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Abstract

This paper proposed a three parameter exponentiated shifted exponential distribution and
derived some of its statistical properties including the order statistics and discussed in brief
details. Method of maximum likelihood was used to estimate the parameters of the proposed
distribution. The proposed distribution was applied on two real life positively skewed data sets
with different level of kurtosis and simulation was done. The results obtained indicate that the
proposed distribution with unimodal, positively skewed and decreasing shapes property fits
better on the data set with higher kurtosis than the data set with lower kurtosis when compared.
The simulation results showed that as the sample size increases the biasedness and the mean
square error (MSE) of the proposed distribution decreases showing its flexibility property. In
both real life applications, the proposed distribution was compared with the three parameter
generalized inverted generalized exponential distribution, a three parameter generalized Lindley
distribution and the two parameter shifted exponential distribution based on their Alkaike
Information Criteria (AIC), Bayesian Information Criteria (BIC), Negative Log-likelihood
(NLL) and Hanniquin Information Criteria (HQIC) values and it indicated that the proposed
distribution can be used to model real life situations of positively skewed data with high kurtosis.

Keywords: Quantile function, probability density function, cumulative density function, order statistics,
reliability function.

1. Introduction
Over the decades, researchers have introduced in literature several continuous univariate
distributions particularly on lifetime distributions that is rich and still growing rapidly. Various
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distributions have been proposed by the extension of the existing distributions to serve as useful
models for a wide applications on data arising from different real life situations. This has been
done through different approaches. Few recent studies in this line of research involve extending
probability distributions with the aim of increasing their modeling capability include the works
of Nekoukhou et al. (2015), Al-Babtain et al. (2015), Pogany and Saboor (2016), Rodrigues et
al. (2016), Natalie et al. (2016), Elgarhy and Shawki (2017) and Agu and Onwukwe (2019),
Eghwerido et al. (2020a), Egwherido et al. (2020b). All this researchers used the exponentiation
method proposed by Gupta et al. (1998) to extend the baseline distributions by the injection of a
shape parameter which helps to control the skewness and peakness inherent nature in the data
sets. This allow a more realistic modeling of data arising from different real life situations. Most
of these distributions proposed by researchers have been extended or applied in different areas
of real life problems by other researchers. Agu and Francis (2018) compared goodness of fit test
for normal distribution to determine the normality of a given data.

Obubu et al. (2019) introduced a four parameter odd generalized exponentiated inverse
Lomax distribution for modeling lifetime data and derived some of its basic statistical properties.

The interest of this article is on the extension of the two parameters shifted exponential
distribution to three parameters distribution. The shifted exponential distribution is simply the
distribution of where X is exponentially distributed and 7' is a parameter. In exponential
distribution, the distribution begins at x = 0 but when the distribution begin at any positive value
of x the resulting distribution is the shifted exponential distribution. This distribution is a life
time distribution appropriate in modeling life or time failure of system under chance or constant
failure rate condition.

Numerous researchers have studied Bayesian prediction problems for the shifted exponential
distribution. Evans and Nigm (1980) discussed Bayesian prediction of future observations based
on type II censored sample. Madi and Tsui (1990) derived a class of smooth estimators Madi and
Leonard (1996) addressed the problem of estimating the scale parameter and proposed Bayesian
estimators. Madi and Raqab (2003) had discussed on the basis of a doubly censored random
sample of failure times drawn from a shifted exponential distribution.

Chang et al. (2013) dealt with hypothesis testing on the common location parameter of
shifted exponential distribution with unknown and possibly unequal scale parameters. Sanchez
etal. (2014) represented shifted exponential as likelihood function and conjugate inverted gamma
prior for making Bayesian inference comparatively robust against a prior density poorly
specified.

Ahuja and Stanley (1967) introduced a two parameter exponentiated exponential distribution
with the distribution begin at x =0 which was further studied in detail by Gupta and Kundu
(1999). Gupta and Kundu (1999) introduced a two parameter generalized exponential distribution
using the exponentiation method proposed by Gupta et al. (1998).

This article is interested in extending the shifted exponential distribution by the addition of
a shape parameter to make it a three parameter distribution (where x> @) with the aim to

increase its flexibility to real life situations using the exponentiation method proposed by Gupta
et al. (1998).

The basic motivations for obtaining this exponentiated shifted exponential distribution is to
make the kurtosis more flexible as compared to the parent distribution (shifted exponential
distribution), to generate a distribution with right skewed, unimodal and to provide consistently
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better fits on higher kurtosis data than other generated distributions with less or equal number of
parameter.

