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Abstract 

In this paper, a new circular probability model with two parameters namely, the wrapped two-

parameter Lindley distribution is proposed. Behavior of the density function with variation in the 

values of the parameters is examined and expressions for its characteristic function, trigonometric 

moments and other related descriptive measures are derived. Operation of wrapping and convoluting 

linear distribution around a unit circle is investigated. The method of maximum likelihood is used to 

estimate the unknown parameters of this distribution and a simulation study is conducted to check the 

consistency of these estimates. Finally, the proposed model is fitted to two real-life circular data sets 

and the goodness-of-fit of this distribution is assessed in comparison to wrapped exponential and 

wrapped Lindley distributions to elucidate the modelling potential of the proposed distribution. 

______________________________ 

Keywords:  Two-parameter Lindley distribution, wrapped distribution, trigonometric moments, simulation, 
convolution. 

 

1. Introduction 

Circular data also known as two-dimensional directional data, corresponds to those occurrences 

where the observations are recorded in terms of radians or degrees. Circular data, being directions, 

bear no magnitude, and therefore, are conveniently represented as points on a circle of unit radius, 

centered at the origin or as a unit vector in the plane, connecting the origin to the corresponding point 

(Rao and SenGupta 2001). Common instances of record, are evident in various natural and physical 

sciences such as geology (orientations of cross-beds in rivers, measured in degrees), meteorology 

(wind direction), biology (vanishing angles of birds soon after their release) (Schmidt-Koenig 1963), 

etc. Analyzing the behavior of these situations requires a special class of distributions, typically known 

as circular probability distributions. 

The wrapping of linear distributions around a unit circle, generates a rich and useful class of 

circular models known as wrapped distributions. In this approach, a linear random variable (r.v.) is 

transformed into a circular random variable (r.v.) by reducing its modulo (Mardia and Jupp 2000). 

Lévy (1939), first introduced this idea and obtained wrapped variables from the corresponding 
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symmetric as well as non-symmetric distributions on the real line. Many authors, since then, have 

carried out comprehensive work on wrapped distributions. 

A targeted area of interest for the researchers, however, remains modelling occurrences, where 

the data is rightly-skewed. In this endeavor, Jammalamadaka and Kozubowski (2004) developed the 

wrapped exponential distribution obtained by wrapping the classical exponential distributions on the 

real line around the unit circle. Later, Roy and Adnan (2012) incorporated the concept of weights, and 

established a new class of circular distributions namely wrapped weighted exponential distribution. 

Recently, Joshi and Jose (2018) projected the wrapped Lindley density by wrapping a Lindley density 

and exhibited its superiority over the wrapped exponential distribution while modelling skewed 

situations. Empirical observations have justified the extensive use of Lindley density as a probability 

model against various other life-time distributions. The two-parameter Lindley density (Shanker et al. 

2013), being a generalization of the Lindley and exponential density also offers similar advantage over 

the other existing distributions. Therefore, in order to investigate its usefulness as a circular model, 

the wrapped version of the two-parameter Lindley distribution is introduced through the classical 

wrapping approach and is named as wrapped two-parameter Lindley distribution.  

The contents of this research manuscript are as follows: Section 1 presents a review of existing 

literature in analyzing circular data. Section 2 introduces the density function of the proposed 

distribution. Section 3 discusses the various distributional properties of the proposed circular model 

and establishes the commutativity of the operations of wrapping and convoluting linear distributions 

on the unit circle. Section 4 considers the maximum likelihood estimation of the parameters and 

Section 5 conducts a simulation study to show the consistency of these estimates. Section 6 displays 

the modelling potential of the proposed model to two real-life data sets and finally, Section 7 

summarizes the findings of the study. 

 

2. Wrapped Two-Parameter Lindley Distribution 

 In this section, a new circular probability model is proposed, which is obtained by wrapping a 

Two-parameter Lindley distribution defined on ,  around the circumference of a circle with unit 

radius. Alternatively, the distribution is also obtainable by a two-component mixing of the wrapped 

exponential distribution and the wrapped gamma distribution. A general definition of this distribution 

is provided which subsequently introduces its density function. 

