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Abstract

In the present study, an effort has been made to develop a stochastic model for a redundant system
of non-identical units. One unit is treated as original and other is duplicate. Initially original unit is
operative and duplicate unit is kept under cold standby mode. The concepts of preventive maintenance,
maximum operation time and priority to repair of original unit over repair of duplicate unit are also
incorporated in the development of the stochastic model. A single repair facility is available for
performing all repair activities as and when required. All time dependent random variables are
assumed to follow arbitrary distribution. The recurrence relations for various reliability measures have
been developed by using regenerative point technique (RPT) and semi Markov process (SMP). To
highlight the importance of the study numerical results has been drawn for a particular case.

Keywords: Reliability, availability, Weibull failure and repair laws, preventive maintenance, semi- Markov
process, maximum operation time.

1. Introduction

In the current century computer science and information technology plays a key role in the life of
human being. All most all sector like communication, education, medical, transportation, use the
computing devices for their successful operation. With the increasing automation the complexity of
these systems is also increasing rapidly. Due to the complexity, it becomes difficulty to operate these
systems successfully. In this situation, it becomes the primary responsibility of system designers that
these equipment perform satisfactorily. A lot of research work has been carried out by the researcher
and scientists in the field of redundant systems by considering constant failure and repair rates and
identical units. Gupta et al. (2013) carried out the cost-benefit analysis of a two duplicate-unit parallel
system with repair/replacement and correlated lifetimes of the units. Kadian et al. (2012) carried out
the cost analysis of a two-unit cold standby system subject to degradation, inspection and priority.
Kumar and Malik (2014) proposed a reliability model for a computer system with priority to H/w
repair over replacement of H/w and up-gradation of s/w subject to maximum operation time (MOT)
and maximum repair time (MRT). Kumar et al. (2015) analyzed performance measures of a computer
system with imperfect fault detection of hardware and preventive maintenance. Kishan and Jain (2012)
studied a two non-identical unit standby system model with repair, inspection and post-repair under
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classical and Bayesian viewpoints. Kumar et al. (2015) suggested a stochastic behavior for a cold
standby system with maximum repair time. Kumar et al. (2016) developed a stochastic modeling for
a cold standby system of non-identical units. Recently, Kumar et al. (2016), Kumar et al. (2017),
Kumar et al. (2018), Barak et al. (2018) and Barak et al. (2018) designed some stochastic model for
redundant systems with priority, preventive maintenance, and Weibull failure and repair distributions.
But, till now, no work has been carried out for non-identical unit systems using the concept of priority
to repair of original unit over repair of duplicate unit.

By keeping the above facts in mine, here an effort has been made to develop a stochastic model
for a redundant system of non-identical units. One unit is treated as original and other is duplicate.
Initially original unit is operative and duplicate unit is kept under cold standby mode. The concepts of
preventive maintenance, maximum operation time and priority to repair of original unit over repair of
duplicate unit are also incorporated in the development of the stochastic model. A single repair facility
is available for performing all repair activities as and when required. All time dependent random
variables are assumed to follow arbitrary distribution. Printer and Xerox machines are most common
used equipment’s in most of the offices like academic institutions. Both can be utilized for the same
purpose. Both are non-identical and it is a suitable example for our proposed model.

The probability density function (p.d.f.) of maximum operation time of original and duplicate unit

is denoted by g(7) =ant”" exp(—at”). The p.d.f. of failure times of the original and duplicate unit are
denoted by f(¢)=pnt""exp(-Bt") and f,(t)=hnt"" exp(~ht"), respectively. The preventive
maintenance rate of the original and duplicate units is denoted by the probability density function
g,(t)=ynt"" exp(—yt"). The random variables corresponding to repair rate of the original and
duplicate  units have the probability density function  f(¢) =knt"" exp(~kt") and
(@) =Int" “exp(=It") respectively with ¢>0 and 6,7,a, B,h,k,I > 0. The recurrence relations for

various reliability measures have been developed by using regenerative point technique (RPT) and
semi Markov process (SMP). To highlight the importance of the study numerical results has been
drawn for a particular case.

