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Abstract 

This paper aims to describe new modelling to overcome the problem of non-proportional hazard 

modelling in survival analysis. One cause of non-proportional hazard is the presence of time-

dependent covariates and the presence of frailty. The proposed model is called the stratified extended 

with frailty (SEF) model. The method used in estimating model parameters is the hierarchical 

likelihood. The goodness of the model is tested by simulating utilizing the R program. The criteria 

used are parameter bias and Mean Squared Error. The developed model is applied to the Universitas 

Terbuka student retention data. The results of the study show that covariates that significantly affect 

the survival of the students of UT in their course of study are: educational background, age, GPA, 

marital status, the number of credit hours they completed, and the number of classes they have taken 

in each semester. Based on other similar studies, this is a common condition that occurs in other 

countries where some educational institutions apply the distance education system. 

 
Keywords: Analysis survival, hierarchical likelihood, time-dependent covariate, random effect, frailty model. 

 
1.  Introduction 

Survival analysis is one of the methods of analysis in statistics which is performed to model 

survival time that involves a number of predictor variables (covariates). The primary factor that 

distinguishes survival analysis from other methods of statistical analyses is the presence of censored 

observation. Most survival analyses must consider a key analytical problem called censoring. A 

censored observation occurs when we have some information about individual survival time, but we 

don’t know the survival time exactly.  Lee and Wang (2003) explain that censored data indicate a 

situation when part of the required data in a research process is unobtainable because there is an 
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individual under study who either has not experienced the observed occurrence or has not finished 

receiving the given treatment by the end of the research. It may happen, for example, with a cancer 

patient when he has to be transferred to another hospital or passes away during particular time interval 

that he is no longer available for observation. Censored observation may also occur in the area of 

research related to education, particularly in a kind of case with researches involving college students 

as the subjects, when the students under observation drop out or transfer to another university.  

Dropout and transfer are two of the typical occurrences in higher education sphere that cause students’ 

academic records to be incomplete or overlooked.  

One of the models which are commonly adopted to assess survival time with the involvement of 

censored observation is Cox model. Cox model assumes that each individual’s hazard rate is 

proportional to other individuals’ hazard rates with constant ratio at all times. For this reason, Cox 

model is also known as Cox proportional hazard. In practice, however, this assumption is frequently 

unsubstantiated, especially when there are time-dependent covariates involved. The presence of time-

dependent covariates creates a condition characterized by disproportional individuals’ hazard rates 

for which the course of time is the affecting factor. This condition is known as non-proportional 

hazard.   

One other factor that contributes to non-proportional hazard is the presence of unobserved 

random effect. Some statisticians perceive that the presence of unobserved covariates is likely 

associated with heterogeneity of data. Unobserved covariates in a survival model are identified as 

frailty (Vaupel et al. 1979). The guiding assumption of survival analysis is that the population under 

observation is homogenous, but when frailty is present, heterogeneity in the population will appear 

as the consequence. 

Wienke (2011) argues that in some cases, a researcher needs to take into account the 

heterogeneity element of her sample as indicated in her research population from which the sample 

is taken. It is important because sample heterogeneity may disrupt the assumption that underlies Cox 

model. The violation of proportional hazard’s assumption causes inaccuracy in parameter estimation 

and standard error (Henderson and Oman 1999). In that case, the occurrence of any individual’s 

hazard rate that is not proportional (non-proportional hazard) needs to be treated properly to ensure 

that a modelling function can be particularly useful and generate parameter estimation that is most 

representative of the actual condition. 

Non-proportional hazard that is caused by the presence of both time-independent covariates and 

time-dependent covariates can be resolved by combining two methods called stratified Cox and 

extended Cox.  Ratnaningsih et al. (2019) has carried out a study in which they apply the two models 

in tandem. The combination is called stratified extended Cox (SE Cox) and has been applied to data 

from student records at Universitas Terbuka (UT).  In survival analysis, hazard function for each 

individual depends on the observed covariates. However, in some cases, some of the involving 

covariates are unknown or indeterminate. An unobserved covariate, which is identified as random 

effect, is called frailty. As mentioned previously, frailty invalidates Cox model’s assumption. 

The present paper aims to develop a survival model for non-proportional hazard which is associated 

with time-independent covariate, time-dependent covariate and frailty. The suggested model is named 

as stratified extended Cox model with frailty (SEF model). This model is expected to be applicable to 

data related to issues in education, particularly the survival data of the students at UT. 

Universitas Terbuka is one of higher educational institutions which mainly provide distance 

education. The periods of study at UT vary due to several factors.  Those factors or covariates can be 

categorized into time-independent covariates and time-dependent covariates (Ratnaningsih et al. 