2. Shifted Exponential Distribution
A random variable X is said to have a shifted exponential distribution if the corresponding
probability density function (pdf) and cumulative density function (cdf) begin at 8 are given by

Ae D x>0
X)= ’ ’ 1
S(x) { 0. <0, (1)
1-e 9 x>0
F(x) = : ’ @
) {0, x<0, )

where @ is the location parameter interpreted as unknown point at which life begins while A
represents the scale parameter.

A random variable X is said to have an exponentiated distribution if the corresponding pdf
and cdf proposed by Gupta et al. (1998) are given by

h(x) = AIF] ' f (%), 3)
H(x) =[Fx)], g>0. 4)

3. Exponentiated Shifted Exponential (ESE) Distribution
The pdf of the proposed ESE distribution is derived by substituting (1) and (2) into (3) to
have

h(x) = /we—ﬂx—e)(l o Ax— 9))ﬂ T x26,550,150. (5)

This is represented graphically in Figure 1. At £ =1, (5) becomes the shifted exponential
distribution, at =0 and =1, (5) becomes the exponential distribution. Also the
corresponding cdf of the ESE distribution is derived by substituting (2) into (4) to have

H(x):(l—e—/l(x—@)ﬁ,xze,ﬁ>o,4>o. 6)

This is represented graphically in Figure 2. Where A is the scale parameter, @ is the
location parameter and /3 is the shape parameter. (6) becomes the cdf of the ESE distribution.

3.1. Some basic properties of the ESE distribution
Some of the basic properties of ESE distribution are obtained as follows. The reliability
function is obtained using the relation
R, =1-H(x),
where H(x) is the cdf of the proposed ESE distribution. Therefore, the reliability function of
ESE distribution is

Ry=1=[1-c0) | x>0, 8>0,1>0.
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)

The corresponding failure rate of ESE distribution is obtained using the relation F,, =
Yy

-1
—A(x—-0) 1— —A(x—-0)
and is given by F,, = 2P¢ [1-c ] , x20,5>0,1>0.

1-[1-e 0]’

3.2. Quantile function and median
The quantile function Q(u) is derived from the relation

O(u)=H \(u).
Hence, the quantile function of the ESE distribution is derived as
1
In (1 — uﬁj
A
where u ~ uniform(0,1). This simply mean that random samples from the proposed ESE

1
]Il[l—uﬂ)
0———=.
A

The median of the ESE distribution can be obtained by making the substitution of u = 0.5
in (7) to have

Ou)=6- ; (7
distribution can be generated using
X =

1
1n(1—o.5ﬁ)
—

median = 6 —

3.3. Order statistics
The pdf of the j ™ order statistic for a random sample of size n from a distribution function
H(x) and an associated A4(x) is given by
n!
(j=D(n=N!
where /(x) and H(x) are respectively the pdf and the cdf of the ESE distribution.

() = h[H®] I=H @],

The pdf of the j " order statistic for a random sample of size n from the ESE distribution
is given by

h. _ i’l! lﬂe—l(x—ﬁ)(l_ef/l(x—ﬁ))ﬁ 1_ AeO)\B -1 1_ 1_ AeO)\B n_j.
jm(x) (]—1)'(”—])'[ (l—e_ﬂ’(x_g)) I:( e ) ] |: ( e ) :|

®)

The pdf of the minimum order statistics is obtained by setting j =1 in (8) to have

nipe 0 (1—e 0y [1 — (1= 0y JH
(1-e")

My, (x) =
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and the corresponding pdf of the maximum order statistics is obtained by setting j =7 in (8) to

have

nABe 0 (] — g Ha0))B e -
hnm(x): ﬂ (l_eg/ux—g)) ) I:(l_e A0 9))/}] .

3.4. Parameter estimation

The method of maximum likelihood estimation is used to estimate the parameters of the ESE
distribution.