 

Definition 1 Let Y  be a random variable on the real line with density function ( ).f y  The wrapped 

circular variable   corresponding to Y  can be obtained by defining (Rao and SenGupta 2001) 

 [mod 2 ].Y                   (1) 

 

Proposition 1 Let   be a circular random variable following the wrapped two-parameter Lindley 

probability law with parameters   and ,  denoted by ~ ( , ).WTPLD    The probability density 

function of   is then given by 
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Proof: Let Y  follow a two-parameter Lindley distribution (TPLD) (Shanker et al. 2013). The 

probability density function (p.d.f.) of Y  is 
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where   and   are the shape and scale parameters of the distribution, respectively. 

In the wrapping approach, the circular (wrapped) two-parameter Lindley variate   is generated 

using the relation (1) and accordingly the pdf of WTPLD( , )   is obtained by wrapping ( )f y around 

the circumference of a circle of unit radius as follows (Rao and SenGupta 2001): 
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The operation of wrapping and mixing commute (Jammalamadaka and Kozubowski 2017). The 

two-parameter Lindley distribution defined on the real line arises as a mixture of the exponential and 

the gamma distribution (Shanker et al. 2013). Consequently, the WTPLD( , )   arises as a mixture of 

wrapped exponential ( ) and wrapped gamma (2, )  with mixing proportion 


 
 as shown below 
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Thus, the WTPLD( , )   random variable   admits the representation  

 1 21 ,I I       

where 1  and 2  are independent wrapped exponential ( )  and wrapped gamma (2, )  random 

variables, respectively and I  is an indicator random variable which takes on values 1 and 0 with 

probabilities 


 
 and 

1
,

 
 respectively, independently of 1  and 2.  Here,   denotes 

distributional equivalence.  

 

Remarks:  

I. For 1,   (2) reduces to the density function of the wrapped Lindley distribution with 

parameter  (Joshi and Jose 2018). 

II. For 0,   (2) gives the expression of the density function of the wrapped exponential 

distribution with parameter   (Jammalamadaka and Kozubowski 2004). 

If ~ TPLD( , ),Y    the cumulative distribution function (c.d.f.) of Y  denoted by ( ),F y  is 

given by 
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The c.d.f. of the corresponding wrapped variable is obtained by the relation 
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Using (3) in (4), the c.d.f. of ,  a wrapped two-parameter Lindley variate with parameters   and 

,  is obtained as 
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Figure 1 Density plots of the WTPLD( , )   for different values of   and   

 

Figure 1 illustrates the behavior of the density function of wrapped two-parameter Lindley 

distribution for some selected values of the parameters   and .  It is found out that the new 

distribution has a tendency to accommodate right tail and for higher values of ,  the tail approaches 

to zero at a faster rate. The figure also indicates that a decrease in the value of the parameter  leads 

to an increase in the steepness of the density curve. Figure 1 further shows that for 0   and 1,   

the density model coincides with that of wrapped exponential and wrapped Lindley densities, 

respectively. 

It is evident from the density plots of the WTPLD( , )   that the distribution is most likely to 

appropriately model those data sets where the observations of lower magnitude appear more frequently 

than that of the higher magnitude values. Such data sets are quite prevalent in the field of entomology 

and meteorology. 

 

3. Properties of Wrapped Two-Parameter Lindley Distribution 
In this section, the expressions for the characteristic function, trigonometric moments, coefficient 

of skewness and kurtosis and the median of the WTPLD( , )   are derived. The operation of wrapping 

and convoluting linear distribution around a unit circle is investigated and the density of convolution 

of two wrapped two-parameter Lindley variates is obtained 
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Proposition 2 The characteristic function of a wrapped two-parameter Lindley variate   with 

parameters   and   is given by  
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Proof: The characteristic function (c.f.) of a wrapped circular variable, say p  at an integer value p

can be obtained from the c.f. of the corresponding linear random variable, say ( )y t  via the following 

relation (Jammalamadaka and SenGupta 2001) 
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The c.f. of the two-parameter Lindley ( , )   distribution is given by 
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Therefore, the c.f. of WTPLD( , )   is obtained as  
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Using the result of Roy and Adnan (2012) which gives , , ,a b r R   
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The following expressions are obtained 
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In reference to the above expressions, (7) may finally be written as 
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which completes the proof. 

 

Proposition 3 The thp  non-central trigonometric moment of ~ ( , )WTPLD    are 
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Proof: An alternative expression for p  defined in (6) is as follows (Rao and SenGupta 2001) 
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where p  and p  denote the concentration measure and mean direction of the thp  trigonometric 

moment, respectively. 

