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Abstract
In this paper we present some properties of the inverse Pareto distribution (IPD). We compare

IPD to gamma distribution, exponential distribution and generalized Pareto distribution (GPD). The
data sets over threshold u are analyzed and obtained by the Monte Carlo simulation and the use of
Danish fire data. The maximum likelihood estimation (MLE) is the parameter estimation. The various
measurements of model fitting are the Kolmogorov-Smirnov test (KS test), the Anderson-Darling test
(AD test), Akaike information criterion (AIC) and Bayesian information criterion (BIC). We found
that the IPD is a good competitor with GPD for the modeling of extreme events.

Keywords: Danish fire data, generalized Pareto distribution, heavy tailed distribution, infinite mix-
ture distribution, peak over threshold.

1. Introduction
Losses of non-life insurance are referred to as claims or liabilities of insurance company which

are responsible for the insured or policyholders. Claim modeling is an important task for actuaries
who need to be able to estimate or forecast the behavior of claims which will occur in the future.
The building of claim models has been developed by many authors relative to their different types of
data. New models or distributions are built from mixture models for fitting to the data which cannot
be fitted by a commonly used distribution. Some loss distribution and their modeling are described
by Hogg et al. (2005), Catherine et al. (2011) and Klugman et al. (2012). The mixture models are
known in terms of urn-to-urn models in risk theory that is combined with continuous and discrete
distributions, while in terms of loss models, they are finite mixture distributions and infinite mixture
distributions. Many authors presented the modeling of finite mixture models. For example, Mohamed
et al. (2010) proposed a compound Pareto distribution for claim severity modeling. Sattayatham
and Talangtam (2012) presented finite mixture lognormal distributions and applied the models to
motor insurance claims data. Mauro et al. (2012) proposed finite mixture skew normal distributions
and applied them to the insurance claim data set of Danish fire losses. Moreover, Erisoglu et al.
(2013) used two mixture gamma distributions for the estimation of heterogeneous wind data sets.
Matthayomnan (2016) constructed new models for claim amount by finite mixture lognormal and
Frechet distributions. There are a few loss models for the infinite mixture distribution for claim
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severity in textbooks and papers. Therefore, we are interested in the modeling of infinite mixture
distributions for claim severity because most papers of infinite mixture distributions are published
regarding claim frequency. The popular posterior distribution of Poisson is presented for modeling by
Rai (1971), Bulmer (1974), Sichel (1975), Irwin (1975), Kempton (1975), Albrecht (1982) and others.
Emilio et al. (2006) proposed a negative binomial inverse gaussian distribution (NBIG) which has
been applied for the pricing of automobile premiums. Hossein Zamani and Noriszura Ismail (2010)
introduced the negative binomial-Lindley distribution which provides a better fit than the Poisson and
the negative binomial for two claim frequency samples of insurance data. Some papers describe and
present infinite mixture models for both claim frequency and claim severity. For example, Pacáková
and Zapletal (2013) explain a model of claim frequency and claim severity by using Poisson-gamma
distribution and exponential-gamma (Pareto) distribution, respectively. Anantasopon, Sattayatham
and Talangtam (2015) propose an infinite mixture of inverse exponential-gamma for fitting to motor
insurance claims data. Dankunprasert (2017) presented gamma-exponential distribution (GED) and
exponential-exponential distribution (EED) constructed from an infinite mixture model for severity
claims of motor insurance.

Reinsurance in excess of loss treaty is considered to be the threshold u, whereby the reinsurer
takes the risks or losses over u. This means that the reinsurer’s liability is based on the remaining
data from the right censored data of the ceding company. Therefore, we focus on the modeling
depending on u of claims by the reinsurer that the extreme value theory (EVT) is appropriately applied
and compared for this work. EVT is divided into two types depending on the characterization of
censored data. These types are block maximum and peak over threshold (POT) that lead to the
use of generalized extreme value distribution (GEVD) and generalized Pareto distribution (GPD),
respectively. GPD is frequently used in many fields and it is a good tool for modeling data by the POT
method. The EVT is described in a book of Fisher and Tippett (1928), Coles (2001), Kluppelberg
(2004) and Beirlant et al. (2004). The paper of Berning (2010) explained how EVT is able to be
applied to various fields, such as those of financial and insurance risks. Vladimir et al. (2012)
presented the extreme events which were relative to the global crisis of 2008-2009 and they employed
the POT and GPD for the modeling of financial returns based on the daily losses of the Russian stocks
index (RTSI) in 1995-2009. Yang (2013) presented GPD for insurance modeling by using a software
package R for simulated data and then applied these to fire losses in Denmark. Recently, Puangkaew
(2018) applied the GPD to Danish fire claims severity and compared the estimated parameters using
various methods.