2. Model Description
In this section, a stochastic model has been developed for two non-identical unit system has been
developed by using the notations and model described in Kumar et al. (2018). The concept of priority
is also used in the development of model. Initially, one unit is operative and other is kept in cold
standby. The system remain operative if at least one unit either original or duplicate is operative. The
SMP and RPT have been used for formulation of recurrence relations. The system may be at any one
of the following state:
S,(0,DCs) S, (Pm, Do) S, (Fur, Do) S,(0,DFur) S,(0, DPm)
S, (Fwr, DPM) S,(FUR,DFwr)  S,(FUR,DWPm)  S,(WPm,DPM)  S,(PM,DWPm)
S, o(PM,DFwr) S, (Fur,DFwr)  S,(WPm,DFUR)
In above mentioned states, S, S|, S,, S, and S, are operative and regenerative, S, is only failed

regenerative state and remaining states are failed non-regenerative state.

2.1. Transition probabilities
By using simple probabilistic arguments, the transition probability at each state S, is as follows:
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2.2. Mean sojourn times
The mean sojourn times (z,) is the state S, are
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2.3. Mean time to system failure
By considering simple probabilistic arguments and considering as the cumulative distribution

SEES

function (c.d.f.) of first passage time from the regenerative state S, to a failed state. The failed state

is considered as an absorbing state. The recursive relations for ¢ (¢) are as follows
9,(=2.0,(O®0p, (1) + 3,0, (0). M
j k

In above expression, j represents an un-failed regenerative state to which the given regenerative
state i can transit and & is a failed state to which the state i can transit directly. Taking Laplace-
Stieltjes transformation of above Equation (1) and solving for &.(S), i =0. The mean time to system
failure (MTSF) is given by

MTSF =1§1£r(}l_qzﬁ= %, 2)
where N =y, + po iy + Ppott, and D =1—p,,p,o — P Pso- The numerical values of MTSF using

Equation (2) for a particular case have been obtained and appdended in Table 1.
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Table 1 MTSF (‘000) and failure rate

a=2,7=0.5, a=2,n=0.5, a=2,n=1, a=2,n=1, a=2n=2, a=2n=2,
B y=5h=0009, y=7,h=0009, y=5h=0009, y=7,h=0.009, y=5h=0009, y=7h=0.009,
k=151=14 k=151=14 k=15,1=14 k=15,1=14 k=15,1=1.4 k=151=1.4

0.01 4.9918 11.7910 5.9647 13.8080 8.9395 20.8745
0.02 4.7950 10.7622 5.7599 12.6725 8.6486 19.1946
0.03 4.6123 9.8940 5.5696 11.7138 8.3781 17.7760
0.04 4.4423 9.1515 5.3921 10.8934 8.1260 16.5621
0.05 4.2836 8.5094 5.2264 10.1835 7.8904 15.5116
0.06 4.1351 7.9487 5.0712 9.5632 7.6698 14.5936
0.07 3.9960 7.4548 4.9255 9.0165 7.4627 13.7844
0.08 3.8654 7.0165 4.7886 8.5310 7.2680 13.0659
0.09 3.7426 6.6251 4.6596 8.0970 7.0846 12.4235
0.10 3.6268 6.2733 4.5379 7.7067 6.9116 11.8458

2.4. Steady state availability
By considering simple probabilistic arguments and considering A4 (¢) be the probability that the
system is in up-state at instant ‘¢’ given that the system entered regenerative state S, at t=0. The

recursive relations for 4 (¢) are given as
A= M () + D g (HO4, (1), A3)
j

where j and i are any successive regenerative states which can transit through » transitions. M, (¢)

is the probability that system remains in upstate at S, state.
M, (1) =exp(—(a+p)t"), M,(t)=exp(—(a+h+y)i"), M,(t)=exp(—(a+k+h)"),
M (1) = exp(—(a+ B +Dt"), M, (¢)=exp(—(a+B+y)"). “)
Taking Laplace transformation of above relations (3) and (4) and solving for A,.* (s) for i=0.

The steady state availability is given by 4,() = ling s4y(s) = %, where
5> ,

N, =M, ()= py1sPrao) A= PiysP2a7 A= P3 11211 3)) + ((Pay § P24 (= Pan s Prag A= P31 21 3))
(P31 Pazs Prao Pass + Prs1o(L = P s P24 2)))) = (M () + M, () Py o (=P )AL= Pay s Pass)
(1= P311P113) + (ParsPoa 7 (=P L= D311 Pri3) = (P31.12 P Pass ) + (M, () + M, () oy, J((Pyy)
(PasPrao A= P51 Pris) + (1= Py s Prao NP X = D311 Pris) = (P31.12 P Praag ) = M5 (D((=poy)
(ParsPraoPass + P = PirsPass)) + (Pon (L= Py s Pras (— Py 6) = (i3 10 Par s P2ar )))s