Comparing (8) to (6), we may write, 
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Again, from (8), the thp  non-central trigonometric moment of   can be written as 
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where cos( )p p p    and sin( ).p p p    Substituting (9) and (10) in (11), result becomes 

obvious. 

 

Corollary The thp  central trigonometric moments of ~ WTPLD( , )    are obtained using the 

relations stated below 
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Proof: Results are obvious by setting 1p   in (9) and (10). 

 

Remark:   indicates the extent of concentration of   towards the mean direction  and it lies 

between 0 and 1. The closer it is to 1, the higher is the concentration towards .   

 

Proposition 5 The circular variance of ~ WTPLD( , )    is given by 
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Proof: The circular variance of ~ WTPLD( , )    denoted by V  is obtained by the relation  

1 .V    

Using the results achieved in Proposition 4, the circular variance is given by 
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Remark: The interpretation of V  is contrary to that of .  
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3.1. Measure of skewness and kurtosis of wrapped two-parameter Lindley distribution 

The measures of skewness and kurtosis, denoted by 0
1  and 0

2 ,  respectively is defined as  
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derived in (9), (12) and (13).  
0

1  is nearly zero for unimodal symmetric data sets and 0
2  is close to zero for the data sets which 

are single peaked and for which the wrapped normal distribution provides a good fit (Mardia and Jupp, 

2000). 

 

3.2. Median direction of wrapped two-parameter Lindley distribution 

The median direction of a circular distribution having density ( ),wf   denoted by 0  is the solution 

of the following equation in the interval [0, 2 ) (Jammalamadaka and Kozubowski 2004) 
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0  is obtained by solving (14). The values of the various descriptive measures for some particular 

values of   and   are listed in Table 1. 

 

Table 1 Values of different characteristic measures of ( , )WTPLD    

Measure 1.5, 1    1.5, 2    1, 1    1, 2    0.5, 0.8    

  0.795 0.898 1.107 1.249 1.559 
  0.746 0.720 0.559 0.527 0.252 

V  0.254 0.280 0.441 0.473 0.748 
0

1  −1.436 −1.242 −0.683 −0.566 −0.166 

0
2  1.754 1.311 0.526 0.347 0.014 

0  0.675 0.792 1.018 1.182 1.549 

 

Remarks:  

I. Mean and median directions are large when   is large and   is small. 

II. Extent of concentration towards the mean direction increases (i.e. becomes closer to 1) as   

increases. 
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III. Skewness and kurtosis measures, tend to zero with a decrease in the value of   and an 

increase in the value of .  

 

3.3. Wrapping and convolution of linear distributions around a unit circle 

 

Proposition 6 The circular distribution obtained by wrapping the convolution of two linear 

distributions around a unit circle coincides with the convolution of their corresponding wrapped 

distributions. 
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

 

which coincides with the convolution of the wrapped densities corresponding to X  and .Y  By virtue 

of the Fubini’s theorem, since the integral is bounded and the integrands are non-negative, the 

interchanging of the order of integration and summation is valid. Hence, the proof. 

 

4. Maximum Likelihood Estimates of the Unknown Parameters 
This section discusses the estimation of the parameters of WTPLD( , )   through the maximum 

likelihood method. 

Let 1, ,..., n   be a random sample of size n  from the proposed WTPLD( , ).   Then the log-

likelihood function for the vector of parameters ( , )T    of this sample is given by 
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1 2
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1 (1 )

n n
i

i
i i

e
L n n

e e



 

 
    



 
 

   
              

              (15) 

The maximum likelihood estimates (MLE) of the parameters are computed by solving the 

maximum likelihood equations 

 log 0, log 0.L L
 

 
   (16) 

Since the maximum likelihood equations are non-linear in nature and difficult to deal analytically, 

they are to be solved by using some suitable numerical technique.  

A detailed simulation algorithm for generating samples from (2) and obtaining the MLE for   is 

enclosed in Section 5. 

 

5. Simulation Study 

In this section, a simulation study is conducted to generate data from the proposed distribution 

and to check for the consistency behavior of its maximum likelihood estimates. 

