X;x, 9,5). For u and o, Krishnamoorthy and
Mathew (2003) proposed the GPQs for both, given by
W |(ng, — Hé?

R,=j- ,
1%

VKO v
_ (ng, —Do

0'2 U >

. (ny, —1)é? _(ny, -6’ , _
where W =(g—u)/ ,|[——— ~ N(0,1) and Us———~Zy According to Wu and
g, log ¢

Hsieh (2014), the GPQ for ¢ is

. A Z
R; = sin2|:arcsm S ——},

2n

—~ d
where Z =2n (arcsin 5 —arcsin /& )—)N (0,1). By the information of three pivots, the equivalent

of & is defined as

R,
RS—(I—Rd)exp(Ry+ ; j

It can be expressed as

. a VA ~ w (I’l n - 1)&2 (n(l) - 1)6-2
R, = l—sin{arcsm\/g——} exp| fi— ( + , (1)
’ { 2n [n,) U 2U
where W,U and Z are independent random variables. The GPQ in (1) satisfies the two conditions

of Weerahandi (1993) for being a GPQ. Then, the 100(1-¢)% GCI for 4 is given as
C[gci = [L Ugci] = [Rg (4/2)9 R.9 (1 - 4/2)]5

gci?

where R (&) denotes the ¢ * percentile of R,.

2.2. MOVER for the mean
According to Donner and Zou (2012), let 6, be a estimate of 6,, k=1,2. The 6, and 6, are

independent, so the lower limit for 6, + 6, using central limit theorem (CLT) can be written as

L91+92 = (él + éz) + melvar(él) + var(éz),

where V, be the & ™ percentile of standard normal distribution. Let (/,,u,) be the CIs for 6,.
Notice that L, , can be closed to / +/, more than 6, +0,. By CLT, the estimate variance at 6, =1,

is recovered from /, as

H 7 \2
var(ék)=—(9" Zlk) .
Vg/z
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Similarly, the upper limit is obtained. Then, the 100(1-¢)% MOVER confidence interval for
0, +0, is defined as

cl, , =[L

6,+0, 0,+0,° IJ{I1 +0, ]’

where

Ly, =6,+6)-\@6, 1Y +@6,-L)

Uyoo, = (0,+6,) =0 +(u, -0,

Now, we focus on CIs for & so that we take log-transformation as
2

1n19=1n(1—5)+,u+%=771+772+773. 2)
By substitution f, 67, & in its parameter, the estimate n,+n0,+n0, =1In(l —8)+ fi+67 becomes

the estimate of 7, +7, +7;,. For considering CI for o, the unbiased estimate of o~ is

L)

" DX =),
— L=

6=
Ry
which is transformed as
A2
(ny, Do 2

O_z ~ /1/71“)71’

where 67 denoted as the sample variance for the log-transformed data of non-zeros. ;(j“)fl stands for

chi-square distribution with 7, —1 degrees of freedom. At significant level ¢, the coverage

probability for ){5(1),1 is P[;{é < Z:(l)*l <y ; J= 1-¢. Therefore, the 100(1-¢)% CI for
PO =5y~

o’ is given as

[y, =D& (n,, =15
2 2 .

o o o 2

-1 -1

¢ I
1*5,11(1) 5,n(1)

2
o
5

Second, the CI for g is constructed. Here Y ~ N(u,07) and also i~ N ( y7, j By CLT, the

n
random variable Z is

w=H"H_ KL N,

2 A2
/0' (n,,—Do
L) "(1)U

Hence, the 100(1-¢)% CI for u is

. (n(l)—l)&2
Cly _[lu,u/l]—[,uing/2 —_—

ny,U
where W, be the & ™ of N(0,1). The MOVER confidence interval for & is constructed. From (2),

the 100(1-¢)% MOVER confidence interval for 7, +7, is given by
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CI

mAn [Lﬂz +15° Uﬂz +713 ]’

