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Abstract 

This paper proposed a three parameter exponentiated shifted exponential distribution and 

derived some of its statistical properties including the order statistics and discussed in brief 

details. Method of maximum likelihood was used to estimate the parameters of the proposed 

distribution. The proposed distribution was applied on two real life positively skewed data sets 

with different level of kurtosis and simulation was done. The results obtained indicate that the 

proposed distribution with unimodal, positively skewed and decreasing shapes property fits 

better on the data set with higher kurtosis than the data set with lower kurtosis when compared. 

The simulation results showed that as the sample size increases the biasedness and the mean 

square error (MSE) of the proposed distribution decreases showing its flexibility property. In 

both real life applications, the proposed distribution was compared with the three parameter 

generalized inverted generalized exponential distribution, a three parameter generalized Lindley 

distribution and the two parameter shifted exponential distribution based on their Alkaike 

Information Criteria (AIC), Bayesian Information Criteria (BIC), Negative Log-likelihood 

(NLL) and Hanniquin Information Criteria  (HQIC) values and it indicated that the proposed 

distribution can be used to model real life situations of positively skewed data with high kurtosis. 

______________________________ 
Keywords: Quantile function, probability density function, cumulative density function, order statistics, 

reliability function. 

 

1. Introduction 

Over the decades, researchers have introduced in literature several continuous univariate 

distributions particularly on lifetime distributions that is rich and still growing rapidly. Various 
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distributions have been proposed by the extension of the existing distributions to serve as useful 

models for a wide applications on data arising from different real life situations. This has been 

done through different approaches. Few recent studies in this line of research involve extending 

probability distributions with the aim of increasing their modeling capability include the works 

of Nekoukhou et al. (2015), Al-Babtain et al. (2015), Pogány and Saboor (2016), Rodrigues et 

al. (2016), Natalie et al. (2016), Elgarhy and Shawki (2017) and Agu and Onwukwe (2019), 

Eghwerido et al. (2020a), Egwherido et al. (2020b). All this researchers used the exponentiation 

method proposed by Gupta et al. (1998) to extend the baseline distributions by the injection of a 

shape parameter which helps to control the skewness and peakness inherent nature in the data 

sets. This allow a more realistic modeling of data arising from different real life situations. Most 

of these distributions proposed by researchers have been extended or applied in different areas 

of real life problems by other researchers. Agu and Francis (2018) compared goodness of fit test 

for normal distribution to determine the normality of a given data.  

Obubu et al. (2019) introduced a four parameter odd generalized exponentiated inverse 

Lomax distribution for modeling lifetime data and derived some of its basic statistical properties.  

The interest of this article is on the extension of the two parameters shifted exponential 

distribution to three parameters distribution. The shifted exponential distribution is simply the 

distribution of where X  is exponentially distributed and T  is a parameter. In exponential 

distribution, the distribution begins at 0x   but when the distribution begin at any positive value 

of x  the resulting distribution is the shifted exponential distribution. This distribution is a life 

time distribution appropriate in modeling life or time failure of system under chance or constant 

failure rate condition. 

Numerous researchers have studied Bayesian prediction problems for the shifted exponential 

distribution. Evans and Nigm (1980) discussed Bayesian prediction of future observations based 

on type II censored sample. Madi and Tsui (1990) derived a class of smooth estimators Madi and 

Leonard (1996) addressed the problem of estimating the scale parameter and proposed Bayesian 

estimators. Madi and Raqab (2003) had discussed on the basis of a doubly censored random 

sample of failure times drawn from a shifted exponential distribution.  

Chang et al. (2013) dealt with hypothesis testing on the common location parameter of 

shifted exponential distribution with unknown and possibly unequal scale parameters. Sánchez 

et al. (2014) represented shifted exponential as likelihood function and conjugate inverted gamma 

prior for making Bayesian inference comparatively robust against a prior density poorly 

specified. 

Ahuja and Stanley (1967) introduced a two parameter exponentiated exponential distribution 

with the distribution begin at 0x   which was further studied in detail by Gupta and Kundu 

(1999). Gupta and Kundu (1999) introduced a two parameter generalized exponential distribution 

using the exponentiation method proposed by Gupta et al. (1998). 

