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Abstract

In this paper we present some properties of the inverse Pareto distribution (IPD). We compare
IPD to gamma distribution, exponential distribution and generalized Pareto distribution (GPD). The
data sets over threshold u are analyzed and obtained by the Monte Carlo simulation and the use of
Danish fire data. The maximum likelihood estimation (MLE) is the parameter estimation. The various
measurements of model fitting are the Kolmogorov-Smirnov test (KS test), the Anderson-Darling test
(AD test), Akaike information criterion (AIC) and Bayesian information criterion (BIC). We found
that the IPD is a good competitor with GPD for the modeling of extreme events.

Keywords: Danish fire data, generalized Pareto distribution, heavy tailed distribution, infinite mix-
ture distribution, peak over threshold.

1. Introduction

Losses of non-life insurance are referred to as claims or liabilities of insurance company which
are responsible for the insured or policyholders. Claim modeling is an important task for actuaries
who need to be able to estimate or forecast the behavior of claims which will occur in the future.
The building of claim models has been developed by many authors relative to their different types of
data. New models or distributions are built from mixture models for fitting to the data which cannot
be fitted by a commonly used distribution. Some loss distribution and their modeling are described
by Hogg et al. (2005), Catherine et al. (2011) and Klugman et al. (2012). The mixture models are
known in terms of urn-to-urn models in risk theory that is combined with continuous and discrete
distributions, while in terms of loss models, they are finite mixture distributions and infinite mixture
distributions. Many authors presented the modeling of finite mixture models. For example, Mohamed
et al. (2010) proposed a compound Pareto distribution for claim severity modeling. Sattayatham
and Talangtam (2012) presented finite mixture lognormal distributions and applied the models to
motor insurance claims data. Mauro et al. (2012) proposed finite mixture skew normal distributions
and applied them to the insurance claim data set of Danish fire losses. Moreover, Erisoglu et al.
(2013) used two mixture gamma distributions for the estimation of heterogeneous wind data sets.
Matthayomnan (2016) constructed new models for claim amount by finite mixture lognormal and
Frechet distributions. There are a few loss models for the infinite mixture distribution for claim
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severity in textbooks and papers. Therefore, we are interested in the modeling of infinite mixture
distributions for claim severity because most papers of infinite mixture distributions are published
regarding claim frequency. The popular posterior distribution of Poisson is presented for modeling by
Rai (1971), Bulmer (1974), Sichel (1975), Irwin (1975), Kempton (1975), Albrecht (1982) and others.
Emilio et al. (2006) proposed a negative binomial inverse gaussian distribution (NBIG) which has
been applied for the pricing of automobile premiums. Hossein Zamani and Noriszura Ismail (2010)
introduced the negative binomial-Lindley distribution which provides a better fit than the Poisson and
the negative binomial for two claim frequency samples of insurance data. Some papers describe and
present infinite mixture models for both claim frequency and claim severity. For example, Pacdkova
and Zapletal (2013) explain a model of claim frequency and claim severity by using Poisson-gamma
distribution and exponential-gamma (Pareto) distribution, respectively. Anantasopon, Sattayatham
and Talangtam (2015) propose an infinite mixture of inverse exponential-gamma for fitting to motor
insurance claims data. Dankunprasert (2017) presented gamma-exponential distribution (GED) and
exponential-exponential distribution (EED) constructed from an infinite mixture model for severity
claims of motor insurance.

Reinsurance in excess of loss treaty is considered to be the threshold u, whereby the reinsurer
takes the risks or losses over u. This means that the reinsurer’s liability is based on the remaining
data from the right censored data of the ceding company. Therefore, we focus on the modeling
depending on u of claims by the reinsurer that the extreme value theory (EVT) is appropriately applied
and compared for this work. EVT is divided into two types depending on the characterization of
censored data. These types are block maximum and peak over threshold (POT) that lead to the
use of generalized extreme value distribution (GEVD) and generalized Pareto distribution (GPD),
respectively. GPD is frequently used in many fields and it is a good tool for modeling data by the POT
method. The EVT is described in a book of Fisher and Tippett (1928), Coles (2001), Kluppelberg
(2004) and Beirlant et al. (2004). The paper of Berning (2010) explained how EVT is able to be
applied to various fields, such as those of financial and insurance risks. Vladimir et al. (2012)
presented the extreme events which were relative to the global crisis of 2008-2009 and they employed
the POT and GPD for the modeling of financial returns based on the daily losses of the Russian stocks
index (RTSI) in 1995-2009. Yang (2013) presented GPD for insurance modeling by using a software
package R for simulated data and then applied these to fire losses in Denmark. Recently, Puangkaew
(2018) applied the GPD to Danish fire claims severity and compared the estimated parameters using
various methods.

