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Abstract 

In the present study, an effort has been made to develop a stochastic model for a redundant system 

of non-identical units. One unit is treated as original and other is duplicate. Initially original unit is 

operative and duplicate unit is kept under cold standby mode. The concepts of preventive maintenance, 

maximum operation time and priority to repair of original unit over repair of duplicate unit are also 

incorporated in the development of the stochastic model. A single repair facility is available for 

performing all repair activities as and when required. All time dependent random variables are 

assumed to follow arbitrary distribution. The recurrence relations for various reliability measures have 

been developed by using regenerative point technique (RPT) and semi Markov process (SMP). To 

highlight the importance of the study numerical results has been drawn for a particular case. 

______________________________ 
Keywords:  Reliability, availability, Weibull failure and repair laws, preventive maintenance, semi- Markov 
process, maximum operation time. 

 

1. Introduction 

In the current century computer science and information technology plays a key role in the life of 

human being. All most all sector like communication, education, medical, transportation, use the 

computing devices for their successful operation. With the increasing automation the complexity of 

these systems is also increasing rapidly. Due to the complexity, it becomes difficulty to operate these 

systems successfully. In this situation, it becomes the primary responsibility of system designers that 

these equipment perform satisfactorily. A lot of research work has been carried out by the researcher 

and scientists in the field of redundant systems by considering constant failure and repair rates and 

identical units. Gupta et al. (2013) carried out the cost-benefit analysis of a two duplicate-unit parallel 

system with repair/replacement and correlated lifetimes of the units. Kadian et al. (2012) carried out 

the cost analysis of a two-unit cold standby system subject to degradation, inspection and priority. 

Kumar and Malik (2014) proposed a reliability model for a computer system with priority to H/w 

repair over replacement of H/w and up-gradation of s/w subject to maximum operation time (MOT) 

and maximum repair time (MRT). Kumar et al. (2015) analyzed performance measures of a computer 

system with imperfect fault detection of hardware and preventive maintenance. Kishan and Jain (2012) 

studied a two non-identical unit standby system model with repair, inspection and post-repair under 
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classical and Bayesian viewpoints. Kumar et al. (2015) suggested a stochastic behavior for a cold 

standby system with maximum repair time. Kumar et al. (2016) developed a stochastic modeling for 

a cold standby system of non-identical units. Recently, Kumar et al. (2016), Kumar et al. (2017), 

Kumar et al. (2018), Barak et al. (2018) and Barak et al. (2018) designed some stochastic model for 

redundant systems with priority, preventive maintenance, and Weibull failure and repair distributions. 

But, till now, no work has been carried out for non-identical unit systems using the concept of priority 

to repair of original unit over repair of duplicate unit. 

By keeping the above facts in mine, here an effort has been made to develop a stochastic model 

for a redundant system of non-identical units. One unit is treated as original and other is duplicate. 

Initially original unit is operative and duplicate unit is kept under cold standby mode. The concepts of 

preventive maintenance, maximum operation time and priority to repair of original unit over repair of 

duplicate unit are also incorporated in the development of the stochastic model. A single repair facility 

is available for performing all repair activities as and when required. All time dependent random 

variables are assumed to follow arbitrary distribution. Printer and Xerox machines are most common 

used equipment’s in most of the offices like academic institutions. Both can be utilized for the same 

purpose. Both are non-identical and it is a suitable example for our proposed model. 

The probability density function (p.d.f.) of maximum operation time of original and duplicate unit 

is denoted by 1( ) exp( ).g t t t     The p.d.f. of failure times of the original and duplicate unit are 

denoted by 1( ) exp( )f t t t      and 1
2 ( ) exp( ),f t h t ht     respectively.  The preventive 

maintenance rate of the original and duplicate units is denoted by the probability density function 
1

1 ( ) exp( ).g t t t     The random variables corresponding to repair rate of the original and 

duplicate units have the probability density function 1
1 ( ) exp( )f t k t kt    and 

1
3 ( ) exp( )f t l t lt     respectively with 0t   and , , , , , , 0.h k l      The recurrence relations for 

various reliability measures have been developed by using regenerative point technique ( RPT)  and 

semi Markov process ( SMP) .  To highlight the importance of the study numerical results has been 

drawn for a particular case. 

