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Abstract

In this paper, estimation of entropy for Lomax distribution based on upper record values is
considered. Bayesian estimator of Shannon entropy is discussed under informative and non-
informative priors. The entropy Bayesian estimator and the corresponding credible interval on the
basis of a linear exponential, squared error and precautionary loss functions are derived. The
Metropolis-Hastings algorithm is used to generate random variables. Monte Carlo simulations based
on Gibbs sampling are conducted to implement the accuracy of estimates for different number of
records. Real data example is analyzed for illustration purposes. In general, based on the outcomes
of study, the Bayesian estimates of entropy tend to the true value as the number of record increases.
Further, Bayesian estimate of entropy under LINEX loss function is preferable than the other
estimates in most of situations.

Keywords: Shannon entropy, Bayesian estimators, loss function, Metropolis-Hastings algorithm.

1. Introduction

Record values can be considered as order statistics from a sample which its size is determined
by the values and the order of occurrence of the observations. Record data are very important in
various real-life applications like; weather, economic, sports and reliability. There are two types of
record values, the upper record values and the lower record values. An observation is called upper
(lower) record value if its value exceed (less than) that all of the previous observations (see Arnold
et al. 1998).

The statistical study of record value is started with Chandler (1952) and formulated the theory of
record values as a model for successive extremes in a sequence of independently and identically (iid)
random variables.

Let x,,i 21 be a sequence of i.i.d. random variables with cumulative distribution function (CDF)

F(x) and probability density function (PDF) f(x). According to Ahsanullah (1995) an observation
x, is called upper record value if its value exceeds all the preceding values, i.e. x, is an upper record

value if x, > x, where i > j.
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Let R,,i=1,2,...,m be the first m upper record arising from any distribution with a certain PDF
and CDF. According to Arnold et al. (1998), the joint PDF of R, is given by

fryeer,) = 1, )Hlf;”()) < <n <<, <o )

Many authors dealt with upper record values (URV), for example, Ahmadi and Doostparast
(2006) considered Bayesian estimation and prediction for some life distributions based on record
values. Hassan et al. (2015) discussed stress-strength reliability for exponentiated inverted Weibull
distribution from record values. Essam (2017) provided some properties and discussed the maximum
likelihood and Bayesian estimators of the power Lomax distribution based on URV. Hassan et al.
(2018a) considered reliability estimator of generalized inverted exponential based on records. Hassan
etal. (2018b) discussed Bayesian estimators using squared error (SE) and linear exponential (LINEX)
loss functions for generalized inverted exponential distribution based in URV and upper record
ranked set sampling.

Entropy is a measure of expected value of information that contained in a random variable. More
entropy indicates that the sample has less information. Measuring of entropy is an important issue in
many areas such as statistics, economics, information technology, physics and biological phenomenon.

Shannon (1948) introduced the concept of entropy as a measure of information, which provides
a quantitative measure of uncertainty. Let X be a random variable with CDF F(x) and PDF f(x).

The Shannon entropy, denoted by H (x), of the random variable is defined by

H(x) =~ f(x)log f (x)dx. @)

Many researchers discussed the entropy in case of censored data. For example, Cho et al. (2015)
studied the Bayesian estimators of entropy of Weibull distribution based on generalized progressive
hybrid censoring scheme. Lee (2017) discussed the maximum likelihood and Bayesian estimators of
the entropy of an inverse Weibull distribution under generalized progressive hybrid censoring
scheme. Almohaimeed (2017) provided an exact expression for entropy information contained in
both types of progressively hybrid censored data and applied it in exponential distribution. Hassan
and Zaky (2019) obtained the maximum likelihood estimator of Shannon entropy for inverse Weibull
distribution under multiple censored data.

Many researchers discussed the entropy in case of ordered data. Wong and Chan (1990) showed
that the amount of entropy is reduced when the sample is ordered. Seo et al. (2012) obtained an
entropy estimator using URV from the generalized half-logistic distribution. Chacko and Asha (2018)
discussed the estimation of entropy for generalized exponential distribution via record values.

In the literature, few works have been done about the estimation of entropy via record values.
So, our objective here is to consider the Bayesian estimation of Shannon entropy of a Lomax
distribution based on URV. The Bayesian estimator of Shannon entropy is considered using non-
informative and informative priors. The Bayesian estimator of entropy is motivated by three loss
functions; namely, SE, LINEX and precautionary (PRE). Due to the complicated forms of Bayesian
entropy estimator, we employ the Markov Chain Monte Carlo (MCMC) technique.

This paper can be organized as follows. Section 2 gives the Shannon entropy for Lomax
distribution. Section 3 provides Bayesian estimators for entropy of Lomax distribution using different
loss functions, in case of URV. Simulation issue and application to real data are given in Section 4.
The paper ends with some concluding remarks.
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2. Entropy of Lomax Distribution

The Lomax distribution is one of the most important lifetime models. It has been useful in
reliability and life testing problems, engineering, and in survival analysis. The application of Lomax
distribution can be found in many fields like actuarial science, economics. Atkinson and Harrison
(1978) and Harris (1968) applied the Lomax distribution to income and wealth data. While Corbellini
et al. (2010) used it to model firm size and queuing problems. More details about applications of
Lomax distribution can found in Campbell and Ratnaparkhi (1993), Tarko (2018) and Kang et al.
(2019).

