

Thailand Statistician
January 2021; 19(1): 208-227
<http://statassoc.or.th>
Contributed paper

Stratified-Extended Cox with Frailty Model for Non-Proportional Hazard: A Statistical Approach to Student Retention Data from Universitas Terbuka in Indonesia

Dewi Juliah Ratnaningsih*[a]**, Asep Saefuddin **[b]**, Anang Kurnia **[b]** and I Wayan Mangku **[c]****

[a] Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Terbuka, South Tangerang, Indonesia.

[b] Department of Statistics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia.

[c] Department of Mathematics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia.

*Corresponding author; e-mail: djuli@ecampus.ut.ac.id

Received: 4 June 2019

Revised: 18 August 2019

Accepted: 20 March 2020

Abstract

This paper aims to describe new modelling to overcome the problem of non-proportional hazard modelling in survival analysis. One cause of non-proportional hazard is the presence of time-dependent covariates and the presence of frailty. The proposed model is called the stratified extended with frailty (SEF) model. The method used in estimating model parameters is the hierarchical likelihood. The goodness of the model is tested by simulating utilizing the R program. The criteria used are parameter bias and Mean Squared Error. The developed model is applied to the Universitas Terbuka student retention data. The results of the study show that covariates that significantly affect the survival of the students of UT in their course of study are: educational background, age, GPA, marital status, the number of credit hours they completed, and the number of classes they have taken in each semester. Based on other similar studies, this is a common condition that occurs in other countries where some educational institutions apply the distance education system.

Keywords: Analysis survival, hierarchical likelihood, time-dependent covariate, random effect, frailty model.

1. Introduction

Survival analysis is one of the methods of analysis in statistics which is performed to model survival time that involves a number of predictor variables (covariates). The primary factor that distinguishes survival analysis from other methods of statistical analyses is the presence of censored observation. Most survival analyses must consider a key analytical problem called censoring. A censored observation occurs when we have some information about individual survival time, but we don't know the survival time exactly. Lee and Wang (2003) explain that censored data indicate a situation when part of the required data in a research process is unobtainable because there is an

individual under study who either has not experienced the observed occurrence or has not finished receiving the given treatment by the end of the research. It may happen, for example, with a cancer patient when he has to be transferred to another hospital or passes away during particular time interval that he is no longer available for observation. Censored observation may also occur in the area of research related to education, particularly in a kind of case with researches involving college students as the subjects, when the students under observation drop out or transfer to another university. Dropout and transfer are two of the typical occurrences in higher education sphere that cause students' academic records to be incomplete or overlooked.

One of the models which are commonly adopted to assess survival time with the involvement of censored observation is Cox model. Cox model assumes that each individual's hazard rate is proportional to other individuals' hazard rates with constant ratio at all times. For this reason, Cox model is also known as Cox proportional hazard. In practice, however, this assumption is frequently unsubstantiated, especially when there are time-dependent covariates involved. The presence of time-dependent covariates creates a condition characterized by disproportional individuals' hazard rates for which the course of time is the affecting factor. This condition is known as non-proportional hazard.

One other factor that contributes to non-proportional hazard is the presence of unobserved random effect. Some statisticians perceive that the presence of unobserved covariates is likely associated with heterogeneity of data. Unobserved covariates in a survival model are identified as frailty (Vaupel et al. 1979). The guiding assumption of survival analysis is that the population under observation is homogenous, but when frailty is present, heterogeneity in the population will appear as the consequence.

Wienke (2011) argues that in some cases, a researcher needs to take into account the heterogeneity element of her sample as indicated in her research population from which the sample is taken. It is important because sample heterogeneity may disrupt the assumption that underlies Cox model. The violation of proportional hazard's assumption causes inaccuracy in parameter estimation and standard error (Henderson and Oman 1999). In that case, the occurrence of any individual's hazard rate that is not proportional (non-proportional hazard) needs to be treated properly to ensure that a modelling function can be particularly useful and generate parameter estimation that is most representative of the actual condition.

Non-proportional hazard that is caused by the presence of both time-independent covariates and time-dependent covariates can be resolved by combining two methods called stratified Cox and extended Cox. Ratnaningsih et al. (2019) has carried out a study in which they apply the two models in tandem. The combination is called stratified extended Cox (SE Cox) and has been applied to data from student records at Universitas Terbuka (UT). In survival analysis, hazard function for each individual depends on the observed covariates. However, in some cases, some of the involving covariates are unknown or indeterminate. An unobserved covariate, which is identified as random effect, is called frailty. As mentioned previously, frailty invalidates Cox model's assumption.

The present paper aims to develop a survival model for non-proportional hazard which is associated with time-independent covariate, time-dependent covariate and frailty. The suggested model is named as stratified extended Cox model with frailty (SEF model). This model is expected to be applicable to data related to issues in education, particularly the survival data of the students at UT.

Universitas Terbuka is one of higher educational institutions which mainly provide distance education. The periods of study at UT vary due to several factors. Those factors or covariates can be categorized into time-independent covariates and time-dependent covariates (Ratnaningsih et al. 2019). The characteristics of the students of the university also vary, and therefore it is highly likely

that the data related to them and their study at the university will be heterogenous. One of the causes of heterogeneity in data is the involvement of unobserved covariates known as frailty. Thus, the application of SEF model to the data related to the students of UT is considered suitable. The application of the model in this case is aimed at producing a more meaningful statistical modelling with which parameter estimation that is most representative of the actual condition can be achieved.

2. Stratified-Extended Model with Frailty

2.1. The proposed model

Stratified extended model with frailty (abbreviated as SEF model for this paper) is proposed in this study to address non-proportional hazard cases effectively. This model is the outgrowth of the previously developed model known as stratified extended Cox (SE Cox) that has been presented by Ratnaningsih et al. (2019) in their study. Their study has shown that SE Cox model is able to resolve non-proportional hazard in a survival model that involves time-dependent covariates.

The central difference between SE Cox and SEF model is marked by the presence of unobserved random effect in the latter, which is known as frailty (Vaupel et al. 1979). As an unobserved random effect, frailty is capable of altering the hazard function of an individual or group of individuals as well as an individual who undergoes recurring event(s). Non-proportional hazard in SEF model occurs because of the presence of time-independent covariates, time-dependent covariates and frailty.

The underlying assumption that generates the notion of frailty is that each individual has his/her own weaknesses that differentiate him/her from other individuals, the kind of factor that can create heterogeneity. The assumption suggests that the frailest individual will be the earliest to die compared to other individuals in the same group (Therneau et al. 2003). Thus, frailty is a significant contributor to such heterogeneity. On the contrary, the basic assumption in survival analysis is that the observed population is homogenous. Therefore, the proposed model in this case is intended to manage the involvement of frailty, time-independent covariates and time-dependent covariates that are associated with non-proportional hazard.

SEF model is mathematically defined as follows.

$$\lambda_s(t, \mathbf{x}) = \lambda_{0s}(t) \exp \left(\sum_{a=1}^{p_1} \beta_{ai} x_{ai} + \sum_{b=1}^{p_2} \alpha_{bi} x_{bi}(t_j) + \delta v_s \right), \quad (1)$$

where

s = the order of stratum; $s = 1, 2, \dots, m$ (denoting the number of strata combination),

$\lambda_{0s}(t)$ = baseline hazard function on each stratum,

β_{ai} = fixed effect coefficient vector for covariate number a of individual number i ,

x_{ai} = time-independent covariate (fixed effect) number a of individual number i ,

α_{bi} = coefficient vector for time-dependent covariate number b of individual number i ,

$x_{bi}(t_j)$ = time-dependent covariate of individual number i at time t_j ,

δ = frailty coefficient vector,

v_s = frailty on stratum number s .