 

2. Model Description 

In this section, a stochastic model has been developed for two non-identical unit system has been 

developed by using the notations and model described in Kumar et al. (2018). The concept of priority 

is also used in the development of model.  Initially, one unit is operative and other is kept in cold 

standby. The system remain operative if at least one unit either original or duplicate is operative. The 

SMP and RPT have been used for formulation of recurrence relations.  The system may be at any one 

of the following state: 

0 ( , )S O DCs  1 ( , )S Pm Do  2 ( , )S Fur Do  3 ( , )S O DFur  4 ( , )S O DPm  

5 ( , )S Fwr DPM  6 ( , )S FUR DFwr  7 ( , )S FUR DWPm  8 ( , )S WPm DPM  9 ( , )S PM DWPm  

10 ( , )S PM DFwr  11( , )S Fur DFwr  12 ( , )S WPm DFUR    

In above mentioned states, 0 1 2 3, , ,S S S S  and 4S  are operative and regenerative, 11S  is only failed 

regenerative state and remaining states are failed non-regenerative state. 

 

2.1. Transition probabilities 

By using simple probabilistic arguments, the transition probability at each state iS  is as follows:  
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2.2. Mean sojourn times 

The mean sojourn times ( )i  is the state iS  are  
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2.3. Mean time to system failure 

By considering simple probabilistic arguments and considering as the cumulative distribution 

function (c.d.f.) of first passage time from the regenerative state iS  to a failed state. The failed state 

is considered as an absorbing state. The recursive relations for ( )i t  are as follows 

 ( ) ( ) ( ) ( ).i i, j j i,k
j k

φ t = Q t ®φ t + Q t                  (1) 

In above expression, j  represents an un-failed regenerative state to which the given regenerative 

state i  can transit and k  is a failed state to which the state i  can transit directly. Taking Laplace-

Stieltjes transformation of above Equation (1) and solving for ( ), 0.i s i   The mean time to system 

failure (MTSF) is given by 

0

0

1 ( )
MTSF lim ,

s

s N

s D





 


                                                  (2) 

where 0 01 1 02 2N p p      and 01 10 02 201 .D p p p p    The numerical values of MTSF using 

Equation (2) for a particular case have been obtained and appdended in Table 1. 
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Table 1 MTSF (‘000) and failure rate 

  

2, 0.5,    

5, 0.009,h    

1.5, 1.4k l   

2, 0.5,  

7, 0.009,h    

1.5, 1.4k l   

2, 1,    

5, 0.009,h    

1.5, 1.4k l   

2, 1,  

7, 0.009,h    

1.5, 1.4k l   

2, 2,    

5, 0.009,h  

1.5, 1.4k l   

2, 2,    
7, 0.009,h  

1.5, 1.4k l   

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

4.9918    

4.7950    

4.6123    

4.4423    

4.2836    

4.1351    

3.9960    

3.8654    

3.7426    

3.6268 

11.7910   

10.7622    

9.8940    

9.1515    

8.5094    

7.9487    

7.4548    

7.0165    

6.6251    

6.2733 

5.9647    

5.7599    

5.5696    

5.3921    

5.2264    

5.0712    

4.9255    

4.7886    

4.6596    

4.5379 

13.8080   

12.6725   

11.7138   

10.8934   

10.1835    

9.5632    

9.0165    

8.5310    

8.0970    

7.7067 

8.9395    

8.6486    

8.3781    

8.1260    

7.8904    

7.6698    

7.4627    

7.2680    

7.0846    

6.9116 

20.8745   

19.1946   

17.7760   

16.5621   

15.5116   

14.5936   

13.7844   

13.0659   

12.4235   

11.8458 

 

2.4. Steady state availability 

By considering simple probabilistic arguments and considering ( )iA t  be the probability that the 

system is in up-state at instant ‘ t ’ given that the system entered regenerative state iS  at 0.t   The 

recursive relations for ( )iA t  are given as  

 ( )
,( ) ( ) ( ) ( ),n

i i i j j
j

A t M t q t A t                   (3) 

where j  and i  are any successive regenerative states which can transit through n  transitions. ( )iM t  

is the probability that system remains in upstate at iS  state.  