The Lomax distribution with shape parameter & and scale parameter A has the following PDF
and CDF.

fa,)=ad(x+A)“" | x,a,1>0, 3)
and
F(x;a,)=1-A“(x+A)™" , x,o, A > 0. 4)

Various studies about the Lomax distribution can be found in the literature by several authors.
Ahsanullah (1991) discussed the record values of Lomax distribution. Balakrishnan and Ahsanullah
(1994) discussed some recurrence relations between the moments of record values from Lomax
distribution. Howlader and Hossain (2002) obtained Bayesian estimator of survival function for
Lomax distribution. Hassan and Al-Ghamdi (2009) studied the optimum step stress accelerated life
testing for Lomax distribution using maximum likelihood procedure. El-Din et al. (2013) discussed
the parameter estimation of the Lomax distribution under progressive Type-II censoring using
maximum likelihood and Bayesian methods. Hassan et al. (2016) discussed the optimal step stress
accelerated life tests for Lomax distribution with adaptive Type-II progressive hybrid censoring.

The Shannon entropy of Lomax distribution can be obtained by substituting (3) in (2) as follows

H(x)=- j ad® (x+ )" “Dlog(aA® (x+ 1) “") dk. (5)
0
The integral (5) can be written as follows

H(x)=— j aA® (x+ A) " log(aA®) dx
0

) (©6)
+(a+ 1)j ad® (x+2)“V log(x + A)dx =1, +1,.
0

To compute the entropy in (6) we need to find /; and I, as follows
I, = I ad®(x+ )@ log(ad® ) dx=log(ai®).
0
To obtain /,,

I =(a+ 1)j A% (x+ )" “Vlog(x+ A) dx,
0

using integration by parts,
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I, =(a +l)(l+ logﬂj.
a
Hence the Shannon entropy of Lomax distribution model takes the following form
H(x):—log(al“)+(a+l)(i+log/1), a,A>0. @)
a

This is the required expression of Shannon entropy of Lomax distribution which can be seen as
a function of parameters « and A.

3. Bayesian Estimation

In this section, Bayesian estimator of the Shannon entropy is obtained based on URV. To
compute the Bayesian estimator of entropy, we must obtain firstly the Bayesian estimators of ¢ and
A. Bayesian estimator is considered in case of informative and non-informative priors under SE,
LINEX and PRE loss functions.The Bayesian estimators cannot be obtained in explicit forms. Hence
MCMC technique is carried out to generate samples from the posterior distributions and consequently
computing the Bayesian estimators and construct the corresponding credible intervals.

3.1. Entropy Bayesian estimationin case of non-informative prior
In this subsection, the Bayesian estimator of entropy is obtained under symmetric and
asymmetric loss functions in case of non-informative prior.

Let »=(7,7,...,7;,),,,, be the first m URV observed from Lomax distribution with PDF by (3)
and CDF by (4), then the likelihood function of Lomax distribution, based on URV, is obtained by
inserting (3) and (4) in (1), as follows

ml _aa —(a+1)
A% (r + A
L@ A RFyaesty) = a2 1+ 27O | %

i=1 ()

A

=M%%%+@ﬂII@+mﬂ

i=1

>

Assuming that the prior of parameters o and A, denoted by 7,(«) and 7,(A) has the following
uniform distribution
1
R

So, the joint posterior for parameters, denoted by 7r; S(a,A|r), is

L(a, A\ n,ny,...1,)m(a) my(A)

zrl(a)%, 7, (A) =

>

ﬂ-l*,l(asﬂ' |£):
L(a, A\ %,1,...1,) m(a)r,(A)dad A

S = 8
S = 8

the joint posterior can be written as

71':2 (@, Aln)=c'a" ' 2" (r, + A)“ H(ri +A)7",

i=1

where

e[ [ a2 e Ay T+ 2 dardi

i=l1
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So, the marginal posterior PDF of parameter « is
7 (| r)= j: a2 (A A T [+ A) A
i=1
Also, the marginal posterior PDF of parameter A is

(A g:j: a2 o, + A [+ A)
i=1

Therefore, the Bayesian estimators of unkown parameters & and A under SE loss function,

denoted by ¢ se), and /i( sy, can be obtained as posterior mean as follows
aA(SE), =E(a|r)= Io alt, (a|r)da

[ ] ama v [1¢:+4) " dada @

jo” j: a" A+ A) f[ (r+A) " dad
Also,

Ay, =EQAID = [ A7) 2|r)da

J’: '[: Q"% (o +2)C fl[ (r+ )" dada ©)

.[: .[: Q™A% (o + A)alli[ (. + A)"! dad/i.

Additionally, the Bayesian estimators of parameters & and A under LINEX loss function,

denoted by d(LmEX)I » and A ey, are given as follows

Gmex), = Lo E(e ) = —llog[jwe*““ 7T (| r)dal, v#0,
! ) ) 0

ﬁe““am%“‘ (r, + l)’“ﬁ(ri + )V dad
i=1

1 (10)
=——log| * ,
1% m
J‘J.am*lﬁafl (r, +/1)7aH(ri + ) dada
00 i=1
and
n 1 | ©
A, =—;10gE(e ‘ )=7108[J'0 e T, (Ar)dA], v£0,
L L erert At s [ 16 A dada (an
=——10g i=1 ,
v

[Ff a2+ 2" ﬂ (r,+2)" dad

where v is a real number.
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Furthermore, the Bayesian estimators of parameters & and 4 under PRE loss function, denoted

by &(pRE)l and /:L(PRE)I are given as follows

1
o 2
Giprry, =\E@’| 1) = [ja%{‘ (@) da]

