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Abstract 

In this paper, estimation of entropy for Lomax distribution based on upper record values is 

considered. Bayesian estimator of Shannon entropy is discussed under informative and non-

informative priors. The entropy Bayesian estimator and the corresponding credible interval on the 

basis of a linear exponential, squared error and precautionary loss functions are derived. The 

Metropolis-Hastings algorithm is used to generate random variables. Monte Carlo simulations based 

on Gibbs sampling are conducted to implement the accuracy of estimates for different number of 

records.  Real data example is analyzed for illustration purposes. In general, based on the outcomes 

of study, the Bayesian estimates of entropy tend to the true value as the number of record increases. 

Further, Bayesian estimate of entropy under LINEX loss function is preferable than the other 

estimates in most of situations. 

______________________________ 
Keywords: Shannon entropy, Bayesian estimators, loss function, Metropolis-Hastings algorithm. 

 

1. Introduction 

Record values can be considered as order statistics from a sample which its size is determined 

by the values and the order of occurrence of the observations. Record data are very important in 

various real-life applications like; weather, economic, sports and reliability. There are two types of 

record values, the upper record values and the lower record values. An observation is called upper 

(lower) record value if its value exceed (less than) that all of the previous observations (see Arnold 

et al. 1998). 

The statistical study of record value is started with Chandler (1952) and formulated the theory of 

record values as a model for successive extremes in a sequence of independently and identically (iid) 

random variables. 

Let , 1ix i   be a sequence of i.i.d. random variables with cumulative distribution function (CDF) 

F(x) and probability density function (PDF) ( ).f x  According to Ahsanullah (1995) an observation 

ix  is called upper record value if its value exceeds all the preceding values, i.e. ix  is an upper record 

value if i jx x  where .i j  
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Let , 1, 2,...,iR i m  be the first m upper record arising from any distribution with a certain PDF 

and CDF. According to Arnold et al. (1998), the joint PDF of iR  is given by  
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1 2 1 2
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( )
( , ,..., ) ( ) , ... .

1 ( )
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i

m m m
i i

f r
f r r r f r r r r

F r
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       


  (1) 

Many authors dealt with upper record values (URV), for example, Ahmadi and Doostparast 

(2006) considered Bayesian estimation and prediction for some life distributions based on record 

values. Hassan et al. (2015) discussed stress-strength reliability for exponentiated inverted Weibull 

distribution from record values. Essam (2017) provided some properties and discussed the maximum 

likelihood and Bayesian estimators of the power Lomax distribution based on URV. Hassan et al. 

(2018a) considered reliability estimator of generalized inverted exponential based on records. Hassan 

et al. (2018b) discussed Bayesian estimators using squared error (SE) and linear exponential (LINEX) 

loss functions for generalized inverted exponential distribution based in URV and upper record 

ranked set sampling. 
Entropy is a measure of expected value of information that contained in a random variable. More 

entropy indicates that the sample has less information. Measuring of entropy is an important issue in 

many areas such as statistics, economics, information technology, physics and biological phenomenon. 

Shannon (1948) introduced the concept of entropy as a measure of information, which provides 

a quantitative measure of uncertainty. Let X  be a random variable with CDF ( )F x  and PDF ( ).f x  

The Shannon entropy, denoted by ( ),H x  of the random variable is defined by 

 ( ) ( ) log ( ) .H x f x f x dx




    (2) 

Many researchers discussed the entropy in case of censored data. For example, Cho et al. (2015) 

studied the Bayesian estimators of entropy of Weibull distribution based on generalized progressive 

hybrid censoring scheme. Lee (2017) discussed the maximum likelihood and Bayesian estimators of 

the entropy of an inverse Weibull distribution under generalized progressive hybrid censoring 

scheme. Almohaimeed (2017) provided an exact expression for entropy information contained in 

both types of progressively hybrid censored data and applied it in exponential distribution. Hassan 

and Zaky (2019) obtained the maximum likelihood estimator of Shannon entropy for inverse Weibull 

distribution under multiple censored data.  

Many researchers discussed the entropy in case of ordered data. Wong and Chan (1990) showed 

that the amount of entropy is reduced when the sample is ordered. Seo et al. (2012) obtained an 

entropy estimator using URV from the generalized half-logistic distribution. Chacko and Asha (2018) 

discussed the estimation of entropy for generalized exponential distribution via record values. 

In the literature, few works have been done about the estimation of entropy via record values. 

So, our objective here is to consider the Bayesian estimation of Shannon entropy of a Lomax 

distribution based on URV. The Bayesian estimator of Shannon entropy is considered using non-

informative and informative priors. The Bayesian estimator of entropy is motivated by three loss 

functions; namely, SE, LINEX and precautionary (PRE). Due to the complicated forms of Bayesian 

entropy estimator, we employ the Markov Chain Monte Carlo (MCMC) technique.  