0 ( ) exp( ( ) ),M t t     1( ) exp( ( ) ),M t h t      2 ( ) exp( ( ) ),M t k h t      

3 ( ) exp( ( ) ),M t = l t     4 ( ) exp( ( ) ).M t t                       (4) 

Taking Laplace transformation of above relations (3) and (4) and solving for * ( )iA s  for 0.i   

The steady state availability is given by * 2
0 0

0
2

( ) lim ( ) ,
s

N
A sA s

D
    where  

2 0 41.8 14.9 42.5 24.7 3.11 11.3 41.8 24.7 42.5 14.9 3.11 11.3

31.12 42.5 14.9 23.6 13.10 42.5 24.7 1 4 14.9 01 42.5 24.7

3.11 11

( ( )(((1 )(1 )(1 )) (( )( )(1 ))

(( )( (1 ))))) (( ( ) ( ) )(( )(1 )

(1

N M t p p p p p p p p p p p p

p p p p p p p M t M t p p p p

p p

      

       

 .3 41.8 24.7 02 3.11 11.3 31.12 02 23.6 2 4 24.7 01

42.5 14.9 3.11 11.3 41.8 14.9 02 3.11 11.3 31.12 02 13.10 3 01

42.5 14.9 23.6 13.10

) ( )( )(1 ) ( ))) (( ( ) ( ) )(( )

( )(1 ) (1 )( )(1 ) ( ))) ( )(( )
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p p p p p p p p M t M t p p

p p p p p p p p p p p p M t p

p p p p
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      

  42.5 24.7 02 41.8 14.9 23.6 13.10 41.8 24.7)) ( )((1 ( ) ( )))),p p p p p p p p p   

 

2 0 41.8 14.9 42.5 24.7 3.11 11.3 41.8 24.7 42.5 14.9 3.11 11.3

' '
31.12 42.5 14.9 23.6 13.10 42.5 24.7 1 4 14.9 01 42.5 24.7

3.11 11.3 4

( (((1 )(1 )(1 )) (( )( )(1 ))

(( )( (1 ))))) (( )(( )(1 )

(1 ) (

D p p p p p p p p p p p p

p p p p p p p p p p p

p p p



 

      

       

  ' '
1.8 24.7 02 3.11 11.3 31.12 02 23.6 2 4 24.7 01

'
42.5 14.9 3.11 11.3 41.8 14.9 02 3.11 11.3 31.12 02 13.10 3 01

42.5 14.9 23.6 13.10 42.5 24.7

)( )(1 ) ( ))) (( )(( )

( )(1 ) (1 )( )(1 ) ( ))) ( (( )

( (1 ))

p p p p p p p p p

p p p p p p p p p p p p p

p p p p p p

 



    

      

  02 41.8 14.9 23.6 13.10 41.8 24.7( )((1 ( ) ( ))))),p p p p p p p   

 

(5) 

 

The numerical values of system availability using expression (5) for a particular case have been 

obtained and appdended in Table 2. 
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Table 2 Availability and failure rate ( )  

  

2, 0.5,  

5, 0.009,h    

1.5, 1.4k l   

2, 0.5,  

7, 0.009,h    

1.5, 1.4k l   

2, 1,    

5, 0.009,h    

1.5, 1.4k l   

2, 1,  

7, 0.009,h    

1.5, 1.4k l   

2, 2,    

5, 0.009,h    

1.5, 1.4k l   

2, 2,  

7, 0.009,h    

1.5, 1.4k l   

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.9394    

0.9347    

0.9300    

0.9253    

0.9206    

0.9159    

0.9113    

0.9066    

0.9020    

0.8974 

0.9724    

0.9675    

0.9625    

0.9576    

0.9528    

0.9479    

0.9431    

0.9382    

0.9334    

0.9287 

0.8941    

0.8917    

0.8893    

0.8869    

0.8845    

0.8822    

0.8799    

0.8776    

0.8753    

0.8731 

0.9367    

0.9340    

0.9313    

0.9286    

0.9259    

0.9232    

0.9206    

0.9180    

0.9155    

0.9129 

0.8715    

0.8701    

0.8687    

0.8673    

0.8659    

0.8646    

0.8632    

0.8619    

0.8606    

0.8593 

0.9109    

0.9092    

0.9076    

0.9060    

0.9044    

0.9028    

0.9012    

0.8997    

0.8981    

0.8966 

 