This article is interested in extending the shifted exponential distribution by the addition of 

a shape parameter to make it a three parameter distribution (where )x   with the aim to 

increase its flexibility to real life situations using the exponentiation method proposed by Gupta 

et al. (1998). 

The basic motivations for obtaining this exponentiated shifted exponential distribution is to 

make the kurtosis more flexible as compared to the parent distribution (shifted exponential 

distribution), to generate a distribution with right skewed, unimodal and to provide consistently 
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better fits on higher kurtosis data than other generated distributions with less or equal number of 

parameter. 

 

2.  Shifted Exponential Distribution 

A random variable X  is said to have a shifted exponential distribution if the corresponding 

probability density function (pdf) and cumulative density function (cdf) begin at   are given by 
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where   is the location parameter interpreted as unknown point at which life begins while   

represents the scale parameter. 

A random variable X  is said to have an exponentiated distribution if the corresponding pdf 

and cdf proposed by Gupta et al. (1998) are given by  
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3.  Exponentiated Shifted Exponential (ESE) Distribution 

The pdf of the proposed ESE distribution is derived by substituting (1) and (2) into (3) to 

have 
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This is represented graphically in Figure 1. At 1,   (5) becomes the shifted exponential 

distribution, at 0   and 1,  (5) becomes the exponential distribution. Also the 

corresponding cdf of the ESE distribution is derived by substituting (2) into (4) to have  

  ( )( ) , , 0, 0.1 xH x xe


           (6) 

This is represented graphically in Figure 2. Where   is the scale parameter,   is the 

location parameter and   is the shape parameter. (6) becomes the cdf of the ESE distribution. 

 

3.1. Some basic properties of the ESE distribution  

Some of the basic properties of ESE distribution are obtained as follows. The reliability 

function is obtained using the relation 

1 ( ),fR H x   

where  ( )H x  is the cdf of the proposed ESE distribution. Therefore, the reliability function of 

ESE distribution is 
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The corresponding failure rate of ESE distribution is obtained using the relation 
( )
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3.2. Quantile function and median  

The quantile function ( )Q u  is derived from the relation 

1( ) ( ).Q u uH   

Hence, the quantile function of the ESE distribution is derived as  
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where uniform(0,1).u   This simply mean that random samples from the proposed ESE 

distribution can be generated using  
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The median of the ESE distribution can be obtained by making the substitution of 0.5u   

in (7) to have 

 1

ln 1 0.5
.median







   

 

3.3.  Order statistics 

The pdf of the 
th
j  order statistic for a random sample of size n  from a distribution function 

( )H x  and an associated ( )h x  is given by 
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where ( )h x  and ( )H x  are respectively the pdf and the cdf of the ESE distribution. 

The pdf of the thj  order statistic for a random sample of size n  from the ESE distribution 

is given by 
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The pdf of the minimum order statistics is obtained by setting 1j   in (8) to have 
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and the corresponding pdf of the maximum order statistics is obtained by setting j n  in (8) to 

have 
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3.4. Parameter estimation 

The method of maximum likelihood estimation is used to estimate the parameters of the ESE 

distribution.  

Let 1,..., nx x  be a random sample distributed according to the pdf of ESE distribution, the 

log-likelihood function is obtained as 
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The log-likelihood function L  is derived as 
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The solution to (9) may not be obtained in closed form, hence, R package maxLik function 

(Henningsen and Toomet 2010) can be used to obtain the estimates numerically. 

Figure 1 shows that the distribution is unimodal, positively skewed, heavy tail, and kurtosis 

increases as the shape parameter value increases. Figure 2 shows that the distribution function of 

the proposed model has an S-shape and is a monotonically non-decreasing function. 

 
Figure 1 the pdf plot of the ESE distribution 

 

4.  Numerical Applications 

The ESE distribution is applied to two data sets and comparisons are made with the three 

parameter generalized inverted generalized exponential distribution (Oguntunde and Adejumo 
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2015), a three parameter generalized Lindley distribution (Nosakhare and Festus 2018) and the 

two parameter shifted exponential distribution. R package maxLik function was used to enhance 

data analysis and the criteria used for model selection are Akaike Information Criteria (AIC), 

Bayesian Information Criteria (BIC), Hanniquin Information Criteria (HQIC), Negative Log-

likelihood (NLL). The criteria for selecting the distribution with the best fit depends on the values 

of the AIC, BIC, NLL and HQIC, and small values of this criteria indicate a better fit. 

