Thailand Statistician
January 2021; 19(1): 14-41
http://statassoc.or.th

Contributed paper

A Comprehensive Simulation Study to Compare Various
Estimators of the Model Parameters, Model Mean, as well as Model
Percentiles of a Two-Parameter Generalized Half-Normal
Distribution (2P-GHND) with Applications

Matinee Sudsawat [a][b], Suntaree Unhapipat [b][c] and Nabendu Pal’[a]

[a] Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana, USA.
[b] Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand.

[c] Center of Excellence in Mathematics, Commission on Higher Education, Bangkok, Thailand.
*Corresponding author; e-mail: nabendu.pal @louisiana.edu

Received: 18 August 2019
Revised: 13 October 2019
Accepted: 5 March 2020

Abstract

This work deals with studying various point estimators of the model parameters, the model mean,
as well as the model percentiles of a two-parameter generalized half normal distribution (2P-GHND).
First, we study three types of estimators of the model parameters, namely - the method of moments
estimators (MMEs), the maximum likelihood estimators (MLEs), and the ordinary regression esti-
mators (OREs). Then, these three methods are used to obtain the corresponding estimators of the
model mean as well as the model percentiles. The estimators have been compared in terms of relative
bias (RB) and relative mean squared error (RMSE). Though our primary objective here is to study
the small sample behaviour of the estimators, we have also studied the asymptotic behaviour of the
MLE:s. It has been shown that the MLEs perform far better than the other types of estimators for
sample sizes up to 25. For larger sample sizes, all the estimators have nearly similar behaviour. Also,
for the MLEs of all the parameters considered in this study, their MSEs can be approximated fairly
well by the respective asymptotic variances obtained from the Fisher information matrix. Finally, we
provide asymptotic interval estimates of all the parameters considered here, and show the goodness
of fit of 2P-GHND over other commonly used skewed distributions for two real-life datasets.

Keywords: Shape parameter, scale parameter, relative bias, relative mean squared error, asymptotic
variance.

1. Introduction

The Gaussian or the normal distribution is the most widely used probability distribution to model
real-life datasets. However, if a dataset shows a positively skewed pattern, and/or bounded below by
zero, then the normality assumption may not be appropriate for such data. That is why in many
biological and engineering applications we see usage of positively skewed distributions, such as -
lognormal, Weibull, gamma, etc. A competitor to the aforementioned positively skewed distributions
is the two parameter generalized half normal distribution (or, 2P-GHND) which arises as a general-
ization of a folded form of a normal distribution centered at zero (i.e., half normal distribution).
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Though the above-mentioned positively skewed distributions have been studied extensively in
the literature, and have been used widely to model real-life datasets, relatively less has been done for
the 2P-GHND, and this is the motivation behind this work.

In the following we briefly describe the 2P-GHND to be considered in this study and its basic
properties.

1.1. Two-parameter GHND (2P-GHND) and basic properties
A random variable X is said to follow a two-parameter GHND (or 2P-GHND) with shape and
scale parameters 9 and o respectively, provided its pdf is given as

f(x16,0) = \/2/m(3/2) (/o) eap(—(x/0)* /2), (D)

where 6 > 0, 0 > 0 and > 0. The cdf of 2P-GHND is given as
P(X <2) = Fla) = | f(al6,0)ds = 20((a/0)"] - 1 @
0

where ® represents the standard normal cdf. The 2P-GHND model is appropriate for nonnegative
observations, such as the life time of equipments, amount of rainfall per unit of time, etc.

For any integer k > 1, the %™ raw moment of 2P-GHND has the following expression
E(X") = o™/ (2" /)T ((k +6)/(20)), 3)

where I'(¢) is the regular gamma function evaluated at c. Thus, the first two moments of 2P-GHND
are

E(X) =0/ (2Y9/m)D((1+6)/(20)), B(X?) = 0*\/(22/%/m)D((2+6)/(26)). &)

The objective of this work is to undertake a comprehensive simulation study of various estima-
tors of the model parameters, i.e., d (the shape parameter) and o (the scale parameter), as well as two
other important parameters, namely - 77 (the model mean), and &, (the pth percentile of the model,
0<p<l.

The expression (1) clearly shows how the model parameters § and ¢ are involved in the pdf.
Further, from (4) it is seen that

n=E(X)=04/(2"°/mI((1 +4)/(20)),

and from (2) it is seen that the pth percentile of the model is given by

& =o{d  ((p+1)/2)}'/°.

In the following we provide a brief literature survey on 2P-GHND.

1.2. Some historical background

The properties of half-normal distribution and its generalizations have been studied by a few
researchers in the recent past. Pewsey (2002) gave a nice historical development of a variant of 2P-
GHND with location and scale parameters (which is different from (1) considered here), and studied
the point as well as interval estimators of the parameters for large samples. Pewsey (2004) extented
this study further by proposing bias corrected point estimators of the model parameters which tend to
perform better than the original MLEs both in terms of bias and MSE. Cooray and Ananda (2008)
considered the 2P-GHND (with pdf (1)), studied various distributional as well as characterization
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properties of the distribution, and proposed interval estimates which were than studied for small to
moderate sample sizes for a very limited combination of the model parameters. They fitted the 2P-
GHND model to static fatigue life of objects like glass, ceramics, etc. under a constant stress, and
compared the model fitting with that under a few other models, such as - gamma, lognormal, Weibull
and Birnbaum-Saunders distributions by using four criteria, which are the value of the maximum log
likelihood function, Kolmogorov-Smirnov statistic, Anderson-Darling statistic, and chi-square good-
ness of fit statistic. Gémez and Vidal (2016) considered a completely different type of generalization
of the half-normal distribution which is beyond the scope of our study.

Note that the existing works do provide some simulation results which are limited in terms of
scope and breadth, and it is not easy to decipher any meaningful trend. Therefore, in this work we
have undertaken a comprehensive study of various estimators not only of the model parameters, but
also of the the model mean as well as the model percentiles which were omitted in the previous works.