where

. R 1, ’ o . u, ?
qu+7;3 = (1, +773)_\/(’72 _1,4)2 +(773 _GTJ and Ur72+r73 = (1, +’73)+\/(u,, _772)2 +(?_773j .
The previous step is combined so that the 100(1-¢)% MOVER confidence interval for 9 is
given by
Cl,=[L,,U,],

where

Ly =exp| G+ + 20 =[G =) + G+ )~ 1,, )7 | and

U.9 = exp[(ﬁl +ﬁz + ﬁs) + \/(ul _ﬁl)2 + (U;,2+773 - (ﬁz + ﬁ3))2 :|
For /, and u, derive from three methods for establish Cls for ¢ : the VST, Wilson score and

Jeffreys confidence intervals, as can be seen below.

1) MOVER-VST

The VST for 6 was presented by DasGupta (2008), Wu and Hsieh (2014). Recall that

ng ~ B(n,8). The expected Fisher’ s information for & is [,(6)=n/[6(1-5)] Using delta
theorem, we obtain that ~/n (8 —8) ~ N(0,5(1-5)) where var(S) = I.'. The VST is defined as

1/2

&)= [—=—=—=

S

Thus, g(n(o))=arcsin(1/EJ and get that W= 2x/;(arcsin($)—arcsin(§))~N(O,l) as
n

do= arcsin(x/g).

n — 0. Then, the 100(1-¢)% asymptotically CI for o is

2 1
Cl;, =l ,,u,,]=|sin’| arcsinNé £ W )
J. 1. 1. |: (17%) 2\/;

Then, 100(1-¢)% MOVER-VST confidence interval for ¢ is given by
Clm.v = [L Um.v ]’

m.y?

where

Lm,v = exp[(ﬁl +ﬁ2 +ﬁ3)_\/(ﬁ1 _ll,\;)z +((ﬁ2 +ﬁ3)_qu+,73 )2:| and

Um,v = exp[(ﬁl +ﬁ2 +ﬁ3)+\/(u1,v _ﬁl)z +(U772+,,3 _(ﬁz +ﬁ3))2 :|

2) MOVER-Wilson

The Wilson interval for 6 was improved by Wilson (1927). After that Wilk (1938) proposed by
the score method, called Wilson score method. Donner and Zou (2011) found that it can perform well
for small to moderate sample sizes. Thus, the 100(1—¢)% Wilson CI for ¢ is
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2 2

) +T£/2 ¢

Ccr. =11 _ 2 "o'w | 5
Sw [ lLw? ulAw] n+T; n 4 s

where T = (n,, —nd)//né(1-05) ~ N(0,1). Then, 100(1-¢)% MOVER-Wilson confidence interval
for 4 is given by
cl =L

m.w mw? m.w]’

where

Lm.w = exp[(ﬁl + ﬁZ + ﬁ} ) - \/(ﬁl - ll.w)z + ((ﬁz + ﬁ}) - Lryz +73 )2 :| and

Uy = exp| G411, +71) + =)+ U, =) |

3) MOVER-Jeffreys
The Jeffreys method was developed from Brown et al. (2001) for using beta prior in inference on

6 (Berger 1985). Let beta(b,b,) and beta(n, +b;,n,, +b,) be the prior and posterior distributions

of &, respectively such that Jeffreys prior has the distribution beta (% ,%j The 100(1-¢)% Jeffreys

CI for ¢ is

Cl;, =l ,,u,]= [beta(%;a,ﬂj, beta(l—%;a,/j’ﬂ,

where a =n, +1/2 and f=n, +1/2. Then, 100(1-¢)% MOVER-Jeffreys confidence interval
for 9 is given by
Clm.j = [Lm.j > Um.j ]’

where

Lm../ = exp[(ﬁ1 + ﬁz + ﬁ3) - \/(ﬁl - Zl../ )2 + ((ﬁz + ﬁ3) - an +113 )2 ] and

Uy = exp| G+ + i)+ Jlu, =0 +(U, ., =G40 |

3. Methods for the Difference between Two Delta-Lognormal Means

The ClIs for the difference between two means are expanded from the previous section using the
concepts of MOVER based on VST, Wilson score and Jeffreys, compared with GCI. Let
X =(X,,X,,..,X,) and V =(V,V,,...,V,)) be two non-negative and independent random variables

of delta-lognormal distribution, denoted as A(u, o°,8) and A(w,,o;,d,), respectively. The