0

(12)
J' J' "™ (12 H(r[ ) dada
J’O J’O a" 2% ) +z)*“1;[(r,. + ) dada
and,
1
x 2
A(PRE)] :\/E(/12 Ir) :[Iazﬂz*(lw)dl]
0
2 (13)

© 0 m 2
m—1 qa+l —-a -1
A +A -+ ) dadA
[ ], « (1, +4) Ll (r+4) " da

CL° w1 ga-1 -a - -1
A +A -+ A1) dadld
[ '] a2, +n [ Lo e

The integrals in (8), (9), (10), (11), (12) and (13) are very difficult to obtain due to their
complicated mathematical form. Therefore, the MCMC technique is used to approximate these
integrations. Metropolis-Hastings (M-H) algorithm will be implemented to compute the Bayes
estimates and credible intervals width under SEL, LINEX and PRE loss functions.

Based on (7), the Bayes estimate of H(x), denoted by I-AI(SE)1 (x), under SE loss function is

obtained as follows

H g, (x) =—log(ds, (‘jfjj )+ (G, +1)( +logﬂ:(SE)|].

X sk,

By similar way we can obtain the Bayesian estimators of H(x) under LINEX and PRE loss
functions. Furthermore, Bayesian cerdible interval is a useful summary of the posterior distribution
which reflects its variation that is used to quantify the statistical uncertainty. The Bayesian analog of
a confidence interval is called a credible interval. A credible interval of entropy is the probability that
a real value of entropy will fall between an upper and lower bounds of a probability distribution.
Therefore, an approximate highest posterior density interval for H(x) is obtained by using the same

algorithm of Chen and Shao (1999).

3.2. Entropy Bayesian estimation in case of informative prior

In this subsection, the Bayesian estimator of entropy is obtained under symmetric and
asymmetric loss functions in case of informative prior motivated by gamma priors.

Following Pak and Mahmood (2018), assuming that the prior of parameters ¢ and A, denoted

by 7,(a) and 7,(A) has a gamma distribution with parameters (a,,b,) and (a,,b,), respectively.
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b b
a 2
(o) = a" e , (4 )_ " —)az’

I'b) (b)

101

where a, and b,,i=1,2 are known and non negative. So, the joint posterior for parameters, denoted

by 7, (a,A|r), is
L(a, Al n,r,...r,) m(a)m, (1)

72';)4(0.’,ﬂ,|£)=

S 8

[L(e, 2151y, (@) 7y (A dd d A
0

m
— k—lamﬂ-bI —110(‘*}’2—1 (rm +i)—a e—(ozaI +lay) H(’: +i)—l’

i=1

where

k :J.O J.O am+b1*1 ﬂoﬁrbz*l (rm +l)—ae*(aal+laz) H(]/; +ﬂ)_]d0!dﬂ

i=1

So, the marginal posterior PDF of parameters & and A are given respectively by

71'3(0(|r) J' k lam+b| IAaerz 1(7" +ﬂ,) a 7(aa1+laz)H(r}+1),1di’

i=1

and

72';k (ﬂ, | I_"):J: k*lamﬂa flﬂawbrl (rm +ﬂ)—a e*(aawlaz)H(I} +l)71d0.’.

i=1

Therefore, the Bayesian estimators of unkown parameters & and A under SE loss function, say

& sgy, and y) (sr), can be obtained as posterior mean as follows

e m+b; 4 a+b,—1 -a —(aa+iay) = -1
A jo joa 270 ) e 1;[(“/1) dad

Xy, = n ’
j '[ arlel llaerz (7" +i) a 7(aal+laz)H(r; +A)—ldadi

i=1

and

J‘wa m+b lﬂya+b2 (I” +l)—a —(o{aﬁ-iaz)ﬁ(’; +1)—1 dad/i
) i=l

(SE)z m
'[ J‘ q"h gethl (rm +i)7aef(“‘”'az)H(ri+i)71 dadl

i=1

(14)

(15)

While, the Bayesian estimators of parameters « and A under LINEX loss function, say &(LINEX)Z

and Ay, are obtained as follows
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A(LNEX), = —%log([e“"ﬂ;(a [7) da} v£0
0

J-00.|‘°0am+blflla+b2*1 (rm +l)*d ef(va+aal+/?.az) I | (”; +ﬂ)71d0( dl (16)
0 J0 :
= —flog i=1

v 0 poo m
.[0 .[O am+bl*11a+b2*1 (rm +l)*a e*(aalJrﬂ.az)H(’} +A)71da{ dﬂz
i=1

s

and

N 1 T
e, :—;log[.[e T, (/1|5)d/1j, v#0
0

i=1

J.O J‘O a”Hbl’lﬂ“*bz’l (rm + ﬂ)—a e*(vﬂ.+aa‘+}»az)H(’} + ﬂ)_]dadﬂ (17)
0g

=-—1
1%

>

J‘:J‘: am+b|71/1a+bzfl(rm +/1)7a e*(aaﬁr}»az)H(r} +/1)71d0.’d/1

i=l1

where @ is a real number. Additionaly, the Bayesian estimators of parameters ¢ and 4 under PRE

loss function, say &(PRE)2 and ﬂ(pRE)z are given as follows

® 2
d(PRE)Z = [jazﬂ'; (a|r) d“]

