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Abstract

The ridge estimator has been consistently demonstrated to be an attractive shrinkage method to
reduce the effects of multicollinearity. The negative binomial regression model is a well-known model
in application when the response variable is count data. However, it is known that multicollinearity
negatively affects the variance of maximum likelihood estimator of the negative binomial regression
coefficients. To address this problem, a negative binomial ridge estimator has been proposed by
numerous researchers. In this paper, a new negative binomial ridge estimator (NNBRE) is proposed
and derived. The idea behind the NNBRE is to get diagonal matrix with small values of diagonal
elements that leading to decrease the shrinkage parameter and, therefore, the resultant estimator can
be better with small amount of bias. Our Monte Carlo simulation results suggest that the NNBRE
estimator can bring significant improvement relative to other existing estimators. In addition, the real
application results demonstrate that the NNBRE estimator outperforms both negative binomial ridge
regression and maximum likelihood estimators in terms of predictive performance.
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1. Introduction

The negative binomial regression model (NBRM) is one basic model for count data analysis.
“This model has found a widespread use in several real data fields, such as health, social, economic
and physical sciences when the response variable comes in the form of non-negative integers or counts.
The NBRM has three basic assumptions: on the conditional distribution of the dependent variable, on
the specification of the mean parameter and on the independence of the distribution for all observations
(Algamal 2012, Cameron and Trivedi 2013, De Jong and Heller 2008). In dealing with the NBRM, it
is assumed that there is no correlation among the explanatory variables. In practice, however, this
assumption often not holds, which leads to the problem of multicollinearity. In the presence of
multicollinearity, when estimating the regression coefficients for NBRM using the maximum
likelihood (ML) method, the estimated coefficients are usually become unstable with a high variance,
and therefore low statistical significance (Kibria et al. 2015). Numerous remedial methods have been
proposed to overcome the problem of multicollinearity. The ridge regression method (Hoerl and
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Kennard 1970) has been consistently demonstrated to be an attractive and alternative to the ML
estimation method.

Ridge regression is a shrinkage method that shrinks all regression coefficients toward zero to
reduce the large variance (Asar and Geng 2015). This done by adding a positive amount to the diagonal

of X"X. As a result, the ridge estimator is biased but it guaranties a smaller mean squared error than
the ML estimator.
In linear regression, the ridge estimator is defined as

Brswe = (X" X kD' X"y, (1)
where y is an nx1 vector of observations of the response variable, X =(x,...,x,) is an nxp
known design matrix of explanatory variables, B =(f,....,f,) is a pxl vector of unknown
regression coefficients, I is the identity matrix with dimension px p, and & >0 represents the ridge
parameter ( shrinkage parameter). The ridge parameter, &, controls the shrinkage of B toward zero.
The OLS estimator can be considered as a special estimator from (1) with £ =0. For larger value of
k, the ﬁ risge €Stimator yields greater shrinkage approaching zero (Hoerl and Kennard 1970, Algamal
and Lee 2015, Rashad and Algamal 2019)”.

2. The Negative Binomial Ridge Estimator

The negative binomial regression model is commonly used for analyzing count data when the
dependent variable y, is distributed as NB(z,0) where a sequence of identical and independent

Bernoulli trials, all with success probability 7z, are observed until successes & are observed. “Here,
the expectation is = 6@(1—x)/x and the variance u=6(1-7x)/ "
The probability function of the negative binomial distribution is given by
(y,+6-1)!
y(@-D!
The re-parameterization of the negative binomial with parameter 7 and 6 can be rewritten with

f(y;ﬂ-ag): 72-1'9(1_7[[)%- (@)

1 Lo . .
u and a = R which is an over dispersion parameter, as

[n+1—ﬂ! N
f(y5m0)=~— ( )( = ), (3)

P —1)! 1+ au, 1+ ayu,
a

where u. =(1-rx,)/ar, and 7, =1/(1+au;). The log-likelihood of the negative binomial model is
given by