2.5. Busy period analysis for server 

By considering simple probabilistic arguments and considering ( )R
iB t  and ( )Pm

iB t  the probability 

that the server is busy in repair and preventive maintenance activities of the unit at an instant ‘ t ’ given 

that the system entered state iS  at  0.t   The recursive relations for ( )R
iB t  and  ( )Pm

iB t  are as follows:  

( )
,( ) ( ) ( ) ( ) ,R n R

i i i j j
j

B t W t q t B t     

( )
,( ) ( ) ( ) ( ),pm n pm

i i i j j
j

B t W t q t B t                                                  (6) 

where j  and i  are any successive regenerative states which can transit through n transitions. ( )iW t  

be the probability that the server is busy in state iS  up to time t without making any transition to any 

other regenerative state or returning to the same via one or more non-regenerative states and so 

2 ( ) exp( ( ) ),W t k h t     3 ( ) exp( ( ) ),W t l t      11( ) exp( ( ) ),W t k t    

1( ) exp( ( ) ),W t h t      4 ( ) exp( ( ) ).W t t       

By taking Laplace transformation of (6) and solving for *
0 ( ).RB s  The busy period of the server 

due to repair activities is given by * 3
0 0

0
2

lim ( ) ,
R

R R

s

N
B sB s

D
   * 4

0 0
0

2

lim ( ) ,
Pm

Pm Pm

s

N
B sB s

D
   

3 2 01 42.5 14.9 3.11 11.3 41.8 14.9 02 3.11 11.3 31.12 02 13.10

3 11 3.11 01 42.5 14.9 23.6 13.10 42.5 24.7 02 41.8 14.9 23.6

13.10

(( (0))(( )( )(1 ) (1 )( )(1 ) ( )))

( (0) (0) )(( )( (1 )) ( )((1 ( )

(

RN W p p p p p p p p p p p p p

W W p p p p p p p p p p p p

p p

     

       

 41.8 24.7 )))),p

4 1 4 14.9 01 42.5 24.7 3.11 11.3 41.8 24.7 02 3.11 11.3

31.12 02 23.6 4 24.7 01 42.5 14.9 3.11 11.3 41.8 14.9 02

3.11 11.3 31.12 02

(( (0) (0) )(( )(1 )(1 ) ( )( )(1 )

( ))) (( (0) )(( )( )(1 ) (1 )( )

(1 ) (

PmN W W p p p p p p p p p p p

p p p W p p p p p p p p p

p p p p

     

    

  13.10 ))),p

 

and 2D  is already mentioned in previous section. 

 

2.6. Expected number of repair activities and server visits 

By considering simple probabilistic arguments and considering ( ),R
iE t  ( )Pm

iE t  and ( )iN t  be the 

expected number of repairs, preventive maintenance and visits by the server in (0, ]t  given that the 
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system entered the regenerative state iS  at 0.t   The recursive relations for ( ),R
iE t  ( )Pm

iE t  and 

( )iN t  are given as  

( )
,( ) ( ) ( ) ,R n R

i i j j j
j

E t Q t E t      ( )
,( ) ( ) ( ) ,Pm n Pm

i i j j j
j

E t Q t E t      

( )
,( ) ( ) ( ) ,n

i i j j j
j

N t Q t N t                                                                                                  (7) 

where j  and i  are any successive regenerative states which can transit through n  transitions and 

1,j   if j  is the regenerative state where the server does job afresh, otherwise 0.j   Taking 

Laplace-Stieltjes transformation of relations (7)  and solving for 0 ( ),RE s  0 ( )PmE s  and 0 ( ).N s   The 

expected numbers of repairs, preventive maintenances and visits per unit time are given by  

5
0 0

0
2

( ) lim ( ) ,
R

R R

s

N
E sE s

D
    6

0 0
0

2

( ) lim ( ) ,
Pm

Pm Pm

s

N
E sE s

D
    7

0 0
0

2

( ) lim ( ) ,
s

N
N sN s

D
              

5 20 23.6 24.7 01 42.5 14.9 3.11 11.3 41.8 14.9 02 3.11 11.3

31.12 02 13.10 30 31.12 3.11 11.3 3.11 01 42.5 14.9 23.6 13.10 42.5 24.7

02 41.8

(( )(( )( )(1 ) (1 )( )(1 )