It is worth pointing out that Stacy (1962) introduced a very general class of skewed distributions,
called generalized gamma distribution (GGD), for a nonnegative random variable, with the following

pdf

f(zla, d,p) = (p/a’)x®  exp(—(z/a)’)/T(d/p), (5)
where @ > 0,d > 0,p > 0, and £ > (. The above GGD pdf includes many well-known and
widely used pdfs as special cases. For example, p = 1 reduces (5) into the regular gamma pdf (with
scale parameter a and shape parameter d). Similarly, with p = d makes (5) boil down to the regular
Weibull pdf (with scale parameter a, and shape parameter d). As a result, the above GGD model
includes exponential, chi-square, Rayleigh distributions as special cases. Further, by taking p = 26,
d = 6anda = 2/ (25)0, one can arrive at the 2P-GHND from (5). Thus 2P-GHND is also a
special case of GGD. However, in spite of being introduced more than five decades ago, GGD did
not gain much popularity due to challenges with estimation of parameters, and subsequent sampling
distributions. Any attempt to find the MLE of the three model parameters of GGD gets stymied
by the system of three highly nonlinear equations (which may result into multiple solutions, or no
solution at all). The computational challenges with GGD have also been acknowledged by Cooray and
Ananda (2008) (see their Subsection 3.1). Hence, Stacy and Mihram (1965) suggested estimating
the parameters using the method of moments. But to best of our knowledge, no comprehensive
study exists comparing the goodness of the aforementioned estimators, and/or modifying the MLE
approach. As a result, research has proliferated on specific subfamilies of GGD, such as Weibull and
gamma, and how to make use of these specific subfamilies in real-life applications. In the same vein
we study 2P-GHND in this paper which has received less attention than Weibull and Gamma but yet
found to be useful for some datasets as shown later.

Even though 2P-GHND is a member of GGD, unlike other members like regular gamma it is not
always positively skewed (a property shared by Weibull though). This interesting feature had eluded
the attention of earlier researches. Note that the measure of skewness (MOS) of 2P-GHND, denoted
by 7o, is given by

Y0 = B(X =)’ /(B(X =0)*)*?) = wi fw,,

where wy = /@M (3 +9)/(26)) +2 (V@77 (1 +6)/(25)))’
—3/(23/° /7T (1 +9)/(20)) T ((2 + 9)/(29)),

2\ (3/2)
wa w = (VI (24 0)/20) - (VETTRIT (4 0y/20)) )

Thus, 7 is a function of  only, and its behavior is shown in the following Figure 1. Interestingly
~o is positive only when ¢ is < 2.175, and negative when ¢ is > 2.175. In order words, 2P-GHND
goes from positively skewed to negatively skewed as d increases from near 0, and crosses the value
2.175. This gives 2P-GHND some flexibility over other strictly positively skewed distributions in
fitting real-life data.
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MOS

Figure 1 Plot of MOS against the shape parameter

The rest of the paper is organized as follows. Section 2 deals with estimation of the model
parameters 0 and 0. Here we present three types of estimators and explain some of their properties.
In Section 3 we consider estimation of the model mean 7), and Section 4 presents the estimation of
the model percentile §,. An important component of this study is to see for what sample size the
asymptotic behaviour of the above mentioned estimators take hold. Also, the interval estimation of
the relevant parameters are shown in Section 5. In Section 6 we present two datasets which can be
modelled by 2P-GHND satisfactorily over a few other two parameter positively skewed distributions.
For convenience all plots and graphs have been relegated to the Appendix (after the list of reference).
Finally, the paper ends with some practical observations and recommendations.

2. Estimation of the Model Parameters (6 and o)

Suppose X1, Xo, ..., X, are i.i.d. following 2P-GHND with pdf (1). Though the expressions
of the estimators in Subsections 2.1 and 2.2 are not new, still we have presented them here for com-
pleteness.

2.1. Method of moments estimators (MME)

We define the &kt sample raw moment 1 as

n

my = ZXf/n, kE>1.

i=1
The method of moments estimators (MMESs) of § and o are found by equating the above first
two sample raw moments with their population counterparts from (3), i.e.,

my = a4/ (219 /m)T((1 + 0)/(29)), (6)
my = o4/ (22/9 /7D ((2 + 6)/(26)). (7)

From equations (6) and (7), the MME of 4, i.e., SM ME, can be found by solving the following
equation numerically

(m3/ma) = (D((1 + daar)/ (200aaE) 2/ (7D (2 + Sarne) [ (200100E))),

and then replace by SM ME in equation (6) to get the MME of o, i.e., get & p7 /. by the expression

Ganp = ma/[\ (218 [m)D((1+ darare) /(200101 )))-
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Remark 1 It is easy to see that the probability distributions of gM mE and (G prE /o) are free from
o, and depend only on ¢ (apart from 7).

2.2. Maximum likelihood estimators (MLE)
The log-likelihood function (L.) of 2P-GHND with n observations is

n n

L.(5,0/X) = (n/2)In(2/7) + nln(8) — néIn(o) + (6 — 1) > _(In(X;)) — (Z(Xi /o) /2).

=1 i=1

Differentiating L. (d, o|X) with respect to § and o, and then equating them with O gives the
MLE:s of § and o as follows. First obtain d,; 1 g by solving

1/8\MLE = (Z XZ-Q(SMLE lnXi)/(Z XiMMLE) - Z(lnXi)/”a
i=1

i=1 i=1

and then obtain the MLE of o, i.e., oL E as

a\MLE — [Z X,?SNILE/n}l/(QgJ\JLE).
i=1

Remark 2 It is easy to see that the probability distributions of 0,1,z and (G 1.5/0) are also free
from o, and depend only on § (apart from 7).

2.3. Ordinary regression estimators (ORE)
The third method is the ordinary regression estimation through the least squares method. Writing
Xy £ X2y < ... £ X(y) as the ordered observations, compute c; /,, defined as

cim =2 ((1+i/n)/2),

where i = 1,2, ...,n, and ®! is the inverse of ® as defined in (2).
Since X(;) is the empirical (i/ n)lOOth percentile value, it is matched with the corresponding
population percentile value (also see Section 4 later), i.e.,

Xy = U(Ci/nl/é)a

ie.,

In X(i) = In(o) + (1/6)In(ei/n)-
Substituting o9 = In(o) and (1/9) = do, we get

IHX(Z) =00 + do ln(ci/n).

