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Abstract 

In this paper, some simple recurrence relations for single and product moments of dual generalized 

order statistics from generalized inverted Kumaraswamy distribution have been derived.  These 

relations are deduced for moments of reversed order statistic and lower record values.  Further, this 

distribution has been characterized through the recurrence relations for a single moment, conditional 

expectations and truncation moment. In addition, some statistical calculations are also carried out. 

______________________________ 
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1. Introduction 

Often it happens that the sample is arranged in descending order for example the life length of an 

electric bulb arranged from highest to lowest. In such situations the distributional properties of 

variables cannot be studied by using the models of ordered random variables. The study of 

distributional properties of such random variables is studied by using the inverse image of generalized 

order statistics (gos) and is popularly known as dual generalized order statistics. The dual generalized 

order statistics (dgos) was introduced by Burkschat et al. (2003) as a unified model for descendingly 

ordered random variables like reverse order statistics, lower record values and lower Pfeifer record 

values. 

The dual generalized order statistics (dgos) sometimes called lower generalized order statistics 

(lgos) is a combined mechanism of studying random variables arranged in descending order. The 

technique was introduced by Burkschat et al. (2003) and is defined in the following. 

Let ( )F x  be an absolutely continuous distribution function (df) with the probability density 

function pdf ( ).f x  Further let ,n N  2,n  0,k  1
1 2 1( , , , ) ,

   n
nm m m m  

1

,




 
n

r j
j r

M m  such 

that 0r rk n r M       for all {1,2, , 1}. r n  Then ( , , , ),X r n m k  1, 2, ,r n   are called 

(dgos) if their joint pdf is given by 
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for 1 1
1 2(1) (0).      nF x x x F  Here two cases may be considered: 

 

1.1. Case I: i jm m m  ,  i j n , 1,2, , 1  

The probability density function of the th r dgos is given by, 
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The joint probability density function of the thr  and th s dgos is given by, 
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The conditional pdf of ( , , , )X r n m k  and ( , , , ),X s n m k  the thr  and ths  m  dgos, 1 ,r s n    

is 
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and ( ) ( ) (1), m m mg x h x h  [0,1).x  

 

1.2. Case II: i j  ,  i j ,  i j n , 1,2, ..., 1  

The probability density function of the th r dgos is given by 
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The joint probability density function of the thr  and th s dgos is given by, 
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The conditional pdf of ( , , , )X s n m k  given xkmnrX ),~,,( , 1 ,  r s n  is 
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If 0,m  1,k  then ( , , , )X r n m k  reduces to th( 1) n r  order statistic 1: n r nX  from the 

sample 1 2, ,..., nX X X  and when 1m    then ( , , , )X r n m k  reduces to thr  lower k  record values. 

Characterization of probability distributions play an important role in probability and statistics. A 

probability distribution can be characterized by several methods. In recent years there has been a great 

interest in the characterization of probability distributions through recurrence relations, conditional 

expectations and truncation moment. 

Several authors have utilized the concept of dual generalized order statistics in characterization 

of distributions including Ahsanullah (2004, 2005), Mbah and Ahasanullah (2007), Khan et al.  

(2010a, 2010b), Faizan and Khan (2011), Tavanagar (2011),  Khan and Faizan (2012), Khan and Khan 

(2015), Khan and Khan (2017), Gupta and Anwar (2019) and Khan (2019)  among others.  

The recurrence relations based on dual generalized order statistics have received considerable 

attention in recent years.  Recurrence relations are interesting in their own right.  They are useful in 

reducing the number of operations necessary to obtain the general form for the function under 

consideration.  Furthermore, they are used in characterizing distributions which in important area 

permitting the identification of population distribution from the properties of the sample. Many authors 

derived the recurrence relations for dual generalized order statistics for different distributions.  See 

(Pawlas and Szynal 2001, Khan et al. 2008, Khan and Kumar 2010, 2011a, 2011b) among others. 

The results are given in this paper can be used to compute the moments of decreasingly ordered 

random variable, if parent distribution follows the generalized inverted Kumaraswamy (GIKum) 

distribution. Since recurrence relations reduce the amount of direct computation and hence reduce the 

time and labor. 