The organization of this paper is composed by 7 sections as follows. In Section 2, the derivative
of IPD and GED are explained. In Section 3, the tail properties of IPD is presented by using a
hazard function. In Section 4, the materials and methods for model fitting are employed to some
loss distributions, IPD and GPD. In Section 5, the results of models are compared based on both
simulated data and actual claim data. The conclusions and discussions are specified in Sections 6 and
7, respectively.

2. Models

The IPD and GED are formed by the same distribution, but they are derived from different con-
structions. The IPD comes from the inverse transformation of the Pareto distribution, type II Lomax
distribution whereas the GED comes from the infinite mixture distribution of Gamma and Exponen-
tial distributions. The construction of IPD or GED for inverse transformation and infinite mixture
distribution are explained in Sections 2.1 and 2.2, respectively. Wordpress.com (2017) presented the
relative between distribution as follows.

2.1. Inverse transformation

The type II Lomax distribution with shape parameter « and scale parameter 6 for camulative
distribution function (CDF) and probability density function (PDF) of random variable X are as
follows.
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We take the approach of raising a base Pareto distribution with shape parameter « and scale
parameter 1. Both approaches lead to the same CDF:

o\ y \” 1
Fly)=1—-Fx(y™ ') = == h =,
) x(y) <;+9> (er/\) ywhere A =

The PDF is given by

Aoyt
f(y):W;a>0,)\>O,y>0.

2.2. Infinite mixture distribution

Dankunprasert (2017) presented the IPD by using infinite mixture model. The PDF and CDF
are described as below.

Suppose a random variable X follows a gamma distribution with parameters c and a.. Denote its
PDF by f(x;¢, ) as
a(za)c?

T(c)

where I'(c) is the gamma function, I'(c) = [;~ 2°~! exp(—x) dx for ¢ > 0.
The exponential distribution of random variable o will be used as the mixing distribution. The
PDF of a is

flz;c,a) =

exp(—ax);¢>0,a > 0,2 > 0,

g(a) = Aexp (—aA); A > 0,a > 0.



4 Thailand Statistician, 2021; 19(1): 1-13

Then the unconditional PDF of X is
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3. Tail Behavior

This section presents the tail properties of the IPD in Theorems 1 and 2. First of all, we will
show some properties of IPD as survival, hazard functions and Value-at-risk.

Survival function is given by

Aez®T1

f(z) e Aexe—1
TS@ T (H)r @@ - @

The Value-at-risk (VaR) (Klugman 2012) of a loss random variable X at the 100p% level,
denoted by VaR,(X) or 7, is the 100p percentile (or quantile) of the distribution of X. The VaR of
IPD is in the form of

A

Tp = p—l/c _ 1
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Theorem 1 Let X be a random variable. The probability distribution function is an inverse Pareto
distribution (IPD) in the form of

by c—1
f(x):(xfcw,c>0)\>0x>0

Then IPD has a heavy tail.

Proof: The hazard function for the IPD is Equation (2).
Thus we obtain

, c—2(A _ B)
h(x) = 0,
R PR VTP v
where A = (e=D(z+N[(x+ 1) -2z,
B = z[(c+D)(z+N)° =z ex+ )+ ).

Since IPD has a decreasing hazard function, the IPD has a heavy tail.

Theorem 2 Let X be a random variable. A heavy tailed distribution has a tail that’s heavier than
an Exponential distribution Then IPD has a heavy tail.

Proof: Consider the survival function,

lim LIPD (x)
z—00 SEzp(x)

Then, the limit of the ration will be the same, as can be seen by an application of L’Hpital’s rule:

lim Sipp(2) lim I/PD(*T) — lim —fipp(x) _ lim fipp(@)
T—00 SEggp(I) z—00 SEwp(x) T—00 —fExp(q;) z—00 szp(l')
ﬁ . Aex® lexp(ax)

z—00 aexp(—ax) =100 a(x + A)etl

Since exponential goes to infinity faster than polynomials, the limit is infinity. So, the IPD has a
heavier tail than exponential. Therefore, the IPD is a heavy tailed distribution.