2.2. Parameter estimation in the model

Parameter estimation used in SEF model is based on likelihood. In its application, the estimation is performed according to a procedure called hierarchical likelihood (H-likelihood) proposed by Ha et al. (2001) and Ha et al. (2019) with log-normal frailty distribution.

Using (1), these following derivatives can be made:

$$\eta_{si} = \sum_{a=1}^{p_1} \beta_{ai} x_{ai} + \sum_{b=1}^{p_2} \alpha_{bi} x_{bi}(t_j),$$

$$\eta'_{si} = \sum_{a=1}^{p_1} \beta_{ai} x_{ai} + \sum_{b=1}^{p_2} \alpha_{bi} x_{bi}(t_j) + v_s,$$

where T_{si} ($s = 1, 2, \dots, m$, $i = 1, 2, \dots, n_s$) denotes the survival time for individual number i on stratum number s and C_{si} represents the censored time for individual i on stratum number s . Accordingly, the observed data is expressed as $y_{si} = \min(T_{si}, C_{si})$ and $\delta_{si} = I(T_{si} \leq C_{si})$ where $I(\cdot)$ is an indicator function. The value of this indicator function is 1 for the censored data and 0 for the non-censored data and v_s signifies unobserved log-frailty. If u_s denotes unobserved random variable (frailty) on stratum number s , then $v_s = \log u_s$. Ha et al. (2001) and Ha et al. (2019) represent frailty with these following assumptions.

1. Assumption 1: It is given that $U_i = u_i, \{(T_{si}, C_{si}), i=1, 2, \dots, n_s\}$ is independent, and it follows that T_{si} and C_{si} are also independent for $s = 1, 2, \dots, m; i = 1, 2, \dots, n_s$.
2. Assumption 2: It is given that $U_i = u_i, \{(T_{si}, C_{si}), i=1, 2, \dots, n_s\}$ is considered non-informative with respect to u_s .

In this paper, it is assumed that $u_s \sim LN(0, \theta)$ so that $v_s \sim N(0, \theta)$. It is supported by these aspects:

1. $u_s \sim LN(0, \theta)$, $v_s = \log u_s \Rightarrow v_s \sim N(0, \theta)$.
2. $v_s \sim N(0, \theta)$, $u_s = e^{v_s} \Rightarrow u_s \sim LN(0, \theta)$.

If $y_s = (y_{s1}, \dots, y_{sn_s})^T$ and $\delta_s = (\delta_{s1}, \dots, \delta_{sn_s})^T$, then hierarchical likelihood, which is denoted by h , is to be defined as the sum of h_s , $s = 1, 2, \dots, m$. Hence we have

$$h = \sum_s h_s, \quad (2)$$

where h_s denotes the algorithm of shared density (y_s, δ_s, v_s) .

Furthermore h_s can be represented by the equation below

$$h_s(\beta, \alpha, \Lambda_s, \theta; y_s, \delta_s, v_s) = \log \{L_{1s}(\beta, \alpha, \Lambda_s; y_s, \delta_s | u_s) L_{2s}(\theta; v_s)\}, \quad (3)$$

where

L_{1s} = conditional density of (y_s, δ_s) with u_s as the condition,

L_{2s} = density of v_s .

Since L_{1s} is assumed as an independent variable in (3), it can be further represented in this following formula

$$L_{1s}(\beta, \alpha, \Lambda_s; y_s, \delta_s | u_s) = \prod_i L_{1si}(\beta, \alpha, \Lambda_s; y_{si}, \delta_{si} | u_s), \quad (4)$$

where

L_{1si} = conditional density of (y_{si}, δ_{si}) with u_s as the condition.

L_{1si} from (4) can be expressed in (5) below

$$L_{1s}(\beta, \alpha, \Lambda_s; y_s, \delta_s | u_s) = \prod_i \lambda(y_{si} | u_s)^{\delta_{si}} \exp \{-\Lambda(y_{si} | u_s)\}. \quad (5)$$

Furthermore, if it is assumed that $v_s \sim N(0, \theta)$, then L_{2s} from (3) can be formulated in (6) below

$$L_{2s}(\theta; v_s) = (2\pi\theta)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\theta}v_s^2\right), -\infty < v_s < \infty. \quad (6)$$

Thus, if (5) and (6) are incorporated into (3), the resulting formulation appears as follows

$$h_s = \left(\sum_i (\delta_{si} \{\log\{\lambda_{0s}(y_{si})\} + \eta_{si}\} - \{\Lambda_{0s}(y_{si}) \exp(\eta_{si})\}) \right) - \frac{1}{2} \log(2\pi\theta) - \frac{1}{2\theta} v_s^2. \quad (7)$$

Moreover, by incorporating $h = \sum_s h_s$, (2) can be rewritten as follows

$$\begin{aligned} h = h(\beta, \alpha, v, \lambda_{0s}, \theta) &= \sum_s h_s, \\ &= \sum_{si} \delta_{si} \{\log(\lambda_{0s}(y_{si})) + \eta_{si}\} - \{\Lambda_{0s}(y_{si}) \exp(\eta_{si})\} - \frac{m}{2} \log(2\pi\theta) - \frac{1}{2\theta} \sum_s v_s^2. \end{aligned} \quad (8)$$

Furthermore, if $\log L_{1si} = \delta_{si} \{\log(\lambda_{0s}(y_{si})) + \eta_{si}\} - \{\Lambda_{0s}(y_{si}) \exp(\eta_{si})\}$ in (8) is denoted by l_{1si} , and $\log L_{2s} = -\frac{1}{2} \log(2\pi\theta) - \frac{1}{2\theta} v_s^2$ is denoted by l_{2s} , then the following formula is obtained (Ha 2001)

$$h = h(\beta, \alpha, v, \lambda_{0s}, \theta) = \sum_{si} l_{1si} + \sum_s l_{2s}. \quad (9)$$

To introduce the hierarchical likelihood approach into the existing procedure, β and v will be suitably estimated using profile hierarchical likelihood h^* . It is a hierarchical likelihood to be applied by substituting λ_0 for $\tilde{\lambda}_{0s}$,

$$h^* = h|_{\lambda_0 = \hat{\lambda}_{0s}}. \quad (10)$$

The value of $\tilde{\lambda}_{0s}$ is obtained from the estimation equation represented by $\frac{\partial h}{\partial \hat{\lambda}_{0s}} = 0$, $s = 1, 2, \dots, m$

for which d signifies a set of index i comprising all event times. In this manner, (10) can be incorporated into (11) with this following result

$$h^* = h|_{\lambda_0 = \hat{\lambda}_{0i}} = \sum_{sj} l_{1sj} + \sum_s l_{2s}, \quad (11)$$

where

$$\sum_{sj} l_{1sj} = \sum_i d_{(i)} \log \hat{\lambda}_{0i} + \sum_{sj} \delta_{sj} \eta_{sj} - \sum_i d_{(i)}.$$

To optimize h^* function in the estimation of β and v , we can solve equation $\frac{\partial h^*}{\partial \beta} = 0$ and equation $\frac{\partial h^*}{\partial v} = 0$ using Newton-Raphson numerical method (Dobson 2002). The formula appears as follows

$$\frac{\partial h^*}{\partial \beta} = \sum_{sj} \delta_{sj} x_{ij} - \sum_k d_{(i)} \left\{ \frac{\sum_{(i,j) \in R_{(i)}} x_{ij} \exp(\eta_{sj})}{\sum_{(i,j) \in R_{(i)}} \exp(\eta_{sj})} \right\}, \quad (12)$$

$$\frac{\partial h^*}{\partial v} = \sum_{sj} \delta_{sj} z_{ij} - \sum_k d_{(i)} \left\{ \frac{\sum_{(i,j) \in R_{(i)}} x_{ij} \exp(\eta_{sj})}{\sum_{(i,j) \in R_{(i)}} \exp(\eta_{sj})} \right\} - \frac{1}{\theta} z_{ij} v. \quad (13)$$