 
Figure 2 the cdf plot of the ESE distribution 

 

Data set I: This data on Nigerian inflation rate was downloaded from the CBN portal 

through the link https://www.cbn.gov.ng/rates/inflrates.asp. 

Data set II: The data consist of 72 exceedances of flood peaks (in m3/s) of the Wheaton 

River near Carcross in Yukon Territory, Canada for the years 1958-1984. This data was first used 

by Choulakian and Stephens (2001) to examine the applicability of the generalized Pareto 

distribution and also was reported in Akinsete et al. (2008). Ekhosuehi and Opone (2018) used 

this data to model a three parameter generalized Lindley distribution. The data set is given below. 

 

Table 1 Exceedances of Wheaton river flood data 

1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 
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7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 

36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5 

 

Table 2 Summary of the Nigerian monthly inflation rate data from January 2003 to December 

2018 for data set I 

Min. 1st Qu. Median Mean 3rd Qu. Max. Skewness Kurtosis 

0.100 8.600 11.400 11.740 14.000 41.2.00 1.278 7.718 
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Table 2 displays the summary of the Nigerian monthly inflation rate data from January 2003 

to December 2018. It shows that the data is positively skewed and have highest kurtosis among 

the sets of data used in this study. 

 

Table 3 Summary of the exceedances of Wheaton river flood data for data set II 

Min. 1st Qu. Median Mean 3rd Qu. Max. Skewness Kurtosis 

0.100 2.125 9.500 12.204 20.125 64.000 1.473 5.889 

 

Table 3 displays the summary of the exceedances of Wheaton river flood data. It shows that 

the data is positively skewed and have lower kurtosis among the sets of data used in this study. 

 
Table 4 Parameter estimates and fitness of generalized Lindley distribution (GLD), generalized 

inverted generalized exponential distribution (GIGED), ESE distribution and the shifted 

exponential distribution (SED) based on data set I 

Models Estimates NLL AIC BIC HQIC Rank 

GIGED ̂  = 2.71768 

̂  = 4.14376 

̂  = 1.07146 

−6,661.317 13,328.630 13,344.630 13,334.590 3 

GLD ̂  = 0.02244 

̂  = 5.02501 

̂  = 1.75395 

−4,614.239  9,234.478 9,250.473 9,240.431** 2** 

ESE ̂  = 0.22500 

̂  =149.00390 

̂  = −12.87110 

−4,611.697 9,229.394 9,245.389 9,235.347 1* 

SED ̂  = 0.80230 

̂  = 4,001.1970 
−17,090,651 34,181,322 34,181,322 34,181,312 4 

Note: * Best fit model.  ** Competing model with the best fit model. 

 

5. Simulation Study  

This section presents simulation study to examine the efficiency and flexibility of the 

proposed ESE distribution. The simulation is performed as follows. 

1. Data are generated using the quantile function of the ESE distribution defined in (7). 

2. The samples sizes are taken as n  = 100, 250 and 350.  

3. The parameters values are set as   = 2.5,   = 5.7,   = 0.6, and   = 1.8,   = 6.4 and 

  = 0.5 and are presented in Tables 6 and 7, respectively. 

4. Each sample size is replicated 1,500 times. 

The simulation results are shown in Tables 6 and 7. 

 

6. Discussion 

Table 1 presented the exceedances of the Wheaton river flood data. Tables 2 and 3 show the 

summary of the two sets of data used for numerical analysis in the study and it revealed that data 
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set I have a higher kurtosis than data set II. Table 4 shows the parameter estimates and fitness of 

GLD, GIGED, ESE distribution, and SED based on the Nigerian monthly inflation rate data from 

January 2003 to December 2018. The result obtained in Table 4 shows that the proposed ESE 

distribution has the lowest values for all the criteria used. So, the ESE distribution is considered 

best to fit the data with higher kurtosis than other distributions used for comparison. The 

competing distribution with the ESE model is the GLD. 