2019). The characteristics of the students of the university also vary, and therefore it is highly likely 
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that the data related to them and their study at the university will be heterogenous. One of the causes 

of heterogeneity in data is the involvement of unobserved covariates known as frailty. Thus, the 

application of SEF model to the data related to the students of UT is considered suitable. The 

application of the model in this case is aimed at producing a more meaningful statistical modelling 

with which parameter estimation that is most representative of the actual condition can be achieved. 

 

2.  Stratified-Extended Model with Frailty 

2.1. The proposed model 

Stratified extended model with frailty (abbreviated as SEF model for this paper) is proposed in 

this study to address non-proportional hazard cases effectively. This model is the outgrowth of the 

previously developed model known as stratified extended Cox (SE Cox) that has been presented by 

Ratnaningsih et al. (2019) in their study. Their study has shown that SE Cox model is able to resolve 

non-proportional hazard in a survival model that involves time-dependent covariates. 

The central difference between SE Cox and SEF model is marked by the presence of unobserved 

random effect in the latter, which is known as frailty (Vaupel et al. 1979). As an unobserved random 

effect, frailty is capable of altering the hazard function of an individual or group of individuals as 

well as an individual who undergoes recurring event(s). Non-proportional hazard in SEF model 

occurs because of the presence of time-independent covariates, time-dependent covariates and frailty.   

The underlying assumption that generates the notion of frailty is that each individual has his/her 

own weaknesses that differentiate him/her from other individuals, the kind of factor that can create 

heterogeneity. The assumption suggests that the frailest individual will be the earliest to die compared 

to other individuals in the same group (Therneau et al. 2003). Thus, frailty is a significant contributor 

to such heterogeneity. On the contrary, the basic assumption in survival analysis is that the observed 

population is homogenous. Therefore, the proposed model in this case is intended to manage the 

involvement of frailty, time-independent covariates and time-dependent covariates that are associated 

with non-proportional hazard.  

SEF model is mathematically defined as follows. 

                            

1 2

0
1 1

( , ) ( ) exp ( ) ,
p p

s s ai ai bi bi j s
a b

t t x x t v    
 

 
    

 
x                                     (1) 

where 

s  = the order of stratum; 1,2,...,s m  (denoting the number of strata combination),   

0 ( )s t  = baseline hazard function on each stratum, 

ai  = fixed effect coefficient vector for covariate number a  of individual number ,i  

aix  = time-independent covariate (fixed effect) number a  of individual number ,i  

bi  = coefficient vector for time-dependent covariate number b of individual number ,i  

( )bi jx t  = time-dependent covariate of individual number i  at time ,jt  

  = frailty coefficient vector, 

sv  = frailty on stratum number s. 

 

2.2. Parameter estimation in the model 

Parameter estimation used in SEF model is based on likelihood. In its application, the estimation 

is performed according to a procedure called hierarchical likelihood (H-likelihood) proposed by  

Ha et al. (2001) and Ha et al. (2019) with log-normal frailty distribution. 

Using (1), these following derivatives can be made: 
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where ( 1, 2,..., , 1, 2,..., )si sT s m i n 
 
denotes the survival time for individual number i  on stratum 

number s  and siC  represents the censored time for individual i  on stratum number .s  Accordingly, 

the observed data is expressed as min ( , )si si siy T C  and ( )si si siI T C   where (.)I is an indicator 

function. The value of this indicator function is 1 for the censored data and 0 for the non-censored 

data and sv  signifies unobserved log-frailty. If su  denotes unobserved random variable (frailty) on 

stratum number ,s  then log .s sv u  Ha et al. (2001) and Ha et al. (2019) represent frailty with these 

following assumptions. 

1. Assumption 1: It is given that ,{( , ), 1, 2,..., }i i si si sU u T C i n   is independent, and it follows 

that siT  and siC  are also independent for 1, 2,..., ; 1, 2,..., .ss m i n   

2. Assumption 2: It is given that ,{( , ), 1, 2,..., }i i si si sU u T C i n   is considered non-informative 

with respect to .su  

In this paper, it is assumed that ~ (0, )su LN   so that ~ (0, ).sv N   It is supported by these 

aspects: 

1. ~ (0, ),su LN  log ~ (0, ).s s sv u v N    

2. ~ (0, ), ~ (0, ).sv
s s sv N u e u LN    

If 1( ,..., )
s

T
s s sny y y  and 1( ,..., ) ,

s

T
s s sn    then hierarchical likelihood, which is denoted by ,h  

is to be defined as the sum of , 1, 2,..., .sh s m   Hence we have  

 ,ss
h h  (2) 

where sh  denotes the algorithm of shared density ( , , ).s s sy v   

Furthermore sh can be represented by the equation below 

 1 2( , , , ; , , ) log{ ( , , ; , | ) ( ; )},s s s s s s s s s s s sh y v L y u L v           (3) 

where 

1sL  = conditional density of ( , )s sy   with su  as the condition,  

2sL  = density of .sv  

Since 1sL  is assumed as an independent variable in (3), it can be further represented in this 

following formula 

 1 1( , , ; , | ) ( , , ; , | ),s s s s s si s s s s
i

L y u L y u         (4) 

where 

1siL  = conditional density of ( , )si siy   with su  as the condition.  