0
!
P mab+l ja+by-1 —a _—(aa+iay) - -1 2 (18)
a™ i (r,+2)%e [T0:+»" dada
0 JO
_ i=1
.[oojooaerbl—llaerz—l (rm +1)—a e—(aalJrlaz) H(rl +ﬂ)_1 dadl
0 J0
i=1
and
1
/’i(PRE)Z = |:J.0 A 7[4* (4] ’”)dﬂ}z )
1
w poo m 2
J’O J’O aerb,fl ﬂ/a+bz+l (rm +/I)fa e*(aaﬁlaz)H(’} +/I)71 dad/l (19)

i=1
e m+b -1 qa+b,—1 —a _—(aa+iay) - -1
jo jo ™t AT e L Q) e 1;[(};+/1) dad
MCMC technique is used to approximate the integrals in (14), (15), (16), (17), (18) and (19).
M-H algorithm will be implemented to compute the Bayes estimate and credible interval width under
SEL, LINEX and PRE loss functions.

Based on (7), the Bayesian estimator of H(x) denoted by H (sm, (x), under SE loss function is

obtained as follows

(SE)
(24
(SE),

3 s AdSEv Z 1 7
H(SE)2 (x)= —10g(a(SE)2/1 (50 )+(01(SE)2 +1)[ - +logﬁ(SE)2 ]
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By similar way we can obtain the Bayesian estimator of H(x) under LINEX and PRE loss

functions. Furthermore, the Bayesian credible interval is obtained as described in the previous
subsection.

4. Simulation and Application
This section assesses the performance of the estimators and provides a real data example to
illustrate the theoretical results.

4.1. Numerical study

In this section, a numerical study is performed in order to study the behavior of the Bayesian
estimators for entropy of the Lomax distribution based on URV. The Bayesian estimators are
discussed using non-informative and informative priors, under SEL, LINEX and PRE loss functions.
The MCMC technique is used to generate samples from the posterior distributions. The M-H
algorithm is one of the most famous subclasses of MCMC method in Bayesian literature to simulate
the deviates from the posterior density and produce the good approximate results. Here, M-H
algorithm will be used via R 3.1.2 program.

The M-H algorithm procedure as follows:

Let g(-) be the density of subject distribution. Initialize a starting value x, and the number of

samples N.
fori=2to N
set x =x,_,
generate u from U(0,1)
generate y from g(:)

ip oy < T8O

if u< n
7, (x) g(y)
set x, =y
else
set x, =x
end if
end for

To compare the entropy estimators, MCMC simulations are performed for different record values
under SE, LINEX and PRE loss functions. The number of records are selected as m = 5,6,...,10 and

true values of entropy measure are selected as H(x)=0.1137, 0.5681, 3.0000 and 4.3863 (the
parameter values are selected as (a,4) =(2.0, 0.5), (1.5, 0.5), (0.5, 0.5) and (0.5, 2.0). The hyper-
parameters for gamma prior are selected as a; =a, =1 and b, =b, =4. Also, we take (v=-2,2)

for LINEX loss function. The number of replications = 5,000. The relative absolute biases (RABs),
estimated risks (ERs) and the width of credible interval are computed to evaluate the behavior of the
Bayesian estimates.
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4.2. Numerical results
Simulation results are given in Tables 1 to 8 and explored in some figures. We provide some
observations about the behavior of the entropy estimates.
e The estimated entropy value decreases as the value of scale parameter A decreases at
a=0.5.
e At 1 =0.5, the estimated entropy value decreases as the value of & increases.
¢ In non-informative prior the ERs for exact value H(x)=0.1137 take the smallest values at

m =15 for all selected loss functions (see Figure 1).

4.50E-08
4.00E-08
3.50E-08
3.00E-08
2.50E-08
2.00E-08
1.50E-08
1.00E-08 -
5.00E-09 -
0.00E+00 -

SE LINEX (v=2) LINEX (v=-2) PRE
= H=0.1137 m H=0.5681 wH=3.0 s H=4.3863

Figure 1 ERs of H (x) under SE, LINEX and PRE loss functions for different values of

parameters at m =5 under non-informative prior

o Figure 2 shows that the ERs for exact value H(x) = 0.1137 under non-informative prior, take

the smallest values at m = 10.

1.00E-09
9.00E-10 -
8.00E-10 %\“
7.00E-10 §
6.00E-10 \
5.00E-10 §
4.00E-10 %
3.00E-10 §
2.00E-10 h\s
1.00E-10 - \
0.00E+00 -
SE LINEX (v=2) LINEX (v=-2) PRE
mH=0.1137 m H=0.5681 #H=3.0 w H= 4.3863

Figure 2 ERs of H (x) under SE, LINEX and PRE loss functions for different values of parameters

at m =10 under non-informative prior



Amal Soliman Hassan and Ahmed Nasser Zaky 105

o Figure 3 shows that the ERs for exact value H(x)= 0.1137 take the smallest value at m =5 in

case of informative prior.

6.00E-08

5.00E-08

4.00E-08

3.00E-08

2.00E-08

1.00E-08

0.00E-+00
SE LINEX (v=2) LINEX (v=-2) PRE
® H=0.1137 ® H=0.5681 ® H=3.0 » H=4.3863

Figure 3 ERs of H (x) under SE, LINEX and PRE loss functions for different values

of parameters at m =5 under informative prior

e Figure 4 shows that the ERs for exact value H(x)=0.1137 and H(x)=4.3863 in case of
informative prior are smaller than the corresponding for another exact value for all selected
loss functions at m =10. Also, at H(x)=0.1137, the ERs of I:I(LINEX)Z (x) at v =2 take the

smallest value, while, the ERs of H, (PRE), (X) take the largest value.