This paper can be organized as follows. Section 2 gives the Shannon entropy for Lomax 

distribution. Section 3 provides Bayesian estimators for entropy of Lomax distribution using different 

loss functions, in case of URV.  Simulation issue and application to real data are given in Section 4. 

The paper ends with some concluding remarks. 
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2. Entropy of Lomax Distribution 

The Lomax distribution is one of the most important lifetime models. It has been useful in 

reliability and life testing problems, engineering, and in survival analysis. The application of Lomax 

distribution can be found in many fields like actuarial science, economics. Atkinson and Harrison 

(1978) and Harris (1968) applied the Lomax distribution to income and wealth data. While Corbellini 

et al. (2010) used it to model firm size and queuing problems. More details about applications of 

Lomax distribution can found in Campbell and Ratnaparkhi (1993), Tarko (2018) and Kang et al. 

(2019). 

The Lomax distribution with shape parameter   and scale parameter   has the following PDF 

and CDF. 

 ( 1)( ; , ) ( ) , , , 0,f x x x           (3) 

and 

 ( ; , ) 1 ( ) , , , 0.F x x x           (4) 

Various studies about the Lomax distribution can be found in the literature by several authors. 

Ahsanullah (1991) discussed the record values of  Lomax distribution. Balakrishnan and Ahsanullah 

(1994) discussed some recurrence relations between the moments of record values from Lomax 

distribution. Howlader and Hossain (2002) obtained Bayesian estimator of survival function for 

Lomax distribution. Hassan and Al-Ghamdi  (2009)  studied the optimum step stress accelerated life 

testing for Lomax distribution using maximum likelihood procedure. El-Din et al. (2013) discussed 

the parameter estimation of the Lomax distribution under progressive Type-II censoring using  

maximum likelihood and Bayesian methods. Hassan et al. (2016) discussed the optimal step stress 

accelerated life tests for Lomax distribution with adaptive Type-II progressive hybrid censoring. 

The Shannon entropy of Lomax distribution can be obtained by substituting (3) in (2) as follows 

 ( 1) ( 1)

0

( ) ( ) log( ( ) ) .H x x x dx      


        (5) 

The integral (5) can be written as follows 
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( 1) ( ) log( ) .

H x x dx

x x dx I I

  

 

  

   


 


 

  

      





 (6) 

To compute the entropy in (6) we need to find 1I  and 2I  as follows 

  ( 1)
1

0

( ) log( ) log( ).I x dx      


     

To obtain 2 ,I  

 ( 1)
2

0

( 1) ( ) log( ) ,I x x dx    


      

using integration by parts, 
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 2

1
( 1) log .I  



 
   

 
 

Hence the Shannon entropy of Lomax distribution model takes the following form 

 
1

( ) log( ) ( 1) log , , 0.H x     


 
      

 
 (7) 

This is the required expression of Shannon entropy of Lomax distribution which can be seen as 

a function of parameters   and .  

 

3. Bayesian Estimation 

In this section, Bayesian estimator of the Shannon entropy is obtained based on URV. To 

compute the Bayesian estimator of entropy, we must obtain firstly the Bayesian estimators of   and

.  Bayesian estimator is considered in case of informative and non-informative priors under SE, 

LINEX and PRE loss functions.The Bayesian estimators cannot be obtained in explicit forms. Hence 

MCMC technique is carried out to generate samples from the posterior distributions and consequently 

computing the Bayesian estimators and construct the corresponding credible intervals. 

 

3.1. Entropy Bayesian estimationin case of non-informative prior 

In this subsection, the Bayesian estimator of entropy is obtained under symmetric and 

asymmetric loss functions in case of non-informative prior. 

Let 1 2 1( , ,..., )T
m x mr r r r  be the first m  URV observed from Lomax distribution with PDF by (3) 

and CDF by (4), then the likelihood function of Lomax distribution, based on URV, is obtained by 

inserting (3) and (4) in (1), as follows 
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Assuming that the prior of parameters   and ,  denoted by 1( )  and 2 ( )   has the following 

uniform distribution  

 1 2

1 1
( ) , ( ) .   

 
   

So, the  joint posterior for parameters, denoted by 
*
1,2 ( , | ),r    is 
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the joint posterior can be written as 
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 1 1 1

0 0
1

( ) ( ) .
m

m
m i

i

c r r d d      
 

   



     



Amal Soliman Hassan and Ahmed Nasser Zaky 99 

 
 

So, the marginal posterior PDF of parameter   is 
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Also, the marginal posterior PDF of parameter   is 

 * 1 1 1 1
2 0
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Therefore, the Bayesian estimators of unkown parameters   and   under SE loss function, 

denoted by 
1( )

ˆ
SE  and 

1( )
ˆ

SE can be obtained as posterior mean as follows 
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  (8) 

Also, 
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Additionally, the Bayesian estimators of parameters   and   under LINEX loss function, 

denoted by 
1(LINEX)

ˆ ,   and 
1(LINEX)̂ are given as follows 
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and  
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where   is a real number. 
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Furthermore, the Bayesian estimators of parameters  and  under PRE loss function, denoted 

by 
1(PRE)̂ and 

1(PRE)̂ are given as follows 
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and, 
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The integrals in (8), (9), (10), (11), (12) and (13) are very difficult to obtain due to their 

complicated mathematical form. Therefore, the MCMC technique is used to approximate these 

integrations. Metropolis-Hastings (M-H) algorithm will be implemented to compute the Bayes 

estimates and credible intervals width under SEL, LINEX and PRE loss functions. 