Let x,,...,x, be a random sample distributed according to the pdf of ESE distribution, the

log-likelihood function is obtained as

L(%s0s %32 ,0) = TTh (Xy51%,3 2 8,6)
i=1

L(xl,...,xn;/l,ﬂﬁ):lﬂ[

i=1

ﬂﬂe—l(x—ﬂ)(l _ e—l(x—H))ﬁ
(1 _ e—/l(x—ﬂ)) :

The log-likelihood function L is derived as

L=nlnA+nlnf+ni0—-2) x;+(B-1)D In(l—*xi ). 9)

i =l
The solution to (9) may not be obtained in closed form, hence, R package maxLik function
(Henningsen and Toomet 2010) can be used to obtain the estimates numerically.
Figure 1 shows that the distribution is unimodal, positively skewed, heavy tail, and kurtosis
increases as the shape parameter value increases. Figure 2 shows that the distribution function of
the proposed model has an S-shape and is a monotonically non-decreasing function.
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Figure 1 the pdf plot of the ESE distribution

4. Numerical Applications
The ESE distribution is applied to two data sets and comparisons are made with the three
parameter generalized inverted generalized exponential distribution (Oguntunde and Adejumo
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2015), a three parameter generalized Lindley distribution (Nosakhare and Festus 2018) and the
two parameter shifted exponential distribution. R package maxLik function was used to enhance
data analysis and the criteria used for model selection are Akaike Information Criteria (AIC),
Bayesian Information Criteria (BIC), Hanniquin Information Criteria (HQIC), Negative Log-
likelihood (NLL). The criteria for selecting the distribution with the best fit depends on the values
of the AIC, BIC, NLL and HQIC, and small values of this criteria indicate a better fit.
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Figure 2 the cdf plot of the ESE distribution

Data set I: This data on Nigerian inflation rate was downloaded from the CBN portal
through the link https://www.cbn.gov.ng/rates/inflrates.asp.

Data set II: The data consist of 72 exceedances of flood peaks (in m?/s) of the Wheaton
River near Carcross in Yukon Territory, Canada for the years 1958-1984. This data was first used
by Choulakian and Stephens (2001) to examine the applicability of the generalized Pareto
distribution and also was reported in Akinsete et al. (2008). Ekhosuchi and Opone (2018) used
this data to model a three parameter generalized Lindley distribution. The data set is given below.

Table 1 Exceedances of Wheaton river flood data

1.7,2.2,14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1,
1.1,2.5,27.0,14.4,1.7,37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7,
7.0,20.1,04,2.8,14.1,9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6,
364,2.7,64.0,1.5,2.5,274,1.0,27.1,20.2, 16.8, 5.3,9.7, 27.5, 2.5

Table 2 Summary of the Nigerian monthly inflation rate data from January 2003 to December
2018 for data set I

Min. Ist Qu.  Median Mean  3rd Qu. Max. Skewness Kurtosis
0.100 8.600 11.400 11.740 14.000  41.2.00 1.278 7.718
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Table 2 displays the summary of the Nigerian monthly inflation rate data from January 2003
to December 2018. It shows that the data is positively skewed and have highest kurtosis among
the sets of data used in this study.

Table 3 Summary of the exceedances of Wheaton river flood data for data set IT

Min. Ist Qu. Median Mean 3rd Qu. Max. Skewness Kurtosis
0.100 2.125 9.500 12.204 20.125 64.000 1.473 5.889

Table 3 displays the summary of the exceedances of Wheaton river flood data. It shows that
the data is positively skewed and have lower kurtosis among the sets of data used in this study.

Table 4 Parameter estimates and fitness of generalized Lindley distribution (GLD), generalized
inverted generalized exponential distribution (GIGED), ESE distribution and the shifted
exponential distribution (SED) based on data set |
Models Estimates NLL AIC BIC HQIC Rank

GIGED =2.71768

y)
,@ =4.14376 —6,661.317 13,328.630 13,344.630 13,334.590 3

0 =1.07146
A =0.02244
B =5.02501 —4,614.239 9234478 9250473 9240431 2™

GLD

0 =1.75395
ESE A =0.22500
B =149.00390 —4,611.697 9229394 9,245.389 9,235.347 i

0 =-12.87110

SED A =0.80230
~17,090,651 34,181,322 34,181,322 34,181,312 4

6 =4,001.1970
Note: * Best fit model. ** Competing model with the best fit model.

5. Simulation Study

This section presents simulation study to examine the efficiency and flexibility of the
proposed ESE distribution. The simulation is performed as follows.

1. Data are generated using the quantile function of the ESE distribution defined in (7).

2. The samples sizes are taken as n = 100, 250 and 350.

3. The parameters values are setas 4 =2.5, f =5.7, 0 =0.6,and 1 =1.8, f = 6.4 and

0 = 0.5 and are presented in Tables 6 and 7, respectively.
4. Each sample size is replicated 1,500 times.
The simulation results are shown in Tables 6 and 7.