Table 5 presents the parameter estimates and fitness of GLD, GIGED, ESE distributions, 

and SED based on the exceedances of Wheaton river flood data. The results obtained in Table 5 

show that the GLD has the lowest values for all the criteria used than the proposed ESE 

distribution. This result is in line with our basic motivation to develop a distribution to model 

high kurtosis data. The data set II used to obtain the result in Table 5 has lower kurtosis as 

compared to the data set I. So, the GLD, in this case, is considered best to fit the data with lower 

kurtosis. 

 

Table 5 Parameter estimates and fitness of GLD, GIGED, ESE distribution and SED based on 

the exceedances of Wheaton river flood data 

Models Estimates NLL AIC BIC HQIC Rank 

GIGED ̂  = 1.55244 

̂  = 0.76105 

̂  = 0.26808 

−324.254 654.508 661.338 657.227 3 

GLD ̂  = 0.15367 

̂  = 16.47772 

̂  = 0.87045 

−251.365 508.730 515.560 511.449 1* 

ESE ̂  = 0.12808 

̂  = 0.99309 

̂  = 0.09968 

−259.606 525.213 532.043 527.932 2** 

SED ̂  = 0.87041 

̂  = 0.55325 
−55,043.0 110,089.9 110,096.8 110,092.6 4 

Note: * Best fit model.  ** Competing model with the best fit model. 

 

Tables 6 and 7 show the simulation illustration of the proposed ESE distribution. The results 

revealed that as the sample size increases the biasedness and the root mean square error (RMSE) 

values also reduce and approaches zero which is an indication that the ESE distribution fits better 

as the sample size increases. This result corresponds to the first-order asymptotic theory.  

 

7. Conclusions 

The ESE distribution has been successfully introduced in this paper and some of its basic 

statistical properties have been derived. The pdf of the ESE distribution has a unimodal, 

positively skewed, high kurtosis, and decreasing shapes. This means that ESE distribution would 

be very useful to model real-life events with unimodal, positively skewed, high kurtosis, and 

decreasing shapes. The model is tractable and flexible and shows high modeling capacity on 
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positively skewed and high kurtosis data as it performs better than the GLD, GIGED, and the 

SED on positively skewed and high kurtosis data. The performance of the ESE distribution was 

judged based on the AIC, BIC, NLL, and HQIC values of these distributions on the positively 

skewed data, high kurtosis data, and the simulation results also proved its fitness. The ESE 

distribution has been seen to fit better to positively skewed data with high kurtosis is of no doubt 

a competitive model for positively skewed, high kurtosis data and it is hoped that it will be used 

in fields like finance, engineering, physics, geology biology, and medicine. The study, therefore, 

recommends the ESE distribution to be used to model the real-life situation of positively skewed 

data with high kurtosis. The study suggests further research on some other statistical properties 

of the ESE distribution not considered in this paper.   

 

Table 6 Simulation results for mean estimates, biases and root mean squared errors (RMSE) of 

ˆ ˆ,   and ̂  for the ESE distribution 

Sample size Parameter values Mean Bias RMSE 

100   2.5 2.5321 0.0321 0.2204 

   5.7 5.6134 0.0866 1.7936 

   0.6 0.6254 0.0254 0.0961 

250   2.5 2.5054 0.0054 0.1507 

   5.7 5.7080 0.0080 1.4395 

   0.6 0.6103 0.0103 0.0699 

350   2.5 2.4991 −0.0009 0.1296 

   5.7 5.7068 0.0068 1.3906 

   0.6 0.6078 0.0078 0.0656 

 
Table 7 Simulation results for mean estimates, biases and root mean squared errors (RMSE) of 

ˆ ˆ,   and ̂  for the ESE distribution 

Sample size Parameter values Mean Bias RMSE 

100   1.8 1.8248 0.0248 0.1599 

   6.4 6.3156 0.0844 1.9100 

   0.5 0.5359 0.0359 0.1359 

250   1.8 1.8063 0.0063 0.1035 

   6.4 6.4231 0.0231 1.5053 

   0.5 0.5131 0.0131 0.0981 

350   1.8 1.8021 0.0021 0.0870 

   6.4 6.4226 0.0226 1.4658 

   0.5 0.5095 0.0095 0.0917 
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