. I . 2 . X > J .2
maximum likelihood estimators for y,, 0, and &, are [, = —Zln Vv, 0y = m—Z(ln v, — yz)
1 Jj=1 1 Jj=1
a My . .
and 0, =——; m +m, =m, respectively. Then, the difference between two delta- lognaormal
m

means is given by
E=9-39,
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2

where 8, = (1- 52)exp(/12 +O-72j. The & =39-49, is the point estimate of &.

3.1. GCI for the difference between two means
The GCI conditions are detailed in Section 2. The importance is the GPQ for & used to establish

GCI. Since that & is the function of parameters z,, o, and &,. By random variable ¥V, the GPQs for
1,0, and &, are defined as
R = ,& _ w' (m(l) _1)6-22
2 ' ’
" VM v

~2
_ (m(1) _1)02
o3 U’

>

. A Z'
R(s2 = sin{arcsm(@)——},

2Jm

m,, —1)G?2 ~
where W' = (i, — )] [0 "D% o, 7' = 2/m (arcsin /3, —arcsin /3, ) ~ N(0,1) and
mY2

U' ~ Zi(l)fl- By the pivots of R RﬂZ ,R,,R,, R, R; , the equivalent of &£ is given by

u> o o3 2

2

R R,
§=(1—R§)exp[Ru+ ; j—(l—RL,.z)exp(R#2 + 22 J

It can be written as

R n,—1)6>  (n, —1)6°
Rf—(1—sin{arcsin(é')—iﬂexp[,&—W (T +((1) ) ]

2n n,U 2U

L a 4 N m, -6  (m,, —1)6;
—| 1—gin®| arcsin(5,) ——= | |ex —w W + My , 3
[ sin |: ( 2) 2\/;:|] p[ﬂz W U ( )

where the random variables U,U', W ,W',Z and Z' are independent. The GPQ in (3) satisfies the two
conditions for being a GPQ. As a result, the 100(1—-¢)% GCI for & is

Cldgv[ = [Ldgci s Udgp[] = [Rg (4/2)9 R.f (1 - 5/2)]5
where R.({) denotes the ¢ ™ percentile of R..

3.2. MOVERs for the difference between two means
The MOVER idea based on Zou et al.(2009a) was described to construct the CIs for ¢,0, +¢,6,;

¢, and ¢, are constants, defined as
C[;m = [La,im 2 U;m ]’

where

N A A 2 N 2
L, =c6 +c,0, —\/[6191 —min(clll,clul)J +[c26’2 —min(c,l,,c,u, )] and

~ A A 2 A
U =cf+c,0,+ \/[cﬁ1 —max(c;,cu) | +[c,0, —max(c,lc,u,)T



Patcharee Maneerat et al. 447

This leads to construct MOVER confidence interval for & —¢&,, given by
Cldm = [Ldm s Udm ]5
where

L, =3-9)- \/[9 —min(/,,u,)]? +[~3, —min(~L,,—u,)]’ and

U,, = (8= 8)+J[d—max(l,,u)] +[-8, —max(L,,—u,)].
For [, and u,, k=1,2 are depend on the CIs for ¢ and 4,, meanwhile CIs for J consist of

three methods: VST, Wilson score and Jeffreys elaborated as the previous section.