( ))) (( ) )(( )( (1 ))

( )((1

RN p p p p p p p p p p p p p

p p p p p p p p p p p p p p p

p p

      

       

  14.9 23.6 13.10 41.8 24.7( ) ( )))),p p p p p 

 

6 10 13.10 14.9 40 41.8 42.5 14.9 01 42.5 24.7 3.11 11.3

41.8 24.7 02 3.11 11.3 31.12 02 23.6 40 41.8 42.5 24.7 01

42.5 14.9 3.11 11.3 41.

((( ) ( ) )(( )(1 )(1 )

( )( )(1 ) ( ))) ((( ) )(( )

( )(1 ) (1

PmN p p p p p p p p p p p p

p p p p p p p p p p p p p

p p p p p

       

     

   8 14.9 02 3.11 11.3 31.12 02 13.10)( )(1 ) ( ))),p p p p p p p 

 

2 01 02 41.8 14.9 42.5 24.7 3.11 11.3 41.8 24.7 42.5 14.9 3.11 11.3

31.12 42.5 14.9 23.6 13.10 42.5 24.7

( )(((1 )(1 )(1 )) (( )( )(1 ))

(( )( (1 ))))),

N p p p p p p p p p p p p p p

p p p p p p p

       

   
 

and 2D  is already mentioned in previous section. 

 

2.7. Profit analysis 

The profit incurred to the system model in steady state can be obtained as 

 0 0 1 0 2 0 3 0 4 0 5 0 ,Pm R Pm RP K A K B K B K E K E K N                     (8) 

where 0K  is the revenue per unit up-time of the system and iK ( 1,2,3,4,5)i   is the associated 

expenditure per unit time for operation of system. The numerical values of system’s profit using 

Equation (8) for a particular case have been derived and appdended in Table 3. 

 

3. Conclusions 

In the present study, an effort has been made to analyze the reliability measures of a cold standby 

system of non- identical units.  For this purpose, numerical results for MTSF, availability and profit 

function have been obtained for a particular case in which all random variables are assumed Weibull 

distributed.  The particular values are as follows 2, 0.5, 5, 0.009, 1.5, 1.4,h k l                  

0 5000,K  1 200,K   2 150,K  3 100,K  4 75,K  5 80.K   It is observed from Tables 1-3 that the 

MTSF, availability and profit of the system declines with the increase shape parameter (η) and failure 

rate of the unit while values of these parameters increase with increment of the preventive maintenance 

rate and repair rate. Finally, we conclude that by increasing the repair rate and preventive maintenance 

rate of the original and duplicate unit, the two non-identical units system can be made more profitable 

and available for use. 
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Table 3 Profit and failure rate ( )  

  

2, 0.5,    

5, 0.009,h    

1.5, 1.4k l   

2, 0.5,    

7, 0.009,h    

1.5, 1.4k l   

2, 1,    

5, 0.009,h    

1.5, 1.4k l   

2, 1,    

7, 0.009,h    

1.5, 1.4k l   

2, 2,    

5, 0.009,h    

1.5, 1.4k l   

2, 2,    

7, 0.009,h    

1.5, 1.4k l   

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

4367.2    

4341.8    

4316.6    

4291.4    

4266.4    

4241.5    

4216.7    

4192.1    

4167.6    

4143.2 

4526.9    

4500.4    

4474.0    

4447.7    

4421.6    

4395.6    

4369.7    

4343.9    

4318.3    

4292.7 

4194.3    

4181.7    

4169.1    

4156.7    

4144.4    

4132.3    

4120.2    

4108.2    

4096.4    

4084.6 

4393.8    

4379.5    

4365.3    

4351.2    

4337.3    

4323.5    

4309.9    

4296.4    

4283.0    

4269.8 

4153.6    

4146.3    

4139.1    

4132.0    

4125.0    

4118.0    

4111.1    

4104.2    

4097.4    

4090.7 

4342.5    

4334.0    

4325.6    

4317.2    

4309.0    

4300.9    

4292.8    

4284.9    

4277.0    

4269.2 
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