¥, log(a,) —[yf + ljlog(l +ay)+log F{yl- +ij
1 o o
Luy.a) =3, 1 : 4)
= —logI'(y, +1)—10g1“(—j
o

Let X, be the i" row of i" row of X which is an nx p data matrix with p independent
variables and let be an nxp vector of coefficients. £ is usually estimated by the maximum

likelihood estimation (MLE) which is found by maximizing the log-likelihood given by



Nada Nazar Alobaidi et al. 117

S op-m(y, !)—(yf+9)1“[”ée"p(x"r g )j

1Wo=24" , (5)
4y, ln[gj—i-yi x; B
where 1, =exp(X! B) and log {w} = 2 (t+0).
I'(0) P
The vector of coefficients using the MLE is then estimated by solving the likelihood equation,
ol pB,0 S
sip=LLO s vtk g ©

o =, (1)
I+ — | i
[ejﬂl

Because (6) is nonlinear for £, the solution of likelihood equation is found by the iterative
weighted least square (IWLS) algorithm as
By = (XWX XTWS, (7)
where W = diagl:,[ti /(1+(1/ 9),[11.] and § is a vector where i" element equals to

§ =log()+ 24

The MLE estimator of £ is asymptotically normally distributed with a covariance matrix
Cov(ﬁML) =(X WX )"'. The MSE based on the asymptotic covariance matrix equals
A TP 17y o |
EBu =B (B~ B)=r| (XTXY =3, (®)

J=1 7YimL

where 4, is the i" eigenvalue of the X"WX matrix. Note that the weighted matrix of cross

products, X WX, is ill-conditioned which leads to instability and high variance of the MLE estimator
when the independent variables are highly correlated. In that situation, it is difficult to interpret the
estimated parameters since the vector of estimated coefficients become too long.

Due to the presence of multicollinearity in the negative binomial regression analysis, the negative
binomial ridge estimator (NBRE) is proposed by Mansson (2012) as follows

Bsne = XWX +KD) XWX, = (XWX +k)" XTWX. 9)

Note that this type shrinkage estimator minimizes the increase in the weighted sum of squared
error. Hence, the shrinkage parameter, k, may take on values between zero and infinity. The ML
estimator can be considered as a special estimator from (9) with £ =0. Regardless of k£ value, the

MSE of the ,BNBRE is smaller than that of /?ML because the MSE of /AJNBRE is equal to (Kibria et al.
2015)
MSE(Bupee) = 304 k23— (10)
= B — S
YT S (4, +k) S (A, +k)

th

where a; is defined as the ;" element of ;/,éML and y is the eigenvector of the X "WX matrix.

Comparing with the MSE of (5), MSE(BNBRE) is always small for £ > 0.
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3. The Proposed Estimator
In this section, the new estimator is introduced and derived. Let O=(q,,q,,....q,) and

A =diag(4,,4,,...,4,), respectively, be the matrices of eigenvectors and eigenvalues of the X "wx
matrix, such that M” X"WXQ = I’WL = A, where L= XQ. Consequently, the Poisson regression

estimator of (5), BML, can be written as

Pop = NI, (11)
B =0
Accordingly, the negative binomial ridge estimator, f,,,, , is rewritten as
Pvoe =(A+K) ' L'Wv=(I-KD™)7,,. (12)

where D=A+K and K =diag(k,,k,,...k,); k°0,i=1,2,..,p. Equation (12) represents the

generalized ridge negative binomial regression estimator.

In generalized ridge estimator, the Jackknifing approach was used (Nyquist 1988, Khurana et al.
2014, Singh et al. 1986). Batah et al. (2008) proposed a modified Jackknifed ridge regression estimator
in linear regression model. Related to negative binomial regression model, Tiirkan and Ozel (2017)
proposed a modified Jackknifed negative binomial ridge estimator depending on the study of Singh
et al. (1986). Several studies dealt with the negative binomial regression model in the presence of
multicollinearity (Huang and Yang 2012, KaCiranlar and Dawoud 2018, Kandemir et al. 2019,
Mansson 2013).