At first, random samples of size 25, 50, 100, 250, 500 and 800 are generated from WTPLD( , ) 

for different values of   and .  Next, MLE of the parameters are obtained by solving the set of 

equations (16) for each of the respective samples. Finally, the average values of bias and mean squared 

error (MSE) of these estimates are calculated by the Monte Carlo approximation technique, taking 

1,000N   replicates. Delineated below, is the algorithm for the desired study: 

Step I: Generating a random sample from WTPLD(θ,α)  

Step 1: A random variable is generated from the (0,1)U  distribution, say .u  

Step 2: The expression of c.d.f. given in (5) is equated with u  and is solved for   which is 

a random variable from the WTPLD( , ).   

Steps 1 and 2 are repeated as many numbers of times as the desirable sample size is, to obtain 

our desired sample from WTPLD( , ).   

The above method is called the inverse transform method for generating .  

Step II: Obtaining maximum likelihood estimates of the parameters 

The MLE of   and   is obtained by substituting the values of   generated in Step I in (15) and 

maximizing this with respect to   and ,  respectively. 

Step III: Calculating the average Bias and MSE of the maximum likelihood estimates. 

Let the true value of the parameter   be *  and the MLE be ˆ.  Then the average bias and MSE 

of ̂  in estimating   is given by 

 * * 2

1 1

1 1ˆ ˆ( ) ( ) , ( ) ( ) ,
N N

i i
i i

Bias MSE
N N

     
 

      

where N  is the number of replications and ˆ
i  is the MLE of   obtained in the 

thi  replicate. 

Similarly, the bias and MSE of the MLE of  are calculated. The MLE is said to be consistent if 

the bias and MSE decreases (approaches to zero) with an increase in the sample size.  

Table 2 shows the average values of the bias and MSE of the MLE of   and   for different 

sample sizes and for different set of values of   and .  
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From Table 2 it is seen that the bias and MSE of the MLE of both   and   approaches towards 

zero with an increase in the sample size. This shows that the estimates of the parameters are accurate, 

precise and hence, consistent.  

Calculations pertaining to this study is carried out using the R software, version 3.5.0, through the 

user-contributed packages viz. CircStats (Lund and Agostinelli 2018) and circular (Lund and 

Agostinelli 2017) with the help of self-programmed codes. The maxLik  package (Henningsen and 

Toomet 2011) is used to obtain the MLE of the parameters and rootSolve  package (Soetaert 2016) is 

used to generate random variables from WTPLD( , )  by solving the non-linear system of equations. 

 

Table 2 Average values of bias and MSE for 
* and 

*  

1.2 , 0.6    

n  ( )Bias   ( )MSE   ( )Bias   ( )MSE   

25 0.0512 0.4667  0.0782 0.0852 
50 0.0418 0.0387 −0.0692 0.0801 

100 −0.0325 0.0209   0.0589 0.0752 
250 0.0197 0.0127   0.0358 0.0455 
500 −0.0109 0.0070 −0.0179 0.0250 
800 0.0080 0.0052   0.0146 0.0185 

0.5 , 0.7    

n  ( )Bias   ( )MSE   ( )Bias   ( )MSE   

25 0.0399 0.0238 0.0118 0.0103 
50 −0.0313 0.0166 0.0097 0.0089 

100 0.0288 0.0124 0.0049 0.0067 
250 −0.0174 0.0075 0.0029 0.0053 
500 −0.0096 0.0041 0.0016 0.0041 
800 −0.0071 0.0030 −0.0012 0.0029 

 

6. Data analysis and Results 

This section comprises of applying the wrapped two-parameter Lindley distribution to two real-

life directional data set having an extended right tail. The fit of this distribution is compared to that of 

the wrapped Lindley distribution (Joshi and Jose 2018) and wrapped exponential distribution 

(Jammalamadaka and Kozubowski 2004) with the help of the statistics- log likelihood, AIC (Akaike 

information criterion) and BIC (Bayesian information criterion). A comparatively smaller value of the 

AIC and BIC test statistic would construe of a better fit to the data set. 

The first data set considered here, is the measurements of long-axis orientation of feldspar laths 

in basalt, which is procured from Smith (1988, set 24-6-5 co.prn) and published in Fisher (1993), 

Appendix B5. By drawing a histogram, it is observed that the data depicts a right skew behavior, which 

may be aptly modelled by the proposed distribution. 
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Figure 2 Histogram of the measurements of long-axis orientation of Feldspar laths in basalt 

 

Table 3 summarizes the findings of the fitting of each of the three distributions to the data set. 