The organization of this paper is composed by 7 sections as follows. In Section 2, the derivative
of IPD and GED are explained. In Section 3, the tail properties of IPD is presented by using a
hazard function. In Section 4, the materials and methods for model fitting are employed to some
loss distributions, IPD and GPD. In Section 5, the results of models are compared based on both
simulated data and actual claim data. The conclusions and discussions are specified in Sections 6 and
7, respectively.

2. Models
The IPD and GED are formed by the same distribution, but they are derived from different con-

structions. The IPD comes from the inverse transformation of the Pareto distribution, type II Lomax
distribution whereas the GED comes from the infinite mixture distribution of Gamma and Exponen-
tial distributions. The construction of IPD or GED for inverse transformation and infinite mixture
distribution are explained in Sections 2.1 and 2.2, respectively. Wordpress.com (2017) presented the
relative between distribution as follows.

2.1. Inverse transformation
The type II Lomax distribution with shape parameter α and scale parameter θ for cumulative

distribution function (CDF) and probability density function (PDF) of random variable X are as
follows.



Sukanda Dankunprasert et al. 3

Cumulative distribution function is

F (x) = 1−
(

θ

x+ θ

)α

, α > 0, θ > 0, x > 0.

Probability density function is

f(x) =
αθα

(x+ θ)α+1
.
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Figure 1 PDF of Pareto
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Figure 2 CDF of Pareto

α = 1 and θ = 1 α = 5 and θ = 1 α = 5 and θ = 5

We take the approach of raising a base Pareto distribution with shape parameter α and scale
parameter θ−1. Both approaches lead to the same CDF:

F (y) = 1− FX(y−1) =

(
θ

1
y + θ

)α

=

(
y

y + λ

)α

,where λ =
1

θ
.

The PDF is given by

f(y) =
λαyα−1

(y + λ)α+1
;α > 0, λ > 0, y > 0.

2.2. Infinite mixture distribution
Dankunprasert (2017) presented the IPD by using infinite mixture model. The PDF and CDF

are described as below.
Suppose a random variable X follows a gamma distribution with parameters c and α. Denote its

PDF by f(x; c, α) as

f(x; c, α) =
α(xα)c−1

Γ(c)
exp(−αx); c > 0, α > 0, x > 0,

where Γ(c) is the gamma function, Γ(c) =
∫∞
0

xc−1 exp(−x) dx for c > 0.
The exponential distribution of random variable α will be used as the mixing distribution. The

PDF of α is

g(α) = λ exp (−αλ);λ > 0, α > 0.
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Then the unconditional PDF of X is

f(x) =

∫ ∞

0

α(αx)c−1 exp (−αx)

Γ(c)
λ exp (−αλ)dα

=
λcxc−1

(x+ λ)c+1
.

Hence,

f(x) =
λcxc−1

(x+ λ)c+1
; c > 0, λ > 0, x > 0. (1)

The CDF is given by

F (x) =

(
x

x+ λ

)c

.
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Figure 3 PDF of Inverse Pareto
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Figure 4 CDF of Inverse Pareto

λ = 1 and c = 1 λ = 5 and c = 1 λ = 5 and c = 5

3. Tail Behavior
This section presents the tail properties of the IPD in Theorems 1 and 2. First of all, we will

show some properties of IPD as survival, hazard functions and Value-at-risk.
Survival function is given by

S(x) = 1− F (x) = 1−
(

x

(x+ λ)

)c

.

Hazard function is

h(x) =
f(x)

S(x)
=

λcxc−1

(x+λ)c+1

( x
x+λ )

c
=

λcxc−1

(x+ λ)[(x+ λ)c − xc]
. (2)

The Value-at-risk (V aR) (Klugman 2012) of a loss random variable X at the 100p% level,
denoted by V aRp(X) or πp is the 100p percentile (or quantile) of the distribution of X . The V aR of
IPD is in the form of

πp =
λ

p−1/c − 1
.
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Theorem 1 Let X be a random variable. The probability distribution function is an inverse Pareto
distribution (IPD) in the form of

f(x) =
λcxc−1

(x+ λ)c+1
; c > 0, λ > 0, x > 0.