Now, by the simple regression method, get the estimated parameters 30 and o as follows

n n

do =D (ui =) (vi —9))/[>_(v; —7:)%]  and o= — doT;,

i=1 =1

where u; = In X(;) and v; = In(c;/,). Finally, the estimated parameters, based on the ordinary
regression estimation (ORE), are found as

5ORE = 1/50 and aORE = exp(&o).
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2.4. Simulation to compare estimators of § and o

In this simulation study, the estimators are compared by using the relative bias (RB) and the
relative mean squared error (RMSE). The RB and the RMSE of any generic estimator, say 9 of a
parameter 6, is defined as

~ ~

RB(f) = Bias()/6 and  RMSE(f) = MSE(0)/6>.

Even though it is customary to use the exact bias and exact MSE of an estimator, say 9, of a
parameter 0, where Bias(0) = E( — 6) and MSE(6) = E(6 — 0)2, the RB and RMSE are more
informative about the true performance of 6 at 0. For example, a bias of 0.1 may not be bad for
estimating # at § = 10, but it can be bad if # = 1.0. This difference gets reflected in RB and RMSE.

Note that Bias (or MSE) of an estimator is an expectation of an expression, and hence it has been
approximated by the average of a large number (say, M) of replicated values of the same expectant
for a fixed sample size with an input value of the parameters. W.1.g., we have used o = 1 throughout
this study, and M has been taken as 105.

Remark 3 The Figure 2 shows the RB of three ¢ estimators, i.e., gM ME> SM LE and 50 rE- Note that
RB of SM e and SO rE are almost constant with respect to § for all n. Although, the RB of SM ME
is higher than those of other two for § < 1, it decreases monotonically, and then becomes almost
flat when ¢ is greater than 1.0. Interestingly, among these three estimators, 8\0 rE has the smallest
RB. All the three RBs approach 0, when n increases. Therefore, the estimator having the least bias
is 3\0 rE- On the other hand, Figure 3 shows the RMSE of the three § estimators, and it is observed
that the best overall performance is shown by SM LE, closely followed by 30 re. Only forn = 5,
EM M E shows some good performance in terms of RMSE when § > 0.5. Taking all these aspects into
consideration, we therefore conclude that SM LE 18 the most suitable estimator for §.

Remark 4 For estimating o, Figures 4 and 5 show the behaviour of G0/, OarE and Gogrg in
terms of RB and RMSE respectively. Note that both o3/ and 7, g have nonnegative RB, and
this is almost zero for § > 0.5 for all n. On the other hand, oo rg is mostly negatively biased, i.e.,
oorEe underestimates o. All the RBs are approaching zero as n increases. In terms of RMSE, Gy
is certainly better than the other two for 6 > 0.5. However, as n increases, o /1 g has the overall best
performance.

Based on our simulation study, in terms of overall performance, the MLE stands out as the best
method for estimating both § and o. In the following we further study the asymptotic performance of

Oyvre and OpLE.

2.5. Asymptotic behaviour of the MLE for ¢ and o
Since 2P-GHND is a member of the exponential family of distributions, the standard large sam-
ple theory says that (a5, 0ar)’ has an asymptotic bivariate normal distribution. To be specific,

asn — oo R
OMLE o )2 )

where 17! is the inverse of the Fisher information matrix of 2P-GHND (the notation —? implies
convergence in distribution). The Fisher information matrix of 2P-GHND is given as Mazucheli et
al. (2018)

160) =[OV 24 0@ =0 2 niz) e
’ (2= () —)/o 26/0 )



20 Thailand Statistician, 2021; 19(1): 14-41

where v = 0.5772... is the Euler’s constant. Then, the inverse of the Fisher information matrix of
2P-GHND is presented as follows

I71(8,0l2) = (1/n)(20%/(w* — 4)) 172, (®)

where
72x2 — (5/0) (2-1In(2) —v)/o
(2-I(2) —v)/o  (1/(26*)[7%/2 =2+ (2 —In(2) —)?]

Therefore, the asymptotic variance (AV) of SM rE and 7/ g are given as follows.
AV (Onre) = [4/(n(x® = 4))](5%), and ©)

AV (Gurp) = [0°/(n(r* = 4))][7*/2 = 2+ (2 — In(2) — 7)*](1/6%).

The comparison between the actual MSE and the AV of SM Lk has been done in terms of RMSE and
relative AV (i.e., RAV), defined as

RAV (v/ndnipp) = nAV (6rrr)/82 = [4/ (72 — 4)], and

RMSE(v/ndypp) = nMSE(dy15)/62,

which gives a true comparative picture irrespective of the sample size and the true value of . The
same comparison has been done for & MLE also. For the asymptotic variance of (5 vLE and Oy LE,
Figure 6 shows how the RMSE of (\f drLE) is getting closer to RAV of (\f 0y LE) as nincreases.
Similarly, Figure 7 shows the comparison between RMSE(y/noyrr) and RAV(\/noyLE) as a
function of ¢ for various values of n with o = 1/\(W.l.g.).

Next we consider the association between ;1 g and o1, 5 by using the asymptotic correlation
coefficient (ACC) as follows

ACCOpinE,omie) = (2—1n(2) —7)/(72/2 = 2+ (2 — In(2) — 7)?)V/2 ~ 0.391849. (10)

Therefore, ACC of SM e and 0y is a constant for lange n. In the following subsection we
try to make use of the asymptotic correlation between dy, 1 g and o/ g for estimating § and o.

2.6. On asymptotic correlation between SM rgand oy g

From the expression (10), it is seen that there is a positive asymptotic linear association between
SM e and o, which takes effect for very large n and it is free form §. How this association
between SM e and 071 g takes place for fixed sample sizes can be seen from the simulated scatter
plots based on 10° replicated values of (SM LE,OMLE) as presented in Figures 8 (for n = 50) and 9
(for n = 100) for various values of J.

The whole idea of the above scatter plots is to see whether the association looks linear or not,
though it may be dependent on  because in real - life problems we have n finite. The Figures 8 and
9 do indicate linear association which varies mildly with respect to 9.

Based on our observations from the scatterplots, one can suggest a linear relationship between
(EMLE,EMLE) for large n as R

OMLE R a+béyre, (11)
where a = o — b§ and b ~ (0.391849)(AV (GarLp)/AV (Sare)) /2 = (0.364819)(5/62).