In this paper, the new estimator (JNBRE) is derived by following the study of Batah et al. (2008).
Let the Jackknife estimator (JE), in negative binomial regression, is defined as

};JE:(I_KZDQ)};ML’ (13)
and the modified Jackknife estimator (MJE) of Batah et al. (2008), in negative binomial regression
model, is defined as

P =U—=KD'YI-K*D?)p,,. (14)
Consequently, our new estimator is an improvement of (14) by multiplying it with the amount
[{-K’D?)/(I-K*D7?)]. The idea behind this is to get diagonal matrix with small values of

diagonal elements which leading to decrease the shrinkage parameter, and, therefore, the resultant
estimator can be better with small amount of bias. The new estimator is defined as

. . L. (I-K’D?)
}/JNBREz([_KD 1)(1—K2D2)ﬁ7]m, (15)
and BJNBRE = QT? JNBRE * (16)

3.1. Bias, variance and MSE of the new estimator
The MSE of the new estimator can be obtained as

MSE(};JNBRE) = Var(};JNBRE) + [bias(};JNBRE )]2 (1 7)

According to (16), the bias and variance of 7 .. can be obtained as, respectively,
bias(7 jygre ) = EL7 jare 1= 7
=(I-KD")YI~K'D*)E[},, 1~ (18)
=—K[(KD"Y'=(KD")Y'(I-KD )+ K’ D*(I-KD™)|Dy,
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var(7 ppee) = (I = KDY =K’ D) var(7,, ) I K’ D) (I-KD™")"

(19)
=(I-KD"YI-K’D)A'I-K’D*)' (I-KD™").
Then,
MSE(7 ppre) = =KD YI =K’ DA (I -K*D?) (I-KD™") +
[—K[(KD’I)’I ~(KD)'(I-KD")+K*D*(I-KD")|D" y] o0

[—K[(KD’I)’I ~(KD")'(I-KD™")+K*D*(I-KD™)|D" }/]T
=OA'®" +K¥YD ')y’ D'Y'K,
where ® =(/-K’D?) (I-KD"') and ¥ =[I+KD"' -KD K]

3.2. Selection of parameter &

The efficiency of ridge estimator strongly depends on appropriately choosing the & parameter.
To estimate the values of & for our new estimator, the most well-known used estimation methods are
employed and are given below (Kibria et al. 2015)

1. Hoerl and Kennard (1970) (K1), which is defined as

I
k(K)=——, j=12,.,p, 1)

max

2. Kibria et al. (2015) (K2), which is defined as

2
k;(K2) = median [ i] s J=1L2,0p, (22)
J
3. Kibria et al. (2015) (K3), which is defined as
A
k,;(K3) = median {%}, Jj=L2,..,p. (23)
(n _p)+ maxaj

4. Simulation Study
In this section, a Monte Carlo simulation experiment is used to examine the performance of the
new estimator with different degrees of multicollinearity.

4.1. Simulation design
The response variable of n observations is generated from negative binomial regression model
by
#; = exp(x; B), (24)

)4
where B =(5,,5,....5,) with Z ﬁjz =1 and B =p,=..=p, (Kibria 2003, Ménsson and Shukur
j=1

2011). In addition, the value of « are chosen as 1 and 2.

The explanatory variables x| = (x,,x,,,...,X, ) have been generated from the following formula

in

172

xij :(1_p2)

where p represents the correlation between the explanatory variables and w; s are independent

w; +pw,, i= L2,..,n, j=L2,..,p, (25)

standard normal pseudo-random numbers. Because the sample size has direct impact on the prediction
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accuracy, three representative values of the sample size are considered: 30, 50 and 100. In addition,
the number of the explanatory variables is considered as p =4 and p =8 because increasing the
number of explanatory variables can lead to increase the MSE. Further, because we are interested in
the effect of multicollinearity, in which the degrees of correlation considered more important, three
values of the pairwise correlation are considered with p ={0.90,0.95,0.99}. For a combination of

these different values of n, p,& and p the generated data is repeated 1000 times and the averaged

mean squared errors (MSE) is calculated as
1000

MSE() =3 (B~ P (3P, 26)

where ﬁ is the estimated coefficients for the used estimator.