1siL  from (4) can be expressed in (5) below 

 1 ( , , ; , | ) ( | ) exp{ ( | )}.si

s s s s s si s si s
i

L y u y u y u       (5) 

Furthermore, if it is assumed that ~ (0, ),sv N   then 2sL  from (3) can be formulated in (6) below 
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Thus, if (5) and (6) are incorporated into (3), the resulting formulation appears as follows 

 2
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Moreover, by incorporating ,ss
h h  (2) can be rewritten as follows 
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Furthermore, if     1 0 0log log ( ) ( ) exp( )si si s si si s si siL y y        in (8) is denoted by 1 ,sil

and 2
2

1 1
log log (2 )

2 2
s sL v


    is denoted by 2 ,sl  then the following formula is obtained (Ha 

2001) 

 0 1 2( , , , , ) .s si s
si s

h h v l l        (9) 

To introduce the hierarchical likelihood approach into the existing procedure,   and v  will be 

suitably estimated using profile hierarchical likelihood *.h  It is a hierarchical likelihood to be applied 

by substituting 0  for 0 ,s  
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The value of 
0 s  is obtained from the estimation equation represented by 

0
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for which d  signifies a set of index i  comprising all event times. In this manner, (10) can be 

incorporated into (11) with this following result 
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where 

 
* ( ) 0 ( )1

ˆlog .i i sj sj isj
sj i sj i

l d d         

To optimize *h  function in the estimation of   and ,v  we can solve equation 
*
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h
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  and 

equation 
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
 using Newton-Raphson numerical method (Dobson 2002). The formula appears as 

follows 
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Furthermore, to compute variance of ̂  and ˆ,v  we can generate a second derivative from the 

formulation of *h  for   
 
and ,v ˆ( )H   through these following procedures (Dobson 2002) 
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Thus, according to Hosmer et al. (2008) variance of ̂  and v̂  are 
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To make an estimation of frailty variant ( ),  an approach called adjusted profile hierarchical 

likelihood can be appropriately employed. (19) below represents its application 
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where  ˆ( ) .J = H   

The maximum likelihood estimation of adjusted profile hierarchical likelihood for   can be 

achieved by solving equation 
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
 using Newton-Raphson method. The first derivative of *
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  is expressed in (20) as follows 
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The variance of ̂  are defined in the following equation (Hosmer et al. 2008) 
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2.3.  Simulation design 

SEF model is developed to address the presence of unobserved random effect (frailty) in the 

previously used model. The steps carried out for the simulation in this paper, which are aimed at 

generating time-independent and time-dependent covariates data, data structure and model 

assumption, mainly draw on the work by Ratnaningsih et al. (2019). The modelling proposed in this 

paper is aimed at extending those steps to include the frailty as the newly added element into the 

procedure.  The model simulation uses the R program with three packages, namely: survival 

(Therneau et al. 2003), frailtyHL (Ha et al. 2019), and Sylvestre et al. (2015). 

The random effect (frailty) is assumed to follow ~ (0, )N   distribution across these values:    

10, 14, 16 and 20. Model parameters used here are: log (1,04)   and log (0,99),   with 1v   for 

frailty.  The censorings for the model are set out as follows: censoring 0%, 0 ~ Uniform(6,8);C

censoring 30%, 30 ~ Uniform(2,5);C  and censoring 50%, 50 ~ Uniform (0,5).C  The sizes of samples 

taken for studies ( )n  are 100, 500, and 2,000. The simulation is performed with 1,000 iterations. 

 

3.  Result and Discussion 

3.1. Result of the model simulations 

In this section, we describe the merits of the proposed model. The goodness of the model is 

indicated by the parameter bias and values of the MSE model. The virtue of the model can be shown 
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from the results of simulations performed on several combinations of treatment of variance, 

censorship, the amount of data, and the number of iterations used. The results of the SEF model 

simulation were then compared with the SE Cox model (Ratnaningsih et al. 2019). 

Model simulations are applied to 4 types of variance ( ),  namely   10, 14, 16, and 20 with 3 

types of censoring (0%, 30%, 50%) and 4 sample sizes, namely n  500, 1,000, and 2,000. The 

iteration is used 1,000 times. Simulation results for each of the variance, censoring, and sample size 

in the biased estimation of model parameters in detail are presented in Table 1. 