1) MOVER-VST
CIs for y,0* and & were presented in Section 2. Furthermore, setting

[,
llv = (1 _ul.v)exp[ly +Lj’

U,

2
ulv = (l_ll.v)exp(uy +%J

and
lﬂZ
lZv = (1_u2.v)exp l,u2 + 2 ’
u_,
u,, =(1-1, )exp lu2 + 5 )
where

A (m(l) _1)6-2
clr, =[l,,u,]= =W’ ’— ,
Hy [/—‘z #z] [ﬂz m(l)U!

A2 "
Clo_z :[l 2, U 2]2 (m(l) _1)02 (m(l) _1)02

o3 o3 2 B 2 B

¢ ¢
=5y >

A 1
Cl,,, =[l,,u,,]=|sin’ inyo,¥Z , ——1||,
2w = by tty,] l:sm [arcsm >+ (17%) ZMJ:I

’ 2
U™ oo

. (m,, —1)67
w _(,uz_luz)/ #NN(OJ),

mmyY,

Z= 2\/;(arcsin(\/g) - arcsin(\/é'j)) ~ N(0,1).
Then, the 100(1-¢)% MOVER-VST confidence intervals for & is given by
C]dm.v = [Ldm.v b Udm.v ]’

where

L, =@-9) —\/[9 —min(l,,,u,) ] +[~& —min(~L,,.~u,,) | and
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U, =9-38) \/[9 max(ly,u,) | +[ -8, —max(—,.-u,)] -

2) MOVER-Wilson
Similarly, given

[,
lw (1 ul M)exp[ G?j’

U,
ulw = (1_ll.w)exp(l‘u +?‘j!

and
lmz
ZM (1 uZ M)exp Hy 7 5
u_,
u,, =(1-1,,)exp ly2 + ;z i
where
my, + T ; 2
CI(}‘.Z.W = [lz,wa uz_w] = ~2 F

2
m+T :
2

T = (mgy, —md)/\Jmé(1-0) ~ N(0,1).
Hence, the 100(1-¢)% MOVER-Wilson confidence interval for & is
cr, =[L

dm.w dm.w? Udm.w ]’

where

L, =(&-&) —\/[9— min(l,,u,,) | +[ -8 —min(~L,,,~u,,)] and

U, =@-8&)+ \/[9 —max(ly,.u,) | +[ -8, —max(—L,.~uy,)] -

3) MOVER-Jeffreys

Also, let
ZUZ
=(l-u, ,)exp|! +7J,
u
u, =(1-1,)exp lﬂ+?j,
and

I,
L, = (l—uz.J)exp[lyz +2 j

u_,
=(1- lz,)expl +—=|,

where
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Cls,, =1L,,u,,]= {beta(%; a,, ﬁzj,beta(l—g; a,, ﬂzﬂ,

a, =mg +1/2 and B, =m, +1/2.
Therefore, the 100(1-¢)% MOVER-Jeffreys confidence interval for & is
CIdm.J = [Ldm.J 4 Udm.J ]’

where

A A A ] 2 A ] 2
L, =(5- 92)—\/[(3 —min(,,,u,,) | +[ -4 —min(~1,,,u,,)] and

U,  =@-8,)+ \/[(9 —max(ly,.u,) ]| +[ -8, ~max(-1,,.~u,,)] .

4. Simulation Studies

This section shows that Monte Carlo simulation is proceeded using R statistical programming
(Venables et al. 2015) to examine the proposed CI performances in terms of coverage probability (CP)
and average length (AL). At the nominal confidence level 0.95, all methods are used 10,000
replications and 5,000 GPQs for the GCI. In general, there are two important properties to find the
recommended CI: CP with close or greater than a nominal coverage level and providing the shortest
AL.