The rest of the paper is organized as follows. Section 2 discusses generalized inverted 

Kumaraswamy distribution, its some sub-models and statistical properties. Some simple recurrence 

relations for single and product moments of dual generalized order statistics from generalized inverted 

Kumaraswamy distribution have been derived in Sections 3 and 4. Characterization results from 

different techniques are given in Section 5. Conclusions are summarized in Section 6. 

 

2. Generalized Inverted Kumaraswamy Distribution 

A number of researchers studied the inverted distributions and its applications for example, 

Prakash (2012) studied the inverted exponential model and Aljuaid (2013) presented exponentiated 

inverted Weibull distribution. The inverted distributions are important in problems related to 

econometrics, engineering sciences, life testing, financial studies and environmental sciences. 

Kumaraswamy (1980) obtained a distribution which is derived from beta distribution after fixing 

some properties in beta distribution.  But it has a closed- form cumulative distribution function which 

is invertible and for which moments do exist. The distribution is appropriate to the natural phenomena 

whose outcome are bound from both sides, such as the individual’ s heights, test score, temperatures 

and hydrological daily data of rain fall ( for more details, see Kumaraswamy 1980, Jones 2009 and 

Sharaf El-Deen et al. 2014). 

Abd Al-Fattah et al. (2017) derived the inverted Kumaraswamy (IKum) distribution from 

Kumaraswamy (Kum) distribution using the transformation 1 1. T x  When ~ ( , ),X Kum    

where   and   are shape parameters, then T  has a IKum distribution with probability density 

function, 

( , , ) [1 (1 ) ] ,  F x x     0, , 0. x                                                     (10) 
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Iqbal et al. (2017) generalized the continuous distribution by using power transformation. Here, 

we use the same technique to find the cdf of generalized inverted Kumaraswamy (GIKum) distribution 

and is derived by using transformation T x  which has closed form and is as under 

( ) [1 (1 ) ] ,  F x x    0, , , 0. x                                             (11) 

Assuming X  is a random variable with shape parameters , ,    the probability density function 

of (GIKum) is as 
1 ( 1) 1( ) (1 ) [1 (1 ) ] ,       f x x x x       0, , , 0.x                               (12) 

This model is flexible enough to accommodate both monotone as well as non-monotonic failure 

rates. Further the probabilistic properties of this distribution and its applications are given, for 

example, in (Iqbal et al. 2017). 

From Equations (11) and (12), we note that the characterizing differential equation for GIKum 

distribution is given by 
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             (13) 

which will be utilized for deriving the recurrence relation for single and product moments from GIKum 

distribution. The recurrence relations for moments of dual generalized order statistics from GIKum 

distribution have not been considered in the earlier literature. 

 

2.1. Some sub-models of generalized inverted Kumaraswamy distribution 

The generalized inverted Kumaraswamy distribution is very flexible as this distribution includes 

several well-known distributions as sub-models based on special values of parameters ( , , ).    The 

sub-models are, 

(i) Setting 1,  1,  we obtain Lomax (Pareto-type II) distribution with following pdf  

1
( ) ,

(1 )
f x

x 







 , 0.x  

(ii) Setting 1,  1,  we obtain inverted beta type II ( ,1)  distribution with following pdf 
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x
f x

B x
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
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



 



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(iii) Setting 1,      we obtain log logistic distribution with following pdf 

2

1
( ) ,

(1 )
f x

x



 0.x   

 

2.2. Statistical computations 

The mean and variance of GIKum distribution when 1   are given by 

1
1 , 1, 1.B   



 
    

 
 

2

2

2 1
1 , 1 , , 2.B B     

 

    
        

    
 

The mode and quantile function of GIKum distribution when 1   are given by 
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We can also use qt  to define well known quantile measures as (skewness and kurtosis). The 

statistical measures of skewness and kurtosis play important role in describing shape characteristic of 

the probability distribution. The Bowely’s skewness measure based on quartiles (Kenney and Keeping 

1962) is given by 

3/4 1/4 1/2

3/4 1/ 4

2
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t t
 

and Moors’ kurtosis measures based on octiles (Moors 1988) is given by 

7/8 5/8 3/8 1/8
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Table 1 Values of mean for different values of   and   when 1   

  
  

1 2 3 4 5 

2 1.00 1.66 2.18 2.64 3.05 

3 0.49 0.78 0.98 1.16 1.30 

4 0.33 0.52 0.65 0.76 0.85 

5 0.25 0.38 0.47 0.56 0.60 

 