Then IPD has a heavy tail.

Proof: The hazard function for the IPD is Equation (2).
Thus we obtain

h
′
(x) =

λcxc−2(A−B)

[(x+ λ)[(x+ λ)c − xc]]
2 < 0,

where A = (c− 1)(x+ λ)[(x+ λ)c − xc],

B = x[(c+ 1)(x+ λ)c − xc−1(cx+ cλ+ x)].

Since IPD has a decreasing hazard function, the IPD has a heavy tail.

Theorem 2 Let X be a random variable. A heavy tailed distribution has a tail that’s heavier than
an Exponential distribution Then IPD has a heavy tail.

Proof: Consider the survival function,

lim
x→∞

SIPD(x)

SExp(x)
.

Then, the limit of the ration will be the same, as can be seen by an application of L’Hpital’s rule:

lim
x→∞

SIPD(x)

SExp(x)
= lim

x→∞

S′
IPD(x)

S′
Exp(x)

= lim
x→∞

−fIPD(x)

−fExp(x)
= lim

x→∞

fIPD(x)

fExp(x)

= lim
x→∞

λcxc−1

(x+λ)c+1

a exp(−ax)
= lim

x→∞

λcxc−1 exp(ax)

a(x+ λ)c+1
.

Since exponential goes to infinity faster than polynomials, the limit is infinity. So, the IPD has a
heavier tail than exponential. Therefore, the IPD is a heavy tailed distribution.

4. Materials and Methods
Embrechts et al. (2011) presented the distribution of EVT which is used for modeling ex-

ceedance over a threshold. Modeling with a GPD model and statistical analysis of real data are
as follow: Let basic losses data X1, X2, . . . , Xn be random variables with independent identically
distributed (iid) functions F . The ordered data are denoted by X1,n ≤ X2,n ≤ · · · ≤ Xn,n. The right
endpoint, xF , is defined as xF = sup{x;F (x) < 1}. For all u < xF , the function

Fu(x) = P{X − u ≤ x | X > u}, x ≥ u

is called the distribution function of exceedances above threshold u.
Let Y = X − u for X > u and for n observed variables X1, X2, . . . , Xn we can write

Yj = Xi − u such that i is the index of the jth exceedance, j = 1, 2, . . . , nu. The distribution of the
exceedances (Y1, . . . , Ynu

) can be fitted by the models.
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Figure 5 The curve of the PDF

is PDF of IPD with λ = 5 and c = 1 is PDF of Exponential with rate = 0.2.

4.1. The models
The loss distributions and extreme event models are selected for our models that are composed

of IPD , gamma, exponential and GPD. We make a comparison of IPD modeling among the selected
distributions. The GPD is a popular model from EVT which is

Gξ,β(y) =

{
1− (1 + ξ y

β )
− 1

ξ , if ξ ̸= 0

1− exp(− y
β ), if ξ = 0,

where ξ ∈ R and β > 0. We require 0 ≤ y < ∞ if ξ ≥ 0, and 0 ≤ y ≤ −β
ξ if ξ < 0. The parameter

β = β(u) is the scale parameter and its depends on the threshold u.
The PDF of GPD is given by

gξ,β(y) =

{
1
β (1 + ξ y

β )
− 1

ξ−1, if ξ ̸= 0
1
β exp(− y

β ), if ξ = 0.

4.2. Parameters estimation
The method of maximum likelihood estimation (MLE) provides estimators which are usually

quite satisfactory and frequently used in actuarial mathematics, see in Klugman (2012).
Consider the amount xi paid for the ith contract, where i = 1, 2, ..., n. Dankunprasert (2017) fit

the IPD in Equation (1) to the data set by MLE. The likelihood function can be written as follows.

L =

n∏
i=1

λcxc−1
i

(xi + λ)c+1
,

and the log-likelihood function is in the form.

lnL =

n∑
i=1

ln

{
λcxc−1

i

(xi + λ)c+1

}
.

Taking the partial derivatives of the log-likelihood function with respect to parameters are as
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follows:

∂

∂c
lnL =

n

c
+

n∑
i=1

lnxi −
n∑

i=1

ln(xi + λ)

∂

∂λ
lnL =

n

λ
− (c+ 1)

n∑
i=1

1

xi + λ
.