Furthermore, to compute variance of $\hat{\beta}$ and \hat{v} , we can generate a second derivative from the formulation of h^* for β and v , $\mathbf{H}(\hat{\gamma})$ through these following procedures (Dobson 2002)

$$\frac{\partial^2 h^*}{\partial \beta_a \partial \beta_p} = \sum_i d_{(i)} \left\{ \frac{\sum_{(i,j) \in R_{(i)}} x_{ija} x_{ijp} \exp(\eta_{ij})}{\sum_{(i,j) \in R_{(i)}} \exp(\eta_{ij})} - \frac{\sum_{(i,j) \in R_{(i)}} x_{ija} \exp(\eta_{ij}) \sum_{(i,j) \in R_{(i)}} x_{ijp} \exp(\eta_{ij})}{\left(\sum_{(i,j) \in R_{(i)}} \exp(\eta_{ij}) \right)^2} \right\}, \quad (14)$$

$$\frac{\partial^2 h^*}{\partial v_a \partial \beta_q} = \sum_i d_{(i)} \left\{ \frac{\sum_{(i,j) \in R_{(i)}} z_{ija} z_{ijq} \exp(\eta_{ij})}{\sum_{(i,j) \in R_{(i)}} \exp(\eta_{ij})} - \frac{\sum_{(i,j) \in R_{(i)}} z_{ija} \exp(\eta_{ij}) \sum_{(i,j) \in R_{(i)}} x_{ijq} \exp(\eta_{ij})}{\left(\sum_{(i,j) \in R_{(i)}} \exp(\eta_{ij}) \right)^2} \right\}, \quad (15)$$

$$\frac{\partial^2 h^*}{\partial \beta_a \partial v_q} = \sum_i d_{(i)} \left\{ \frac{\sum_{(i,j) \in R_{(i)}} x_{ija} z_{ijq} \exp(\eta_{ij})}{\sum_{(i,j) \in R_{(i)}} \exp(\eta_{ij})} - \frac{\sum_{(i,j) \in R_{(i)}} x_{ija} \exp(\eta_{ij}) \sum_{(i,j) \in R_{(i)}} z_{ijq} \exp(\eta_{ij})}{\left(\sum_{(i,j) \in R_{(i)}} \exp(\eta_{ij}) \right)^2} \right\}, \quad (16)$$

$$\frac{\partial^2 h^*}{\partial v_a \partial v_q} = \sum_i d_{(i)} \left\{ \frac{\sum_{(i,j) \in R_{(i)}} z_{ija} z_{ijq} \exp(\eta_{ij})}{\sum_{(i,j) \in R_{(i)}} \exp(\eta_{ij})} - \frac{\sum_{(i,j) \in R_{(i)}} z_{ija} \exp(\eta_{ij}) \sum_{(i,j) \in R_{(i)}} z_{ijq} \exp(\eta_{ij})}{\left(\sum_{(i,j) \in R_{(i)}} \exp(\eta_{ij}) \right)^2} \right\}. \quad (17)$$

Thus, according to Hosmer et al. (2008) variance of $\hat{\beta}$ and \hat{v} are

$$Var(\hat{\beta}, \hat{v}) \cong \mathbf{H}(\hat{\gamma})^{-1} = \begin{pmatrix} -\frac{\partial^2 h^*}{\partial \beta_a \partial \beta_p} & -\frac{\partial^2 h^*}{\partial \beta_a \partial v_q} \\ -\frac{\partial^2 h^*}{\partial v_a \partial \beta_q} & -\frac{\partial^2 h^*}{\partial v_a \partial v_q} \end{pmatrix}^{-1}. \quad (18)$$

To make an estimation of frailty variant (θ), an approach called adjusted profile hierarchical likelihood can be appropriately employed. (19) below represents its application

$$h_A^* = h^* - \frac{1}{2} \log \left\{ \det \left(\frac{\mathbf{J}}{2\pi} \right) \right\} \Big|_{\beta=\hat{\beta}, v=\hat{v}}, \quad (19)$$

where $\mathbf{J} = -[\mathbf{H}(\hat{\gamma})]$.

The maximum likelihood estimation of adjusted profile hierarchical likelihood for θ can be achieved by solving equation $\frac{\partial h_A^*}{\partial \theta} = 0$ using Newton-Raphson method. The first derivative of h_A^* for

θ is expressed in (20) as follows

$$\begin{aligned}
 h^* &= \sum_i d_{(i)} \log \left(\frac{d_{(i)}}{\sum_{(i,j) \in R_{(i)}} \exp(\eta_{sj})} \right) + \sum_{sj} \delta_{sj} \eta_{sj} + \sum_i d_{(i)} - \frac{m}{2} \log(2\pi\theta) - \frac{1}{2\theta} \sum_s v_s^2, \\
 h_A^* &= h^* - \frac{1}{2} \log \left\{ \det \left(\frac{\mathbf{J}}{2\pi} \right) \right\} \Big|_{\beta=\hat{\beta}, v=\hat{v}}, \\
 &= \sum_i d_{(i)} \log \left(\frac{d_{(i)}}{\sum_{(i,j) \in R_{(i)}} \exp(\eta_{sj})} \right) + \sum_{sj} \delta_{sj} \eta_{sj} + \sum_i d_{(i)} - \frac{m}{2} \log(2\pi\theta) - \frac{1}{2\theta} \sum_s v_s^2 \\
 &\quad - \frac{1}{2} \log \left\{ \det \left(\frac{\mathbf{J}}{2\pi} \right) \right\}, \\
 \frac{\partial h_A^*}{\partial \theta} &= -\frac{m}{2\theta} + \frac{1}{2} \sum_s \frac{v_s^2}{\theta^2} + \left(-\frac{1}{2} \text{tr} \left(\mathbf{J}^{-1} \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \right) \right). \tag{20}
 \end{aligned}$$

If $\mathbf{J}^{-1} \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} = Q$, then the second derivative of h_A^* for θ is

$$\frac{\partial^2 h_A^*}{\partial \theta^2} = -\frac{m}{2\theta^2} + \sum_s \frac{v_s^2}{\theta^3} - \frac{\text{tr}(Q)'}{2\theta^2} + \frac{\text{tr}(Q)}{\theta^3}.$$

The variance of $\hat{\theta}$ are defined in the following equation (Hosmer et al. 2008)

$$Var(\hat{\theta}) = \left(-\frac{\partial^2 h_A^*}{\partial \theta^2} \right)^{-1}. \tag{21}$$

2.3. Simulation design

SEF model is developed to address the presence of unobserved random effect (frailty) in the previously used model. The steps carried out for the simulation in this paper, which are aimed at generating time-independent and time-dependent covariates data, data structure and model assumption, mainly draw on the work by Ratnaningsih et al. (2019). The modelling proposed in this paper is aimed at extending those steps to include the frailty as the newly added element into the procedure. The model simulation uses the R program with three packages, namely: survival (Therneau et al. 2003), frailtyHL (Ha et al. 2019), and Sylvestre et al. (2015).

The random effect (frailty) is assumed to follow $N \sim (0, \theta)$ distribution across these values: $\theta = 10, 14, 16$ and 20 . Model parameters used here are: $\beta = \log(1,04)$ and $\delta = \log(0,99)$, with $v = 1$ for frailty. The censorings for the model are set out as follows: censoring 0% , $C_0 \sim \text{Uniform}(6,8)$; censoring 30% , $C_{30} \sim \text{Uniform}(2,5)$; and censoring 50% , $C_{50} \sim \text{Uniform}(0,5)$. The sizes of samples taken for studies (n) are $100, 500$, and $2,000$. The simulation is performed with $1,000$ iterations.