8.00E-10
7.00E-10
6.00E-10
5.00E-10
4.00E-10
3.00E-10
2.00E-10
1.00E-10
0.00E+00

LINEX (v=2) LINEX (v=-2)
mH=3.0

SE PRE
mH=0.1137 = H=0.5681 ® H=4.3863

Figure 4 ERs of H (x) under SE, LINEX and PRE loss functions for different values

of parameters at m =10 under informative prior
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e For small true values of entropy, in case of non-informative prior, the width of Bayes credible

intervals for H (uex), (¥) at v=2 is the shortest compared to the width of credible interval

in case of I:I( sy, (x) and ﬁ(PRE)l (x) for most values of m (for example see Figure 5).

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0

5 7 10
u SE ® LINEX (v=2) u LINEX(v=-2) u PRE

Figure 5 The width of credible interval under SE, LINEX and PRE loss functions for different
values of record numbers under non-informative prior for H(x)=0.1137

o For large true values of entropy, in case of non-informative prior, the width of Bayes credible

intervals for H, (sg), (x) 1s the shortest compared to the width of credible interval H (PrE), (¥)

and H (LINEx), (¥) for most values of m (for example see Figure 6).

0.02
0.018
0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

0

5 7 9

u SE u LINEX (v=2) u LINEX(v=-2) u PRE

Figure 6 The width of credible interval under SE, LINEX and PRE loss functions for different
values of record numbers under non-informative prior for H(x)= 4.3863
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e Under informative prior, at H(x)= 0.1137, the width of Bayes credible intervals for
1'-AI(SE)2 (x)is the shortest compared to the width of credible interval I;V(PRE)Z (x) and
ILAI(LH\]EX)2 (x) for all values of m. The RABs of ﬁ( sg), (X) take the smallest values compared
to RABs of FI(LINEX)Z (x) and ﬁ(pmz (x) at m =5,8 and 10 (see Table 5).

e Under informative prior, the width of Bayes credible intervals for £ (Liix), (X) 18 the shortest
compared to the width of credible interval I—AI(PRE)Z (x) and ﬁ( sg), (x) for most values of m
(for example see Figure 7). The RABs of I:I(LINEX)Z (x) at v =2 have the smallest values

compared to RABs of }'-AI(SE)2 (x) and }'-AI(PRE)z (x) at m=5,6,8 and 9 (see Table 7).

0.06

0.05

0.04
0.03

0.02
0.01 -

0_
6 8 10

u SE u LINEX (v=2) LINEX(v=-2) u PRE

Figure 7 The width of credible interval under SE, LINEX and PRE loss functions for different
values of record numbers under non-informative prior for H(x)=4.3863

4.3. Real data

In this subsection, a real data is employed to illustrate the above theoretical results. The data
represent the time to break down of an insulating fluid between electrodes at a voltage of 34 K. Volt
(Nelson 1982). The data are recorded as follows:

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91
32.52 3.16 4.85 2.78 4.67 1.31 12.06  36.71 72.89

The validity of the fitted model, has been checked by Abd Ellah (2006). The Kolmogorov-
Smirnov goodness of fit test is employed for real data and its p-value indicates that the Lomax
distribution fits the data. The estimated PDF and CDF are represented in Figure 8.
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Table 1 Bayes estimates, RAB, ER and width of entropy based on URV for («,4) =(2.0,0.5)

under non-informative prior

Number of records (m) 5 6 7 8 9 10
Exact value 0.1137
SE Estimate 0.1140 0.1153 0.1161 0.1141 0.1140 0.1141

RAB 2.39E-03 1.37E-02 2.13E-02 3.28E-03 1.50E-02 6.79E-03
ER 3.20E-10 2.48E-10 1.58E-10 1.40E-10 5.71E-11 3.72E-11
Width 3.83E-03 3.40E-03 2.95E-03 2.74E-03 2.72E-03 2.70E-03
LINEX Estimate 0.1126 0.1115 0.1144 0.1134 0.1137 0.1132
=2) RAB 9.56E-03 1.98E-02 5.67E-03 2.86E-03 1.75E-02 4.60E-03
ER 3.30E-10 2.69E-10 2.43E-10 1.65E-10 9.15E-11 3.79E-11
Width 3.34E-03 2.99E-03 2.09E-03 1.55E-03 1.51E-03 1.42E-03
LINEX Estimate 0.1075 0.1109 0.1141 0.1127 0.1147 0.1138
(v=-2) RAB 5.49E-02 1.52E-03 3.61E-03 9.03E-03 8.55E-03 1.80E-02
ER 8.16E-10 6.05E-10 3.03E-10 1.62E-10 &.70E-11 1.42E-11
Width 8.76E-03 4.12E-03 3.87E-03 1.78E-03 1.73E-03 1.69E-03
PRE Estimate 0.1128 0.1138 0.1140 0.1133 0.1144 0.1142
RAB 8.06E-03 8.20E-04 1.15E-02 4.00E-02 5.84E-03 4.55E-03
ER 424E-10 2.42E-10 1.53E-10 1.08E-10 6.81E-11 5.36E-11
Width  3.57E-03 2.92E-03 2.63E-03 2.52E-03 2.35E-03 2.27E-03