For focusing on CIs for delta-lognormal mean, the random samples are generated from

A(u, 0°,5). The mean u set to 0. All CIs for § are the comparison between sample size
n=20,50,100, the probability of having zero d =0.2,0.5,0.8 and the coefficient of variation
$=0.2,0.5,1.0,2.0. In this study, the cases of n=20,6=0.8 and ¢=10.2,0.5,1.0,2.0 are
excluded because the number of positive value E(n,)) is less than 10. Fletcher (2008), Wu and Hsieh

(2014) claimed that these combination affecting the CI performances. To construct ClIs for 9, we

propose the MOVER-VST, MOVER-Wilson and MOVER-Jeffreys which are compared with the
existing GCI. Table 1, the numerical results revealed that the MOVER-VST and MOVER-Wilson
provided their CPs over the nominal level excluding cases of ¢=2 and small sample sizes. Both were

also excepted for 6 =0.8, ¢ =2 and large sample sizes. On the contrary, the MOVER-Jeffreys
performance gave the CPs being less than 0.95 for ¢ = 2. The CP performance of GCI tended to close
a desired value, although its ALs were wider than other methods for ¢ =2 and small sample sizes.

For examining on CIs for the difference between two delta-lognormal means, the random samples
are generated from A(u, °,8) and A(u,, 05, 5,) to establish CIs for £ All parameters is relative
with A(x,, o3, 5,) which are similarly fixed as mentioned above. Table 2 showed that the CP from

three MOVER were closer or greater than a given target almost all cases, however the situations of
0=0,=02 and ¢=¢, =1,2 were omitted. Importantly, MOVER- Jeffreys became the lowest AL.

The GCI can maintain the target for the rest cases.
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Table 1 The CPs and AL performances of 95% Cls for 9
n 5 P CP AL
MOVER-V ~ MOVER-W  MOVER-J GCI MOVER-V ~ MOVER-W  MOVER-J GCI
20 02 02 0.941 0.981 0.922  0.935 0.437 0.462 0.399  0.355
0.5 0.959 0.976 0.952  0.949 0.822 0.847 0.802  0.639
1.0 0.956 0.965 0.953 0.946 1.811 1.831 1.799 1.730
2.0 0.941 0.945 0.939 0.944 3.661 3.676 3.654 8.337
0.5 0.2 0.957 0.962 0.900 0.954 0.840 0.805 0.711 0.457
0.5 0.957 0.961 0.924 0.951 1.277 1.252 1.184  0.710
1.0 0.960 0.960 0.944 0.952 2.568 2.551 2.505  2.092
2.0 0.939 0.938 0.930 0.942 5.042 5.030 4.997 39.703
50 0.2 0.2 0.950 0.970 0.939 0.947 0.283 0.290 0.269 0.232
0.5 0.957 0.968 0.954 0.945 0.519 0.527 0.512  0.378
1.0 0.970 0.974 0.970 0.946 1.150 1.157 1.148  0.850
2.0 0.974 0.975 0.974 0.946 2.372 2.376 2.371 2.704
05 02 0.955 0.956 0.927 0.953 0.538 0.528 0495  0.291
0.5 0.952 0.954 0.935 0.947 0.766 0.759 0.737 0.403
1.0 0.957 0.958 0.950 0.946 1.472 1.468 1453  0.823
2.0 0.949 0.949 0.945 0.943 2.870 2.867 2.857 2.754
0.8 02 0.962 0.945 0.925 0.961 1.067 1.013 0.960  0.248
0.5 0.967 0.953 0.942  0.961 1.427 1.373 1.339 0.344
1.0 0.958 0.946 0.936 0.951 2.613 2.562 2.544 0.888
2.0 0.943 0.934 0.932  0.944 4.994 4951 4940  8.484
100 02 02 0.952 0.967 0.948  0.949 0.206 0.209 0.201 0.167
0.5 0.968 0.973 0.966 0.949 0.393 0.396 0.391 0.263
1.0 0.992 0.992 0.992  0.949 0.923 0.926 0.923 0.563
2.0 0.999 0.999 0.999 0.946 1.968 1.969 1.968 1.610
0.5 0.2 0.957 0.958 0.943  0.957 0.388 0.384 0.372 0.207
0.5 0.962 0.963 0.954 0.955 0.556 0.553 0.545 0.276
1.0 0.971 0.971 0.968 0.947 1.100 1.099 1.094  0.522
2.0 0.987 0.987 0.986 0.947 2212 2211 2.208 1.460
0.8 0.2 0.959 0.945 0.935 0.957 0.758 0.738 0.718 0.172
0.5 0.961 0.949 0.945 0.957 0.971 0.950 0.937 0.223
1.0 0.957 0.948 0.945 0.950 1.704 1.683 1.677  0.429
2.0 0.945 0.939 0.939  0.946 3.206 3.188 3.185 1.474