From (11), then N

omrLE = (0 —b6) +boyLE,

i.e., R
ovLE —0 = b(0mre —0).
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In term of Bias of SMLE and oypLE,
Bias(Gypg) ~ bBias(dypp) = (0.364818577)(0/6%) Bias(daLk).-

The above asymptotic bias relationship between SM e and 0y gives us an idea of deriving
bias corrected estimators of § and o for finite, yet large n. In the following we present a new set of
bias corrected estimators through the Jackknife method (Efron (1982)).

We need to get estimators of the above two biases which can be obtained through the Jackknife

(JK) method. Let us remove the observation X; from the sample, i.e., use X1, ..., X;_1, X;11, ..., Xn

to get the MLEs of § and o as S\E\?LE and 35&2LE fori = 1,2,...,n based on (n — 1) observations.

Then the ¢ and o estimators of the JK method is

n

5<~)=Z§<A2LE/n and a<~)=Zay}w/n,
i=1 i=1

then the JK biases based on 6() and (") are defined as
BiaSJK@\MLE) =(n— 1)(3(') - ;S\MLE)y
and -
BiasJK(GMLE) = (n — 1)(/0'\() — /O'\MLE)
Hence, a new estimator of o can be proposed by replacing Bias(gM re) and Bias(GarE) by
Biasjx (0pre) and Bias jk (001 E) respectively, which produces the new estimator as

Gnew = (Onrnr)2(Biasyx Garr)/Biasyx Oar))(1/(0.364818577)).
Similarly, a new estimator of ¢ is found as
Onew = [(0.364818577) (Gari ) (Bias sk Onrrp)/Bias sk Garrp))] 2.

Figures 10 and 12 present the RB of Snew and 7,,.,, Which are less than the RB of ZS\M e and
onmLE, but do not get close to zero. It appears that the JK method overkills by reducing bias too
much. However, the MSE of gnew and G, are still higher than MLE estimator shown in Figures 11
and 13.

In short, by using the jackknife method, we obtain the new estimators by correcting the bias,
however these new estimator still have higher RMSE. Therefore, the MLE is still the best method for
estimating both ¢ and o.

3. Estimation of the model mean (7)
Let 1 be the model mean of 2P-GHND, that is defined by

n=E(X)=0y/(2"°/m)T((1 +)/(20)) = 9(5, 0).

In Subsections 2.4 - 2.5 we have noted that the MLE approach is the overall best method of

estimation, so we are going to study the asymptotic behavior of 7,1, apart from 7y e = X. Itis
easy to see that

Efas) = E(X) = (1/n)(nB(X,)) = 01/ (2 /m)T((1 + 8)/(2)) = n.

Therefore, asas g is an unbias estimator of 1), i.e., Bias(Maramre) = E(Mvave —n) = 0, and the
variance of Mz 1S

V(iuumr) = V(X) = (1/n)(nV (X)) = (1/n)(V(Xy),
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where V(X;) = E(X?) — (E(X;))?. From Equations (4), the variance of X; (i.e., V/(X;)) is
V(Xi) = 0?/(22/0/m)D((2 +6)/(20)) — [0/ (21/°/m)T((1 + 8)/(20))]*

(2272 /m)[D((2 + 6)/(20)) — (1/v/m)(T((1 + 6)/(26)))%]-

Hence,

V(iume) = (1/n)(04/(22/°/7))[L((2 +6)/(26)) — (1/Vm)(T((1+6)/(26))))]-
Therefore, the MSE of a0k 1S
MSE(ume) = E((uve —n)?) = V(iume),
and the RMSE of Mk is

RMSE(/niyme) = (nMSE(ﬁMME»/??Za
h RMSE(Vafiae) = [(VAT((2 + 8)/(20))/(D((1 + 6)/(26)))%] -

Next, we consider the asymptotic behaviour of 75, g by using its asymptotic properties. As
n — 0o,

( ﬁMLE ) —>d N (9(6’ U)vv9(5a O')II_lv.g(éa U))v

where 1! is a inverse of the fisher information matrix of 2P-GHND (see (8)), and

vg(d,0) = [(0/95)g(,0),(0/00)g(,0)]'.

Therefore, the asymptotic mean of 7y 15 is

E(iure) = 9(d,0) = o/ (212 /mT((1+6)/(26)) =

and

2

V(Viiuis) = (1/(16%))[(0°2'/°) /(x® = )L (1 + 6)/(26)))
[(((1+6)/(26)) +3In(2) — 44 27)((¥((1 +6)/(26)) +In(2)) (A
+ (7%/2 = 2+ (2 — In(2) — 7)?)].
The asymptotic behaviour of the MLE for 7 is shown in Figure 14 along with RM SE(\/nijyag)-

The RMSES of 75, are close to RAV of 7y, when n and 0 increase.
Note that RAV(\/ﬁﬁM]uE) = AV(\/EﬁMME)/(UQ)

4. Estimation of the Model pth Percentile (&;,)
For any p € (0,1), the (100p)th percentile is &, which satisfies the following equation (from
(2)) 5
29[(&p/0)°] = 1 =p,
i.e.,
&p=olc )1/6

where ¢, = @7 1((p + 1)/2). In order to estimate &, we use the estimated model parameters from
one of the estimation methods discussed earlier which gives the expression of &, estimator as

~

& =5(cp)"?,
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where (6 o) can come from either MME, or MLE, or ORE. Thus we get estimates of &, as §p( MME)>

§p vmLE) and §p ORE) Tespectively. We have studied the performance of the above three estimators
of &, forp = {0.01,0.05,0.10,0.50,0.95,0.99} and n = 5,10, 25 and 50. However, in this paper,
we present the representative results for p = 0.05,0.50,0.95 as well as n = 10 and 25 only. The
patterns we observe here for RB and RMSE of the estimators hold for other values of p and n as well.

Figures 15 - 20 present the plots of RB and RMSE of the three estimators of &, for p = 0.05 (a
small value), 0.50 (the median value), 0.95 (a high value) and n = 10 (small), 25 (moderately large).