Table 2 Values of variance for different values of   and   when 1   

  
  

1 2 3 4 5 

3 0.81 1.38 1.93 2.37 2.81 

4 0.44 0.35 0.46 0.55 0.63 

5 0.42 0.18 0.24 0.25 0.34 

 

Table 3 Values of mode for different values of   and   when 1   (Iqbal et al. 2017) 

  
  

2 3 4 5 

1 0.50 1.00 1.50 2.00 

2 0.29 0.52 0.73 0.91 

3 0.20 0.35 0.48 0.58 

4 0.15 0.26 0.35 0.43 

5 0.12 0.21 0.28 0.34 
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Table 4 Values of median for different values of   and   when 1   

  
  

1 2 3 4 5 

1 1.00 2.33 3.76 5.25 6.69 

2 0.41 0.81 1.17 1.50 1.78 

3 0.26 0.49 0.69 0.85 1.00 

4 0.19 0.35 0.47 0.58 0.67 

5 0.14 0.26 0.36 0.44 0.51 

 

Table 5 Values of skewness for different values of   and   when 1   

  
  

1 2 3 4 5 

1 0.49 0.53 0.51 0.48 0.56 

2 0.37 0.42 0.36 0.35 0.41 

3 0.31 0.34 0.26 0.27 0.33 

4 0.29 0.33 0.28 0.29 0.29 

5 0.38 0.35 0.25 0.21 0.25 

 

Table 6 Values of kurtosis for different values of   and   when 1   

  
  

1 2 3 4 5 

1 2.17 2.31 2.36 2.50 1.57 

2 1.26 1.71 1.69 1.78 1.29 

 

From the above tables, it is shown that when increasing the value of parameter   corresponding 

value of parameter   is decreasing. 

 

3. Relations for Single Moments 

In this section, we derive some simple recurrence relations for single moments of dual generalized 

order statistics from the GIKum distribution. 

 

Theorem 1  Let X  be a non-negative continuous random variable follows the GIKum distribution 

given (11). Suppose that 0j   and 1 ,r n   then 
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Proof: We have from (2), 
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Integrating by parts 1[ ( )] rF x   as part to be integrated, we get 
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after simplification, 
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This completes the proof of Theorem 1. 

 

Corollary 1 For 2 ,r n   2n   and 1,2,...,k   
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if and only if (11) holds. 

 

Proof: From Khan et al. (2008), 
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Now in view of (13), corollary 1 is proved. 

 

Remark 1 Setting 1   in (14) result reduced for inverted Kumaraswamy distribution as follows,  
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Remark 2 Setting 0,m  1k   in (14) result reduced for  reversed order statistic for GIKum 

distribution as follows 
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Remark 3 Setting 1, m  1k   in (14) result reduced for thk  lower record values for GIKum 

distribution as follows  

1
( 1)

( ) ( 1) ( )
2

1
1 [ ] [ ] [ ] .j j j u

L r L r L r

j j
E X E X E X

k k







 


 




      
        

     
  
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4. Relations for Product Moments 
In this section, we derive some simple recurrence relations for product moments of dual 

generalized order statistics from the GIKum distribution. 

 

Theorem 2  Let X  be a non-negative continuous random variable follows the GIKum distribution 

given (11). Suppose that , 0i j  and 1 ,  r s n  then, 

1 [ ( , , , ), ( , , , )] [ ( , , , ) ( 1, , , )
 

   
 

i j i j
d d d d

s

j
E X r n m k X s n m k E X r n m k X s n m k


 

    
1

( 1)

2

1
[ ( , , , ), ( , , , )] .


 



    
   

   
 i j u

d d

s

j
E X r n m k X s n m k









     

(16) 

Proof: From (3), we have 

 11

0
[ ( , , , ), ( , , , )] [ ( )] [ ( )] ( ) ( ) ,

( 1)!( 1)!




   
i j i m rs
d d m

c
E X r n m k X s n m k x F x g F x f x I x dx

r s r
 

(17) 

where 1 1

0
( ) [ ( )] [ ( ) ( )] ( ) .


    sj s r

m mI x y F y h F y h F x f y dy  Solving the integral ( )I x  by parts and 

substituting the resulting expression in (17), we get 

[ ( , , , ), ( , , , )] [ ( , , , ) ( 1, , , )  i j i j
d d d dE X r n m k X s n m k E X r n m k X s n m k  

 1 1 11

0 0
[ ( )] [ ( )][ ( ) ( )] [ ( )]

( 1)!( 1)!