4.2. Simulation results
The estimated MSE of (26) for MLE, NBRE and JNBRE, for all the different selection methods

of & and the combination of n, p,a and p, are respectively summarized in Tables 1 and 2. Several
observations can be made.

First, in terms of p values, there is increasing in the MSE values when the correlation degree
increases regardless the value of 7, p,. However, INBRE performs better than NBRE and MLE for
all the different selection methods of k. For instance, in Table 1, when p =4, n=100, and p =0.95,

the MSE of INBRE was about 51.78%, 36.41% and 20.38% lower than that of NBRE for K1, K2 and
K3, respectively. In addition, the MSE of INBRE was about 96.19% lower than that of ML.

Second, regarding the number of explanatory variables, it is easily seen that there is increasing
in the MSE values when the p increasing from four variables to eight variables. Although this
increasing can affected the quality of an estimator, JNBRE is achieved the lowest MSE comparing
with MLE and NBRE, for different n, o, and different selection methods of k.

Third, with respect to the value of n, The MSE values decreases when n increases, regardless
the value of p, p,a and the value of k. However, INBRE still consistently outperforms NBRE and
ML by providing the lowest MSE.

Fourth, in terms of the value of the « and for a given values of p, p,n and the value of £,
JNBRE is always show smaller MSE comparing with NBRE and ML estimator.

Finally, for the different selection methods of &, the performance of all methods suggesting that
the INBRE estimator is better than the other used two estimators. The K1 efficiently provides less
MSE comparing with the K2 and K1 for both JNBRE and NBRE estimators. Besides, K1 is more
efficient for providing less MSE than K2 or both INBRE and NBRE estimators”.

To summary, all the considered values of n, p, p,« , and the value of &k, JNBRE is superior to

NBRE, clearly indicating that the new proposed estimator is more efficient.

5. Real Application

To further investigate the usefulness of our new estimator, we apply the proposed estimator to
the football Spanish La Liga, season 2016-2017. “This data contains 20 teams. The response variable
represents the number of won matches. The six considerable explanatory variables included the
number of yellow cards (x,), the number of red cards (x,), the total number of substitutions (x;), the
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Table 1 MSE values when a =1

P " P K1 K2 K3
ML  NBRE JNBRE  NBRE JNBRE NBRE JNBRE
4 30 090 4.884 0.923 0.77 0.563 0.462 1.308 1.207
0.95 5.512 1.154 1.003 1.012 0.911 1.467 1.366
0.99 5.910 1.804 1.652 1.544 1.443 1.813 1.712
50 090  3.255 0.556 0.403 0.474 0.373 0.849 0.748
0.95 4.330 0.828 0.675 0.583 0.482 0.945 0.844
0.99 4522 1.145 0.992 1.473 1.372 1.158 1.057
100 090  3.098 0.358 0.205 0.445 0.344 0.706 0.605
0.95 3.308 0.482 0.329 0.472 0.371 0.722 0.621
0.99 4.063 1.508 1.355 1.248 1.147 0.840 0.739
8 30 090 4989 1.125 0.972 0.755 0.654 1.503 1.402
0.95 5.608 1.356 1.203 1.204 1.103 1.662 1.561
0.99 6.023 2.006 1.853 1.736 1.635 2.008 1.907
50 090 3.524 0.758 0.605 0.666 0.565 1.044 0.943
0.95 4.667 1.030 0.877 0.775 0.674 1.140 1.039
0.99 4992 1.347 1.194 1.665 1.564 1.353 1.252
100 090 3.434 0.550 0.397 0.637 0.536 0.902 0.801
0.95 3.709 0.674 0.522 0.664 0.563 0.917 0.816
0.99 4.267 1.700 1.547 1.440 1.339 1.035 0.934