3. Result and Discussion

3.1. Result of the model simulations

In this section, we describe the merits of the proposed model. The goodness of the model is indicated by the parameter bias and values of the MSE model. The virtue of the model can be shown

from the results of simulations performed on several combinations of treatment of variance, censorship, the amount of data, and the number of iterations used. The results of the SEF model simulation were then compared with the SE Cox model (Ratnaningsih et al. 2019).

Model simulations are applied to 4 types of variance (θ), namely $\theta = 10, 14, 16$, and 20 with 3 types of censoring (0%, 30%, 50%) and 4 sample sizes, namely $n = 500, 1,000$, and $2,000$. The iteration is used 1,000 times. Simulation results for each of the variance, censoring, and sample size in the biased estimation of model parameters in detail are presented in Table 1.

From Table 1, it can be seen that the estimated bias percentage parameters of the SEF model are better than the SE Cox model. These are shown from the percentage bias estimation of the model parameters. In this discussion, a boxplot percentage bias is estimated for model parameters in various types of censoring (Figures 1-3). From Figure 1, it can be seen that the percentage of the estimated parameter bias (β) produced by the SEF model in various types of censoring is smaller than the SE Cox model. Percentage bias parameter estimation (α), the SEF model gives a lower percentage than the SE Cox model. Likewise, with the parameter estimation bias for frailty (v), the SEF model provides a lower rate of preference than the SE Cox model. Thus, from Table 1 and the three boxplot drawings, it can be shown that in terms of parameter estimation bias, the SEF model provides the smallest percentage of bias in various types of censoring.

The MSE values generated by both models are presented in Table 1. Graphically the results of the MSE simulation results on various types of censoring, variance, and sample size are shown in Figures 4-6. From Table 1 and the three boxplot images presented, it appears that MSE values of parameters β, α and v of the SEF model are smaller than the SE Cox model. The MSE value of the SEF model tends to decrease with an increase in sample size. From the two measures of model goodness, namely the bias parameters and MSE values, it can be said that the SEF model provides better modelling results for overcoming the unequal risk model because the existence of frailty and covariates is time-dependent.

Whether frailty in modelling is influential or not is indicated by the value of the deviation based on REMPL (Restricted Maximum Partial Likelihood) versus the amount of $2p_{\beta,v}(h_p)$. Then compare the difference in the variation with the critical value. The different variations of the SEF model are given in Table 1 (end of the column). From Table 1, the deviation difference column shows that in general of all the simulations performed, and it appears that frailty has a significant influence on modelling. This fact is because the deviation value is higher than the critical value. Simulation results show that the presence of frailty should be considered to form a non-proportional hazard modelling in survival analysis.

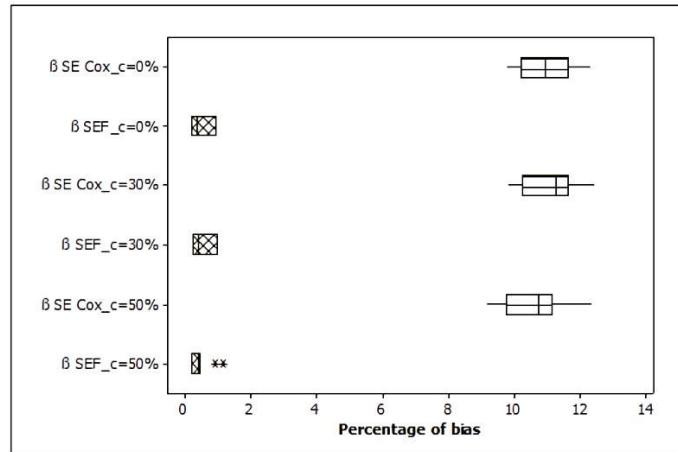
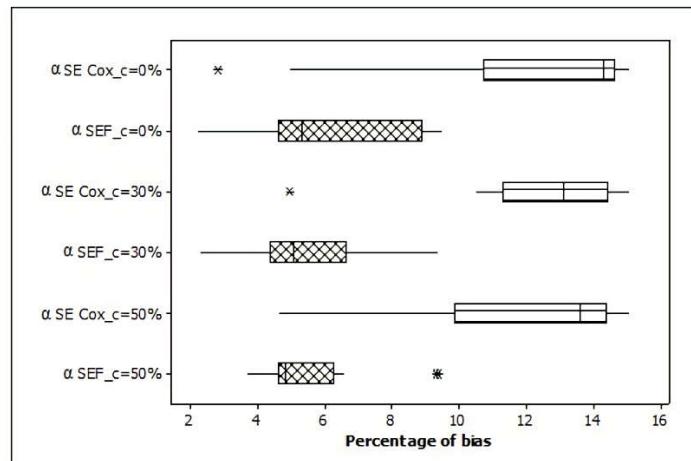
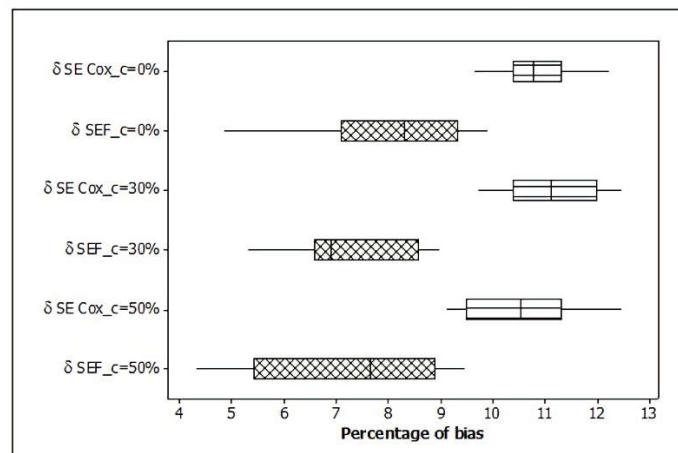
3.2. An Application on real data

SEF modelling presented in this study is intended to be applied to the survival data of the students of UT. The similar data has previously used by Ratnaningsih et al. (2019) in their study pertaining to the application of SE Cox model. In the study, the survival-time data constitute the response variable that is assessed in semester as its measurement unit. The time-independent covariates that are considered affecting the survival time of the students in their course of study are: educational background, the study programme of their interest, gender, age, marital status, employment status, and home area. The time-dependent covariates included in the study are the credit hours completed by the students, the number of classes they take per semester, and their Grade Average Point (GPA).

Table 1 Result of the simulation models in the various kind of censoring and variance