Based on (7), the Bayes estimate of ( ),H x  denoted by 
1( )

ˆ ( ),SEH x  under SE loss function is 

obtained as follows 

( )1

1 1 ( ) 1 11

1

ˆ

( ) ( ) ( ) ( )

( )

1ˆ ˆˆ ˆ ˆ( ) log( ) ( 1) log .
ˆ

SE

SESE SE SE SE
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H x


   


 
     

 
 

By similar way we can obtain the Bayesian estimators of H(x) under LINEX and PRE loss 

functions. Furthermore, Bayesian cerdible interval is a useful summary of the posterior distribution 

which reflects its variation that is used to quantify the statistical uncertainty. The Bayesian analog of 

a confidence interval is called a credible interval. A credible interval of entropy is the probability that 

a real value of entropy will fall between an upper and lower bounds of a probability distribution. 

Therefore, an approximate highest posterior density interval for ( )H x  is obtained by using the same 

algorithm of Chen and Shao (1999). 

 

3.2. Entropy Bayesian estimation in case of informative prior 

In this subsection, the Bayesian estimator of entropy is obtained under symmetric and 

asymmetric loss functions in case of informative prior motivated by gamma priors. 

Following Pak and Mahmood (2018), assuming that the prior of parameters   and ,  denoted 

by 3 ( )   and 4 ( )   has a gamma distribution with parameters 1 1( , )a b  and 2 2( , ),a b  respectively. 
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where ia  and , 1,2ib i   are known and non negative. So, the joint posterior for parameters, denoted 

by *
3,4 ( , | ),r    is 
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where  
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So, the marginal posterior  PDF of parameters   and   are given respectively by 
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Therefore, the Bayesian estimators of unkown parameters   and   under SE loss function, say

2( )
ˆ

SE  and 
2( )

ˆ
SE can be obtained as posterior mean as follows 
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and 
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While, the Bayesian estimators of parameters   and   under LINEX loss function, say
2(LINEX)̂

and
2(LINEX)̂  are obtained as follows 
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and 
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where   is a real number. Additionaly, the Bayesian estimators of parameters   and   under PRE 

loss function, say 
2(PRE)̂ and 

2(PRE)̂  are given as follows 
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and 
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MCMC technique is used to approximate the integrals in (14), (15), (16), (17), (18) and (19). 

M-H algorithm will be implemented to compute the Bayes estimate and credible interval width under 

SEL, LINEX and PRE loss functions. 

Based on (7), the Bayesian estimator of ( )H x  denoted by 
2( )

ˆ ( ),SEH x  under SE loss function is 

obtained as follows 
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By similar way we can obtain the Bayesian estimator of ( )H x  under LINEX and PRE loss 

functions. Furthermore, the Bayesian credible interval is obtained as described in the previous 

subsection. 

 

4.  Simulation and Application 

This section assesses the performance of the estimators and provides a real data example to 

illustrate the theoretical results. 

 

 

4.1. Numerical study 

In this section, a numerical study is performed in order to study the behavior of the Bayesian 

estimators for entropy of the Lomax distribution based on URV. The Bayesian estimators are 

discussed using non-informative and informative priors, under SEL, LINEX and PRE loss functions. 

The MCMC technique is used to generate samples from the posterior distributions. The M-H 

algorithm is one of the most famous subclasses of MCMC method in Bayesian literature to simulate 

the deviates from the posterior density and produce the good approximate results. Here, M-H 

algorithm will be used via R 3.1.2 program. 

The M-H algorithm procedure as follows:  

Let ( )g   be the density of subject distribution. Initialize a starting value 0x  and the number of 

samples .N  

for 2i   to N  

set 1ix x   

generate u  from (0,1)U  

generate y  from ( )g   

if 
( ) ( )

(x) (y)

y g x
u

g







  then 

  set ix y  

else 

set ix x  

end if 

end for 

 

To compare the entropy estimators, MCMC simulations are performed for different record values 

under SE, LINEX and PRE loss functions. The number of records are selected as 5,6,...,10m   and 

true values of entropy measure are selected as ( )H x  0.1137, 0.5681, 3.0000 and 4.3863 (the 

parameter values are selected as ( , )   (2.0, 0.5), (1.5, 0.5), (0.5, 0.5) and (0.5, 2.0). The hyper-

parameters for gamma prior are selected as 1 2 1a a   and 1 2 4.b b    Also, we take ( 2, 2)    

for LINEX loss function. The number of replications = 5,000. The relative absolute biases (RABs), 

estimated risks (ERs) and the width of credible interval are computed to evaluate the behavior of the 

Bayesian estimates. 
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4.2.  Numerical results 

Simulation results are given in Tables 1 to 8 and explored in some figures. We provide some 

observations about the behavior of the entropy estimates. 