We estimate ĉ and λ̂ for c and λ, respectively by ∂
∂c lnL = 0 and ∂

∂λ lnL = 0.
Thus,

n

c
+

n∑
i=1

lnxi −
n∑

i=1

ln(xi + λ) = 0,

n

λ
− (c+ 1)

n∑
i=1

1

xi + λ
= 0.

Solve the equations numerically for estimated parameters by fixed point iteration method.

4.3. Goodness of fit test and model selection
There are two measurements for model fitting and two paradox in model selections are as fol-

lows:
1) The Kolmogorov-Smirnov test
The K-S test statistic is defined by

D = sup
x

|Fn(x)− F ∗
X(x)|,

where Fn(x) is empirical cumulative distribution function of X with n data and F ∗
X(x) is the theo-

retical cumulative distribution of the distribution being tested.
2) The Anderson-Darling Test
The AD test statistic is defined by

AD = −n− 1

n

n∑
i=1

(2i− 1)[lnF (xi) + ln {1− F (xn−i+1)}],

where F is the theoretical cumulative distribution of the distribution being tested.
3) The Akaike information criterion (AIC)

AIC = 2k − 2 ln (L(θ)),

where k is the number of parameters estimated and ln (L(θ)) is the log-likelihood function.
4) The Bayesian information criterion (BIC)

BIC = −2 ln (L(θ)) + k ln (n),

where ln (L(θ)) is the log-likelihood function and n is the number of observations.

4.4. Data
We apply the models to the simulated data and the Danish fire data sets for model fitting. Some

descriptions are as follows:
1) The simulation data
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The Monte Carlo simulation of data are generated by three different distributions such as the
distributions of Log-logistic, BurrXII and Log-normal with sample size n = 200, and 3000
replicates.

2) The actual data
The Danish fire data consist of 2167 losses which were over one million Danish Krone (DKK)

for the years 1980 − 1990. The loss includes damage of buildings, personal property and loss of
profits.

5. Results
The thresholds u are varied for our model fitting in tail distributions. We found that the IPD is

mostly suitable for the data sets on u of 84th to 97.5th percentile for some simulated data and u of 6,
12 and 15 million Krone for the Danish fire data. The results are presented as the following items.

5.1. Simulation data
Tables 1 and 2 show the estimated parameters and values of model fitting with censored data at

84th and 94th percentile, respectively, for the generated data by log-logistic distribution. The number
of exceedance are 480 for 84th percentile (around 4 million Krone) and 180 for 94th percentile
(around 9 million Krone).

At the significant level α = 0.05, IPD and GPD are fitted to the data whereas the gamma and
exponential distributions cannot be fitted to any data sets. By AIC and BIC, the IPD is the most
suitable for the data following by GPD, gamma and exponential distributions, respectively.

Table 1 Threshold u at 84th percentile (≈ 4 million Krone)

Distributions Estimated Parameters Measurements of model fitting
K-S test AD test AIC BIC

IPD λ = 2.6951 D = 0.0292 AD = 0.3795
3000.942 3009.290

c = 1.1286 p-value = 0.8093 p-value = 0.8687

Gamma Rate = 5.5164× 10−3 D = 0.2893 AD > 106
3585.763 3594.110Shape = 0.2624 p-value < 2.2× 10−16 p-value < 10−5

Exponential Rate = 0.0210
D = 0.6011 AD > 106

4669.567 4673.741p-value = 1.06× 10−9 p-value < 10−5

GPD β = 3.3380 D = 0.0338 AD = 0.5064
3001.911 3010.258

ξ = 0.9174 p-value = 0.642 p-value = 0.7402

Table 2 Threshold u at 94th percentile (≈ 9 million Krone)

Distributions Estimated Parameters Measurements of model fitting
K-S test AD test AIC BIC

IPD λ = 9.7906 D = 0.0494 AD = 0.3444
1459.492 1465.877

c = 0.8375 p-value = 0.7712 p-value = 0.9014

Gamma Rate = 2.1380× 10−3 D = 0.2493 AD > 106
1649.987 1656.373Shape = 0.2541 p-value < 3.8110× 10−10 p-value < 10−15

Exponential Rate = 8.4189× 10−3 D = 0.5727 AD > 106
2081.821 2085.014p-value < 2.2× 10−16 p-value < 10−15

GPD β = 7.2519 D = 0.0446 AD = 0.3774
1460.173 1466.559

ξ = 1.0637 p-value = 0.8667 p-value = 0.8706

Tables 3 and 4 show the estimated parameters and values of model fitting with censored data at
92th and 96th percentile, respectively, for the generated data by BurrXII distribution. The number of
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exceedance are 240 for 92th percentile (around 6 million Krone) and 120 for 96th percentile (around
10 million Krone).