From Table 1, it can be seen that the estimated bias percentage parameters of the SEF model are 

better than the SE Cox model. These are shown from the percentage bias estimation of the model 

parameters. In this discussion, a boxplot percentage bias is estimated for model parameters in various 

types of censoring (Figures 1-3). From Figure 1, it can be seen that the percentage of the estimated 

parameter bias ( )  produced by the SEF model in various types of censoring is smaller than the SE 

Cox model. Percentage bias parameter estimation ( ),  the SEF model gives a lower percentage than 

the SE Cox model. Likewise, with the parameter estimation bias for frailty ( ),v  the SEF model 

provides a lower rate of preference than the SE Cox model. Thus, from Table 1 and the three boxplot 

drawings, it can be shown that in terms of parameter estimation bias, the SEF model provides the 

smallest percentage of bias in various types of censoring. 

The MSE values generated by both models are presented in Table 1. Graphically the results of 

the MSE simulation results on various types of censoring, variance, and sample size are shown in 

Figures 4-6. From Table 1 and the three boxplot images presented, it appears that MSE values of 

parameters ,   and v  of the SEF model are smaller than the SE Cox model. The MSE value of the 

SEF model tends to decrease with an increase in sample size. From the two measures of model 

goodness, namely the bias parameters and MSE values, it can be said that the SEF model provides 

better modelling results for overcoming the unequal risk model because the existence of frailty and 

covariates is time-dependent. 

Whether frailty in modelling is influential or not is indicated by the value of the deviation based 

on REMPL (Restricted Maximum Partial Likelihood) versus the amount of ,2 ( ).v pp h  Then compare 

the difference in the variation with the critical value. The different variations of the SEF model are 

given in Table 1 (end of the column). From Table 1, the deviation difference column shows that in 

general of all the simulations performed, and it appears that frailty has a significant influence on 

modelling. This fact is because the deviation value is higher than the critical value. Simulation results 

show that the presence of frailty should be considered to form a non-proportional hazard modelling 

in survival analysis. 

 
3.2. An Application on real data 

SEF modelling presented in this study is intended to be applied to the survival data of the students 

of UT. The similar data has previously used by Ratnaningsih et al. (2019) in their study pertaining to 

the application of SE Cox model. In the study, the survival-time data constitute the response variable 

that is assessed in semester as its measurement unit. The time-independent covariates that are 

considered affecting the survival time of the students in their course of study are: educational 

background, the study programme of their interest, gender, age, marital status, employement status, 

and home area. The time-dependent covariates included in the study are the credit hours completed 

by the students, the number of classes they take per semester, and their Grade Average Point (GPA).   
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Table 1 Result of the simulation models in the various kind of censoring and variance 

 
Note: * is the difference in the SEF model deviation to see whether frailty has an effect or not. 

Deviation difference is determined from models with frailty and models without frailty based on 

REMPL compared to the critical deviation value of 2.71. 
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Figure 1 Percentage of bias parameter    

 

 
Figure 2 Percentage of bias parameter    

 

 
Figure 3 Percentage of bias parameter    
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Figure 4 Value of MSE parameter    

 

 
Figure 5 Value of MSE parameter   

 

 
Figure 6 Value of MSE parameter    
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In applying the model to the real data in their study, Ratnaningsih et al. (2019) do not include 

the study programs or majors of study the students are interested in. The reason of the exclusion is 

that the courses are assumed as observed random effect. In contrast, in SEF modelling, they belong 

to unobserved random effect. SEF model assumes that the involving unobserved random effect 

(frailty) is distributed by (0, 20).N  

A detailed description of the survival data of the students of UT in their course of study is 

presented in Table 2. It is apparent in Table 2 that of the total 4,483 students observed in the present 

study, 1,574 (35.11%) are censored and 2,909 (64.89%) are uncensored. The censored students are 

those students who are still studying for their degree or who have graduated or who have transferred 

to a different major or study programme (active students). The uncensored students are those who no 

longer follow the required procedure as a regular student (non-active students), i.e. those students 

who fail to register for 4 consecutive semesters (Boton and Gregory 2015).   

Table 2 shows the general characteristics of UT students who are non-active. They live in rural 

districts, female, between 35 and 45 years old, married, and employed. The data correspond with 

Schuemer (1993) that in distance education, the learning process is much more complex because most 

of the students who enroll for distance learning courses are of mature age, have a job, and are married. 

The similar fact, that is, students who are also employees or professionals will not be able to attend 

full-time study (Orr 2000). Age factor contributes significantly to the variations of capability in 

undertaking independent learning activities, more specifically in developing a study orientation and 

strategies for themselves not only to learn the provided materials but also to gain full comprehension 

of the non-conventional academic environment they are dealing with (Kadarko 2000).  

