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Abstract 

The ridge estimator has been consistently demonstrated to be an attractive shrinkage method to 

reduce the effects of multicollinearity. The negative binomial regression model is a well-known model 

in application when the response variable is count data. However, it is known that multicollinearity 

negatively affects the variance of maximum likelihood estimator of the negative binomial regression 

coefficients. To address this problem, a negative binomial ridge estimator has been proposed by 

numerous researchers. In this paper, a new negative binomial ridge estimator (NNBRE) is proposed 

and derived. The idea behind the NNBRE is to get diagonal matrix with small values of diagonal 

elements that leading to decrease the shrinkage parameter and, therefore, the resultant estimator can 

be better with small amount of bias. Our Monte Carlo simulation results suggest that the NNBRE 

estimator can bring significant improvement relative to other existing estimators. In addition, the real 

application results demonstrate that the NNBRE estimator outperforms both negative binomial ridge 

regression and maximum likelihood estimators in terms of predictive performance. 

______________________________ 
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1. Introduction 

The negative binomial regression model ( NBRM)  is one basic model for count data analysis. 

“This model has found a widespread use in several real data fields, such as health, social, economic 

and physical sciences when the response variable comes in the form of non-negative integers or counts. 

The NBRM has three basic assumptions: on the conditional distribution of the dependent variable, on 

the specification of the mean parameter and on the independence of the distribution for all observations 

(Algamal 2012, Cameron and Trivedi 2013, De Jong and Heller 2008). In dealing with the NBRM, it 

is assumed that there is no correlation among the explanatory variables.  In practice, however, this 

assumption often not holds, which leads to the problem of multicollinearity.  In the presence of 

multicollinearity, when estimating the regression coefficients for NBRM using the maximum 

likelihood (ML) method, the estimated coefficients are usually become unstable with a high variance, 

and therefore low statistical significance (Kibria et al. 2015). Numerous remedial methods have been 

proposed to overcome the problem of multicollinearity.  The ridge regression method ( Hoerl and 
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Kennard 1970)  has been consistently demonstrated to be an attractive and alternative to the ML 

estimation method. 

Ridge regression is a shrinkage method that shrinks all regression coefficients toward zero to 

reduce the large variance (Asar and Genç 2015). This done by adding a positive amount to the diagonal 

of .TX X  As a result, the ridge estimator is biased but it guaranties a smaller mean squared error than 

the ML estimator.   

In linear regression, the ridge estimator is defined as 
-1ˆ ( ) ,T T

Ridge X X k I X y                                                      (1) 

where y  is an 1n  vector of observations of the response variable, 1( ,..., )pX x x  is an n p  

known design matrix of explanatory variables, 1( ,..., )p    is a 1p  vector of unknown 

regression coefficients, I  is the identity matrix with dimension ,p p  and 0k   represents the ridge 

parameter ( shrinkage parameter) .  The ridge parameter, k , controls the shrinkage of β  toward zero. 

The OLS estimator can be considered as a special estimator from (1)  with 0k  .  For larger value of 

,k  the ˆ
Ridgeβ  estimator yields greater shrinkage approaching zero (Hoerl and Kennard 1970, Algamal 

and Lee 2015, Rashad and Algamal 2019)”.  

 

2. The Negative Binomial Ridge Estimator 

The negative binomial regression model is commonly used for analyzing count data when the 

dependent variable iy   is distributed as ( , )NB    where a sequence of identical and independent 

Bernoulli  trials, all with success probability ,  are observed until successes   are observed. “Here, 

the expectation is (1 ) /       and the variance 2(1 ) / .      