At the significant level α = 0.05, IPD and GPD are fitted to the data whereas the gamma and
exponential distributions cannot be fitted to any data sets. By AIC and BIC, the GPD is the most
suitable for the data following by IPD, gamma and exponential distributions, respectively.

Table 3 Threshold u at 92th percentile (≈ 6 million Krone)

Distributions Estimated Parameters Measurements of model fitting
K-S test AD test AIC BIC

IPD λ = 2.4943 D = 0.0489 AD = 0.8364
1522.827 1529.788

c = 1.3706 p-value = 0.6153 p-value = 0.4554

Gamma Rate = 0.0593 D = 0.1484 AD = 6.7125
1560.770 1567.731Shape = 0.6151 p-value = 5.13× 10−5 p-value = 4.5350× 10−4

Exponential Rate = 0.0964
D = 0.2292 AD = 23.37

1604.774 1608.254p-value = 2.23× 10−11 p-value = 2.5× 10−6

GPD β = 4.5877 D = 0.0547 AD = 0.9701
1519.946 1526.907

ξ = 0.6346 p-value = 0.4693 p-value = 0.3733

Table 4 Threshold u at 96th percentile (≈ 10 million Krone)

Distributions Estimated Parameters Measurements of model fitting
K-S test AD test AIC BIC

IPD λ = 5.0759 D = 0.0620 AD = 0.6793
878.4522 884.0271

c = 1.0833 p-value = 0.7460 p-value = 0.5761

Gamma Rate = 0.0406 D = 0.1048 AD = 1.8404
880.0029 885.5779Shape = 0.6266 p-value = 0.1432 p-value = 0.1127

Exponential Rate = 0.0647
D = 0.2129 AD = 10.1260

899.0689 901.8564p-value = 3.7860× 10−5 p-value = 1.0360× 10−5

GPD β = 7.2555 D = 0.079245 AD = 0.9436
876.0974 881.6723

ξ = 0.6521 p-value = 0.4383 p-value = 0.3881
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Tables 5 and 6 show the estimated parameters and values of model fitting with censored data at
95th and 97.5th percentile, respectively, for the generated data by log-normal distribution. The num-
ber of exceedance are 120 for 96th percentile (around 10 million Krone) and 75 for 97.5th percentile
(around 13 million Krone).

At the significant level α = 0.05, for 95th percentile, IPD and GPD are fitted to the data whereas
the gamma and exponential distributions cannot be fitted to any data sets. For 97.5th percentile, the
data sets are fitted by all models. By AIC and BIC, for both 95th and 97.5th percentile, the GPD is
the most suitable for the data following by IPD, gamma and exponential distributions, respectively.

Table 5 Threshold u at 96th percentile (≈ 10 million Krone)

Distributions Estimated Parameters Measurements of model fitting
K-S test AD test AIC BIC

IPD λ = 4.3443 D = 0.0703 AD = 1.1134
939.9067 945.9280

c = 0.8985 p-value = 0.4482 p-value = 0.3028

Gamma Rate = 0.0448 D = 0.1249 AD = 2.8339
1055.4330 1061.4550Shape = 0.6070 p-value = 0.0186 p-value = 0.0333

Exponential Rate = 0.0738
D = 0.2357 AD = 14.2080

1084.0190 1087.0290p-value = 1.1540× 10−7 p-value = 4× 10−6

GPD β = 5.1616 D = 0.0699 AD = 1.0221
930.3706 936.3920

ξ = 0.4463 p-value = 0.4558 p-value = 0.3457

Table 6 Threshold u at 97.5th percentile (≈ 13 million Krone)

Distributions Estimated Parameters Measurements of model fitting
K-S test AD test AIC BIC

IPD λ = 4.9149 D = 0.1137 AD = 1.8030
540.0031 544.6381

c = 1.3063 p-value = 0.2658 p-value = 0.1183

Gamma Rate = 0.0365 D = 0.0595 AD = 0.3558
606.0451 610.6801Shape = 0.7632 p-value = 0.9390 p-value = 0.8908

Exponential Rate = 0.0478
D = 0.0844 AD = 0.4622

608.0573 610.3748p-value = 0.6287 p-value = 0.7851

GPD β = 10.4731 D = 0.0674 AD = 0.3266
524.3504 528.9854

ξ = 0.1100 p-value = 0.8623 p-value = 0.9166
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5.2. Actual data
Tables 7 to 9 show the estimated parameters and values of model fitting with censored data at 6,

12 and 15 million Krone, respectively, for the Danish fire data in Danish Krone (DKK). The number
of exceedance are 273 for threshold u at 6 million Krone, 87 for threshold u at 12 million Krone and
65 for threshold u at 15 million Krone.