 The estimated entropy value decreases as the value of scale parameter   decreases at

0.5.   

 At 0.5,   the estimated entropy value decreases as the value of   increases. 

 In non-informative prior the ERs for exact value ( )H x  0.1137 take the smallest values at 

5m   for all selected loss functions (see Figure 1). 

 

 
 

Figure 1 ERs of ˆ ( )H x  under SE, LINEX and PRE  loss functions for different values of 

parameters at 5m   under non-informative prior 

 

 Figure 2 shows that the ERs for exact value ( )H x   0.1137 under non-informative prior, take 

the smallest values at 10.m   

 

 
 

Figure 2 ERs of ˆ ( )H x  under SE, LINEX and PRE loss functions for different values of parameters 

at 10m   under non-informative prior 
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 Figure 3 shows that the ERs for exact value ( )H x   0.1137 take the smallest value at 5m   in 

case of informative prior. 

 

 
 

Figure 3 ERs of ˆ ( )H x  under SE, LINEX and PRE  loss functions for different values  

of parameters at 5m   under informative prior 

 

 Figure 4 shows that the ERs for exact value ( )H x  0.1137 and ( )H x  4.3863 in case of 

informative prior are smaller than the corresponding for another exact value for all selected 

loss functions at 10.m   Also, at ( )H x  0.1137, the ERs of 
2(LINEX)

ˆ ( )H x  at 2   take the 

smallest value, while, the ERs of 
2(PRE)

ˆ ( )H x  take the largest value. 

 

 
 

Figure 4 ERs of ˆ ( )H x  under SE, LINEX and PRE loss functions for different values  

of parameters at 10m   under informative prior 
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 For small true values of entropy, in case of non-informative prior, the width of Bayes credible 

intervals for 
1(LINEX)

ˆ ( )H x  at 2   is the  shortest compared to the width of credible interval 

in case of 
1( )

ˆ ( )SEH x  and 
1(PRE)

ˆ ( )H x  for most values of m  (for example see Figure 5). 

 

 
 

Figure 5 The width of credible interval under SE, LINEX and PRE loss functions for different 

values of record numbers under non-informative prior for ( )H x  0.1137 

 

 For large true values of entropy, in case of non-informative prior, the width of Bayes credible 

intervals for 
1( )

ˆ ( )SEH x  is the shortest compared to the width of credible interval 
1(PRE)

ˆ ( )H x  

and 
1(LINEX)

ˆ ( )H x  for most values of m  (for example see Figure 6). 

 

 
 

Figure 6 The width of credible interval under SE, LINEX and PRE loss functions for different 

values of record numbers under non-informative prior for ( )H x   4.3863 
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 Under informative prior, at ( )H x   0.1137, the width of Bayes credible intervals for 

2( )
ˆ ( )SEH x is the shortest compared to the width of credible interval 

2(PRE)
ˆ ( )H x  and 

2(LINEX)
ˆ ( )H x  for all values of m. The RABs of 

2( )
ˆ ( )SEH x  take the smallest values compared 

to RABs of 
2(LINEX)

ˆ ( )H x  and 
2(PRE)

ˆ ( )H x  at 5,8m   and 10 (see Table 5). 

 Under informative prior, the width of Bayes credible intervals for 
2(LINEX)

ˆ ( )H x  is the shortest 

compared to the width of credible interval 
2(PRE)

ˆ ( )H x  and 
2( )

ˆ ( )SEH x  for most values of m  

(for example see Figure 7). The RABs of 
2(LINEX)

ˆ ( )H x  at 2   have the smallest values 

compared to RABs of 
2( )

ˆ ( )SEH x  and 
2(PRE)

ˆ ( )H x  at 5,6,8m   and 9 (see Table 7). 