The probability function of the negative binomial distribution is given by  
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The re-parameterization of the negative binomial with parameter   and   can be rewritten with 

  and 
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,
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  which is an over dispersion parameter, as 
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where (1 ) /i i i     and 1/ (1 ).i i    The log- likelihood of the negative binomial model is 

given by  
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Let iX be the thi   row of thi row of X   which is an n p  data matrix with p   independent 

variables and let be an n p   vector of coefficients.    is usually estimated by the maximum 

likelihood estimation (MLE) which is found by maximizing the log-likelihood given by 



Nada Nazar Alobaidi et al. 117 

 

   
1

1

1

1
ln( )) ln ! ln 1 exp(x )

( , ) ,
1

ln (x )

iy
T

i i in
t

i T
i i i

t y y

y y

  


 










  
      

  
  

       


   (5) 

where exp(X )T
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The vector of coefficients using the MLE is then estimated by solving the likelihood equation, 
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Because ( 6)  is nonlinear for ,  the solution of likelihood equation is found by the iterative 

weighted least square (IWLS) algorithm as 

 1ˆ ˆ ˆ ˆ( ) ,T T
ML X WX X W s    (7) 

where ˆ ˆ ˆ/(1 (1/ )i iW diag       and ŝ  is a vector where thi  element equals to  
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The MLE estimator of   is asymptotically normally distributed with a covariance matrix 

1ˆ ˆ( ) ( ) .T
MLCov X WX   The MSE based on the asymptotic covariance matrix equals 
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where jML   is the thi  eigenvalue of the ˆTX WX  matrix.  Note that the weighted matrix of cross 

products, ˆ ,TX WX  is ill-conditioned which leads to instability and high variance of the MLE estimator 

when the independent variables are highly correlated.  In that situation, it is difficult to interpret the 

estimated parameters since the vector of estimated coefficients become too long. 

Due to the presence of multicollinearity in the negative binomial regression analysis, the negative 

binomial ridge estimator (NBRE) is proposed by  Månsson (2012) as follows 

 1 1ˆ ˆˆ ˆ ˆ ˆ( ) ( ) .T T T T
NBRE MLX WX kI X WX X WX kI X WX       (9) 

Note that this type shrinkage estimator minimizes the increase in the weighted sum of squared 

error.  Hence, the shrinkage parameter, k, may take on values between zero and infinity.  The ML 

estimator can be considered as a special estimator from ( 9)  with 0k  .  Regardless of k  value, the 

MSE of the ˆ
NBRE  is smaller than that of ˆ

ML  because the MSE of ˆ
NBRE  is equal to ( Kibria et al. 

2015) 
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where j  is defined as the thj   element of ˆ
ML  and   is the eigenvector of  the ˆTX WX  matrix. 

Comparing with the MSE of (5), ˆMSE( )NBRE  is always small for 0.k   
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3. The Proposed Estimator 

In this section, the new estimator is introduced and derived.  Let 1 2( , ,..., )pQ q q q  and 

1 2( , , ..., ),pdiag      respectively, be the matrices of eigenvectors and eigenvalues of the ˆTX WX  

matrix, such that ˆ ˆ ,T T TM X WXQ L WL    where .L XQ   Consequently, the Poisson regression 

estimator of (5), ˆ ,ML  can be written as 

 1 ˆˆ ˆ,T
ML L Wv     (11) 

ˆ ˆ .ML MLQ   

Accordingly, the negative binomial ridge estimator, ˆ
NBRE , is rewritten as 

 1 1ˆˆ ˆ( ) ( ) ,T
NBRE MLK L Wv I KD         (12) 

where D K   and 1 2( , ,..., ); ³0, 1,2,..., .p iK diag k k k k i p   Equation (12) represents the 

generalized ridge negative binomial regression estimator. 

In generalized ridge estimator, the Jackknifing approach was used (Nyquist 1988, Khurana et al. 

2014, Singh et al. 1986). Batah et al. (2008) proposed a modified Jackknifed ridge regression estimator 

in linear regression model. Related to negative binomial regression model, Türkan and Özel (2017) 

proposed a modified Jackknifed negative binomial ridge estimator depending on the study of Singh  

et al. (1986). Several studies dealt with the negative binomial regression model in the presence of 

multicollinearity (Huang and Yang 2012, KaÇiranlar and Dawoud 2018, Kandemir et al. 2019, 

Månsson 2013).  

In this paper, the new estimator (JNBRE) is derived by following the study of Batah et al. (2008). 