Remark 5 The observed trends of our comprehensive simulation study to compare Ep( MME)» Ep( MLE)

and {Ap(o rE) have been summarised as follows.
(a) When n is “small” (n < 25) and p is “small” (p < 0.10), in terms of RB, all the three
estimators are positively biased, and fp(o RE) has the best performance (i.e., least biased), followed

by Ep( MM E) and Ep( v L) Which are close to each other. Exactly the same pattern has been observed
in terms of RMSE also. N
(b) When n is “small” (n < 25) and p is “median” (i.e., p = 0.50), {,(orE) still has the smallest

absolute RB, though it is negative for small values of § (6 < 1.00). In terms of RMSE, Ep(o RE) NO
longer enjoys the best performance for all 4. It has been noted that when § < 1, Ep(o RE) is the best,
but for § > 1 both {?},(MLE) and EP(MME) over take Ep(ORE)-

(c) When n is “small” (n < 25) and p is “large” (i.e., p > 0.90), then in terms of RB, 5,, ORE)
has a high negatlve value, and fp MmLE) as well as §p( M ME)»> Which are close to each other, tend to be
better than fp(ORE) Also, in terms of RMSE, both fp(MLE) and §p (MM E) are close to each other,
and better than §p org) for 6 > 0.50, whereas for § < 0.50 SP(ORE) is preferable.

(d) When n is “large” (n > 25) and p is “small” (p < 0.10), in terms of RB, EP(ORE) is the best
for all §. However, in terms of RMSE, Ep(o rE) is better than the other two only for 6 <1. Ford>1,

both Ep( mrLE) and Ep( MM E) are close to each other, and marginally better than Ep(o RE)-

(e) When n is “large” (n > 25) and p is “median” (i.e., p = 0.50), the RB patterns remain same
as in (b). However, in terms of RMSE, the observed patterns are same as in (c).

(f) When n is “large” (n > 25) and p is “large” (i.e., p > 0.90), the patterns and quite dif-
ferent. In terms of RB, Ep( mrLE) has the overall best performance. In terms of RMSE, Ep( MLE) 18

undoubtedly the best performance, closely followed by Ep( MmMmE) and Ep(o RE)» respectively.

If we summarize all the above findings, then for estimating &,, we recommend pr(o rE) When

p is “small”, and EI,(MLE) when p is “large”. For p ~ 0.50, any one of these two estimators can be
used.

5. Interval Estimation of the Relevant Parameters

In this section we focus our attention to interval estimation of the above-mentioned parameters,
i.e., 0 and o (the model parameters), 1 (the mean), and &, (the pth
in Sections 2 - 4.

Note that the MLEs of the parameters under study have shown overall superior performance,
and hence based on their asymptotic behavior we propose the following approximate (1 — «) level
confidence interval (CI) for each of the relevant parameters.

From (9), it is noted that the asymptotic variance of d,; g is given as
AV (Brrrg) = [4/ (n(x? — 4))](82). (12)

Therefore, by replacing § by its consistent estimator SM e on the RHS of (12) above, we get a
consistent estimator of AV(dy,1.E) as

AV (SyrLe) = [4/(n(x® — 4)](OrrE)?.

percentile), based on our findings
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Thus, we propose a (1 — «) level CI for § as
CI(8) = drrre F d{ AV Orie)} V2,

where d, is a suitable constant. We have proposed two possible values of dy, d, = Z(ay2) = the
normal cut-off point, and d,, = tn—1),(as2) = thet cut-off point, and the resultant CIs are referred to
as “z-interval” and “t-interval”

Following the same approach, our proposed (1 — «) level CIs for o are given as

CI(0) = opmre T duf AV Grrp) Y12,
where
AV (@rrre) = [03pp/ (n(7? — D)|[7?/2 = 2+ (2 = n(2) = )*](1/8341e),

and d, is taken as z(/2) as well as t(,,_1),(a/2)-
Likewise, the proposed (1 — «) level CIs for the population mean 7 are given as

CI(n) = fivree F A AV (fGarce) Y2,

where d, will be taken as z(4 /2y and t(,—1),(a/2), and Zi\/(ﬁMLE) = (l/n)ﬁ(\/ﬁﬁMLE) with

ﬁ/(ﬁﬁMLE) is the same expression as in (11) with § and o replaced by SMLE and 71 g respec-
tively.

For interval estimation of the pth

percentile, i.e., &,, the expression is a bit complicated. Recall
that §,(ns1 ) performs better when p is not too small. But since &,orE), which works better when

p is “small”, does not have any trackable asymptotic variance expression, we proceed with é\p( MLE)
only due to its available asymptotic variance formula. Write

Ep(JLILE) = Gure(cy/Mr) = 9+(OrrLm, Farnp), (say).

Then using the consistency of the MLE, we have
((Garee) ) —* N (9:(6,0), 99.(8,0) I 94.(6,0))

where g, (6,0) = 0(011)/5) = &,, and 1" is given in (8). Thus, the asymptotic variance of EI,(MLE)
is given as
AV (Epmrr)) = V9:(6,0) T '9g.(8,0) = (1/n)c/) (0% /6% K,
where K, = (1/(7? — 4))[4(Incy)? —41Inc,(2 —In(2) — ) + [72/2 =2+ (2 — In(2) — y)?]] is a
known constant, details of which are given in the Appendix A.
Therefore, a consistent estimate of AV (a1, E)) can be given as

AV (EpmrLe)) = (l/n)cg()2/5MLE)(aMLE/gJQ\lLE)KP'

Hence, the proposed (1 — «) level CIs for &, are

CI(&p) = gp(MLE) F d*{ZV(Ep(MLE))}<1/2>7

where d, values are chosen as above.

A thorough simulation study has been run to compare the exact coverage probability of each
proposed CI when the target is (1 — «). This has been done for various n (= 25, 50, 75, 100 and 200)
and § = (0.5 to 10.0). W.1.g. o has been fixed at 1. We have used (1 — o) = 0.90 and 0.95, as well
as the number of replications as 2.5 x 10%.
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Remark 6 Let us summarize the findings of interval estimation of all the four parameters based
on our comprehensive simulation study. Note that the proposed Cls are based on the asymptotic
properties of the MLEs, and hence they are expected to perform well for “large” n.

(a) For the shape parameter § estimation t-interval performs exceedingly well in terms of attain-
ing the nominal target (1 — «), and this happens even for “small” n. The z-interval has probability
coverage (PC) very close to (1 — «) for small n. For n > 50, both the intervals perform equally well.

(b) For o estimation, the PC of the two Cls are far from satisfactory for n < 50. For n > 50,
both the intervals are having PC very close to the nominal target (1 — ).