    

     s
x

i j m r s rs
m m m

s

jc
x y F x g F x h F y h F x F x

r s r



 

 
1

( 1) 1

2

11
( ) ( ) ,


 



     
    

     
 uy y f x f y dx










   

after simplification (16) yields. i.e., 

1 [ ( , , , ), ( , , , )] [ ( , , , ) ( 1, , , )
 

   
 

i j i j
d d d d

s

j
E X r n m k X s n m k E X r n m k X s n m k


 

1
( 1)

2

1
[ ( , , , ), ( , , , )] .


 



    
   

   
 i j u

d d

s

j
E X r n m k X s n m k









 

This completes the proof of Theorem 2. 

 

Remark 4 Setting 1   in (16) result reduced for inverted Kumaraswamy distribution as follows, 

 1 [ ( , , , ), ( , , , )] [ ( , , , ) ( 1, , , )
 

   
 

i j i j
d d d d

s

j
E X r n m k X s n m k E X r n m k X s n m k


 

                                                                      
1

( 1)

2

1
[ ( , , , ), ( , , , )] .


 



   
   

   
 i j u

d d

s

j
E X r n m k X s n m k









 

 

Remark 5 Setting 0,m  1k   in (16) result reduced for reversed order statistic for GIKum 

distribution as follows, 

1
, , , ( 1)

, : , 1: , :
2

1
1 [ ] [ ] [ ] .

( 1) ( 1)


 




      
         

         
i j i j i j u

r s n r s n r s n

j j
E X E X E X

n s n s








  
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Remark 6 Setting 1, m  1k   in (16) result reduced for thk  lower record values for GIKum 

distribution as follows 

1
, , , ( 1)
( , ) ( , 1) ( , )

2

1
1 [ ] [ ] [ ] .


 




      
       

     
i j i j i j u

L r s L r s L r s

j j
E X E X E X

k k







  
 

 

5. Characterizations 

This section discusses the characterization results of GIKum distribution. Characterization of a 

probability distribution plays an important role in probability and statistics. A probability distribution 

can be characterized through various method. Various characterizations of distributions have been 

established in many different directions. In recent years, there has been a great interest in the 

characterizations of probability distributions through recurrence relations, conditional expectations 

and truncation moment. 

The following theorem contains, the characterization of GIKum distribution by a recurrence 

relation for the single moments of dual generalized order statistics. 

 

Theorem 3  The necessary and sufficient condition for a random variable X  to be distributed with 

pdf given by (12) is that 

[ ( , , , )] [ ( 1, , , )] j j
d dE X r n m k E X r n m k  

1
( 1)

2

11
[ ( , , , )] [ ( , , , )] ,


 



    
    

   
j j u

d d
ur

j
E X r n m k E X r n m k

u

 

 
     (18) 

if and only if 

( ) [1 (1 ) ] ,  F x x    0,x  , , 0.                                              (19) 

 

Proof:  The necessary part follows immediately from (14). On the other hand, if the recurrence relation 

(18) is satisfied, then on rearranging the terms in (18), 

1 1 21 1

0 0

( 1)
[ ( )] [ ( )] ( ) [ ( )] [ ( )] ( )

( 1)! ( 1)!

 
    


  r r mj r j rr r

m m

r

c c r
x F x g F x f x dx x F x g F x f x dx

r r
 


 

    1 1

0
[ ( )] [ ( )] ( )rj r

m

r

j
x F x g F x f x dx




     

 
1

1( 1) 1

0
2

11
[ ( )] [ ( )] ( )rj u r

m
u

x F x g F x f x dx
u






 
  



   
  

  
   

 1 21

0

[ ( )] ( 1)[ ( )]
[ ( )] [ ( )] ( )

( 1)! [ ( )]


 

 
 

  
 r

m
j r mr

m

r

g F xc r F x
x F x g F x f x dx

r F x



 

  1 11

0
[ ( )] [ ( )] ( )

( 1)!
rj rr

m

r

cj
x F x g F x f x dx

r





  

   

 
1

1( 1) 1

0
2

11
[ ( )] [ ( )] ( ) .