4. Materials and Methods

Embrechts et al. (2011) presented the distribution of EVT which is used for modeling ex-
ceedance over a threshold. Modeling with a GPD model and statistical analysis of real data are
as follow: Let basic losses data X, Xo,..., X, be random variables with independent identically
distributed (iid) functions F'. The ordered data are denoted by X ,, < X5 ,, <--- < X,, ,,. Theright
endpoint, xf, is defined as xp = sup{z; F(x) < 1}. Forall u < z, the function

Fuz)=P{X —-u<z|X>u}pz>u

is called the distribution function of exceedances above threshold w.

LetY = X — u for X > u and for n observed variables X1, Xo,..., X,, we can write
Y; = X; — u such that 7 is the index of the jth exceedance, j = 1,2, ..., n,. The distribution of the
exceedances (Y7,...,Y, ) can be fitted by the models.

u
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— isPDFof IPDwith A =5andc=1 is PDF of Exponential with rate = 0.2.

4.1. The models
The loss distributions and extreme event models are selected for our models that are composed

of IPD , gamma, exponential and GPD. We make a comparison of IPD modeling among the selected
distributions. The GPD is a popular model from EVT which is

1

CJi-a+ey)TE, ife#0
Cealy) = {1 —exp(~%),  ifé=0,

where £ € Rand 5 > 0. Werequire 0 < y < 00 if £ > 0,and 0 < y < —% if £ < 0. The parameter
B = B(u) is the scale parameter and its depends on the threshold w.
The PDF of GPD is given by

Eey ey [
—~

9e p(y) = {

4.2. Parameters estimation
The method of maximum likelihood estimation (MLE) provides estimators which are usually

quite satisfactory and frequently used in actuarial mathematics, see in Klugman (2012).
Consider the amount x; paid for the ith contract, where ¢ = 1,2, ..., n. Dankunprasert (2017) fit
the IPD in Equation (1) to the data set by MLE. The likelihood function can be written as follows.

and the log-likelihood function is in the form.

Aex§™ ! }

InL= Zl{ e

Taking the partial derivatives of the log-likelihood function with respect to parameters are as
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follows:

We estimate ¢ and \ for ¢ and )\, respectively by 2 5.InL =0 and 1 InL =0.
Thus,

:—i—ilnxi—iln(xi—&—)\) =0,

S

Solve the equations numerically for estimated parameters by fixed point iteration method.

4.3. Goodness of fit test and model selection

There are two measurements for model fitting and two paradox in model selections are as fol-
lows:

1) The Kolmogorov-Smirnov test

The K-S test statistic is defined by

D = sup|F,(z) — F (x)].

where F),(x) is empirical cumulative distribution function of X with n data and F% (z) is the theo-
retical cumulative distribution of the distribution being tested.

2) The Anderson-Darling Test

The AD test statistic is defined by

n

AD = —n — %Z(% — DI F(z;) + In {1 — F(zn_is1)},

i=1

where F'is the theoretical cumulative distribution of the distribution being tested.
3) The Akaike information criterion (AIC)

AIC =2k —21In (L(0)),

where k is the number of parameters estimated and In (L(#)) is the log-likelihood function.
4) The Bayesian information criterion (BIC)

BIC = —2In(L(9)) + kln(n),

where In (L(#)) is the log-likelihood function and n is the number of observations.

4.4. Data

We apply the models to the simulated data and the Danish fire data sets for model fitting. Some
descriptions are as follows:

1) The simulation data



8 Thailand Statistician, 2021; 19(1): 1-13

The Monte Carlo simulation of data are generated by three different distributions such as the
distributions of Log-logistic, BurrXIl and Log-normal with sample size n = 200, and 3000
replicates.

2) The actual data

The Danish fire data consist of 2167 losses which were over one million Danish Krone (DKK)
for the years 1980 — 1990. The loss includes damage of buildings, personal property and loss of
profits.

5. Results
The thresholds « are varied for our model fitting in tail distributions. We found that the IPD is

mostly suitable for the data sets on u of 84th o 97,5t percentile for some simulated data and u of 6,
12 and 15 million Krone for the Danish fire data. The results are presented as the following items.

5.1. Simulation data
Tables 1 and 2 show the estimated parameters and values of model fitting with censored data at
84th ang 94th percentile, respectively, for the generated data by log-logistic distribution. The number
of exceedance are 480 for 84h percentile (around 4 million Krone) and 180 for g4th percentile
(around 9 million Krone).