Table 2 also informs that the majority of non-active students was the students graduated from 

traditional (non-vocational) high schools; have completed 75 credit hours at UT; have GPAs ranging 

from 1.00 to 2.00; and have taken 5 to 8 courses for each semester. UT students who came to college 

as high school graduates are usually new to independent learning scheme, and their learning 

experiences vary. According to Ratnaningsih et al. (2008), several factors that contribute to the 

problems UT students have to deal with are: they have not yet fully grasped the way the learning 

system at UT works, they are not familiar with independent learning scheme, they have low 

motivation to actively engage in the learning process, they don’t have many peers to learn or discuss 

with, they have limited access to learning materials, and they have diverse previous educational 

experiences. Another factor which also has some bearing on the problem is the lack of discipline or 

self-direction on the students’ part. 

The results of the SEF model analysis on UT student retention data are presented in Table 3.  The 

estimated parameters of the random effect unobserved (frailty) in this study are notated by .v  The 

average of value v produced by the SEF model is 0.01537, and the value of standard error is 0.005834. 

The standard error is a measure that illustrates the average distribution of samples over the average 

population. A relatively small standard error indicates that the error or average deviation (estimator) 

of the population parameter is small. From the estimated size of these parameters, it can be stated that 

the SEF model is quite adequate. That is, the SEF model can be used as an alternative modelling of 

data hold learning UT students. 

Does frailty influence UT student retention learning? This testing criterion uses deviation values 

between models without frailty and frailty models. Deviation criteria are calculated based on REMPL 

(Restricted Maximum Partial Likelihood) with a value of ,2 ( ).v pp h  From the results of the case 

analysis of UT students, the difference in deviations between models with frailty and without frailty 

is 42,369−42,339 = 30. The difference in a deviation between the two models is huge. This shows 
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that frailty has a significant influence on the modelling of UT student retention learning. In the case 

of distance education, frailty can be identified with the ID of a student who has an academic record 

in online tutorials, learning motivation, learning time management, gaining resource facilities, 

ownership of teaching materials, and environmental factors. The frailty aspect for each student is 

different. Therefore, it will undoubtedly have a different effect on the success of learning at UT. 

 

Tabel 2 UT students’ characteristics based on the observed covariates 

Observed covariates Categorizations 
Censored Status 

Total 
Censored Uncensored 

Home area Rural district 1,265 2,338 3,603 

City 309 571 880 

Gender Female 923 1,558 2,481 

Male 651 1,351 2,002 

Age < 35 years old 87 294 381 

35-45 years old 1,049 1,859 2,908 

> 45 years old 438 756 1,194 

Education High school 813 1,911 2,724 

Associate degree 752 959 1,711 

Bachelor’s degree 9 39 48 

Marital status Unmarried 464 1,081 1,545 

Married 1,110 1,828 2,938 

Employmnet status Unemployed 58 294 352 

Employed 1,516 2,615 4,131 

Credit hours completed CH < 75 46 2,197 2,243 

75  CH  120 86 402 488 

CH> 120 1,442 310 1,752 

The number of courses taken each 

semester 

Courses <5 410 391 801 

5  Courses  8 1,149 2,146 3,295 

Courses > 8 15 372 387 

Grade average point 1.00 < GPA  2.00 470 1,962 2,432 

2.00 < GPA  3.00 1,074 236 1,310 

GPA > 3.00 28 13 41 

 

The analysis shows that statistically significant covariates at alpha 10% are age, GPA, marital 

status, number of credits taken, and the number of courses registered per semester. This fact is 

consistent with several studies conducted on distance education in several countries such as 

Indonesia, Greece, Nigeria, Brazil, New Jersey, Iran, United Kingdom, America, Germany, and 

Turkey. 

The age of students over 45 years has a significant influence on modelling student learning 

retention. This condition can be shown from the p-value less than the alpha level (10%). The 

estimated value of the age parameter over 45 years is −0,062. This value means students over the age 

of 45 have low learning retention 0.062( )e  or have a risk of 0.940 times compared to the period of 

other students. From the analysis of the SEF model, it can be seen that parameter estimates for the 

age covariate are positive. This fact shows that students who are younger (lower than 35 years old) 

experience high school dropouts. Students who are over 35 years of age tend to have lower learning 
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resilience than those who have an earlier age. Such conditions are the following studies conducted 

by Andriani and Pangaribuan (2006); Kadarko (2000) in Indonesia. Xenos et al. (2002) and 

Pierrakeas et al. (2004) in Greece state that there is a correlation between age and dropping out of 

college. 