 
  



   
  

  
  rj u r

m
u

x F x g F x f x dx
u





                     (20) 

Let 
1[ ( )] [ ( )]

( ) .




r r
m

r

F x g F x
h x




                                                        (21) 
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Differentiating both sides of (21), we get 

2 [ ( )] ( 1)[ ( )]
( ) [ ( )] [ ( )] ( ) .

[ ( )]

r
m

r m
m

r

g F x r F x
h x F x g F x f x

F x




  

    
 

 

Thus, 

 1 11 1

0 0
( ) [ ( )] [ ( )] ( )

( 1)! ( 1)!
rj j rr r

m

r

c cj
x h x dx x F x g F x f x dx

r r




 
   

    

1
1( 1) 1

0
2

11
[ ( )] [ ( )] ( ) .rj u r

m
u

x F x g F x f x dx
u






 
  



   
  

  
              (22) 

Integrating left hand side in (22) by parts and using the value of ( )h x  from (21), 

1 1 21 1

0 0

( 1)
[ ( )] [ ( )] [ ( )] [ ( )] ( )

( 1)! ( 1)!
r r mj r j rr r

m m

r

c c r
jx F x g F x dx x F x g F x f x dx

r r
 



 
    


  

  1 11

0
[ ( )] [ ( )] ( )

( 1)!
rj rr

m

r

cj
x F x g F x f x dx

r





 


 




 
1

1( 1) 1

0
2

11
[ ( )] [ ( )] ( ) ,rj u r

m
u

x F x g F x f x dx
u






 
  



   
  

  
   

which reduces to, 

1
1 1 ( 1) 11

0
2

1( ) 1 1
[ ( )] [ ( )] ( ) 0.

( 1)! ( )
rj r ur

m
u

c F x
x F x g F x f x x x dx

ur f x


 

 


   



    
     

     
            (23)  

Now applying the generalization of the Müntz-Szász theorem (see for example Hwang and Lin 1984) 

to (23), we get 

1
( 1) 1

2

11 1
( , , , ) ( ),u

u

F x x x f x
u




   
 


 



   
   

  
  

which proves that ( )f x  has the form as in (12) i.e., 

( ) [1 (1 ) ] ,F x x      0,x  , , 0.     

Following theorem deals with the characterization of GIKum distribution through conditional 

expectations. 

 

Theorem 4  Let X  be a non-negative random variable having an absolutely continuous df ( )F x  with 

(0) 0F    and 0 ( ) 1F x   for all 0,x   then, 

 
1

[ { ( , , , )} | ( , , , ) ] [1 (1 ) ] ,
1

s l
l j

j l j

E X s n m k X l n m k x x  








 

 
         

  ,l r  1,r   1,m    

(24) 

if and only if 

 ( ) [1 (1 ) ] ,F x x     0,x  , , 0,                 (25) 

where ( ) [1 (1 ) ] .y y       

 

Proof: From (4) for 1,s r   we have 
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 1

1
1

[ { ( , , , )} | ( , , , ) ]
( 1)! ( 1)

s

s r
r

C
E X s n m k X r n m k x

s r C m
 

 


   
  

 

 

11 1

0

( ) ( ) ( )
[1 (1 ) ] 1 .

( ) ( ) ( )

s
s rm

x F y F y f y
y dy

F x F x F x



  

  


    

       
     

         (26) 

Setting 
( ) [1 (1 ) ]

( ) [1 (1 ) ]

F y y
u

F x x

  

  





 
 

 
 in (26), we have 

 1

1
1

[1 (1 ) ]
[ { ( , , , )} | ( , , , ) ]

( 1)! ( 1)
s

s r
r

C x
E X s n m k X r n m k x

s r C m

  






 


 
   

  

1
1 1

0
(1 )s m s ru u du        (27) 

Again by setting 1mt u   in (27), we get 
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1

[1 (1 ) ]
[ { ( , , , )} | ( , , , ) ]

( 1)! ( 1)
s

s r
r

C x
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
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




 
 
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1
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0
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s
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 


    

 1

1

1

[1 (1 ) ] 1

1( 1)!( 1)