Let the Jackknife estimator (JE), in negative binomial regression, is defined as  

 2 2ˆ ˆ( ) ,JE MLI K D     (13) 

and the modified Jackknife estimator (MJE) of  Batah et al. (2008), in negative binomial regression 

model, is defined as 

 1 2 2ˆ ˆ( )( ) .MJE MLI KD I K D       (14) 

Consequently, our new estimator is an improvement of (14) by multiplying it with the amount 
3 3 2 2[( ) / ( )].I K D I K D    The idea behind this is to get diagonal matrix with small values of 

diagonal elements which leading to decrease the shrinkage parameter, and, therefore, the resultant 

estimator can be better with small amount of bias. The new estimator is defined as  
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and ˆ ˆ .T
JNBRE JNBREQ                  (16) 

 

3.1. Bias, variance and MSE of the new estimator 

The MSE of the new estimator can be obtained as 

 2ˆ ˆ ˆMSE( ) var( ) [bias( )] .JNBRE JNBRE JNBRE      (17) 

According to (16), the bias and variance of ˆ
JNBRE  can be obtained as, respectively,  
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where 3 3 1( ) ( )TI K D I K D      and 1 3[ ].I K D KD K      

 

3.2. Selection of parameter k  

The efficiency of ridge estimator strongly depends on appropriately choosing the k  parameter. 

To estimate the values of k  for our new estimator, the most well-known used estimation methods are 

employed and are given below (Kibria et al. 2015) 

1. Hoerl and Kennard (1970) (K1), which is defined as  
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2. Kibria et al. (2015) (K2), which is defined as 
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3. Kibria et al. (2015) (K3), which is defined as 
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4. Simulation Study 

In this section, a Monte Carlo simulation experiment is used to examine the performance of the 

new estimator with different degrees of multicollinearity. 

 

4.1. Simulation design 

The response variable of n  observations is generated from negative binomial regression model 

by  

 exp( ),T
i i  x β   (24) 

where 0 1( , ,..., )p  β  with 2

1

1
p

j
j




  and 1 2 ... p       (Kibria 2003, Månsson and Shukur 

2011). In addition, the value of   are chosen as 1 and 2. 

The explanatory variables 1 2( , ,..., )T
i i i inx x xx  have been generated from the following formula  

 2 1 2(1 ) , 1,2,..., , 1, 2,..., ,l
ij ij ipx w w i n j p        (25) 

where   represents the correlation between the explanatory variables and ijw  ’ s are independent 

standard normal pseudo-random numbers. Because the sample size has direct impact on the prediction 
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accuracy, three representative values of the sample size are considered:  30, 50 and 100.  In addition, 

the number of the explanatory variables is considered as 4p   and 8p   because increasing the 

number of explanatory variables can lead to increase the MSE.  Further, because we are interested in 

the effect of multicollinearity, in which the degrees of correlation considered more important, three 

values of the pairwise correlation are considered with {0.90,0.95,0.99}.   For a combination of 

these different values of , ,n p   and   the generated data is repeated 1000 times and the averaged 

mean squared errors (MSE) is calculated as  

 
1000

1

1ˆ ˆ ˆ( ) ( ) ( ),
1000

T

i

MSE     


     (26) 

where ̂  is the estimated coefficients for the used estimator. 

 

4.2. Simulation results 

The estimated MSE of (26) for MLE, NBRE and JNBRE, for all the different selection methods 

of k  and the combination of , ,n p   and ,  are respectively summarized in Tables 1 and 2. Several 

observations can be made. 

First, in terms of   values, there is increasing in the MSE values when the correlation degree 

increases regardless the value of , , .n p   However, JNBRE performs better than NBRE and MLE for 

all the different selection methods of .k  For instance, in Table 1, when 4,p  100,n  and 0.95,  

the MSE of JNBRE was about 51.78%, 36.41% and 20.38% lower than that of NBRE for K1, K2 and 

K3, respectively. In addition, the MSE of JNBRE was about 96.19% lower than that of ML. 