(c) For 7 estimation, the performance of the two intervals are similar to those of o estimation.

(d) For &, estimation, the trends are similar to those of ¢ and 7.

Remark 7 Since the interval estimation, as presented above, are not satisfactory for o, n and &,
with “small” n, it will be taken up as a future research problem. we plan to make a 3D plot of each
parameter’s PC against § and n, and then fit a suitable regression model to see if we can adjust the
coefficient d, as a function of (4, n) to attain the nominal target (1 — «). Then, for a given dataset,
we would like to use d, (gM LE, 1) to make the respective CI work. This will be studied, and reported
in a future publication.

Table 1 Exact PC of the proposed CIs with o = 1 and (1 — o) = 0.90

n 6 CI(5) Cl(0) CI(n) CI(&p)

Z t z t Z t Z t

25 05 089 0910 0.858 0.871 0.867 0.877 0.835 0.845
1.0 0.896 0.910 0.869 0.882 0.868 0.880 0.853 0.866
2.0 0.892 0906 0871 0.884 0.833 0.848 0.855 0.869
3.0 0.892 0907 0871 0.884 0.816 0.832 0.862 0.875
4.0 0.895 0.909 0.872 0.885 0.803 0.819 0.858 0.872
5.0 0.892 0905 0.874 0.887 0.801 0.816 0.860 0.873
6.0 0.894 0907 0873 0.88 0.789 0.808 0.861 0.875
7.0 0893 0908 0.877 0.891 0.789 0.807 0.862 0.875
8.0 0.892 0905 0875 0.889 0.789 0.805 0.861 0.873
9.0 0.894 0907 0.875 0.889 0.783 0.801 0.861 0.874
10.0 0.896 0.910 0.876 0.889 0.782 0.799 0.862 0.875

50 0.5 0.899 0.906 0.882 0.888 0.845 0.901 0.868 0.873
1.0 0.897 0.904 0.887 0.893 0.886 0.893 0.873 0.879
2.0 0.895 0901 0.890 0.897 0.852 0.859 0.882 0.887
3.0 0.897 0904 0.887 0.894 0.827 0.835 0.881 0.888
4.0 0.897 0.902 0.885 0.891 0.821 0.828 0.879 0.885
5.0 0.895 0901 0.88 0.892 0.811 0.820 0.878 0.885
6.0 0.899 0906 0.884 0.890 0.801 0.811 0.879 0.885
7.0 0896 0903 0.887 0.893 0.799 0.807 0.879 0.886
8.0 0.898 0904 0.890 0.896 0.798 0.805 0.881 0.888
9.0 0.894 0901 0.886 0.893 0.795 0.803 0.879 0.886
10.0 0.894 0.901 0.886 0.893 0.793 0.802 0.880 0.888
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Table 1 (Continued)

n o6 CI(5) Cl(o) CI(n) CI(&)
Z t Z t Z t Z t

7 05 0894 0.898 0.889 0.894 0.902 0.906 0.879 0.883
1.0 0.899 0.904 0.888 0.893 0.887 0.892 0.881 0.885
2.0 0900 0905 0.891 0.895 0.854 0.859 0.887 0.893
3.0 0899 0904 0.890 0.894 0.832 0.837 0.885 0.889
4.0 0.895 0.899 0.890 0.894 0.823 0.828 0.884 0.888
5.0 0.898 0902 0.890 0.895 0.813 0.818 0.889 0.893
6.0 0897 0901 0.892 0.896 0.808 0.813 0.885 0.889
7.0 0900 0904 0.893 0.897 0.806 0.812 0.889 0.894
8.0 0894 0.898 0.897 0.901 0.804 0.810 0.888 0.892
9.0 0896 0.900 0.890 0.894 0.799 0.805 0.886 0.891
10.0 0.900 0.904 0.893 0.896 0.796 0.802 0.888 0.892

100 0.5 0.899 0.902 0.890 0.894 0.907 0.910 0.886 0.889
1.0 0.899 0.902 0.893 0.896 0.893 0.896 0.886 0.889
20 0899 0901 0.895 0.898 0.856 0.860 0.889 0.892
3.0 0894 0.898 0.892 0.895 0.834 0.838 0.891 0.894
4.0 0.898 0.901 0.895 0.898 0.825 0.829 0.891 0.895
5.0 0.897 0900 0.893 0.897 0.818 0.822 0.887 0.890
6.0 0899 0903 0.894 0.896 0.811 0.816 0.887 0.890
7.0 0900 0.903 0.895 0.898 0.808 0.813 0.891 0.894
8.0 0899 0.902 0.896 0.900 0.804 0.808 0.890 0.893
9.0 0.897 0.900 0.894 0.897 0.802 0.807 0.890 0.893
10.0 0.901 0.904 0.893 0.896 0.793 0.797 0.890 0.893

200 0.5 0.899 0.901 0.896 0.898 0914 0.916 0.890 0.892
1.0 0.897 0.898 0.894 0.896 0.895 0.897 0.894 0.896
20 0899 0.900 0.896 0.898 0.860 0.862 0.892 0.893
3.0 0901 0902 0.897 0.898 0.840 0.842 0.896 0.898
4.0 0.899 0.901 0.897 0.890 0.827 0.829 0.896 0.898
5.0 0900 0901 0.900 0902 0.820 0.822 0.896 0.898
6.0 0900 0901 0.899 0.900 0.815 0.817 0.894 0.896
7.0 0901 0.903 0.894 0.896 0.808 0.811 0.894 0.896
8.0 0895 0.897 0.897 0.898 0.805 0.808 0.894 0.895
9.0 0902 0903 0.898 0.900 0.806 0.808 0.893 0.895
10.0 0.898 0.900 0.897 0.899 0.803 0.806 0.895 0.896

6. Applications of 2P-GHND for two real-life datasets

In this section, we consider two real-life datasets, and demonstrate the usage of the three estima-
tion techniques to fit a 2P-GHND model to the datasets. The goodness of fit of an estimated model to
a dataset is measured by the Kolmogorov-Smirnov (KS) distance defined as

DS = sup |Fy(z) - F(x)],
z€(0,00)

where F,,(z) is the empirical cdf, i.e., F,,(z)=[(Number of X;’s < z)/ n] and ﬁ(l‘) is a fitted cdf,
ie., F(z) = 2®[(x/5)°] — 1, where (8, 5) can be one of the three estimators discussed earlier.