At the significant level α = 0.05, the Danish fire data is fitted by all models, except for the
exponential distribution. By AIC and BIC with u at 6 and 12 million Krone, GPD is the most suitable
for the data following by IPD , gamma and exponential distributions, respectively. For the threshold of
15 million Krone the IPD is the most suitable for the data following by GPD, gamma and exponential
distributions, respectively.

Table 7 Threshold u = 6 million Krone (≈ 87.5th percentile)

Distributions Estimated Parameters Measurements of model fitting
K-S test AD test AIC BIC

IPD λ = 3.8477 D = 0.0771 AD = 1.5299
1221.153 1227.605

c = 1.1118 p-value = 0.2183 p-value = 0.1695

Gamma Rate = 0.0548 D = 0.0894 AD = 2.3554
1238.782 1245.234Shape = 0.6138 p-value = 0.1025 p-value = 0.05912

Exponential Rate = 0.0893
D = 0.1447 AD = 10.8430

1272.741 1275.966p-value = 8.275× 10−4 p-value = 4.28× 10−6

GPD β = 5.8444 D = 0.0356 AD = 0.3285
1207.654 1214.106

ξ = 0.4704 p-value = 0.9725 p-value = 0.9152

Table 8 Threshold u = 12 million Krone (≈ 95th percentile)

Distributions Estimated Parameters Measurements of model fitting
K-S test AD test AIC BIC

IPD λ = 4.6439 D = 0.0784 AD = 0.8680
611.1520 616.0370

c = 1.2121 p-value = 0.6737 p-value = 0.4834

Gamma Rate = 0.0382 D = 0.1354 AD = 2.0649
625.5176 630.4029Shape = 0.6033 p-value = 0.0887 p-value = 0.0848

Exponential Rate = 0.0633
D = 0.2023 AD = 6.7169

641.3073 643.7500p-value = 1.9010× 10−3 p-value = 4.5750× 10−4

GPD β = 7.5512 D = 0.0553 AD = 0.2476
606.2441 611.1294

ξ = 0.5213 p-value = 0.9572 p-value = 0.9716

Table 9 Threshold u = 15 million Krone (≈ 97th percentile)

Distributions Estimated Parameters Measurements of model fitting
K-S test AD test AIC BIC

IPD λ = 2.1163 D = 0.0647 AD = 0.2651
446.1715 450.3602

c = 2.5724 p-value = 0.9489 p-value = 0.9617

Gamma Rate = 0.0345 D = 0.1709 AD = 2.4551
467.4470 471.6357Shape = 0.6496 p-value = 0.0530 p-value = 0.0525

Exponential Rate = 0.0531
D = 0.2246 AD = 5.6394

474.2738 476.3681p-value = 3.8600× 10−3 p-value = 1.4460× 10−3

GPD β = 8.7134 D = 0.0762 AD = 0.4967
448.9685 453.1571

ξ = 0.5430 p-value = 0.8508 p-value = 0.7495

6. Conclusions

IPD and GPD are mostly suitable for the simulation data and actual data with percentile of 84th

to 97.5th following by gamma and exponential distributions.
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By K-S test and AD test, the IPD is the best fit to censored data with threshold u at 84th per-
centile that are simulated from log-logistic and BurrXII for 92th to 96th. Whereas the IPD is suitable
for threshold u at 84th to 94th percentile that are simulated from log-logistic by AIC and BIC. In
actual data, the IPD is the best fit to censored data with threshold u of 15 million Krone for all tests.

7. Discussion
The IPD can be fitted to some tails of distribution depending on threshold u. Although it cannot

be fitted to all censored data, it provides a better fit than the traditional distributions such as the gamma
and the exponential distributions. The IPD can be a good model for extreme events modeling in the
same way that GPD is. In future research, we should consider a model with different parameters
estimation for analysis estimated parameters according to point estimation and interval estimation.
The aggregate claim and collective claim models are interested for insurance pricing that we take
them into the account.
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