 

Table 3 The parameter estimation results use the SEF model 

Observed Covariates Estimate Hazard Ratio Std. Error t-value   p-value 

Age 35-45 years old 0.063 1.065 0.068 0.931   3.5E-01 

Age > 45 years old −0.062 0.940 0.089 −0.697 4.9E-02 

Home area (city) 0.016 1.016 0.048 0.327 7.4E-01 

Gender (male) 0.029 1.029 0.038 0.754 4.5E-01 

1,00 < GPA  2,00 −0.733 0.481 0.048 −15.175 5.2E-52 

2,00 < GPA   3,00 0.598 1.818 0.088 −15.950 2.9E-57 

GPA > 3,00 0.687 1.988 0.283 −2.431 1.5E-02 

Employed −0.017 0.984 0.065 −0.255 8.0E-01 

Married −0.078 0.925 0.045 −1.739 7.2E-02 

75   CH  120 −1.219 0.295 0.059 −20.723 2.1E-95 

CH > 120 −2.848 0.058 0.077 −37.174 1.8E-302 

5  Courses  8 0.099 1.104 0.056 1.754 5.9E-02 

Courses > 8 −0.497 0.608 0.078 6.373 1.9E-10 

 

Kadarko (2000) revealed that the age factor contributes significantly to the variance in 

independent learning abilities, namely the ability to apply orientation and strategy in learning 

teaching materials as well as the ability to understand the non-conventional academic environment. 

Meanwhile, Pierrakeas et al. (2004) state that younger students (lower than 30 years) tend to drop out 

of school. This state is possible because they do not yet have an independent learning experience, and 

they tend to underestimate the effort and workload needed for study at the university level. 

GPA scores have a significant contribution to student learning retention. Students who have a 

GPA between 1.00 and 2.00 tend to have low learning retention. This value is indicated by the 

estimated parameter value of −0.733. This condition means that students who have such GPA groups 

have a risk of 0.0733( )e  or 0.481 times compared to other students. Meanwhile, students who have a 

GPA above 2.00 and even above 3.00 tend to have high learning retention. The risk of surviving is 

1.82 and 1.99 times higher than other students. This fact is consistent with studies conducted by 

Soeleiman (1991); Ratnaningsih (2008); McCormick and Lucas (2014); Klapproth and Schaltz (2015); 

Gaytan (2015); Boton and Gregory (2015). They argued that the GPA was very influential on student 

resistance and was a determining factor for the sustainability of studies at the university. Academic 

characteristics possessed by students are the determining factors for students dropping out of school. 

Employment status and marriage of students also have a significant influence on learning 

retention. Students who are working and already married tend to have low learning retention. The 

risks are 0.98 and 0.93 times compared to students who are not working and not married. This 

condition is in line with the statement of Schuemer (1993) and Rovai (2003). They stated, in general, 

the factors that caused dropouts experienced by distance education students included old age, lack of 

study time, difficulties in accessing the internet, lack of feedback from tutors, work, family, external 

stimuli, and personal financial problems. 
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The number of credits taken by students also has a significant influence. From the results of the 

analysis with the SEF model, students who have earned credits above 75 credits tend to have low 

learning retention. But the risk is relatively small at 0.295 and 0.058 compared to other students. 

Unlike the case with the number of subjects registered per semester. Students taking 5 to 8 courses 

per semester tend to have high learning retention. The risk is 1,104 times compared to students who 

earn less than that. However, students who register more than eight subjects tend to have low learning 

retention. The risk is 0.608 times compared to students who register less than eight items. This fact 

is also consistent with studies conducted by Cambruzzi et al. (2015) in Brazil, which stated that many 

students dropped out of college because the credit load did not match the ability of students. For 

example, the institution recommends that 12 credits are taken per semester. However, many students 

take up to 20 credits because they consider learning with the distance education system easy and can 

accelerate their studies. Allen et al. (2016) in the United States revealed that many students took 

courses, paid tuition fees, and then dropped out. 

 

3.3.  Discussion 

From the results of simulations on several treatments, combinations show that the percentage of 

parameter bias and MSE model produced by the SEF model is better than the SE Cox model. 

Modelling involving frailty factors is very possibly significant so that it can influence modelling on 

the actual data. Therefore, through simulations in this study, it can be shown that the SEF model can 

be used as alternative modelling involving various covariates (covariates are time-dependent, and 

covariates are not time-dependent) and frailty. 

In reality, modelling sometimes also has random effects observed. Modelling that involves 

random effects and permanent effects is called a mixed effect model. Did not rule out the possibility 

of modelling; there are two types of influence so that the development of mixed models can be studied 

further. Modelling using a mixed model is possible in a non-comparable risk model. This modelling 

is expected to be able to overcome modelling that involves observed random effects, frailty, and other 

fixed effects that are thought to influence the model. 

The stratified-extended Cox model with frailty (SEF) is a model proposed to address the existence 

of two types of covariates (time-dependent covariates and time-dependent covariates) and frailty. Based 

on the results of the simulation in various treatment combinations showed that the SEF model was able 

to produce a percentage bias of parameters close to the actual value and the MSE value of the model, 

which was relatively small compared to the SE Cox model. Based on the two criteria of the model, the 

SEF model can be used as an alternative model to overcome the problem of non-proportional hazard in 

survival analysis due to the frailty and the two types of covariates mentioned earlier. 