Dy =1ty (A= pays Prao) A= Piy s Poa 7 A= P31, P11 3)) + (Pars Poas =Pz s Prao L= D311 P11 3))
+((=P31.1)(Pars PrasPrss + Prsno (= PazsPran D) = (1 + 11, P4 (= Py )1 = Pigs Py 1)
(= P31 P13) + (ParsPrar =P A= D3 11210 3) = (P3040 Pos Pas o)) + (1 + 139207 )(Poy)
(ParsPras) A= Py 1121y 3) + (1= Py 52136 X Po YA = D311 21 3) = (D312 Poa Prs0)) = (44 ((= Py
(ParsPraoPrss + Przio(l= P sPras)) + (P (L= Puy s Prao (=P ) = (Pi3 10 Pt s P2 )

)

The numerical values of system availability using expression (5) for a particular case have been
obtained and appdended in Table 2.
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Table 2 Availability and failure rate (£)

a=2,n=0.5, a=2,n=0.5, a=2,n=1, a=2n=1, a=2,n=2, a=2,n=2,
,B ¥ =5,h=0.009, y=7,h=0.009, ¥ =5,h=0.009, y=7,h=0.009, ¥ =5,h=0.009, y=7,h=0.009,
k=151=14 k=151=14 k=151=14 k=151=14 k=151=14 k=151=14

0.01 0.9394 0.9724 0.8941 0.9367 0.8715 0.9109
0.02 0.9347 0.9675 0.8917 0.9340 0.8701 0.9092
0.03 0.9300 0.9625 0.8893 0.9313 0.8687 0.9076
0.04 0.9253 0.9576 0.8869 0.9286 0.8673 0.9060
0.05 0.9206 0.9528 0.8845 0.9259 0.8659 0.9044
0.06 0.9159 0.9479 0.8822 0.9232 0.8646 0.9028
0.07 09113 0.9431 0.8799 0.9206 0.8632 0.9012
0.08 0.9066 0.9382 0.8776 0.9180 0.8619 0.8997
0.09 0.9020 0.9334 0.8753 0.9155 0.8606 0.8981
0.10 0.8974 0.9287 0.8731 0.9129 0.8593 0.8966

2.5. Busy period analysis for server
By considering simple probabilistic arguments and considering B,.R (¢) and BI.P "(t) the probability
that the server is busy in repair and preventive maintenance activities of the unit at an instant ‘ £ * given

that the system entered state S, at 7= 0. The recursive relations for B/ () and B/"(¢) are as follows:

B (t)=W,()+Y_q\") (1)©B} (1),
B (6) =W, ()+.q" ()OB" (1), (6)

where j and i are any successive regenerative states which can transit through n transitions. W,(z)
be the probability that the server is busy in state .S, up to time t without making any transition to any
other regenerative state or returning to the same via one or more non-regenerative states and so
W, (1) = exp(—(a +k+h)t"), W;(1)=exp(—(a+p+Di"), W, (1) =exp(-(k)"),
W(0) = exp(~(a +h+ "), W, (1) =exp(~(a+[+y)").

By taking Laplace transformation of (6) and solving for B,*(s). The busy period of the server

. e . . Nf . . N
due to repair activities is given by Bf = lim sB*(s)=—-, B" = lim sB,"" () = ——,
$= 5>
2 2

N3R = (W, (ON(Poi N Pazs Prag )L = P31 P11 3) + (A= Py s Prao N Lo XL = P31 Pris) = (P31.12Poa Praio )
—(W5(0)+W,,(0) 3y (=P N Pazs Pras Py + P10 (1= PazsPraz)) + (P (L= Pay s Prao (—Pas )
—(P1310Pa15P247))s

me =((W(0) + W, (0) P,y (P )L = Pay s Pos s A= D311 P11 3) + (Par g Paa s X P Y= P3 11 P11 5)
+(P31.0P0Pr6)) + (W, (0) pay (Do N Pazs Prag A= P31y Pris) + (= Py g Prag N Po)
(I=p511P113) = (P31.12 P02 Pi3.10))s

and D, is already mentioned in previous section.