Notes: MOVER-V, MOVER-W and MOVER-J denote the MOVER-VST, MOVER-Wilson, MOVER-Jefftreys, respectively.



Table 2 The CPs and AL performances of 95% Cls for &

" m 5 5, y: 4 CP AL
MOVER-V MOVER-W MOVER-J] GCI  MOVER-V MOVER-W MOVER-] GCI
20 20 0.2 0.2 0.2 0.2 0.969 0.973 0.971 0.983 0.473 0.475 0.443  0.505
0.5 0.5 0.946 0.948 0.945 0975 0.779 0.762 0.729 0921
1.0 1.0 0.932 0.930 0.929 0.965 2.298 2.234 2.191  2.676
2.0 2.0 0.938 0.937 0.937 0.959 12.995 12.692 12.566  14.437
0.5 0.5 0.2 0.2 0.994 0.993 0.990 0.994 0.651 0.624 0.598  0.648
0.5 0.5 0.990 0.988 0.986 0.989 1.076 1.036 0.988 1.040
1.0 1.0 0.979 0.977 0975 0.978 3.588 3.491 3354 3385
2.0 2.0 0.968 0.965 0.964 0.964 48.833 47.876 46.334  46.743
50 50 0.2 0.2 0.2 0.2 0.982 0.982 0.981 0.987 0.313 0.310 0.299  0.329
0.5 0.5 0.947 0.945 0945 0972 0.468 0.459 0.448  0.538
1.0 1.0 0.927 0.925 0.924 0.961 1.073 1.050 1.038 1.245
2.0 2.0 0.931 0.929 0.929  0.955 3.729 3.662 3.644  4.144
0.5 0.5 0.2 0.2 0.995 0.994 0.993  0.995 0.413 0.405 0396 0412
0.5 0.5 0.989 0.989 0.986 0.989 0.578 0.567 0.554  0.573
1.0 1.0 0.975 0.974 0972 0974 1.250 1.232 1.206 1.222
2.0 2.0 0.964 0.964 0.962  0.963 4.641 4.593 4.518 4477
0.8 0.8 0.2 0.2 0.997 0.997 0.997 0.997 0.362 0.369 0352 0.354
0.5 0.5 0.996 0.996 0.995 0.994 0.561 0.575 0.545  0.505
1.0 1.0 0.992 0.992 0.991 0.985 1.714 1.758 1.673 1.440
2.0 2.0 0.982 0.981 098 0.970 23.29 23.886 22,993 19.172
100 100 0.2 0.2 0.2 0.2 0.990 0.988 0.987 0.993 0.227 0.224 0220  0.236
0.5 0.5 0.957 0.955 0.955 0.979 0.329 0.324 032 0373
1.0 1.0 0.929 0.928 0.927 0.961 0.700 0.689 0.685  0.808
2.0 2.0 0.923 0.922 0.922  0.952 2.145 2.119 2.113  2.389
0.5 0.5 0.2 0.2 0.994 0.994 0.994 0.994 0.293 0.290 0.286  0.293
0.5 0.5 0.989 0.989 0.988 0.989 0.393 0.389 0385  0.392
1.0 1.0 0.975 0.975 0974 0.975 0.763 0.758 0.750  0.756
2.0 2.0 0.960 0.959 0.958 0.960 2257 2.245 2227 2210
0.8 0.8 0.2 0.2 0.998 0.998 0.997 0.997 0.248 0.252 0.246  0.245
0.5 0.5 0.996 0.996 0.995 0.993 0.34 0.346 0.337  0.320
1.0 1.0 0.989 0.990 0.989 0.983 0.724 0.738 0.719  0.645
2.0 2.0 0.980 0.980 0.979 0971 2.807 2.857 2.789  2.460

Notes: MOVER-V, MOVER-W and MOVER-J denote the MOVER-VST, MOVER-Wilson, MOVER-Jeffreys, respectively.
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5. Applications

All CIs were established by the different methods in order to apply with real world examples.
There are the following data sets in several fields, including environmental problem, fishery survey
and biology as seen below.