6. Discussion
Table 1 presented the exceedances of the Wheaton river flood data. Tables 2 and 3 show the
summary of the two sets of data used for numerical analysis in the study and it revealed that data
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set [ have a higher kurtosis than data set II. Table 4 shows the parameter estimates and fitness of
GLD, GIGED, ESE distribution, and SED based on the Nigerian monthly inflation rate data from
January 2003 to December 2018. The result obtained in Table 4 shows that the proposed ESE
distribution has the lowest values for all the criteria used. So, the ESE distribution is considered
best to fit the data with higher kurtosis than other distributions used for comparison. The
competing distribution with the ESE model is the GLD.

Table 5 presents the parameter estimates and fitness of GLD, GIGED, ESE distributions,
and SED based on the exceedances of Wheaton river flood data. The results obtained in Table 5
show that the GLD has the lowest values for all the criteria used than the proposed ESE
distribution. This result is in line with our basic motivation to develop a distribution to model
high kurtosis data. The data set II used to obtain the result in Table 5 has lower kurtosis as
compared to the data set I. So, the GLD, in this case, is considered best to fit the data with lower
kurtosis.

Table 5 Parameter estimates and fitness of GLD, GIGED, ESE distribution and SED based on
the exceedances of Wheaton river flood data
Models Estimates NLL AIC BIC HQIC Rank
GIGED A =1.55244

B =0.76105 —324254 654508  661.338 657.227 3

6 =0.26808

GLD A =0.15367
B =1647772 251365  508.730  515.560 511.449 i

6 =0.87045

ESE A =0.12808
B =099309 -259.606  525.213  532.043 527.932 2

6 =0.09968

SED A =0.87041
. —55,043.0 110,089.9 110,096.8  110,092.6 4

6 =0.55325

Note: * Best fit model. ** Competing model with the best fit model.

Tables 6 and 7 show the simulation illustration of the proposed ESE distribution. The results
revealed that as the sample size increases the biasedness and the root mean square error (RMSE)
values also reduce and approaches zero which is an indication that the ESE distribution fits better
as the sample size increases. This result corresponds to the first-order asymptotic theory.

7. Conclusions

The ESE distribution has been successfully introduced in this paper and some of its basic
statistical properties have been derived. The pdf of the ESE distribution has a unimodal,
positively skewed, high kurtosis, and decreasing shapes. This means that ESE distribution would
be very useful to model real-life events with unimodal, positively skewed, high kurtosis, and
decreasing shapes. The model is tractable and flexible and shows high modeling capacity on
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positively skewed and high kurtosis data as it performs better than the GLD, GIGED, and the
SED on positively skewed and high kurtosis data. The performance of the ESE distribution was
judged based on the AIC, BIC, NLL, and HQIC values of these distributions on the positively
skewed data, high kurtosis data, and the simulation results also proved its fitness. The ESE
distribution has been seen to fit better to positively skewed data with high kurtosis is of no doubt
a competitive model for positively skewed, high kurtosis data and it is hoped that it will be used
in fields like finance, engineering, physics, geology biology, and medicine. The study, therefore,
recommends the ESE distribution to be used to model the real-life situation of positively skewed
data with high kurtosis. The study suggests further research on some other statistical properties
of the ESE distribution not considered in this paper.

Table 6 Simulation results for mean estimates, biases and root mean squared errors (RMSE) of

A, ﬁ’ and @ for the ESE distribution

Sample size Parameter values Mean Bias RMSE
100 A=25 2.5321 0.0321 0.2204

p=57 5.6134 0.0866 1.7936

0=0.6 0.6254 0.0254 0.0961

250 A=25 2.5054 0.0054 0.1507

£ =57 5.7080 0.0080 1.4395

0=0.6 0.6103 0.0103 0.0699

350 A=25 2.4991 —0.0009 0.1296
p=57 5.7068 0.0068 1.3906

0=0.6 0.6078 0.0078 0.0656

Table 7 Simulation results for mean estimates, biases and root mean squared errors (RMSE) of
A, ﬁ’ and @ for the ESE distribution

Sample size Parameter values Mean Bias RMSE
100 A=1.8 1.8248 0.0248 0.1599

B=64 6.3156 0.0844 1.9100

0=0.5 0.5359 0.0359 0.1359

250 A=1.8 1.8063 0.0063 0.1035
p=64 6.4231 0.0231 1.5053

0=0.5 0.5131 0.0131 0.0981

350 A=1.8 1.8021 0.0021 0.0870
p=64 6.4226 0.0226 1.4658

0=0.5 0.5095 0.0095 0.0917
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