Table 2 MSE values when o =2

P " P K1 K2 K3
ML  NBRE JNBRE NBRE JNBRE NBRE JNBRE
4 30 090  5.024 1.063 0.91 0.703 0.602 1.448 1.347
0.95 5.652 1.294 1.143 1.152 1.051 1.607 1.506
0.99  6.050 1.944 1.792 1.684 1.583 1.953 1.852
50 090 3.395 0.696 0.543 0.614 0.513 0.989 0.888
0.95 4470 0.968 0.815 0.723 0.622 1.085 0.984
0.99 4.662 1.285 1.132 1.613 1.512 1.298 1.197
100 090  3.238 0.498 0.345 0.585 0.484 0.846 0.745
0.95 3.448 0.622 0.469 0.612 0.511 0.862 0.761
0.99 4.203 1.648 1.495 1.388 1.287 0.98 0.879
8 30 090 5.129 1.265 1.112 0.895 0.794 1.643 1.542
0.95 5.748 1.496 1.343 1.344 1.243 1.802 1.701
099 6.163 2.146 1.993 1.876 1.775 2.148 2.047
50 090 3.664 0.898 0.745 0.806 0.705 1.184 1.083
0.95 4.807 1.170 1.017 0.915 0.814 1.280 1.179
099 5132 1.487 1.334 1.805 1.704 1.493 1.392
100 090 3.574 0.690 0.537 0.777 0.676 1.042 0.941
0.95 3.849 0.814 0.662 0.804 0.703 1.057 0.956
0.99  4.407 1.840 1.687 1.580 1.479 1.175 1.074
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number of matches with 2.5 goals on average (x,), the number of matches that ended with goals
(x;), and the ratio of the goal scores to the number of matches (x;).

First, the deviance test (Montgomery et al. 2015) is used to check whether the negative binomial
regression model is fit well to this data or not. The result of the residual deviance test is equal to 8.651
with 14 degrees of freedom and the p-value is 0.822. It is indicated form this result that the negative
binomial regression model fits very well to this data.

Second, to check whether there are relationships between the explanatory variables or not, Figure
1 displays the correlation matrix among the six explanatory variables. It is obviously seen that there
are correlations greater than 0.82 between x, and x,, x, and x,, x, and x,, and x, and x,.

Third, to test the existence of multicollinearity, the eigenvalues of the matrix X" WX are obtained
as 997.247, 321.922, 170.541, 41.386, 22.694, and 2.054. The determined condition number
CN =/, /4, ofthedatais22.034 indicating that the multicollinearity issue is exist.

The estimated negative binomial regression coefficients and MSE values for the MLE, NBRE,
and JNBRE estimators are listed in Table 3. According to Table 3, it is clearly seen that the INBRE
estimator shrinkages the value of the estimated coefficients efficiently. Furthermore, in terms of the

selection method of k£, JNBRE shows the superiority results of coefficient estimation using K2”. In
terms of MSE, the JNBRE using K2 achieves the lowest MSE.

P

2 & > £ #
M : - ....
) | ....
) 1 ...

xs

Figure 1 The correlation matrix among the six explanatory variables

6. Conclusions

In this paper, a new estimator of negative binomial ridge regression is proposed to overcome the
multicollinearity problem in the negative binomial regression model. According to Monte Carlo
simulation studies, the proposed estimator has better performance than maximum likelihood estimator
and ordinary negative binomial ridge estimator, in terms of MSE. Additionally, a real data application
is also considered to illustrate benefits of using the new estimator in the context of negative binomial
regression model. The superiority of the new estimator based on the resulting MSE was observed and
it was shown that the results are consistent with Monte Carlo simulation results.
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Table 3 The estimated coefficients and MSE values for the MLE, NBRE, and INBRE estimators