2.6. Expected number of repair activities and server visits
By considering simple probabilistic arguments and considering E (t), E"(¢) and N,(¢) be the

expected number of repairs, preventive maintenance and visits by the server in (0,¢] given that the
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system entered the regenerative state S, at ¢ =0. The recursive relations for E*(¢), E"(¢) and

N, (¢) are given as

Ef0)=Y0"0® [6,+E/ 0], E"©)=Y0%®® [5,+E"®)],
N, (=205 0®[5,+N,0], (™

where j and i are any successive regenerative states which can transit through » transitions and

6, =1, if j is the regenerative state where the server does job afresh, otherwise 6, =0. Taking

Laplace-Stieltjes transformation of relations (7) and solving for E(f (s), Eé’m(s) and No(s). The
expected numbers of repairs, preventive maintenances and visits per unit time are given by
R : R NsR Pm : [ Pm N6Pm : \T N7
E§ () = limsEj (5) = . Ef" () =limsE]" (5) = ==, Ny(o0) = limsNy(s) =7

2 2 2

N:f = ((pzo *+ Pre T Py )((pm )(p42.5p14,9)(1 —Piuh 1.3) + (1 ~ PagPrao )(poz )(1 —Pinh 1,3)
= (P31.10P0 Pr310)) = (P30 + P31 + P31) + P Psa (Do) (ParsPrao Prs + Prsao (L= PassPass))
+ (P (1= Py s Prag (= Pr36) = (Pi3.10 Par s P2a7))s

N = (1o + Pisio + Pras) + (Pag + Pars + Pars) Pras (o)A = Pays P20 )= P31 P11 3)
+(Pa1§P2ar ) Po 1= D3 112113) + (P3110P0s Pass D) + ((Pag + Pars + Pans) Paar (Do)
(Pars Prao )= P31 P11 3) + (L= Py s Prag ) (P02 A= D311 Py13) = (P31 Poa Praio))s
N, = (P + Po (A= Py s Prao )= Pay s Pra 7 WA= D311 P113)) + ((Pay s P2a s (= Pazs Prao L= P31y P11 3)
H((=P31.02)(ParsPrasPrss + Pisao (= Pars D)),

and D, is already mentioned in previous section.

2.7. Profit analysis
The profit incurred to the system model in steady state can be obtained as
P=K,A,-K,B" —K,Bf —K,E;" —K,Ef —K,N,, (8)
where K is the revenue per unit up-time of the system and K, (i=1,2,3,4,5) is the associated

expenditure per unit time for operation of system. The numerical values of system’s profit using
Equation (8) for a particular case have been derived and appdended in Table 3.

3. Conclusions

In the present study, an effort has been made to analyze the reliability measures of a cold standby
system of non-identical units. For this purpose, numerical results for MTSF, availability and profit
function have been obtained for a particular case in which all random variables are assumed Weibull
distributed. The particular values are as follows a=2,7=0.5 y=5 h=0.009, k=1.51=14,

K, =5000, K, =200, K, =150, K, =100, K, =75, K, =80. It is observed from Tables 1-3 that the

MTSF, availability and profit of the system declines with the increase shape parameter (1) and failure
rate of the unit while values of these parameters increase with increment of the preventive maintenance
rate and repair rate. Finally, we conclude that by increasing the repair rate and preventive maintenance
rate of the original and duplicate unit, the two non-identical units system can be made more profitable
and available for use.
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Table 3 Profit and failure rate (/)

a=2,n=0.5, a=2,n=0.5, a=2,n=1, a=2,n=1, a=2,n=2, a=2,n=2,
ﬂ ¥ =5,h=0.009, y=7,h=0.009, 7 =5,h=0.009, ¥ =17,h=0.009, y=5,h=0.009, y=7,h=0.009,
k=15,1=14 k=15,1=14 k=1.5,1=14 k=1.5,1=14 k=15,1=14 k=151=14

0.01 4367.2 4526.9 41943 4393.8 4153.6 4342.5
0.02 4341.8 4500.4 4181.7 4379.5 4146.3 4334.0
0.03 4316.6 4474.0 4169.1 4365.3 4139.1 4325.6
0.04 42914 44477 4156.7 4351.2 4132.0 4317.2
0.05 4266.4 4421.6 41444 43373 4125.0 4309.0
0.06 4241.5 4395.6 4132.3 4323.5 4118.0 4300.9
0.07 4216.7 4369.7 4120.2 4309.9 4111.1 4292.8
0.08 4192.1 4343.9 4108.2 4296.4 4104.2 4284.9
0.09 4167.6 4318.3 4096.4 4283.0 4097.4 4277.0
0.10 4143.2 4292.7 4084.6 4269.8 4090.7 4269.2
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