After identifying the most suitable estimator to fit the 2P-GHND model, we compare the fit-
ted model of 2P-GHND with a few other commonly used models, such as, gamma, lognormal and
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Table 2 Exact PC of the proposed CIs with o = 1 and (1 — ) = 0.95

n 0 CI(0) ClI(o) ClI(n) CI(&)
z t Z t z t z t

25 05 0947 0959 0912 0924 0911 0.921 0.870 0.881
1.0 0950 0.962 0.921 0.935 0.920 0.933 0.891 0.902
2.0 0949 0960 0.924 0937 0.899 0.914 0.902 0.912
3.0 0948 0.960 0.927 0.939 0.88 0.902 0.905 0.917
4.0 0947 0.959 0.926 0.939 0873 0.891 0.905 0.916
5.0 0.947 0959 0930 0942 0.872 0.889 0.906 0.917
6.0 0948 0959 0928 0940 0.861 0.880 0.904 0.916
7.0 0947 0960 0.925 0.939 0.858 0.876 0.905 0.917
8.0 0.948 0.960 0.928 0.941 0.857 0.876 0.904 0.917
9.0 0.947 0959 0.926 0938 0.854 0.872 0.906 0.918
10.0 0.945 0.956 0.929 0941 0.854 0.873 0.904 0.916

50 0.5 0948 0954 0931 0936 0935 0.940 0.906 0.911
1.0 0947 0953 0.935 0.940 0.933 0.939 0.916 0.920
2.0 0951 0956 0.938 0944 0.910 0.918 0.924 0.929
3.0 0948 0954 0940 0946 0.896 0.904 0.924 0.930
4.0 0948 0.954 0.939 0946 0.885 0.894 0.928 0.934
5.0 0949 0955 0940 0945 0.879 0.887 0.930 0.935
6.0 0952 0958 0939 0945 0.877 0.887 0.927 0.933
7.0 0949 0955 0.940 0.947 0.869 0.878 0.930 0.935
8.0 0.948 0953 0.939 0945 0.869 0.877 0.929 0.935
9.0 0.947 0954 0942 0948 0.869 0.879 0.929 0.934
10.0 0.947 0.953 0.939 0945 0.864 0.873 0.926 0.932

75 05 0950 0954 0937 0.940 0.943 0.946 0.921 0.924
1.0 0951 0.954 0.942 0.945 0.941 0.945 0.929 0.932
2.0 0946 0950 0.942 0946 0.915 0.920 0.928 0.931
3.0 0949 0953 0944 0948 0.901 0.906 0.933 0.937
4.0 0.950 0.953 0.943 0946 0.887 0.893 0.934 0.938
5.0 0948 0952 0939 0943 0.881 0.888 0.933 0.937
6.0 0.952 0955 0942 0946 0.881 0.887 0.936 0.940
7.0 0.947 0.952 0.942 0.945 0.877 0.884 0.935 0.939
8.0 0.947 0950 0941 0945 0.870 0.876 0.932 0.936
9.0 0.948 0953 0944 0947 0.874 0.880 0.937 0.941
10.0 0.948 0.952 0943 0948 0.864 0.871 0.937 0.941

Weibull by using the Akaike information criterion (AIC). The formula of AIC is defined as
AIC = —-2L, + 2k,

where L, is the log-likelihood function of the distribution with estimated parameters and k is a
number of a parameters.

Example 1 We use the data on the recored failure time (RFT) (given in Tanaka et al. (2018)) for a
small sample case (n = 10). We fit a 2P-GHND model and estimate the parameters ¢ and o by using
MME, MLE and ORE as shown in Table 3. After that, we show the empirical relative frequency
histogram and the fitted 2P-GHND models in Figure 21. They all look positively skewed, and the
MME as well as the MLE provide much better fit than the ORE as shown in Table 4. Note that the
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Table 2 (Continued)

n o6 CI(5) Cl(o) CI(n) CI(&)
Z t Z t Z t Z t

100 0.5 0951 0954 0.939 0.942 0.947 0.949 0.926 0.929
1.0 0948 0.952 0944 0.947 0.944 0.946 0.933 0.936
20 0948 0952 0944 0947 0916 0.920 0.937 0.940
3.0 0948 0951 0943 0945 0.900 0.904 0.938 0.940
4.0 0949 0.952 0945 0948 0.894 0.898 0.936 0.939
5.0 0948 0951 0947 0949 0.887 0.891 0.937 0.940
6.0 0.951 0.953 0.946 0949 0.883 0.888 0.938 0.941
7.0 0951 0.953 0946 0.949 0.880 0.885 0.939 0.941
8.0 0951 0954 0945 0948 0.874 0.879 0.938 0.941
9.0 0952 0954 0946 0.949 0.875 0.880 0.938 0.941
10.0 0.951 0.954 0.945 0948 0.870 0.874 0.938 0.941

200 0.5 0949 0.950 0.944 0945 0954 0956 0.939 0.941
1.0 0948 0.949 0947 0.949 0.947 0.949 0.944 0.946
2.0 0951 0952 0949 0.950 0.922 0.924 0.944 0.945
3.0 0950 0.952 0947 0.948 0.903 0.905 0.942 0.944
4.0 0.950 0.951 0.949 0.950 0.896 0.898 0.947 0.948
5.0 0950 0951 0947 0948 0.889 0.891 0.945 0.946
6.0 0.951 0.952 0.948 0.950 0.887 0.889 0.944 0.946
7.0 0947 0949 0946 0.947 0.878 0.880 0.944 0.945
8.0 0952 0953 0947 0.949 0.878 0.880 0.944 0.946
9.0 0950 0.951 0949 0.950 0.877 0.879 0.944 0.945
10.0 0.950 0.952 0.948 0949 0.874 0.876 0.945 0.946

performance of model fitting by MME and MLE are almost identical.

Next, we compare our best fitted 2P-GHND (using the MLE to maintain uniformity in all esti-
mations) with three other popular models, namely - gamma, Weibull and lognormal, and the goodness
of fit has been measured by the AIC as reported in Table 5.