 

 
 

Figure 7 The width of credible interval under SE, LINEX and PRE  loss functions for different 

values of record numbers under non-informative prior for ( )H x  4.3863 

 

4.3.  Real data 

In this subsection, a real data is employed to illustrate the above theoretical results. The data 

represent the time to break down of an insulating fluid between electrodes at a voltage of 34 K. Volt 

(Nelson 1982). The data are recorded as follows: 

 

  0.96 4.15 0.19 0.78 8.01 31.75   7.35   6.50   8.27 33.91 

32.52 3.16 4.85 2.78 4.67   1.31 12.06 36.71 72.89  

 

The validity of the fitted model, has been checked by Abd Ellah (2006). The Kolmogorov- 

Smirnov goodness of fit test is employed for real data and its p-value indicates that the Lomax 

distribution fits the data. The estimated PDF and CDF are represented in Figure 8. 
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Table 1 Bayes estimates, RAB, ER and width of entropy based on URV for 2.( 0,0., ( )5)  

under non-informative prior 

Number of records ( )m  5 6 7 8 9 10 

Exact value 0.1137 

SE Estimate 0.1140 0.1153 0.1161 0.1141 0.1140 0.1141 

RAB 2.39E-03 1.37E-02 2.13E-02 3.28E-03 1.50E-02 6.79E-03 

ER 3.20E-10 2.48E-10 1.58E-10 1.40E-10 5.71E-11 3.72E-11 

Width 3.83E-03 3.40E-03 2.95E-03 2.74E-03 2.72E-03 2.70E-03 

LINEX

( 2)   

Estimate 0.1126 0.1115 0.1144 0.1134 0.1137 0.1132 

RAB 9.56E-03 1.98E-02 5.67E-03 2.86E-03 1.75E-02 4.60E-03 

ER 3.30E-10 2.69E-10 2.43E-10 1.65E-10 9.15E-11 3.79E-11 

Width 3.34E-03 2.99E-03 2.09E-03 1.55E-03 1.51E-03 1.42E-03 

LINEX  

( 2)    

Estimate 0.1075 0.1109 0.1141 0.1127 0.1147 0.1138 

RAB 5.49E-02 1.52E-03 3.61E-03 9.03E-03 8.55E-03 1.80E-02 

ER 8.16E-10 6.05E-10 3.03E-10 1.62E-10 8.70E-11 1.42E-11 

Width 8.76E-03 4.12E-03 3.87E-03 1.78E-03 1.73E-03 1.69E-03 

PRE Estimate 0.1128 0.1138 0.1140 0.1133 0.1144 0.1142 

RAB 8.06E-03 8.20E-04 1.15E-02 4.00E-02 5.84E-03 4.55E-03 

ER 4.24E-10 2.42E-10 1.53E-10 1.08E-10 6.81E-11 5.36E-11 

Width 3.57E-03 2.92E-03 2.63E-03 2.52E-03 2.35E-03 2.27E-03 

Note: E-a is stands for 10 a  

 

Table 2 Bayes estimates, RAB, ER and width of entropy based on URV for 1.( 5,0., ( )5)   under 

non-informative prior 

Number of records (m) 5 6 7 8 9 10 

Exact value 0.5681 

SE Estimate 0.5674 0.5663 0.5653 0.5705 0.5653 0.5667 

RAB 1.18E-03 3.15E-03 4.82E-03 4.37E-03 4.84E-03 2.34E-03 

ER 4.00E-08 8.83E-09 4.28E-09 3.07E-10 2.28E-10 1.69E-10 

Width 5.53E-03 4.91E-03 4.52E-03 3.74E-03 3.15E-03 3.13E-03 

LINEX

( 2)   

Estimate 0.5699 0.5693 0.5670 0.5680 0.5677 0.5673 

RAB 3.19E-03 2.24E-03 1.89E-03 1.63E-04 6.33E-04 4.72E-03 

ER 2.85E-09 2.22E-09 1.05E-09 8.61E-10 3.01E-10 1.40E-10 

Width 3.42E-03 3.31E-03 3.15E-03 3.12E-03 2.86E-03 2.01E-03 

LINEX  

( 2)    

Estimate 0.5694 0.5691 0.5695 0.5673 0.5687 0.5681 

RAB 6.29E-04 1.13E-03 6.21E-03 1.29E-03 2.86E-03 2.26E-03 

ER 1.93E-09 1.75E-09 1.29E-09 6.44E-10 4.47E-10 1.13E-10 

Width 4.04E-03 3.72E-03 3.36E-03 2.98E-03 2.61E-03 2.15E-03 

PRE Estimate 0.5687 0.5684 0.5680 0.5670 0.5683 0.5681 

RAB 1.21E-03 6.84E-04 1.51E-04 1.85E-03 2.20E-03 8.10E-04 

ER 7.43E-09 1.75E-09 9.46E-10 9.31E-10 2.56E-10 1.11E-10 
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Width 4.88E-03 3.87E-03 3.29E-03 2.82E-03 2.29E-03 2.19E-03 

Note: E-a is stands for 10 a  

 

Table 3 Bayes estimates, RAB, ER and width of entropy based on URV for ( , ) (0.5, .5)0   under 

non-informative prior 

Number of records (m) 5 6 7 8 9 10 

Exact value 3.0 

SE Estimate 2.9970 3.0050 2.9950 2.9940 3.0150 2.9980 

RAB 1.13E-03 1.66E-03 9.20E-04 1.86E-03 5.07E-03 1.57E-03 

ER 1.24E-08 6.23E-09 5.26E-09 7.71E-10 7.27E-10 5.93E-10 

Width 6.91E-03 6.23E-03 5.85E-03 4.53E-03 4.25E-03 3.88E-03 

LINEX

( 2)   