At the significant level « = 0.05, IPD and GPD are fitted to the data whereas the gamma and
exponential distributions cannot be fitted to any data sets. By AIC and BIC, the IPD is the most
suitable for the data following by GPD, gamma and exponential distributions, respectively.

Table 1 Threshold « at 84t percentile (=~ 4 million Krone)

Measurements of model fitting

Distributions  Estimated Parameters RS tost AD test IN(® BIC
o pae 05093 prvne = gy 000912 300920
— =3 — G
e e ST D030 e T e i
Exponential  Rate = 0.0210 3;135311.06 10 I’j_laa;elf Lo A660.567 4673741
Y pulie= 062 pie0ie 0L9IL 3010258
Table 2 Threshold u at 94th percentile (= 9 million Krone)
Distributions ~ Estimated Parameters KoS tost MeasurementsAo]g I:::Sel fitting AIC BIC
R oo 07712 paine oo 1499492 165STT
— =3 — ]
Gamma l;ﬁ;;; :2 3?5853? . Ila)-v_algézigg.sno x 1010 s-?ai;eli -1 1649987 1656.373
Exponential ~ Rate = 8.4189 x 1073 113-213512;2 % 1016 [[?-]321;6126 10-15 2081.821 2085.014
e pralie= 08667 pue o7 100173 1466550

Tables 3 and 4 show the estimated parameters and values of model fitting with censored data at
92th and 96th percentile, respectively, for the generated data by BurrXII distribution. The number of
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exceedance are 240 for 9

oth percentile (around 6 million Krone) and 120 for 96th percentile (around

10 million Krone).

At the significant level o = 0.05, IPD and GPD are fitted to the data whereas the gamma and
exponential distributions cannot be fitted to any data sets. By AIC and BIC, the GPD is the most
suitable for the data following by IPD, gamma and exponential distributions, respectively.

Table 3 Threshold « at 92t percentile (= 6 million Krone)

Measurements of model fitting

Distributions  Estimated Parameters K-S tost AD tost AIC BIC

1D 2= 13100 e~ 06153 plue - oudssa 528 1529788
Gamma }S{}?;Ze: :0 8%%35.1 pD-\:ll&aliSél?) x 10~° 1?—?aite6£142.;350 x 10—+ 1960770 1567731
Exponential ~ Rate = 0.0964 ;]2;13&219;23 < 10-11 i?a;fi?’;ﬁ < 106 1604.774  1608.254
a0 pualue 04693 pviue 0733 1019046 1526907

Table 4 Threshold u at 96t percentile (= 10 million Krone)

Distributions  Estimated Parameters KS test Measurementz(]))f tr:Sotdel fitting AIC BIC

tPD o Toss praie 07160 palwoosrer S48 ssiom
Gamma G U066 pualie— 0413 peadveooiizy  SS0000 SS55T0
Exponential ~ Rate = 0.0647 E_ ;1?135378 60 x 105 ﬁ?a;elilf,gg 60 x 10-5 599.0689 9018564
GPD [ = 7.2555 D = 0.079245 AD = 0.9436 876.0974 881.6723

& =0.6521 p-value = 0.4383 p-value = 0.3881
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Tables 5 and 6 show the estimated parameters and values of model fitting with censored data at
95t and 97.5th percentile, respectively, for the generated data by log-normal distribution. The num-
ber of exceedance are 120 for 96t percentile (around 10 million Krone) and 75 for g7.5th percentile
(around 13 million Krone).

At the significant level o = 0.05, for 95th percentile, IPD and GPD are fitted to the data whereas
the gamma and exponential distributions cannot be fitted to any data sets. For g7.5th percentile, the

data sets are fitted by all models. By AIC and BIC, for both 95th and 97.5th percentile, the GPD is
the most suitable for the data following by IPD, gamma and exponential distributions, respectively.