Second, regarding the number of explanatory variables, it is easily seen that there is increasing 

in the MSE values when the p  increasing from four variables to eight variables. Although this 

increasing can affected the quality of an estimator, JNBRE is achieved the lowest MSE comparing 

with MLE and NBRE, for different , ,n    and different selection methods of .k   

Third, with respect to the value of ,n  The MSE values decreases when n  increases, regardless 

the value of , ,p   and the value of k . However, JNBRE still consistently outperforms NBRE and 

ML by providing the lowest MSE.   

Fourth, in terms of the value of the   and for a given values of , ,p n  and the value of ,k  

JNBRE is always show smaller MSE comparing with NBRE and ML estimator.  

Finally, for the different selection methods of ,k  the performance of all methods suggesting that 

the JNBRE estimator is better than the other used two estimators. The K1 efficiently provides less 

MSE comparing with the K2 and K1 for both JNBRE and NBRE estimators. Besides, K1 is more 

efficient for providing less MSE than K2 or both JNBRE and NBRE estimators”.  

To summary, all the considered values of , , ,n p  , and the value of ,k  JNBRE is superior to 

NBRE, clearly indicating that the new proposed estimator is more efficient. 

 

5. Real Application 

To further investigate the usefulness of our new estimator, we apply the proposed estimator to 

the football Spanish La Liga, season 2016-2017. “This data contains 20 teams. The response variable 

represents the number of won matches. The six considerable explanatory variables included the 

number of yellow cards 1( ),x  the number of red cards 2( ),x  the total number of substitutions 3( ),x  the  
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Table 1 MSE values when 1   

p  n    
 K1  K2  K3  

ML NBRE JNBRE NBRE JNBRE NBRE JNBRE 

4 30 0.90 4.884 0.923 0.77 0.563 0.462 1.308 1.207 
 0.95 5.512 1.154 1.003 1.012 0.911 1.467 1.366 
 0.99 5.910 1.804 1.652 1.544 1.443 1.813 1.712 

50 0.90 3.255 0.556 0.403 0.474 0.373 0.849 0.748 
 0.95 4.330 0.828 0.675 0.583 0.482 0.945 0.844 
 0.99 4.522 1.145 0.992 1.473 1.372 1.158 1.057 

100 0.90 3.098 0.358 0.205 0.445 0.344 0.706 0.605 
 0.95 3.308 0.482 0.329 0.472 0.371 0.722 0.621 
 0.99 4.063 1.508 1.355 1.248 1.147 0.840 0.739 

8 30 0.90 4.989 1.125 0.972 0.755 0.654 1.503 1.402 

 0.95 5.608 1.356 1.203 1.204 1.103 1.662 1.561 

 0.99 6.023 2.006 1.853 1.736 1.635 2.008 1.907 

50 0.90 3.524 0.758 0.605 0.666 0.565 1.044 0.943 

 0.95 4.667 1.030 0.877 0.775 0.674 1.140 1.039 

 0.99 4.992 1.347 1.194 1.665 1.564 1.353 1.252 

100 0.90 3.434 0.550 0.397 0.637 0.536 0.902 0.801 

 0.95 3.709 0.674 0.522 0.664 0.563 0.917 0.816 

 0.99 4.267 1.700 1.547 1.440 1.339 1.035 0.934 

 

Table 2 MSE values when 2   

p  n    
 K1  K2  K3  

ML NBRE JNBRE NBRE JNBRE NBRE JNBRE 

4 30 0.90 5.024 1.063 0.91 0.703 0.602 1.448 1.347 
 0.95 5.652 1.294 1.143 1.152 1.051 1.607 1.506 
 0.99 6.050 1.944 1.792 1.684 1.583 1.953 1.852 

50 0.90 3.395 0.696 0.543 0.614 0.513 0.989 0.888 
 0.95 4.470 0.968 0.815 0.723 0.622 1.085 0.984 
 0.99 4.662 1.285 1.132 1.613 1.512 1.298 1.197 