Estimate 3.0050 3.0030 2.9990 2.9970 3.0040 3.0010 

RAB 1.77E-03 1.08E-03 2.51E-04 9.33E-04 1.30E-03 3.17E-04 

ER 5.47E-09 3.37E-09 2.19E-09 1.96E-09 1.70E-09 7.99E-10 

Width 1.07E-02 7.36E-03 6.32E-03 5.87E-03 5.21E-03 2.93E-03 

LINEX  

( 2)    

Estimate 2.9972 2.9943 2.9943 2.9997 3.0006 3.0002 

RAB 9.44E-04 1.91E-03 1.91E-03 8.81E-05 1.90E-04 3.57E-03 

ER 2.19E-09 1.29E-09 3.26E-10 2.54E-10 5.28E-10 1.03E-10 

Width 1.54E-02 1.08E-02 1.05E-02 7.85E-03 7.74E-03 3.52E-03 

PRE Estimate 3.0040 2.9930 2.9950 2.9950 3.0070 2.9990 

RAB 1.19E-03 2.17E-03 1.51E-03 1.51E-03 2.31E-03 1.11E-03 

ER 1.53E-08 4.29E-09 3.65E-09 2.95E-09 1.44E-09 2.00E-10 

Width 7.06E-03 6.91E-03 6.73E-03 5.52E-03 5.25E-03 3.75E-03 

Note: E-a is stands for 10 a  

 

Table 4 Bayes estimates, RAB, ER and width of entropy based on URV for ( , ) (0.5, .0)2    

under non-informative prior 

Number of records (m) 5 6 7 8 9 10 

Exact value 4.3863 

SE Estimate 4.3900 4.3890 4.3790 4.3960 4.3790 4.3800 

RAB 7.35E-04 6.34E-04 1.59E-03 2.26E-03 1.58E-03 1.35E-03 

ER 1.69E-08 9.72E-09 6.80E-09 5.04E-09 6.78E-10 1.58E-10 

Width 7.35E-03 7.02E-03 6.38E-03 5.19E-03 3.25E-03 3.10E-03 

LINEX

( 2)   

Estimate 4.3800 4.3900 4.3920 4.3890 4.3900 4.3850 

RAB 1.46E-03 8.54E-04 1.38E-03 6.27E-04 7.38E-04 1.52E-03 

ER 3.16E-08 3.11E-09 2.02E-09 1.06E-09 5.33E-10 3.33E-10 

Width 1.21E-02 8.71E-03 7.16E-03 5.19E-03 4.92E-03 4.62E-03 

LINEX  

( 2)    

Estimate 4.3803 4.3975 4.3907 4.3802 4.3863 4.3851 

RAB 1.37E-03 2.56E-03 1.00E-03 1.38E-03 8.62E-06 2.72E-04 

ER 7.96E-09 6.88E-09 4.11E-09 1.64E-09 9.50E-10 8.80E-10 

Width 1.86E-02 1.50E-02 8.63E-03 6.53E-03 5.92E-03 5.12E-03 

PRE Estimate 4.3820 4.3910 4.3840 4.3900 4.3830 4.3820 

RAB 1.00E-03 1.09E-03 4.33E-04 9.26E-04 8.28E-04 9.13E-04 

ER 8.99E-09 7.31E-09 5.65E-09 5.62E-09 8.10E-10 1.94E-10 
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Width 1.42E-02 1.32E-02 8.72E-03 6.07E-03 5.67E-03 4.81E-02 

Note: E-a is stands for 10 a  

 

Table 5 Bayes estimates, RAB, ER and width of entropy based on URV for 2.( 0,0., ( )5)    

under informative prior 

Number of records (m) 5 6 7 8 9 10 

Exact value 0.1137 

SE Estimate 0.1143 0.1133 0.1139 0.1139 0.1138 0.1137 

RAB 9.97E-04 1.38E-02 2.43E-02 2.01E-03 1.83E-02 4.56E-03 

ER 7.09E-10 5.98E-10 1.76E-10 1.69E-10 1.37E-10 1.02E-10 

Width 3.03E-03 2.99E-03 2.24E-03 2.15E-03 1.75E-03 1.20E-03 

LINEX

( 2)   

Estimate 0.1166 0.1172 0.1143 0.1141 0.1126 0.1144 

RAB 2.57E-02 3.05E-02 2.63E-03 2.27E-02 9.71E-03 6.28E-03 

ER 5.27E-10 4.65E-10 3.03E-10 1.43E-10 1.12E-10 9.20E-11 

Width 5.92E-03 4.93E-03 4.39E-03 4.21E-03 3.86E-03 3.70E-03 

LINEX  

( 2)    