Data set 1:

The measured airborne chlorine were collected during a working day at an industrial site, United
States. National Research Council (US) Committee on Toxicology had noted that chlorine was
produced annually about 10 million tons for industrial use (Research National Council 1984). This is
air contaminants to affect human health such as symptomatic, with cough, chest tightness, and
shortness of breath for fourteen to sixteen hours after exposure. Owen and DeRouen (1980), Tian
(2005) and Tian and Wu (2006) applied this dataset with their study. The sample sizes are 15 numbers
of measurements including: 9 positive airborne chlorine and the rest is empty. Table 3 reveals that the
airborne chlorine observations measured in parts per million (ppm).

Table 3 Data of airborne chlorine concentrations at US industrial site in the period of a working day
Measurement 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Chlorine reading 6 0 6 9 65 0 0 O 1 05 2 2 0 0 1

Data set 2:

The National Institute of Water and Atmospheric Research was recorded the red cod
(Pseudophycis bachus) density at New Zealand trawls. Fletcher (2008) and Wu and Hsieh (2014)
utilized this to illustrate in their works as well. There are 67 trawls measured in kilograms per square

kilometer (kg/km®), including 54 positive density and the remainder is blank trawls. The positive

density are shown as Table 4.

At the 5% significant level, we used the normality test being the Shapiro-Wilk test, this had a p-
value of 0.2355 for the logged positive airborne chlorine. This dataset is together with zero
observations, then this can be summarized as delta-lognormal distribution. The estimated airborne
chlorine mean is §,,,, =2.573, 2 =0.927, > =1.057,5 = 0.400 and § =1.948. The data was used

to compute the 95% Cls for

airbone >

simulation results of n=20,5=0.5 and ¢3:2 indicating MOVER-Wilson is the best CI

performance.

as can be seen in Table 5. This result is consistent with the

Table 4 Data of positive red cod density in New Zealand

Fish density
10.8 13.2 18.2 19.6 34.2 37.0 41.5 423 46.1 46.3
52.7 53.8 55.5 59.2 64.5 66.0 70.2 70.6 74.7 76.8
77.6 78.8 85.0 88.1 89.9 90.8 954 1009 114.1 123.2

131.8 132.7 135.1 1414 1474 183.0 223.0 2353 2465 2535
267.1 276.4 293.7 298.6 4652 5842 6392 6393 6633 915.7
1004.2 1402.2 1563.2 2948.8
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This data contain zero observations, meanwhile the non-zero observations are investigated to test
the normality. We found that the p-value of Shapiro-Wilk test is 0.2544 for the log-transformed
quantities of red cod at the 5% significant level. As a result, it fits for the delta-lognormal distribution.

This leads to compute the red cod density mean is Qﬂyh =219.335 where i =4.864, 6° =1.485,

5=0.194 and ¢ =2.116. We focus on the computation of 95% ClIs for &> ncluded in Table 5.

Furthermore, the CI results applying fish density indicate that the MOVER-Wilson is the best
confirming with numerical computation in simulation studies section.