100 0.90 3.238 0.498 0.345 0.585 0.484 0.846 0.745 
 0.95 3.448 0.622 0.469 0.612 0.511 0.862 0.761 
 0.99 4.203 1.648 1.495 1.388 1.287 0.98 0.879 

8 30 0.90 5.129 1.265 1.112 0.895 0.794 1.643 1.542 

 0.95 5.748 1.496 1.343 1.344 1.243 1.802 1.701 

 0.99 6.163 2.146 1.993 1.876 1.775 2.148 2.047 

50 0.90 3.664 0.898 0.745 0.806 0.705 1.184 1.083 

 0.95 4.807 1.170 1.017 0.915 0.814 1.280 1.179 

 0.99 5.132 1.487 1.334 1.805 1.704 1.493 1.392 

100 0.90 3.574 0.690 0.537 0.777 0.676 1.042 0.941 

 0.95 3.849 0.814 0.662 0.804 0.703 1.057 0.956 

 0.99 4.407 1.840 1.687 1.580 1.479 1.175 1.074 
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number of matches with 2.5 goals on average 4( ),x  the number of matches that ended with goals              

5( ),x  and the ratio of the goal scores to the number of matches 6( ).x   

First, the deviance test (Montgomery et al. 2015) is used to check whether the negative binomial 

regression model is fit well to this data or not. The result of the residual deviance test is equal to 8.651 

with 14 degrees of freedom and the p-value is 0.822. It is indicated form this result that the negative 

binomial regression model fits very well to this data.  

Second, to check whether there are relationships between the explanatory variables or not, Figure 

1 displays the correlation matrix among the six explanatory variables. It is obviously seen that there 

are correlations greater than 0.82 between 1x  and 6 ,x  1x  and 4 ,x  2x  and 4x , and 4x  and 6 .x  

Third, to test the existence of multicollinearity, the eigenvalues of the matrix ˆTX WX  are obtained 

as 997.247, 321.922, 170.541, 41.386, 22.694, and 2.054. The determined condition number 

max minCN /   of the data is 22.034 indicating that the multicollinearity issue is exist. 

The estimated negative binomial regression coefficients and MSE values for the MLE, NBRE, 

and JNBRE estimators are listed in Table 3.  According to Table 3, it is clearly seen that the JNBRE 

estimator shrinkages the value of the estimated coefficients efficiently.  Furthermore, in terms of the 

selection method of ,k  JNBRE shows the superiority results of coefficient estimation using K2” .  In 

terms of MSE, the JNBRE using K2 achieves the lowest MSE. 

 

 

Figure 1 The correlation matrix among the six explanatory variables 

 

6. Conclusions 

In this paper, a new estimator of negative binomial ridge regression is proposed to overcome the 

multicollinearity problem in the negative binomial regression model.  According to Monte Carlo 

simulation studies, the proposed estimator has better performance than maximum likelihood estimator 

and ordinary negative binomial ridge estimator, in terms of MSE. Additionally, a real data application 

is also considered to illustrate benefits of using the new estimator in the context of negative binomial 

regression model. The superiority of the new estimator based on the resulting MSE was observed and 

it was shown that the results are consistent with Monte Carlo simulation results. 
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Table 3 The estimated coefficients and MSE values for the MLE, NBRE, and JNBRE estimators 

  K1  K2  K3  
 MLE NBRE JNBRE NBRE JNBRE NBRE JNBRE 

1̂  −1.219 −1.057 −0.516 −0.252 −0.615 −1.223 −0.824 

2̂  0.441 0.135 0.084 0.032 0.014 0.440 0.438 

3̂  0.575 0.127 0.016 0.096 0.012 0.576 0.393 

4̂  −3.476 −1.158 −0.134 −0.063 −0.114 −3.047 −0.619 

5̂  −2.432 −1.118 −0.008 −0.0162 −0.007 −2.419 −1.626 

6̂  5.121 2.173 1.077 0.066 0.093 4.166 1.642 

MSE 4.148 2.102 1.024 0.987 0.659 1.311 0.975 
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