Estimate 0.1134 0.1145 0.1144 0.1136 0.1141 0.1137 

RAB 2.77E-03 6.95E-03 6.28E-03 2.72E-02 3.21E-03 1.60E-02 

ER 6.34E-10 4.50E-10 3.77E-10 1.80E-10 1.24E-10 1.19E-10 

Width 3.71E-03 3.37E-03 3.21E-03 2.98-03 2.67E-03 2.21E-03 

PRE Estimate 0.1124 0.1156 0.1149 0.1125 0.1144 0.1130 

RAB 2.05E-02 2.73E-02 1.02E-02 1.03E-02 5.91E-03 5.83E-03 

ER 8.67E-10 3.33E-10 2.91E-10 2.49E-10 1.98E-10 1.60E-10 

Width 4.08E-03 3.84E-03 3.76E-03 3.73E-03 3.72E-03 3.41E-03 

Note: E-a is stands for 10 a  

 
Table 6 Bayes estimates, RAB, ER and width of entropy based on URV for ( , ) (1.5, .5)0    

under informative prior 
Number of records (m) 5 6 7 8 9 10 

Exact value 0.5681 

SE Estimate 0.5678 0.5664 0.5695 0.5660 0.5657 0.5673 

RAB 4.91E-04 2.93E-03 7.44E-04 3.58E-03 5.83E-03 1.27E-03 

ER 1.93E-09 1.55E-09 6.95E-10 5.04E-10 3.69E-10 2.00E-10 

Width 4.52E-03 4.28E-03 2.91E-03 2.83E-03 2.73E-03 2.34E-03 

LINEX

( 2)   

Estimate 0.5676 0.5710 0.5690 0.5660 0.5684 0.5700 

RAB 8.01E-04 5.48E-03 2.17E-03 3.55E-03 5.48E-04 4.13E-03 

ER 1.56E-09 4.57E-10 4.41E-10 2.13E-10 2.02E-10 1.16E-10 

Width 3.05E-03 2.97E-03 2.51E-03 2.48E-03 2.28E-03 2.01E-03 

LINEX  

( 2)    

Estimate 0.5650 0.5660 0.5670 0.5689 0.5690 0.5669 

RAB 5.11E-03 3.40E-03 1.98E-03 1.43E-03 1.73E-03 1.95E-03 

ER 2.48E-09 2.28E-09 6.91E-10 4.92E-10 2.78E-10 1.32E-10 

Width 6.47E-03 5.69E-03 4.86E-03 4.78E-03 3.40E-03 3.00E-03 

PRE Estimate 0.5690 0.5670 0.5690 0.5666 0.5676 0.5680 

RAB 9.21E-04 2.68E-03 2.17E-03 2.47E-03 7.22E-04 3.63E-03 

ER 3.44E-09 6.99E-10 5.64E-10 4.14E-10 3.47E-10 2.58E-10 

Width 4.10E-03 3.85E-03 3.03E-03 2.69E-03 2.35E-03 2.10E-03 

Note: E-a is stands for 10 a  
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Table 7 Bayes estimates, RAB, ER and width of entropy based on URV for ( , ) (0.5, .5)0    

under informative prior 

Number of records (m) 5 6 7 8 9 10 

Exact value 3.0 

SE Estimate 3.0053 3.0043 2.9956 2.9929 3.0021 3.0003 

RAB 7.60E-04 1.43E-03 8.11E-04 2.38E-03 7.01E-04 1.10E-04 

ER 2.03E-08 1.01E-08 3.66E-09 2.08E-09 8.84E-10 7.30E-10 

Width 1.17E-02 1.09E-02 1.02E-02 8.26E-03 6.29E-03 3.02E-03 

LINEX

( 2)   

Estimate 3.0008 2.9991 3.0057 2.9983 3.0004 2.9998 

RAB 2.73E-04 3.01E-04 1.91E-03 5.72E-04 1.47E-04 3.39E-03 

ER 1.56E-08 1.31E-08 2.88E-09 1.62E-09 1.33E-09 5.48E-10 

Width 9.83E-03 9.72E-03 8.18E-03 8.02E-03 6.56E-03 1.80E-03 

LINEX  

( 2)    

Estimate 2.9926 3.0041 2.9918 2.9955 2.9929 2.9991 

RAB 2.47E-03 1.38E-03 2.74E-03 1.51E-03 2.38E-03 2.90E-04 

ER 5.52E-08 1.80E-08 1.99E-09 1.08E-09 8.73E-10 1.52E-10 

Width 1.72E-02 1.02E-02 1.01E-02 8.73E-03 7.43E-03 4.90E-03 

PRE Estimate 2.9987 2.9983 3.0083 3.0022 3.0004 3.0017 

RAB 4.47E-04 5.76E-04 2.75E-03 7.41E-04 1.49E-04 5.70E-04 

ER 2.08E-08 1.28E-08 8.35E-09 7.35E-09 2.85E-10 2.00E-10 

Width 7.87E-02 5.37E-02 2.15E-02 1.19E-02 5.04E-03 4.26E-03 

Note: E-a is stands for 10 a  

 