Smallest values of the AIC and BIC statistic for WTPLD( , )   clearly demonstrate that the proposed 

distribution provides the best fit to the data under consideration.  

 

Table 3 Values of the statistics and other measures for the WTPLD( , ),  WLD( )  and WED( )

fitted to the data on the measurements of long-axis orientation of feldspar laths in basalt 

Distribution MLE Log-likelihood AIC BIC 

WTPLD( , )   
1.1006,   

1.5443   
78.31766  160.6353  164.8240  

WLD( )  1.0309   78.82681  160.9836  165.7423  

WED( )  0.6640   79.71503  161.4301 167.6188  

 

The goodness-of-fit of WTPLD( , )   is checked using Watson’s 2U  one sample test for circular 

data (Bhattacharjee and Das 2017). The observed value of the test is found to be 0.0917, whereas the 

critical value at 5% level of significance is given by 0.187. Since, the observed value is less than the 

tabulated value, it can be concluded that the wrapped two-parameter Lindley distribution is a good fit 

to the given data set. Figure 3 exhibits the distribution function plot of WTPLD(1.1006,1.5443) fitted 

to the data. 

The second data set is that on wind directions in degrees at Gorleston, England recorded between 

11 a.m. and 12 noon on Sundays in 1968, measured during the Summer season (Mardia and Jupp, 

2000, Table 7.2, pp.137). The histogram of the data reveals its right skewed behavior, and so, the 

proposed distribution may be thought to be appropriate in modeling the data. 
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Figure 3 Distribution function plot of WTPLD(1.1006, 1.5443) fitted to the data on measurements 

of long-axis orientation of feldspar laths in basalt 

 

 
Figure 4 Histogram on wind directions in degrees at Gorleston, England recorded between 11 a.m. 

and 12 noon on Sundays in 1968. 

 

Table 4 summarizes the findings of the fitting of WTPLD and WLD to the second data set.  

Smaller values of the AIC and BIC statistic for WTPLD( , )   clearly demonstrate that the proposed 

distribution provides the better fit to the data under consideration. 

 

Table 4. Values of the statistics and other measures for the WTPLD( , )   and WLD( )  fitted to 

the data on wind directions 

Distribution MLE Log-likelihood AIC BIC 

WTPLD( , )   
0.5116   

82.1630 10    
−19.43036 42.8607 43.9906 

WLD( )  0.8476   −19.8638 43.1275 44.8574 
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The goodness-of-fit of WTPLD( , )   to the data is checked using Watson’s 2U  one sample test 

for circular data. The observed value of the test is found to be 0.1465, whereas the critical value at 5% 

level of significance is given by 0.267. Since, the observed value is less than the tabulated value, it 

can be concluded that the wrapped two-parameter Lindley distribution is a good fit to the given data 

set.  

Figure 5 exhibits the distribution function plot of WTPLD(0.5116, 82.1630 10 )  fitted to the 

data. 

 

Figure 5 Distribution function plot of WTPLD(0.5116, 82.1630 10 )  fitted to the data on wind 

directions in degrees at Gorleston, England recorded between 11 a.m. and 12 noon on Sundays in 

1968 

 
7. Conclusion 

Through this manuscript, a new circular probability model viz. wrapped two-parameter Lindley 

distribution (WTPLD) is proposed, which is obtained by wrapping a two-parameter Lindley 

distribution on around a unit circle. Alternatively, the proposed distribution is also shown to be 

obtainable through a finite mixture of wrapped exponential and wrapped gamma distribution. A few 

special cases of the WTPLD are showcased and the pictorial behavior of the density function for 

varying values of the parameters is illustrated. Expressions for the characteristic function, 

trigonometric moments and other related descriptive measures of this distribution are derived. It is 

found out that the operations of wrapping and convoluting linear distributions around a unit circle are 

commutative in nature. Parameter estimation is carried out by the method of maximum likelihood and 

a simulation study is conducted to check the consistency of these estimates. From the results obtained, 

MLE are found to be consistent and precise in estimating the true value of the parameters. Finally, the 

proposed distribution is applied to two real-life directional data sets and the goodness-of-fit of the 

distribution is assessed and compared to that of the wrapped exponential and wrapped Lindley 

distribution with the help of the log-likelihood, AIC and BIC measures. Results indicate that WTPLD 

is a better fit and more flexible as a model as against the others, for modelling the situations where the 

directions having lower magnitude have higher likelihood of occurrence. 
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