Table 5 The 95% Cls for delta-lognormal mean ¢ based on two datasets: the airborne chlorine
records and fish densities

Methods
Cls MOVER-VST MOVER-Wilson MOVER-Jeffreys GCI
Dataset 1: Airborne chlorine
Lower 1.080 1.147 1.079 1.115
Upper 5.454 5314 5.426 15.839
Length 4.374 4.167 4.347 14.724
Dataset 2: Red cod density
Lower 143.193 142.996 142.976 147.69
Upper 332.617 331.544 332.120 377.325
Length 189.424 188.548 189.144 229.635
Data set 3:

The distance traveled of mice is a measure how quickly mice from one place to another in meter
(m). In biology, it is the study of the activity patterns of a species of field mice, divided by seasons:
fall, winter, spring and summer. In this study, the distance traveled data was selected as fall and
summer seasons especially, taken from Koopmans (1981) as shown in Table 6. Histogram plots of
mice distance in two seasons are displayed as Figure 1.

Table 6 The distance traveled data of mice during fall and summer seasons

Seasons Distance traveled (m)
Fall 0 21 0 15 0 15 15 0 8 0 0 15 21
34 0 15 8 29 15 46 39 30 15 11 0
Summer 60 21 15 15 15 33 24 33 42 54 11 32 8 71

150 18 12 0 0 21 17 0 15 106 17 21 21

Table 7 Results of distance traveled of field mice on fall and summer seasons

Fall Summer
f1=2.905 f, =3.245
67 =0.263 6; =0.534
5=0373 5,=0.111
n=27 m=27
$=1.032 $, = 0.959

A N

$=13.118 4, =29.854
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Figure 1 Histogram plots of the distance of mice traveling on seasons: (a) fall and (b) summer

Table 8 The 95% Cls for & based on the distance traveled of mice

Methods
Cls MOVER-VST  MOVER-Wilson MOVER-Jeffreys GCI
Lower —21.634 —21.338 —21.087 —33.273
Upper —-10.781 —10.945 —11.653 —5.724
Length 10.853 10.393 9.434 27.549

To investigate the normality, the p-values of Shapiro-Wilk test are 0.1913 and 0.1122 for the log-
transformation of positive-valued distances of fall and summer seasons at 5% significant level,
respectively. The zero distances are carried in mentioned seasons so that both datasets are considered
as the delta- lognormal distribution. Table 7 is displayed the summary statistics. Therefore, the
=-16.736 m. Table 8 shows that 95%CIs

for &. It can be interpreted that the mice behavior with traveled distance during fall season is less than

estimated mean difference between summer and fall is ¢

mice

summer period. The mentioned example results show that the best performance is MOVER-Jeffreys
following with the numerical results.

6. Discussion and Conclusions

The study aimed to develop statistical estimation as Cls for the single and difference between two
means in delta-lognormal distributions. There are three proposed Cls, including the MOVER- VST,
MOVER-Wilson and MOVER- Jeffreys. By way of comparison, these CIs were compared with the
existing GCI of Wu and Hsieh (2014). The CP and AL performances are used to assess the proposed
CIs through Monte Carlo simulation.

For the single mean, the finding can be conclude that the GCl is stable CI in terms of CPs, although
its ALs are considered indicating GCI performance is not better than other methods for the large
coefficient of variation and small sample size. These GCI results are in agreement with Wu and Hsieh
(2014). The MOVER-VST and MOVER- Wilson performances perform well in terms of CP, unless
caused by the large coefficient of variation for small sample size and both large zero proportion and
coefficient of variation for large sample size. Importantly, it is easier to compute than the GCI.
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Therefore, both can be considered as recommended CIs for the mean. On the other side, the CP
performances of MOVER-Jeffreys were quite under the target for the small coefficient of variation
and all sample sizes, it is then not suggested. According to Donner and Zou (2011), Wilson and
Jeffreys Cls for 0 were recommended, although MOVER-Jeffreys for delta-lognormal mean is not a
good performance. It is possible that Jeffreys CI is directly generated from the probability of having
non-zero observation. For the difference between two means, the MOVER-Jeffreys becomes to a
recommended CI, meanwhile the cases of small zero proportion and large dispersion are excluded. On
the other hand, the GCI is also recommended in the reminder MOVER-Jeffreys cases.
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