Table 8 Bayes estimates, RAB, ER and width of entropy based on URV for ( , ) (0.5, .0)2    

under informative prior 

Number of records (m) 5 6 7 8 9 10 

Exact value 4.3863 

SE Estimate 4.3894 4.3784 4.3739 4.3887 4.3828 4.3870 

RAB 7.04E-04 1.79E-03 2.83E-03 5.51E-04 7.89E-04 1.73E-03 

ER 2.67E-09 1.68E-09 8.73E-10 6.39E-10 4.76E-10 7.69E-11 

Width 5.21E-02 3.34E-02 2.07E-02 9.39E-03 6.34E-03 5.59E-03 

LINEX

( 2)   

Estimate 4.3787 4.3845 4.3920 4.3832 4.3893 4.3879 

RAB 1.74E-03 4.08E-04 1.30E-03 6.94E-04 6.78E-04 1.06E-03 

ER 8.32E-09 9.59E-10 8.78E-10 7.57E-10 1.24E-10 4.95E-11 

Width 1.21E-02 1.13E-02 9.68E-03 9.35E-03 9.04E-03 8.81E-03 

LINEX  

( 2)    

Estimate 4.3923 4.3863 4.3816 4.3845 4.3939 4.3862 

RAB 1.37E-03 1.18E-05 1.08E-03 4.07E-04 1.74E-03 2.12E-05 

ER 1.35E-09 1.28E-09 6.42E-10 2.01E-10 1.36E-10 1.52E-11 

Width 1.23E-02 9.43E-03 9.35E-03 9.18E-03 8.83E-03 4.37E-03 

PRE Estimate 4.3823 4.3847 4.3883 4.3908 4.3855 4.3861 

RAB 9.01E-04 3.74E-04 4.61E-04 1.02E-03 1.84E-04 1.18E-03 

ER 1.51E-09 5.13E-10 3.10E-10 2.70E-10 1.30E-10 2.01E-11 

Width 6.18E-02 6.02E-02 3.02E-02 1.29E-02 5.08E-03 5.01E-03 
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Note: E-a is stands for 10 a  

  

Figure 8 Estimated PDF and CDF of Lomax distribution for real data 

 

Hence, the URV from this data are: 0.96, 4.15, 8.01, 31.75, 33.91, 36.71, 72.89. Regarding this 

record data, the entropy Bayes estimation at 5m   and 7 under SE, LINEX and PRE loss functions 

are obtained and listed in Table 9. 

 

Table 9 Estimated of Shannon entropy under non-informative and informative priors 

m  Prior SEL LINEX ( 2)   LINEX ( 2)    PRE 

5 non-informative 0.1135390 0.1133742 0.1129690 0.1132783 

7 0.1134979 0.1114639 0.1113676 0.1110350 

5 informative 0.1124057 0.1135005 0.1157789 0.1151257 

7 0.1122747 0.1125413 0.1143497 0.1151248 

 

5.  Conclusions  

This paper provides Bayesian estimation of Shannon entropy for Lomax distribution using upper 

record values. The Bayesian estimators of entropy are obtained in case of informative and non-

informative prior functions for three loss functions. Bayesian estimator of Shannon entropy is 

discussed under informative and non-informative priors. The Bayesian estimators are computed using 

the idea of Markov chain Monte Carlo method based on Gibbs sampling. The performance of the 

entropy estimates for Lomax distribution is investigated in terms of their absolute relative bias, 

estimated risk and the width of credible intervals. Application to real data and simulation issues are 

provided. 

From simulation results we conclude that, the Bayesian estimator of entropy approaches the true 

value as the number of record increases. Generally, the entropy and ERs are directly proportional, 

that is; if the real value of entropy decreases, the ERs decrease. 

Under non-informative prior, for small true values of entropy, the width of Bayes credible 

intervals for estimated values of entropy under LINEX loss function are smaller than the 

corresponding estimated values based on SE and PRE loss functions for most values of selected 

records. But for large true values of entropy, the width of Bayes credible intervals for estimated values 

of entropy under SE loss function is smaller than the corresponding estimated values based on LINEX 

and PRE loss functions for most values of .m  
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Under informative prior, the width of Bayes credible intervals for estimated values of entropy 

under LINEX loss function is smaller than the corresponding estimated values based on SE and PRE 

loss functions for most values of .m  

Regarding simulation results, Bayesian estimates under LINEX loss function at ( 2)  are more 

suitable than other selected loss functions for different types of prior functions in most of situations. 
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