K1 K2 K3

MLE NBRE JNBRE NBRE INBRE NBRE INBRE

ﬁ1 -1.219 —1.057 —0.516 —-0.252 —-0.615 —1.223 —-0.824
/}2 0.441 0.135 0.084 0.032 0.014 0.440 0.438
Bx 0.575 0.127 0.016 0.096 0.012 0.576 0.393
ﬂAA —3.476 —1.158 —0.134 —0.063 —0.114 —3.047 —-0.619
/§5 —2.432 —-1.118 —0.008 —-0.0162 —-0.007 —2.419 —-1.626
ﬁa 5.121 2.173 1.077 0.066 0.093 4.166 1.642
MSE 4.148 2.102 1.024 0.987 0.659 1.311 0.975

Acknowledgements
The authors are very grateful to the University of Mosul/College of Computers Sciences and
Mathematics for their provided facilities, which helped to improve the quality of this work.

References

Algamal ZY. Diagnostic in Poisson regression models. Electr J Appl Stat Anal. 2012; 5: 178-186.

Cameron AC, Trivedi PK. Regression analysis of count data. Cambridge: Cambridge University Press;
2013.

De Jong P, Heller GZ. Generalized linear models for insurance data. Cambridge: Cambridge
University Press; 2008.

Kibria BMG, Mansson K, Shukur G. A simulation study of some biasing parameters for the ridge type
estimation of Poisson regression. Commun Stat - Simul Comput. 2015; 44: 943-957.

Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems.
Technometrics. 1970; 12: 55-67.

Asar Y and Geng A. New shrinkage parameters for the Liu-type logistic estimators. Commun Stat -
Simul Comput. 2015; 45: 1094-1103.

Algamal ZY, Lee MH. Penalized Poisson regression model using adaptive modified elastic net
penalty. Electr J Appl Stat Anal. 2015; 8: 236-245.

Rashad NK, Algamal ZY. A new ridge estimator for the Poisson regression model. Iran J Sci
Technol Trans A Sci. 43(6): 2921-2928.

Maénsson K. On ridge estimators for the negative binomial regression model. Econ Model. 2012; 29:
178-184.

Nyquist H. Applications of the jackknife procedure in ridge regression. Comput Stat Data Anal. 1988;
6:177-183.

Khurana M, Chaubey YP, Chandra S. Jackknifing the ridge regression estimator: a revisit. Commun
Stat - Theory Methods. 2014; 43: 5249-5262.

Singh B, Chaubey Y, Dwivedi T. An almost unbiased ridge estimator. Sankhya Ser B. 1986; 13: 342-
346.

Batah FSM, Ramanathan TV, Gore SD. The efficiency of modified jackknife and ridge type regression
estimators: a comparison. Surveys Math Appl. 2008; 3: 111-122.

Tiirkan S, Ozel G. A jackknifed estimators for the negative binomial regression model. Commun Stat
Simulat Comput. 2017: 1845-1865.

Huang J, Yang H. A two-parameter estimator in the negative binomial regression model. J Stat Comput
Simul. 2012; 84: 124-134.



124 Thailand Statistician, 2021; 19(1): 115-124

KaCiranlar S, Dawoud 1. On the performance of the Poisson and the negative binomial ridge
predictors. Commun Stat - Simul Comput. 2018; 47: 1751-1770.

Kandemir Cetinkaya M, Kagiranlar S. Improved two-parameter estimators for the negative binomial
and Poisson regression models. J Stat Comput Simul. 2019: 1-16.

Mansson K. Developing a Liu estimator for the negative binomial regression model: method and
application. J Stat Comput Simul. 2013; 83: 1773-1780.

Kibria BMG. Performance of some new ridge regression estimators. Commun Stat - Simul Comput.
2003; 32: 419-435.

Mansson K, Shukur G. A Poisson ridge regression estimator. Econ Model. 2011; 28: 1475-148]1.

Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis. New York: John
Wiley & Sons; 2015.