Note: E-a is stands for 107

Table 2 Bayes estimates, RAB, ER and width of entropy based on URV for («, ) = (1.5,0.5) under

non-informative prior

Number of records (m) 5 6 7 8 9 10
Exact value 0.5681
SE Estimate 0.5674 0.5663 0.5653 0.5705 0.5653 0.5667

RAB 1.18E-03 3.15E-03 4.82E-03 4.37E-03 4.84E-03 2.34E-03

ER 4.00E-08 &8.83E-09 4.28E-09 3.07E-10 2.28E-10 1.69E-10

Width 5.53E-03 4.91E-03 4.52E-03 3.74E-03 3.15E-03 3.13E-03

LINEX Estimate 0.5699 0.5693 0.5670 0.5680 0.5677 0.5673
L=2) RAB 3.19E-03 2.24E-03 1.89E-03 1.63E-04 6.33E-04 4.72E-03
ER 2.85E-09 2.22E-09 1.05E-09 8.61E-10 3.01E-10 1.40E-10

Width 3.42E-03 3.31E-03 3.15E-03 3.12E-03 2.86E-03 2.01E-03

LINEX Estimate 0.5694 0.5691 0.5695 0.5673 0.5687 0.5681
L=-2) RAB 6.29E-04 1.13E-03 6.21E-03 1.29E-03 2.86E-03 2.26E-03
ER 1.93E-09 1.75E-09 1.29E-09 6.44E-10 4.47E-10 1.13E-10

Width 4.04E-03 3.72E-03 3.36E-03 2.98E-03 2.61E-03 2.15E-03

PRE Estimate 0.5687 0.5684 0.5680 0.5670 0.5683 0.5681
RAB 1.21E-03 6.84E-04 1.51E-04 1.85E-03 2.20E-03 &.10E-04

ER 7.43E-09 1.75E-09 9.46E-10 9.31E-10 2.56E-10 1.11E-10
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Width 4.88E-03 3.87E-03 3.29E-03 2.82E-03 2.29E-03 2.19E-03
Note: E-a is stands for 107

Table 3 Bayes estimates, RAB, ER and width of entropy based on URV for (a, 1) =(0.5,0.5) under

non-informative prior

Number of records () 5 6 7 8 9 10
Exact value 3.0
SE Estimate 2.9970 3.0050 2.9950 2.9940 3.0150 2.9980

RAB 1.13E-03 1.66E-03 9.20E-04 1.86E-03 5.07E-03 1.57E-03
ER 1.24E-08 6.23E-09 5.26E-09 7.71E-10 7.27E-10 5.93E-10
Width 6.91E-03 6.23E-03 5.85E-03 4.53E-03 4.25E-03 3.88E-03
LINEX Estimate 3.0050 3.0030 2.9990 2.9970 3.0040 3.0010
v=2) RAB 1.77E-03 1.08E-03 2.51E-04 9.33E-04 1.30E-03 3.17E-04
ER 5.47E-09 3.37E-09 2.19E-09 1.96E-09 1.70E-09 7.99E-10
Width 1.07E-02 7.36E-03 6.32E-03 5.87E-03 5.21E-03 2.93E-03
LINEX Estimate 2.9972 2.9943 2.9943 2.9997 3.0006 3.0002
(L=-2) RAB 9.44E-04 1.91E-03 191E-03 8&.81E-05 1.90E-04 3.57E-03
ER 2.19E-09 1.29E-09 3.26E-10 2.54E-10 5.28E-10 1.03E-10
Width 1.54E-02 1.08E-02 1.05E-02 7.85E-03 7.74E-03 3.52E-03
PRE Estimate 3.0040 2.9930 2.9950 2.9950 3.0070 2.9990
RAB 1.19E-03 2.17E-03 1.51E-03 1.51E-03 2.31E-03 1.11E-03
ER 1.53E-08 4.29E-09 3.65E-09 2.95E-09 1.44E-09 2.00E-10
Width 7.06E-03 6.91E-03 6.73E-03 5.52E-03 5.25E-03 3.75E-03

Note: E-a is stands for 107

Table 4 Bayes estimates, RAB, ER and width of entropy based on URV for («, 1) =(0.5,2.0)

under non-informative prior

Number of records () 5 6 7 8 9 10
Exact value 4.3863
SE Estimate 4.3900 4.3890 4.3790 4.3960 4.3790 4.3800

RAB 7.35E-04 6.34E-04 1.59E-03 2.26E-03 1.58E-03 1.35E-03

ER 1.69E-08 9.72E-09 6.80E-09 5.04E-09 6.78E-10 1.58E-10

| Width 7.35E-03 7.02E-03 6.38E-03 5.19E-03 3.25E-03 3.10E-03

LINEX Estimate 4.3800 4.3900 4.3920 4.3890 4.3900 4.3850
(L=2) RAB 1.46E-03 8.54E-04 1.38E-03 6.27E-04 7.38E-04 1.52E-03
ER 3.16E-08 3.11E-09 2.02E-09 1.06E-09 5.33E-10 3.33E-10

Width 1.21E-02 8.71E-03 7.16E-03 5.19E-03 4.92E-03 4.62E-03

LINEX Estimate 4.3803 4.3975 4.3907 4.3802 4.3863 4.3851
(L=-2) RAB 1.37E-03 2.56E-03 1.00E-03 1.38E-03 8.62E-06 2.72E-04
ER 7.96E-09 6.88E-09 4.11E-09 1.64E-09 9.50E-10 8.80E-10