The application of the SEF model to the UT student learning resistance data is adequate and can 

be used as a satisfying model approach. This reality is because the results of the analysis using the 

SEF model are close to the real fact experienced by UT. The presence of frailty in the case of UT 

student retention is very significant. Based on the analysis of the SEF covariate model that statistically 

significantly affected the retention of Open University students were: educational background, age, 

GPA, marital status, number of credits taken, and the number of courses registered per semester. This 

condition is also by several other countries that implement distance education systems. 

In the UT student data, there is another covariate that is suspected to influence the student's 

endurance, namely the study program. This fact is consistent with a study conducted by The 2013 

DE Census (CENSO 2014) in Oliveira (2018) that the highest percentage of students dropping out of 

school at the Open University of Brazilia depends on the type of study program taken by students. In 

modelling, the study program covariate can be assumed to be an observed random effect. Student 
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retention or course graduation in each study program may vary. 

The limitation of SEF modelling is that it does not involve any other random influence other than 

frailty. In the case of modelling, there is more than one random influence. The existence of other 

random effects in modelling needs treatment, likewise using a mixed effect model. In the case of real 

data, another random effect that is thought to be influential in the study program. In the modelling of 

mixed effects, the study program can be assumed to be an observed random effect. By entering the 

study program into the model, it is expected to produce more valid and accurate modelling. Adequate 

and precise modelling can help organizers in determining academic policies that can encourage UT 

students to complete their studies on time. 

 
4.  Conclusions  

Cox proportional hazard (Cox PH) is a frequently used model in survival analysis. This model 

assumes that each individual’s hazard rate is proportional to other individuals’ hazard rates with 

constant ratio at all times. However, in many cases, an individual’s hazard rate is not always 

proportional, and it also fluctuates across certain period of time. This condition is known as non-

proportional hazard. 

One of the causes of non-proportional hazard is the presence of unobserved random effect 

(frailty) alongside time-dependent and time-independent covariates. The inclusion of frailty in the 

process is expected to help generate a valid and accurate model. SEF model is proposed here to 

accommodate the presence of two kinds of covariates, time-dependent covariates and time-

independent covariates and frailty. The simulations of different combinations of treatment in this 

study show that the parameter bias and MSE generated by SEF model are smaller compared to those 

generated by SE Cox model. In conclusion, this model can be considered to be an alternative 

statistical modelling to resolve non-proportional hazard issue in survival analysis caused by the 

presence of frailty and the two kinds of covariates. 

The application of SEF model to the survival data of the students of UT in the course of their 

study is suitable, and therefore the model is sufficiently qualified to be an effective approach to the 

specified kind of data. Based on the analysis, covariates that significantly affect the survival of the 

students of UT in their course of study are: educational background, age, GPA, marital status, the 

number of credit hours they completed, and the number of classes they have taken in each semester. 

Based on other similar studies, this is a common condition that occurs in other countries where 

distance education system is applied by some educational institutions. 
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Appendix 

The script of program simulation for SEF model: 

library(frailtyHL) 
library(survival) 
library(PermAlgo) 
 
set.seed(123) 
# Function to generate an individual time-dependent exposure history 
# e.g. generate prescriptions of different durations (semester) and doses (sks). 
TDhist <- function(m){ 
start <- round(runif(1,1,m),0) # individual start date (semester) 
Smstr <- 0 + runif(1,1,10) # in weeks (in semester) 
Sks <- round(runif(1,0,100),1) 
vec <- c(rep(0, 1), rep(Sks, Smstr)) 
while (length(vec)<=m){ 
intermission <- 4 + runif(1,1,10) # in weeks (in semester) 
Smstr <- 0 + runif(1,1,10) # in weeks 
Sks <- round(runif(1,0,100),1) 
vec <- append(vec, c(rep(0, intermission), rep(Sks, Smstr)))} 
return(vec[1:m])} 
 
XMAT <- function(n,m,nprodi,ragam){ 
# Generate the matrix of three covariate, in a 'long' format. 
Xmat=matrix(ncol=3, nrow=n*m) 
 
# time-independant binary covariate 
Xmat[,1] <- rep(rbinom(n,1,0.6), each=m) #gender 
 
#frailty 
Xmat[,2] <- rep(unlist(sapply(1:length(nprodi), 
function(i)rep(rnorm(1,mean = 0,sd=sqrt(ragam)), 
each=nprodi[i]))),each=m)  
   