Remark 8 Figure 22 gives the empirical cdf (the step function) along with the three fitted 2P-GHND
cdfs. Obviously, the ORE fitted cdf appears to be over estimating the cdf (since it is mostly higher
than the empirical cdf), whereas the MLE and the MME fitted cdfs (which are indistinguishable)
appear to be matching the empirical cdf well. Also, the Table 5 confirms the 2P-GHND is the best fit
for the RFT data.

Table 3 Estimates of parameter ¢ and o for RFT data

) o

Sume = 1.859  Garmp = 957.802
Sarie = 1933 Gurp = 959.737
Sorp = 1.723  Gopp = 836.755

Example 2 This example deals with the monthly total rainfall (MTR) (in mm) on the east coast of
Australia in the State of New South Wales as given by Gémez and Vidal (2016) for a large sample
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Table 4 The KS distance for three fitted models for the Example 1

Method MME MLE ORE
DKS 0075 0.077 0.187

Table S The AIC of the fitted models for the Example 1

Model Estimated Parameter AIC
2P-GHND

=1.933 o
Gamma 3.939 8 =198.501 150.103

5
a
Weibull a = 882.818 (3 =2.390 149.283
Log-normal 1 = 6.529 o =0.559 151.347

=959.737 148.956

with n = 83 (the total monthly rainfall in the study area appears to be iid over each year). We used
these data to obtain the § and o estimates for a fitted 2P-GHND as shown in Table 6. After that,
we show the empirical relative frequency histogram and the fitted 2P-GHND models in Figure 23.
They all look positively skewed, and the performance of model fitting by MME and MLE are almost
identical.

Table 6 Estimates of parameter ¢ and o for MTR

5 G
Smmpe = 1106 Gaarp = 42.635

5]WLE = 1.108 /U\]WME = 42.635
dore = 1.027  Gogrp = 41.799

Table 7 The KS distance for three fitted models for the Example 2

Method  MME MLE ORE
DXS0.062 0.063 0.067

Table 8 The AIC of the fitted models for the Example 2

Model Estimated Parameter AIC

2P-GHND g o =42.635 741.021

Gamma a=1.516 6 =22.384 747.309

Weibull a=36.912 [ =1.366 744.489
=3

Log-normal 159 0 =1.019 767.192

Remark 9 Figure 24 shows that three estimation methods provide nearly similar 2P-GHND cdfs,
perhaps due to a large n. Table 7 confirms that three estimation methods are close to each other.
Also, Table 8 shows that the 2P-GHND appears to provide a better fit than the other three models.
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7. Conclusions

This work presents a comprehensive study of three estimation methods for various parameters
related to a 2P-GHND which can be beneficial to fit real-life datasets. It is not claimed that the 2P-
GHND is going to be the best model for all datasets. However, as our two applications show, the
2P-GHND should be included along with other popular positively skewed models (such as - Gamma,
Weibull and Log-normal) in model fitting to see which one can produce the best fit, and then only
subsequent inferences can be drawn. If 2P-GHND comes out as the best fitted model, then we can
estimate its percentiles as presented in Section 4, since percentiles are of major interest in applied
problems.
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Appendix A: The asymptotic variance of the pr( MLE)
This part shows the details how to estimated the AV(E;( MLE)). From

1/6
£ -5 {cpl (p‘g“)} — 5h(3) = 9.(5,5),
and R
( 3 ) —* N (9«(6,0), Vg.(6,0)' IV g.(6,0))

where

(8/98)g. (5, 0) o(—Inc,/62)cM? o(—Incy/62)
vg*((s, 0’) = gp = = — 01(31/6) s
(0/00)g+(9,0) c£1/5) 1
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where ¢, = @7 ((p+1)/2). So

(—Inc,/d?) ' o(—Inc,/6?)
V9. (6,0) IV g, (6,0) = =c, (2/9) !

=(1/n) 0(2/5) 2/52
where K, = (1/(7? — 4))[4(Incy)? — 41nc, (2 — In(2) — ) + [71'2/2 — 24 (2=1In(2) — 7).

Appendix B: Figures for estimating model parameters § and o of 2P-GHND in term of RB
and RMSE
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Appendix C: Figures of the asymptotic behaviour of § and ¢
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Appendix D: Figures of the asymptotic behaviour of the model mean (7))
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Appendix E: Figures for comparing of the model p'” percentile in term of RB and RMSE
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Figure 17 RB (in (a)) and RMSE (in (b)) of Ep forn = 10, p = 0.50
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Appendix F: Figures for Example 1
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Figure 21 Empirical relative frequency histogram for RFT data along with three fitted 2P-GHND pdf
curves
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Appendix G: Figures for Example 2
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Appendix H: The codes for the data set in Example 1
w = [200370500620730840950105011601400]
n = length(w);l = 1; sigma = 1;
forl =1:n;c(l) = norminv(0.5 % (14 1/n),0,1); end
c(n) = 4;lnc = log(c);Incavg = sum(lnc)/n;
20 = random('Uniform’,0.01, 20,1, 1);
sumax = sum(w); sumzz = sum(w. x w);
x = fsolve( MME’, x0, optimset(' f solve’), sumx, sumzz,n);
whilex < 0
zl = random('Uniform’,0.01,20,1, 1);
x = fsolve( MME', x1, optimset(' f solve’), sumzx, sumxx,n); end
sigmaM ME = [sumax./n]./[sqrt((2.(1./x))./pi) * (gamma((z + 1)./(2. * x)))];
deltaM M Ehat = x;
sigmaM M Ehat = sigmaM M E;
sumlogz = sum(log(w));
y = fsolve( MLE', 20, optimset(’ f solve'), w, sumlogz, n);
whiley < 0
1 = random('Uniform’,0.01,20,1,1);
y = fsolve( MLE', x1, optimset(’ f solve’), w, sumlogx,n);
end
sigmaM LE = [sum(w.(2. x y))./n].(1./(2 x y));
deltaM LEhat = y;
sigmaM LEhat = sigmaM LFE;
MeanMLE = sigmaM LE. * (sqrt((2.(1./y))/pi)). * (gamma((1 +y)./(2. xy)));
s = sort(w);r = log(s);ravg = sum(r)/n;
delta0 = sum((r — ravg). * (Inc — Incavg))./sum((Inc — Incavg).?);
sigma0 = ravg — (delta0 x Incavg);
deltaOREhat = 1./delta0;
sigmaORFEhat = exp(sigma0);
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