Width 1.86E-02 1.50E-02 8.63E-03 6.53E-03 5.92E-03 5.12E-03

PRE Estimate 4.3820 4.3910 4.3840 4.3900 4.3830 4.3820
RAB 1.00E-03 1.09E-03 4.33E-04 9.26E-04 8.28E-04 9.13E-04

ER 8.99E-09 7.31E-09 5.65E-09 5.62E-09 &.10E-10 1.94E-10
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Width 1.42E-02 1.32E-02 8.72E-03 6.07E-03 5.67E-03 4.81E-02
Note: E-a is stands for 107

Table 5 Bayes estimates, RAB, ER and width of entropy based on URV for (&, 1) =(2.0,0.5)

under informative prior

Number of records (1) 5 6 7 8 9 10
Exact value 0.1137
SE Estimate 0.1143 0.1133 0.1139 0.1139 0.1138 0.1137

RAB 9.97E-04 1.38E-02 2.43E-02 2.01E-03 1.83E-02 4.56E-03
ER 7.09E-10 5.98E-10 1.76E-10 1.69E-10 1.37E-10 1.02E-10
| Width 3.03E-03 2.99E-03 2.24E-03 2.15E-03 1.75E-03 1.20E-03
LINEX Estimate 0.1166 0.1172 0.1143 0.1141 0.1126 0.1144
=2) RAB 2.57E-02 3.05E-02 2.63E-03 2.27E-02 9.71E-03 6.28E-03
ER 5.27E-10 4.65E-10 3.03E-10 1.43E-10 1.12E-10 9.20E-11
Width 5.92E-03 4.93E-03 4.39E-03 4.21E-03 3.86E-03 3.70E-03
LINEX Estimate 0.1134 0.1145 0.1144 0.1136 0.1141 0.1137
(v=-2) RAB 2.77E-03 6.95E-03 6.28E-03 2.72E-02 3.21E-03 1.60E-02
ER 6.34E-10 4.50E-10 3.77E-10 1.80E-10 1.24E-10 1.19E-10
Width 3.71E-03 3.37E-03 3.21E-03 2.98-03 2.67E-03 2.21E-03
PRE Estimate 0.1124 0.1156 0.1149 0.1125 0.1144 0.1130
RAB 2.05E-02 2.73E-02 1.02E-02 1.03E-02 5.91E-03 5.83E-03
ER 8.67E-10 3.33E-10 2.91E-10 2.49E-10 1.98E-10 1.60E-10
Width 4.08E-03 3.84E-03 3.76E-03 3.73E-03 3.72E-03 3.41E-03

Note: E-a is stands for 107

Table 6 Bayes estimates, RAB, ER and width of entropy based on URV for (o, 1) =(1.5,0.5)
under informative prior

Number of records (m) 5 6 7 8 9 10
Exact value 0.5681
SE Estimate 0.5678 0.5664 0.5695 0.5660 0.5657 0.5673

RAB 4.91E-04 2.93E-03 7.44E-04 3.58E-03 5.83E-03 1.27E-03
ER 1.93E-09 1.55E-09 6.95E-10 5.04E-10 3.69E-10 2.00E-10
| Width 4.52E-03 4.28E-03 2.91E-03 2.83E-03 2.73E-03 2.34E-03
LINEX Estimate 0.5676 0.5710 0.5690 0.5660 0.5684 0.5700
v=2) RAB 8.01E-04 5.48E-03 2.17E-03 3.55E-03 5.48E-04 4.13E-03
ER 1.56E-09 4.57E-10 4.41E-10 2.13E-10 2.02E-10 1.16E-10
Width 3.05E-03 2.97E-03 2.51E-03 2.48E-03 2.28E-03 2.01E-03
LINEX Estimate 0.5650 0.5660 0.5670 0.5689 0.5690 0.5669
(v=-2) RAB 5.11E-03 3.40E-03 1.98E-03 1.43E-03 1.73E-03 1.95E-03
ER 248E-09 2.28E-09 6.91E-10 4.92E-10 2.78E-10 1.32E-10
Width 6.47E-03 5.69E-03 4.86E-03 4.78E-03 3.40E-03 3.00E-03
PRE Estimate 0.5690 0.5670 0.5690 0.5666 0.5676 0.5680
RAB 9.21E-04 2.68E-03 2.17E-03 2.47E-03 7.22E-04 3.63E-03
ER 3.44E-09 6.99E-10 5.64E-10 4.14E-10 3.47E-10 2.58E-10
Width 4.10E-03 3.85E-03 3.03E-03 2.69E-03 2.35E-03 2.10E-03

Note: E-a is stands for 107
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Table 7 Bayes estimates, RAB, ER and width of entropy based on URV for (a, 1) =(0.5,0.5)

under informative prior

Number of records (m)