n	θ	c	Percentage of Parameter Bias						Values of MSE Parameter						Δ Devia- tion*	
			SE Cox Model			SEF Model			SE Cox Model			SEF Model				
			β	α	δ	β	α	δ	β	α	δ	β	α	δ		
100	10	0	11.615	4.992	11.311	1.008	9.518	8.542	0.529	0.018	0.083	0.074	0.015	0.051	4.62	
500	10	0	10.202	11.401	10.472	0.417	4.672	9.171	0.578	0.018	0.036	0.176	0.048	0.004	9.26	
2000	10	0	9.778	10.495	9.712	0.198	5.348	8.012	0.595	0.018	0.030	0.237	0.027	0.002	42.02	
100	14	0	11.533	2.853	11.203	0.893	7.346	8.777	0.537	0.018	0.080	0.086	0.027	0.048	8.96	
500	14	0	10.180	14.412	10.358	0.385	4.673	7.813	0.578	0.018	0.057	0.188	0.030	0.025	3.23	
2000	14	0	9.738	14.677	9.616	0.198	5.351	9.879	0.595	0.018	0.042	0.224	0.031	0.010	37.68	
100	16	0	12.338	14.597	12.206	0.943	2.216	9.452	0.536	0.018	0.100	0.084	0.024	0.068	8.38	
500	16	0	11.210	15.083	11.011	0.383	9.518	7.677	0.580	0.018	0.049	0.290	0.054	0.017	2.63	
2000	16	0	10.696	14.254	10.495	0.194	4.672	9.375	0.595	0.018	0.048	0.221	0.046	0.016	67.79	
100	20	0	12.257	13.498	12.117	1.004	6.818	6.883	0.517	0.018	0.115	0.082	0.021	0.083	9.78	
500	20	0	11.174	14.608	11.256	0.403	9.436	5.913	0.578	0.018	0.069	0.163	0.035	0.037	7.99	
2000	20	0	10.651	14.347	10.507	0.193	4.676	4.818	0.595	0.018	0.060	0.214	0.044	0.028	23.68	
100	10	30	10.249	11.521	10.383	0.423	5.818	6.883	0.537	0.018	0.003	0.129	0.047	0.035	9.16	
500	10	30	9.797	11.613	9.701	0.199	5.347	6.840	0.577	0.018	0.035	0.229	0.046	0.003	4.62	
2000	10	30	11.615	12.117	11.001	1.008	4.412	8.542	0.595	0.018	0.026	0.273	0.026	0.006	36.66	
100	14	30	11.621	11.256	11.613	0.981	3.677	8.661	0.533	0.018	0.010	0.132	0.028	0.073	10.27	
500	14	30	10.249	10.507	10.383	0.423	4.818	6.883	0.577	0.018	0.049	0.231	0.049	0.017	5.41	
2000	14	30	9.797	14.424	9.701	0.199	5.347	6.840	0.595	0.018	0.036	0.293	0.047	0.004	49.81	
100	16	30	11.615	4.992	12.311	1.008	4.412	8.542	0.530	0.018	0.036	0.133	0.046	0.010	9.38	
500	16	30	12.421	14.113	12.119	1.025	2.302	6.469	0.577	0.018	0.061	0.233	0.040	0.029	2.4	
2000	16	30	11.263	15.078	11.211	0.409	9.397	5.270	0.595	0.018	0.042	0.293	0.016	0.010	71.79	
100	20	30	10.759	14.424	10.577	0.194	4.671	5.805	0.539	0.018	0.093	0.137	0.047	0.074	9.26	
500	20	30	12.361	14.274	12.465	0.925	6.934	6.962	0.580	0.018	0.052	0.235	0.045	0.020	4.02	
2000	20	30	11.228	14.949	11.368	0.412	9.346	8.948	0.595	0.017	0.052	0.304	0.042	0.020	85.31	
100	10	50	10.715	14.369	10.522	0.194	4.673	8.110	0.521	0.018	0.099	0.171	0.041	0.067	7.19	
500	10	50	9.857	10.383	9.454	0.465	4.978	4.834	0.573	0.018	0.039	0.268	0.054	0.007	5.89	
2000	10	50	9.252	9.701	9.207	0.218	4.591	4.273	0.593	0.017	0.025	0.322	0.019	0.007	39.69	
100	14	50	10.877	12.511	11.608	1.163	5.231	9.457	0.518	0.018	0.060	0.175	0.044	0.018	9.17	
500	14	50	9.796	9.346	9.600	0.469	5.357	7.195	0.573	0.018	0.055	0.271	0.043	0.023	7.69	
2000	14	50	11.263	15.078	11.011	0.409	9.397	5.270	0.593	0.017	0.034	0.314	0.028	0.002	46.06	
100	16	50	10.759	14.424	10.577	0.194	4.671	5.805	0.525	0.018	0.091	0.175	0.026	0.074	9.65	
500	16	50	12.361	14.274	12.465	0.925	3.934	6.962	0.576	0.018	0.048	0.271	0.022	0.016	1.78	
2000	16	50	11.228	14.949	11.368	0.412	9.346	8.948	0.593	0.017	0.041	0.331	0.040	0.009	51.6	
100	20	50	10.715	14.369	10.522	0.194	4.673	8.110	0.525	0.018	0.083	0.182	0.038	0.027	8.71	
500	20	50	9.757	4.673	9.596	0.440	3.693	8.595	0.575	0.018	0.063	0.284	0.026	0.031	3.23	
2000	20	50	9.161	12.978	9.095	0.217	6.609	8.992	0.543	0.017	0.050	0.339	0.024	0.018	101.5	

Note: * is the difference in the SEF model deviation to see whether frailty has an effect or not. Deviation difference is determined from models with frailty and models without frailty based on REMPL compared to the critical deviation value of 2.71.

**Figure 1** Percentage of bias parameter β **Figure 2** Percentage of bias parameter α **Figure 3** Percentage of bias parameter δ

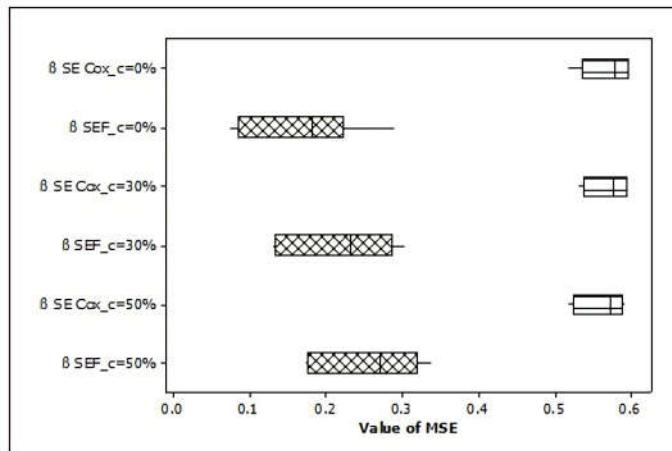


Figure 4 Value of MSE parameter β

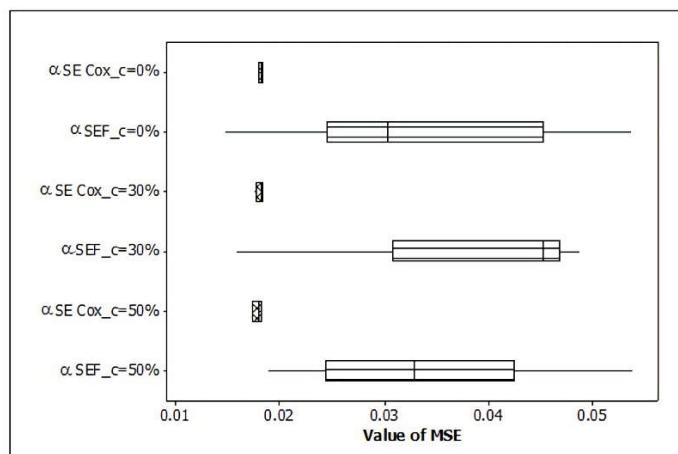


Figure 5 Value of MSE parameter α

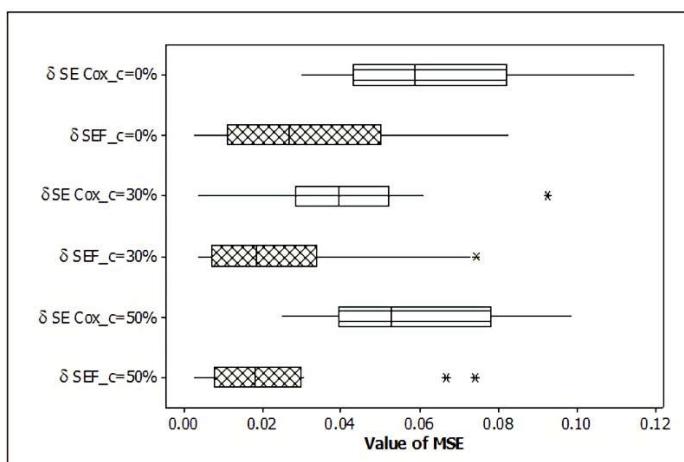


Figure 6 Value of MSE parameter δ

In applying the model to the real data in their study, Ratnaningsih et al. (2019) do not include the study programs or majors of study the students are interested in. The reason of the exclusion is that the courses are assumed as observed random effect. In contrast, in SEF modelling, they belong to unobserved random effect. SEF model assumes that the involving unobserved random effect (frailty) is distributed by $N(0, 20)$.