Table 5 Threshold « at 960 percentile (= 10 million Krone)

Measurements of model fitting

Distributions ~ Estimated Parameters RS test AD test AlC BIC
IPD ;\ - 3’53845 ﬁvjlil)é(zoo?).4482 ﬁ?elljeli 3)?;028 939.9067  945.9280
Gamma g{tﬁ)e: :O 8%%)870 ;liv:allﬂéli4g.o186 3135625303'3333 10554330 1061.4550
Exponential ~ Rate = 0.0738 3;3315;15 40 % 107 I’?_?aileli%fiolo,ﬁ 1084.0190  1087.0290
Y S 1 e 04558 pvane —0aas 03106 9363920
Table 6 Threshold v at 97.5th percentile (= 13 million Krone)
Distributions ~ Estimated Parameters RS test Measuren:lrjltfe(s)tf model ﬁttir\l;gc BIC
Y e — 02658 palne — 01153 P100031 544631
— — — 0 3EF
Gamma 1;?;; :0 ‘(()).?;%EZ)’;Q llival?léoigg.gwo i?alueojooo.ggos 606.0451  610.6801
Exponential ~ Rate = 0.0478 l])).:ﬂ?léoilg, 6287 g-l\?a:leoﬁ602.§851 608.0573  610.3748
GPD 8 =10.4731 D =0.0674 AD = 0.3266 5243504  528.9854

€ =0.1100

p-value = 0.8623

p-value = 0.9166
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5.2. Actual data

Tables 7 to 9 show the estimated parameters and values of model fitting with censored data at 6,
12 and 15 million Krone, respectively, for the Danish fire data in Danish Krone (DKK). The number
of exceedance are 273 for threshold w at 6 million Krone, 87 for threshold « at 12 million Krone and
65 for threshold w at 15 million Krone.

At the significant level o = 0.05, the Danish fire data is fitted by all models, except for the
exponential distribution. By AIC and BIC with « at 6 and 12 million Krone, GPD is the most suitable
for the data following by IPD , gamma and exponential distributions, respectively. For the threshold of
15 million Krone the IPD is the most suitable for the data following by GPD, gamma and exponential
distributions, respectively.

Table 7 Threshold v = 6 million Krone (& 87.5th percentile)

U . Measurements of model fittin,
Distributions  Estimated Parameters g

K-S test AD test AIC BIC
1PD i paaue 02153 paemongos 1221153 1227605
— |4 — — |4
Gamma gﬁ;i)e_ :0 g.ﬁig ;liv_al?léoigg.m% ;;“—]\?aITJGQjSOO.?)E)QIQ 1238.782  1245.234
Exponential ~ Rate = 0.0893 ﬁ;ﬂffgm <104 g?ai]elisﬁgg (106 1272741 1275.966
GPD f —oams puaie 00725 pwimem0oisz 20764 1214106

Table 8 Threshold © = 12 million Krone (= g5th percentile)

Measurements of model fitting

Distributions  Estimated Parameters

K-S test AD test AIC BIC
I puae 06757 pie—oasg UL 616037
Gama  Guoc Vonss  pualec00887  puahe—ogsis 005170 630402
Exponential ~ Rate = 0.0633 111)—\213522?.9010 % 10-3 3133:166214??)750 % 104 641.3073  643.7500

Table 9 Threshold v = 15 million Krone (= g7th percentile)

. . Measurements of model fittin,
Distributions  Estimated Parameters g

K-S test AD test AIC BIC
1PD oy e - 09159 paue 0oy M61TIS 1503602
= - YT
Gamma l;}?;;e :0 836i26 Evalgéiog.owo i?alue2j005.3)525 4674470 4716357
Exponential ~ Rate = 0.0531 113-;1?1&2145.8600 <103 ]/:_?a;:f’ﬁi 160 x 10— ATA2738 4763681
o> T 0 pralic - 05308 poalueOqigy | MB00S5 4531571

6. Conclusions

IPD and GPD are mostly suitable for the simulation data and actual data with percentile of g4th

to 97.5th following by gamma and exponential distributions.
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By K-S test and AD test, the IPD is the best fit to censored data with threshold « at 84th per-
centile that are simulated from log-logistic and BurrXII for 92t (0 96th. Whereas the IPD is suitable

for threshold u at 84th o 94th percentile that are simulated from log-logistic by AIC and BIC. In
actual data, the IPD is the best fit to censored data with threshold « of 15 million Krone for all tests.

7. Discussion

The IPD can be fitted to some tails of distribution depending on threshold w. Although it cannot
be fitted to all censored data, it provides a better fit than the traditional distributions such as the gamma
and the exponential distributions. The IPD can be a good model for extreme events modeling in the
same way that GPD is. In future research, we should consider a model with different parameters
estimation for analysis estimated parameters according to point estimation and interval estimation.
The aggregate claim and collective claim models are interested for insurance pricing that we take
them into the account.
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