5

6

7

10

Exact value

3.0

SE Estimate
RAB

ER

| Width

3.0053
7.60E-04
2.03E-08
1.17E-02

3.0043
1.43E-03
1.01E-08
1.09E-02

2.9956
8.11E-04
3.66E-09
1.02E-02

2.9929
2.38E-03
2.08E-09
8.26E-03

3.0021
7.01E-04
8.84E-10
6.29E-03

3.0003
1.10E-04
7.30E-10
3.02E-03

LINEX Estimate
L=2) RAB
ER

Width

3.0008
2.73E-04
1.56E-08
9.83E-03

2.9991
3.01E-04
1.31E-08
9.72E-03

3.0057
1.91E-03
2.88E-09
8.18E-03

2.9983
5.72E-04
1.62E-09
8.02E-03

3.0004
1.47E-04
1.33E-09
6.56E-03

2.9998
3.39E-03
5.48E-10
1.80E-03

LINEX Estimate
(L=-2) RAB
ER

Width

2.9926
2.47E-03
5.52E-08
1.72E-02

3.0041
1.38E-03
1.80E-08
1.02E-02

2.9918
2.74E-03
1.99E-09
1.01E-02

2.9955
1.51E-03
1.08E-09
8.73E-03

2.9929
2.38E-03
8.73E-10
7.43E-03

2.9991
2.90E-04
1.52E-10
4.90E-03

PRE Estimate
RAB

ER

Width

2.9987
4.47E-04
2.08E-08
7.87E-02

2.9983
5.76E-04
1.28E-08
5.37E-02

3.0083
2.75E-03
8.35E-09
2.15E-02

3.0022
7.41E-04
7.35E-09
1.19E-02

3.0004
1.49E-04
2.85E-10
5.04E-03

3.0017
5.70E-04
2.00E-10
4.26E-03

Note: E-a is stands for 107

Table 8 Bayes estimates, RAB, ER and width of entropy based on URV for («, 1) =(0.5,2.0)

under informative prior

Number of records (m)

5

6

7

10

Exact value

4.3863

SE Estimate
RAB

ER

| Width

4.3894
7.04E-04
2.67E-09
5.21E-02

4.3784
1.79E-03
1.68E-09
3.34E-02

4.3739
2.83E-03
8.73E-10
2.07E-02

4.3887
5.51E-04
6.39E-10
9.39E-03

4.3828
7.89E-04
4.76E-10
6.34E-03

4.3870
1.73E-03
7.69E-11
5.59E-03

LINEX Estimate
L=2) RAB
ER

Width

4.3787
1.74E-03
8.32E-09
1.21E-02

4.3845
4.08E-04
9.59E-10
1.13E-02

4.3920
1.30E-03
8.78E-10
9.68E-03

4.3832
6.94E-04
7.57E-10
9.35E-03

4.3893
6.78E-04
1.24E-10
9.04E-03

4.3879
1.06E-03
4.95E-11
8.81E-03

LINEX Estimate
(L=-2) RAB
ER

Width

4.3923
1.37E-03
1.35E-09
1.23E-02

4.3863
1.18E-05
1.28E-09
9.43E-03

4.3816
1.08E-03
6.42E-10
9.35E-03

4.3845
4.07E-04
2.01E-10
9.18E-03

4.3939
1.74E-03
1.36E-10
8.83E-03

4.3862
2.12E-05
1.52E-11
4.37E-03

PRE Estimate
RAB

ER

Width

4.3823
9.01E-04
1.51E-09
6.18E-02

4.3847
3.74E-04
5.13E-10
6.02E-02

4.3883
4.61E-04
3.10E-10
3.02E-02

4.3908
1.02E-03
2.70E-10
1.29E-02

4.3855
1.84E-04
1.30E-10
5.08E-03

4.3861
1.18E-03
2.01E-11
5.01E-03
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Note: E-a is stands for 107
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Figure 8 Estimated PDF and CDF of Lomax distribution for real data
Hence, the URV from this data are: 0.96, 4.15, 8.01, 31.75, 33.91, 36.71, 72.89. Regarding this
record data, the entropy Bayes estimation at m =5 and 7 under SE, LINEX and PRE loss functions

are obtained and listed in Table 9.

Table 9 Estimated of Shannon entropy under non-informative and informative priors

m Prior SEL LINEX (v=2) LINEX(v=-2) PRE
5 non-informative 0.1135390 0.1133742 0.1129690 0.1132783
7 0.1134979 0.1114639 0.1113676  0.1110350
5 informative  0.1124057 0.1135005 0.1157789 0.1151257
7 0.1122747 0.1125413 0.1143497 0.1151248

5. Conclusions

This paper provides Bayesian estimation of Shannon entropy for Lomax distribution using upper
record values. The Bayesian estimators of entropy are obtained in case of informative and non-
informative prior functions for three loss functions. Bayesian estimator of Shannon entropy is
discussed under informative and non-informative priors. The Bayesian estimators are computed using
the idea of Markov chain Monte Carlo method based on Gibbs sampling. The performance of the
entropy estimates for Lomax distribution is investigated in terms of their absolute relative bias,
estimated risk and the width of credible intervals. Application to real data and simulation issues are
provided.

From simulation results we conclude that, the Bayesian estimator of entropy approaches the true
value as the number of record increases. Generally, the entropy and ERs are directly proportional,
that is; if the real value of entropy decreases, the ERs decrease.

Under non-informative prior, for small true values of entropy, the width of Bayes credible
intervals for estimated values of entropy under LINEX loss function are smaller than the
corresponding estimated values based on SE and PRE loss functions for most values of selected
records. But for large true values of entropy, the width of Bayes credible intervals for estimated values
of entropy under SE loss function is smaller than the corresponding estimated values based on LINEX
and PRE loss functions for most values of m.
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Under informative prior, the width of Bayes credible intervals for estimated values of entropy
under LINEX loss function is smaller than the corresponding estimated values based on SE and PRE
loss functions for most values of m.

Regarding simulation results, Bayesian estimates under LINEX loss function at (v = 2) are more

suitable than other selected loss functions for different types of prior functions in most of situations.
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