Xmat[,3] <- do.call("c", lapply(1:n, function(i) TDhist(m))) 
return(Xmat) 
} 
 
generateData <- function(n,m,Xmat,XmatNames,eventRandom,censorRandom,betas){ 
data <- permalgorithm(n, m, Xmat, XmatNames=XmatNames, 
eventRandom = eventRandom, censorRandom=censorRandom,  
betas=betas, groupByD=FALSE ) 
# uncounting 
idx <- as.numeric(table(data$Id)) 
temp <- 0 
Mtemp <- vector() 



226  Thailand Statistician, 2021; 19(1): 208-227  

for (i in 1:length(idx)){ 
temp <- idx[i]+temp 
Mtemp <- c(Mtemp,temp) 
} 
 
newdata <- data[Mtemp,] 
newdata$st <- round(runif(nrow(newdata),1,3)) 
return(newdata) 
} 
 
###proporsi prodi 
jumlah <- c(56,57,38,1781,796,729,398,519,94,15) 
prop <- jumlah/sum(jumlah) 
n1 <- round(100*prop) 
n1[4] <- 39 
n1[10]<-1 
n2 <- round(500*prop) 
n2[4] <- 200 
n3 <- round(1000*prop) 
n4 <- round(2000*prop) 
n4[4] <- 794 
 
###label 
label<-c("1gender","1sks","1w","1w.se","'1-2h0","'1-2*hp","'1-
2*p_b,v(hp)","1cAIC","1pAIC","1rAIC", 
"2gender","2sks","2w","2w.se","'2-2h0","'2-2*hp","'2-
2*p_b,v(hp)","2cAIC","2pAIC","2rAIC", 
"3gender","3sks","3w","3w.se","'3-2h0","'3-2*hp","'3-
2*p_b,v(hp)","3cAIC","3pAIC","3rAIC") 
 
XmatNames<-c("gender","w", "sks") 
 
###variance 
variance1 <- 10 
variance2 <- 14 
variance3 <- 16 
variance4 <- 20 
 
#################PoinRunning1################# 
#Parameter 
N <- 100 # student 
# p=0.2 # frailty 
nprodi <- n1 #frailty 
m <- 20 # semester 
variance <- variance1 
betas <- c(2,1,log(1.04)) 
 
#0% censoring (oke) 
eventRandom <- round(rexp(n, 0.58)+1,0) 
censorRandom <- round(runif(n, 6,8),0) 
 
out <- NULL 
for (i in 1:100){ 
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newdata <-
generateData(n,m,Xmat=XMAT(n,m,nprodi,ragam),XmatNames,eventRandom,censorRan
dom,betas) 
model.1 <- frailtyHL(Surv(Fup, Event) ~ gender + sks + (1|w),data=newdata, 
convergence=10^-4,Maxiter = 10) 
 
while(is.nan(model.1$RandCoef[2])){ 
newdata <-
generateData(n,m,XMAT(n,m,nprodi,ragam),XmatNames,eventRandom,censorRandom,b
etas) 
model.1 <- frailtyHL(Surv(Fup, Event) ~ gender + sks+(1|w),data=newdata, 
convergence=10^-4,Maxiter = 10) 
} 
 
coef1 <- cbind(t(model.1$FixCoef[,2]),model.1$RandCoef) 
Loglik1 <- model.1$likelihood 
aic1 <- model.1$aic 
 
model.2 <- frailtyHL(Surv(Fup, Event) ~ gender + sks+(1|w), 
varfixed=TRUE,varinit=c(0),data=newdata) 
 
coef2 <- cbind(t(model.2$FixCoef[,2]),model.2$RandCoef) 
Loglik2 <- model.2$likelihood 
aic2 <- model.2$aic 
 
model.3 <- frailtyHL(Surv(Fup, Event) ~ gender + sks+strata(st)+(1|w), 
varfixed=TRUE,varinit=c(0),data=newdata) 
 
coef3 <- cbind(t(model.3$FixCoef[,2]),model.3$RandCoef) 
Loglik3 <- model.3$likelihood 
aic3 <- model.3$aic 
 
colnames(coef1) <- paste0(1,colnames(coef1)) 
colnames(coef2) <- paste0(2,colnames(coef2)) 
colnames(coef3) <- paste0(3,colnames(coef3)) 
 
colnames(Loglik1) <- paste0(1,colnames(Loglik1)) 
colnames(Loglik2) <- paste0(2,colnames(Loglik2)) 
colnames(Loglik3) <- paste0(3,colnames(Loglik3)) 
 
colnames(aic1) <- paste0(1,colnames(aic1)) 
colnames(aic2) <- paste0(2,colnames(aic2))  
colnames(aic3) <- paste0(3,colnames(aic3)) 
 
out1 <- cbind(coef1,Loglik1,aic1,coef2,Loglik2,aic2,coef3,Loglik3,aic3) 
out <- rbind(out,out1) 
} 
 
rownames(out) <- NULL 