A detailed description of the survival data of the students of UT in their course of study is presented in Table 2. It is apparent in Table 2 that of the total 4,483 students observed in the present study, 1,574 (35.11%) are censored and 2,909 (64.89%) are uncensored. The censored students are those students who are still studying for their degree or who have graduated or who have transferred to a different major or study programme (active students). The uncensored students are those who no longer follow the required procedure as a regular student (non-active students), i.e. those students who fail to register for 4 consecutive semesters (Boton and Gregory 2015).

Table 2 shows the general characteristics of UT students who are non-active. They live in rural districts, female, between 35 and 45 years old, married, and employed. The data correspond with Schuemer (1993) that in distance education, the learning process is much more complex because most of the students who enroll for distance learning courses are of mature age, have a job, and are married. The similar fact, that is, students who are also employees or professionals will not be able to attend full-time study (Orr 2000). Age factor contributes significantly to the variations of capability in undertaking independent learning activities, more specifically in developing a study orientation and strategies for themselves not only to learn the provided materials but also to gain full comprehension of the non-conventional academic environment they are dealing with (Kadarko 2000).

Table 2 also informs that the majority of non-active students was the students graduated from traditional (non-vocational) high schools; have completed 75 credit hours at UT; have GPAs ranging from 1.00 to 2.00; and have taken 5 to 8 courses for each semester. UT students who came to college as high school graduates are usually new to independent learning scheme, and their learning experiences vary. According to Ratnaningsih et al. (2008), several factors that contribute to the problems UT students have to deal with are: they have not yet fully grasped the way the learning system at UT works, they are not familiar with independent learning scheme, they have low motivation to actively engage in the learning process, they don't have many peers to learn or discuss with, they have limited access to learning materials, and they have diverse previous educational experiences. Another factor which also has some bearing on the problem is the lack of discipline or self-direction on the students' part.

The results of the SEF model analysis on UT student retention data are presented in Table 3. The estimated parameters of the random effect unobserved (frailty) in this study are notated by v . The average of value v produced by the SEF model is 0.01537, and the value of standard error is 0.005834. The standard error is a measure that illustrates the average distribution of samples over the average population. A relatively small standard error indicates that the error or average deviation (estimator) of the population parameter is small. From the estimated size of these parameters, it can be stated that the SEF model is quite adequate. That is, the SEF model can be used as an alternative modelling of data hold learning UT students.

Does frailty influence UT student retention learning? This testing criterion uses deviation values between models without frailty and frailty models. Deviation criteria are calculated based on REMPL (Restricted Maximum Partial Likelihood) with a value of $2p_{\beta,v}(h_p)$. From the results of the case analysis of UT students, the difference in deviations between models with frailty and without frailty is $42,369 - 42,339 = 30$. The difference in a deviation between the two models is huge. This shows

that frailty has a significant influence on the modelling of UT student retention learning. In the case of distance education, frailty can be identified with the ID of a student who has an academic record in online tutorials, learning motivation, learning time management, gaining resource facilities, ownership of teaching materials, and environmental factors. The frailty aspect for each student is different. Therefore, it will undoubtedly have a different effect on the success of learning at UT.

Tabel 2 UT students' characteristics based on the observed covariates

Observed covariates	Categorizations	Censored Status		Total
		Censored	Uncensored	
Home area	Rural district	1,265	2,338	3,603
	City	309	571	880
Gender	Female	923	1,558	2,481
	Male	651	1,351	2,002
Age	< 35 years old	87	294	381
	35-45 years old	1,049	1,859	2,908
	> 45 years old	438	756	1,194
Education	High school	813	1,911	2,724
	Associate degree	752	959	1,711
	Bachelor's degree	9	39	48
Marital status	Unmarried	464	1,081	1,545
	Married	1,110	1,828	2,938
Employment status	Unemployed	58	294	352
	Employed	1,516	2,615	4,131
Credit hours completed	CH < 75	46	2,197	2,243
	75 ≤ CH ≤ 120	86	402	488
	CH > 120	1,442	310	1,752
The number of courses taken each semester	Courses < 5	410	391	801
	5 ≤ Courses ≤ 8	1,149	2,146	3,295
	Courses > 8	15	372	387
Grade average point	1.00 < GPA ≤ 2.00	470	1,962	2,432
	2.00 < GPA ≤ 3.00	1,074	236	1,310
	GPA > 3.00	28	13	41

The analysis shows that statistically significant covariates at alpha 10% are age, GPA, marital status, number of credits taken, and the number of courses registered per semester. This fact is consistent with several studies conducted on distance education in several countries such as Indonesia, Greece, Nigeria, Brazil, New Jersey, Iran, United Kingdom, America, Germany, and Turkey.

The age of students over 45 years has a significant influence on modelling student learning retention. This condition can be shown from the p-value less than the alpha level (10%). The estimated value of the age parameter over 45 years is -0.062 . This value means students over the age of 45 have low learning retention ($e^{-0.062}$) or have a risk of 0.940 times compared to the period of other students. From the analysis of the SEF model, it can be seen that parameter estimates for the age covariate are positive. This fact shows that students who are younger (lower than 35 years old) experience high school dropouts. Students who are over 35 years of age tend to have lower learning

resilience than those who have an earlier age. Such conditions are the following studies conducted by Andriani and Pangaribuan (2006); Kadarko (2000) in Indonesia. Xenos et al. (2002) and Pierrakeas et al. (2004) in Greece state that there is a correlation between age and dropping out of college.

Table 3 The parameter estimation results use the SEF model

Observed Covariates	Estimate	Hazard Ratio	Std. Error	t-value	p-value
Age 35-45 years old	0.063	1.065	0.068	0.931	3.5E-01
Age > 45 years old	-0.062	0.940	0.089	-0.697	4.9E-02
Home area (city)	0.016	1.016	0.048	0.327	7.4E-01
Gender (male)	0.029	1.029	0.038	0.754	4.5E-01
1,00 < GPA ≤ 2,00	-0.733	0.481	0.048	-15.175	5.2E-52
2,00 < GPA ≤ 3,00	0.598	1.818	0.088	-15.950	2.9E-57
GPA > 3,00	0.687	1.988	0.283	-2.431	1.5E-02
Employed	-0.017	0.984	0.065	-0.255	8.0E-01
Married	-0.078	0.925	0.045	-1.739	7.2E-02
75 ≤ CH ≤ 120	-1.219	0.295	0.059	-20.723	2.1E-95
CH > 120	-2.848	0.058	0.077	-37.174	1.8E-302
5 ≤ Courses ≤ 8	0.099	1.104	0.056	1.754	5.9E-02
Courses > 8	-0.497	0.608	0.078	6.373	1.9E-10

Kadarko (2000) revealed that the age factor contributes significantly to the variance in independent learning abilities, namely the ability to apply orientation and strategy in learning teaching materials as well as the ability to understand the non-conventional academic environment. Meanwhile, Pierrakeas et al. (2004) state that younger students (lower than 30 years) tend to drop out of school. This state is possible because they do not yet have an independent learning experience, and they tend to underestimate the effort and workload needed for study at the university level.