1

s

s r
r

k
n s

C x m

kC s r m
n r

m

  





 
      

    
   
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 1

1

1

[1 (1 ) ] 1
,

( 1)

s

s r
r

r j
j

C x

C

  












 



 

where 1

11

,
s r

s
r j

jr

C

C








  and hence the necessary part is proved. To prove the sufficiency part, we have 

from (4) and (24) 

 11 1 11

1 0
1

[1 (1 ) ] [( ( )) ( ( )) ] [ ( )] ( )
( 1)! ( 1)

s
x
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s r
r

C
y F x F y F y f y dy
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       

 


  
     

1

| ( )[ ( )] ,r
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where |
1

( ) [1 (1 ) ] .
1

s r
l j

s r
j l j

g x x  







 

 
      

  Differentiating (28) both sides with respect to ,x  we get 
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where  
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Therefore, 

 
1 ( 1)

|

1 | 1 |

( )( ) (1 )
,

( ) [ ( ) ( )] [1 [(1 )] ]

s r

r s r s r

g xf x x x

F x g x g x x

  

 

 



  


 

 
 

  
 (Khan et al. 2010a).            (29) 
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Integrating (29) on both the sides with respect to ,x  the sufficiency part is proved. Following theorem 

presents the characterization result for of GIKum distribution based on truncated moment. 

 

Theorem 5  Suppose an absolutely continuous (with respect to Lebesgue measure) random variable 

X  has the df ( )F x  and pdf ( )f x  for 0 ,x    such that ( )f x  and ( | )E X X x  exist for all ,x  

0 ,x    then 

 ( | ) ( ) ( ),E X X x g x x                (30) 

where  
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  

   


 

 

  
     

         


 and 

( )
( ) ,

( )

f x
x

F x
   

if and only if (12) holds. 

 

Proof: We have, 

                 
0

1
( | ) ( )

( )

x

E X X x u f u du
F x

    

1 ( 1) 1

0
(1 ) [1 (1 ) ] .

( )

x

u u u u du
F x

                                                    (31) 

Integrating ( 31)  by parts treating 1 ( 1) 1(1 ) [1 (1 ) ]u u u             for integration and rest for the 

integrand for differentiation, we get 

0

1
( | ) { [1 (1 ) ] [1 (1 ) ] }.

( )

x

E X X x x x u du
F x


                                (32) 

After multiplying and dividing by ( )f x  in (32), we have the result given in (30). To prove sufficient 

part, we have from (30) 

0

1 ( ) ( )
( )

( ) ( )

x g x f x
u f u du

F x F x
  

or  

  
0

( ) ( ) ( ).
x

u f u du g x f x                (33) 

Differentiating (33) on both the sides with respect to ,x  we find that  

( ) ( ) ( ) ( ) ( ).x f x g x f x g x f x    

Therefore, 

( ) ( )

( ) ( )

f x x g x

f x g x

 
  (Ahsanullah et al. 2016). 

( )
( ) ( ) .

( )

f x
g x x g x

f x

 
    

 
                                                    (34) 

Integrating both sides in (34), with respect to ,x  we get  
1 ( 1) 1( ) (1 ) [1 (1 ) ] ,f x cx x x                                                     (35) 

where c  is determined such that, 

( ) 1f x dx



  
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1 ( 1) 1

0
(1 ) [1 (1 ) ] 1cx x x dx     


         

1 ( 1) 1

0

1
(1 ) [1 (1 ) ]x x x dx

c
     


         

1 1
.

c 
  

This proves that, 
1 ( 1) 1( ) (1 ) [1 (1 ) ] ,f x x x x               0, , , 0.x      

 

Remark 7 Putting 1   in Theorem (5), we get the characterization result for inverted Kumaraswamy 

distribution based on truncation moment. 

 

6. Conclusions 

Characterization of probability distribution plays an important role in probability and statistics. 

Before a particular probability distribution model is applied to fit the real data, it is necessary to 

confirm whether the given probability distribution satisfies the underlying requirements by its 

characterization. A probability distribution can be characterized through various method. These 

characterization results are useful in the field of ordered random variables. Findings of this paper will 

be useful for researchers in the fields of econometrics, engineering sciences, life testing, financial 

studies and environmental sciences. 
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