GPA scores have a significant contribution to student learning retention. Students who have a GPA between 1.00 and 2.00 tend to have low learning retention. This value is indicated by the estimated parameter value of -0.733 . This condition means that students who have such GPA groups have a risk of $(e^{-0.733})$ or 0.481 times compared to other students. Meanwhile, students who have a GPA above 2.00 and even above 3.00 tend to have high learning retention. The risk of surviving is 1.82 and 1.99 times higher than other students. This fact is consistent with studies conducted by Soeleiman (1991); Ratnaningsih (2008); McCormick and Lucas (2014); Klapproth and Schaltz (2015); Gaytan (2015); Boton and Gregory (2015). They argued that the GPA was very influential on student resistance and was a determining factor for the sustainability of studies at the university. Academic characteristics possessed by students are the determining factors for students dropping out of school.

Employment status and marriage of students also have a significant influence on learning retention. Students who are working and already married tend to have low learning retention. The risks are 0.98 and 0.93 times compared to students who are not working and not married. This condition is in line with the statement of Schuemmer (1993) and Rovai (2003). They stated, in general, the factors that caused dropouts experienced by distance education students included old age, lack of study time, difficulties in accessing the internet, lack of feedback from tutors, work, family, external stimuli, and personal financial problems.

The number of credits taken by students also has a significant influence. From the results of the analysis with the SEF model, students who have earned credits above 75 credits tend to have low learning retention. But the risk is relatively small at 0.295 and 0.058 compared to other students. Unlike the case with the number of subjects registered per semester. Students taking 5 to 8 courses per semester tend to have high learning retention. The risk is 1,104 times compared to students who earn less than that. However, students who register more than eight subjects tend to have low learning retention. The risk is 0.608 times compared to students who register less than eight items. This fact is also consistent with studies conducted by Cambruzzi et al. (2015) in Brazil, which stated that many students dropped out of college because the credit load did not match the ability of students. For example, the institution recommends that 12 credits are taken per semester. However, many students take up to 20 credits because they consider learning with the distance education system easy and can accelerate their studies. Allen et al. (2016) in the United States revealed that many students took courses, paid tuition fees, and then dropped out.

3.3. Discussion

From the results of simulations on several treatments, combinations show that the percentage of parameter bias and MSE model produced by the SEF model is better than the SE Cox model. Modelling involving frailty factors is very possibly significant so that it can influence modelling on the actual data. Therefore, through simulations in this study, it can be shown that the SEF model can be used as alternative modelling involving various covariates (covariates are time-dependent, and covariates are not time-dependent) and frailty.

In reality, modelling sometimes also has random effects observed. Modelling that involves random effects and permanent effects is called a mixed effect model. Did not rule out the possibility of modelling, there are two types of influence so that the development of mixed models can be studied further. Modelling using a mixed model is possible in a non-comparable risk model. This modelling is expected to be able to overcome modelling that involves observed random effects, frailty, and other fixed effects that are thought to influence the model.

The stratified-extended Cox model with frailty (SEF) is a model proposed to address the existence of two types of covariates (time-dependent covariates and time-dependent covariates) and frailty. Based on the results of the simulation in various treatment combinations showed that the SEF model was able to produce a percentage bias of parameters close to the actual value and the MSE value of the model, which was relatively small compared to the SE Cox model. Based on the two criteria of the model, the SEF model can be used as an alternative model to overcome the problem of non-proportional hazard in survival analysis due to the frailty and the two types of covariates mentioned earlier.

The application of the SEF model to the UT student learning resistance data is adequate and can be used as a satisfying model approach. This reality is because the results of the analysis using the SEF model are close to the real fact experienced by UT. The presence of frailty in the case of UT student retention is very significant. Based on the analysis of the SEF covariate model that statistically significantly affected the retention of Open University students were: educational background, age, GPA, marital status, number of credits taken, and the number of courses registered per semester. This condition is also by several other countries that implement distance education systems.

In the UT student data, there is another covariate that is suspected to influence the student's endurance, namely the study program. This fact is consistent with a study conducted by The 2013 DE Census (CENSO 2014) in Oliveira (2018) that the highest percentage of students dropping out of school at the Open University of Brazil depends on the type of study program taken by students. In modelling, the study program covariate can be assumed to be an observed random effect. Student

retention or course graduation in each study program may vary.

The limitation of SEF modelling is that it does not involve any other random influence other than frailty. In the case of modelling, there is more than one random influence. The existence of other random effects in modelling needs treatment, likewise using a mixed effect model. In the case of real data, another random effect that is thought to be influential in the study program. In the modelling of mixed effects, the study program can be assumed to be an observed random effect. By entering the study program into the model, it is expected to produce more valid and accurate modelling. Adequate and precise modelling can help organizers in determining academic policies that can encourage UT students to complete their studies on time.

4. Conclusions

Cox proportional hazard (Cox PH) is a frequently used model in survival analysis. This model assumes that each individual's hazard rate is proportional to other individuals' hazard rates with constant ratio at all times. However, in many cases, an individual's hazard rate is not always proportional, and it also fluctuates across certain period of time. This condition is known as non-proportional hazard.

One of the causes of non-proportional hazard is the presence of unobserved random effect (frailty) alongside time-dependent and time-independent covariates. The inclusion of frailty in the process is expected to help generate a valid and accurate model. SEF model is proposed here to accommodate the presence of two kinds of covariates, time-dependent covariates and time-independent covariates and frailty. The simulations of different combinations of treatment in this study show that the parameter bias and MSE generated by SEF model are smaller compared to those generated by SE Cox model. In conclusion, this model can be considered to be an alternative statistical modelling to resolve non-proportional hazard issue in survival analysis caused by the presence of frailty and the two kinds of covariates.

The application of SEF model to the survival data of the students of UT in the course of their study is suitable, and therefore the model is sufficiently qualified to be an effective approach to the specified kind of data. Based on the analysis, covariates that significantly affect the survival of the students of UT in their course of study are: educational background, age, GPA, marital status, the number of credit hours they completed, and the number of classes they have taken in each semester. Based on other similar studies, this is a common condition that occurs in other countries where distance education system is applied by some educational institutions.

Acknowledgments

This research was supported by a grant from the Centre for Research & Community Services of Universitas Terbuka. The first author thanks the Information and Communication Technology of Universitas Terbuka for server services during the data simulation process. Also thanks to Lemma Ferrari Boer for programming research simulation models.

References

- Andriani D, Pangaribuan N. Students in open distance education: Theoretical study and applications. Jakarta: Universitas Terbuka Publishing Center; 2006.
- Allen IE, Seaman J, Poulin R, Straut TT. Online report card: Tracking online education in the United States. Babson Park: Babson Survey Research Group, 2016 [cited 2019 June 10]. Available from: <http://onlinelearningsurvey.com/reports/onlinereport-card>.
- Boton EC, Gregory S. Minimizing attrition in online degree courses. *J Educ Online*. 2015; 12(1): 62-90.

- Cambruzzi W, Rigo SJ, Barbosa JLV. Dropout prediction and reduction in distance education courses with the learning analytics multitrail approach. *J Univers Comput Sci.* 2015; 21(1): 23-47.
- Censo EB. Relatório analítico da aprendizagem a distância no Brasil 2013. Associação Brasileira de Educação a Distância. Curitiba: Ibpex, 2014 [cited 2019 July 28]. Available from https://www.scielo.br/pdf/ep/v44/en_1517-9702-ep-S1678-4634201708165786.pdf.
- Dobson AJ. An Introduction to generalized linear models. New York: Chapman & Hall/CRC; 2002.
- Gaytan J. Comparing faculty and student perceptions regarding factors that affect student retention in online education. *Am J Distance Educ.* 2015; 29(1): 56-66.
- Ha ID, Lee Y, Song JK. Hierarchical likelihood approach for frailty models. *Biometrika.* 2001; 88(1): 233-243.
- Ha ID, Noh M, Kim J, Lee Y. frailtyHL: Frailty Models via Hierarchical Likelihood, R package version 2.2, 2019 [cited 2019 Oct 16]. Available from: <https://cran.r-project.org/web/packages/frailtyHL/index.html>.
- Henderson R, Oman JP. Effect of frailty on marginal regression estimates in survival. *J R Stat Soc Series B Stat Methodol.* 1999; 61(2): 367-380.
- Hosmer D, Lemeshow S, May S. Applied survival analysis. Hoboken: John Wiley & Sons; 2008.
- Kadarko W. Understanding students' learning styles and strategies. *J Open Distance Educ.* 2000; 3(2): 1-15.
- Klaproth F, Schaltz P. Who is retained in school, and when? Survival analysis of predictors of grade retention in Luxembourgish secondary school. *Eur J Psychol Educ.* 2015; 30(1): 119-136.
- Lee ET, Wang JW. Statistical methods for survival data analysis. Hoboken: John Wiley & Sons; 2003.
- McCormick NJ, Lucas MS. Student retention and success: Faculty initiatives at middle Tennessee State University. *JoRRS.* 2014; 1(1): 1-12.
- Oliveira PR, Oesterreich SA, Almeida VL. School dropout in gradutae distance education: evidence from a study in the interior of Brazil. *Educ Pesqui.* 2018; 44, e165786: 1-20.
- Orr S. The organizational determinants of success for delivering fee-paying graduate courses. *Int J Educ Manag.* 2000; 14(2): 54-61.
- Pierrakeas C, Xenos M, Panagiotakopoulos C, Vergidis D. A comparative study of dropout rates and causes for two different distance education courses. *Int Rev Res Open Dis.* 2004; 5(2): 1-15.
- Ratnaningsih DJ, Saefuddin A, Kurnia A, Mangku IW. Stratified-extended Cox model in survival modelling of non-proportional hazard. *IOP Conference Series: Earth and Environmental Science.* 2019; 299(1): 012023.
- Ratnaningsih DJ, Saefuddin A, Wijayanto, H. An analysis of drop-out students' survival in distance higher education. *J Open Distance Educ.* 2008; 9(2): 101-110.
- Rovai AP. In search of higher persistence rates in distance education online programs. *Internet High Educ.* 2003; 6(1): 1-16.
- Schuemer R. Some psychological aspects of distance education. Hagen: Institute for Research into Distance Education; 1993.
- Soeleiman N. Continuity of registration and its relation to the examination results. Research Report. Jakarta: Universitas Terbuka; 1991.
- Sylvestre MP, Edens T, MacKenzie T, Abrahamowicz M. PermAlgo: Permutational algorithm to simulate survival data version 1.1, 2015 [cited 2018 Nov 08]. Available from: <https://CRAN.R-project.org/package=PermAlgo>.
- Therneau TM, Grambsch PM, Pankratz VS. Penalized survival models and frailty. *J Comput Graph Stat.* 2003; 12(1): 156-175.

Vaupel JW, Manton KG, Stallard E. The impact of heterogeneity in individual frailty on the dynamics of mortality. *Demography*. 1979; 16(3): 439-454.

Wienke A. Frailty models in survival analysis. New York: Chapman & Hall/CRC; 2011.

Xenos M, Pierrakeas C, Pintelas P. A survey on student dropout rates and dropout causes concerning the students in the course of informatics of the Hellenic Open University. *Comput Educ*. 2002; 39(4): 361-377.

Appendix

The script of program simulation for SEF model:

```

library(frailtyHL)
library(survival)
library(PermAlgo)

set.seed(123)
# Function to generate an individual time-dependent exposure history
# e.g. generate prescriptions of different durations (semester) and doses (skrs).
TDhist <- function(m){
  start <- round(runif(1,1,m),0) # individual start date (semester)
  Smstr <- 0 + runif(1,1,10) # in weeks (in semester)
  Sks <- round(runif(1,0,100),1)
  vec <- c(rep(0, 1), rep(Sks, Smstr))
  while (length(vec)<=m){
    intermission <- 4 + runif(1,1,10) # in weeks (in semester)
    Smstr <- 0 + runif(1,1,10) # in weeks
    Sks <- round(runif(1,0,100),1)
    vec <- append(vec, c(rep(0, intermission), rep(Sks, Smstr)))}
  return(vec[1:m])}

XMAT <- function(n,m,nprodi,ragam){
  # Generate the matrix of three covariate, in a 'long' format.
  Xmat=matrix(ncol=3, nrow=n*m)

  # time-independant binary covariate
  Xmat[,1] <- rep(rbinom(n,1,0.6), each=m) #gender

  #frailty
  Xmat[,2] <- rep(unlist(sapply(1:length(nprodi),
    function(i)rep(rnorm(1,mean = 0,sd=sqrt(ragam)),
    each=nprodi[i]))),each=m)

  Xmat[,3] <- do.call("c", lapply(1:n, function(i) TDhist(m)))
  return(Xmat)
}

generateData <- function(n,m,Xmat,XmatNames,eventRandom,censorRandom,betas){
  data <- permalgorithm(n, m, Xmat, XmatNames=XmatNames,
  eventRandom = eventRandom, censorRandom=censorRandom,
  betas=betas, groupByD=FALSE )
  # uncounting
  idx <- as.numeric(table(data$Id))
  temp <- 0
  Mtemp <- vector()

```

```

for (i in 1:length(idx)){
  temp <- idx[i]+temp
  Mtemp <- c(Mtemp,temp)
}

newdata <- data[Mtemp,]
newdata$st <- round(runif(nrow(newdata),1,3))
return(newdata)
}

####proporsi prodi
jumlah <- c(56,57,38,1781,796,729,398,519,94,15)
prop <- jumlah/sum(jumlah)
n1 <- round(100*prop)
n1[4] <- 39
n1[10] <- 1
n2 <- round(500*prop)
n2[4] <- 200
n3 <- round(1000*prop)
n4 <- round(2000*prop)
n4[4] <- 794

####label
label<-c("1gender","1sks","1w","1w.se","1-2h0","1-2*hp","1-
2*p_b,v(hp)","1cAIC","1pAIC","1rAIC",
"2gender","2sks","2w","2w.se","2-2h0","2-2*hp","2-
2*p_b,v(hp)","2cAIC","2pAIC","2rAIC",
"3gender","3sks","3w","3w.se","3-2h0","3-2*hp","3-
2*p_b,v(hp)","3cAIC","3pAIC","3rAIC")

XmatNames<-c("gender","w", "sks")

####variance
variance1 <- 10
variance2 <- 14
variance3 <- 16
variance4 <- 20

#####
#PoinRunning1#####
#Parameter
N <- 100 # student
# p=0.2 # frailty
nprodi <- n1 #frailty
m <- 20 # semester
variance <- variance1
betas <- c(2,1,log(1.04))

#0% censoring (oke)
eventRandom <- round(rexp(n, 0.58)+1,0)
censorRandom <- round(runif(n, 6,8),0)

out <- NULL
for (i in 1:100){

```

```

newdata <-
generateData(n,m,Xmat=XMAT(n,m,nprodi,ragam),XmatNames,eventRandom,censorRandom,betas)
model.1 <- frailtyHL(Surv(Fup, Event) ~ gender + sks + (1|w),data=newdata,
convergence=10^-4,Maxiter = 10)

while(is.nan(model.1$RandCoef[2])){
newdata <-
generateData(n,m,XMAT(n,m,nprodi,ragam),XmatNames,eventRandom,censorRandom,betas)
model.1 <- frailtyHL(Surv(Fup, Event) ~ gender + sks+(1|w),data=newdata,
convergence=10^-4,Maxiter = 10)
}

coef1 <- cbind(t(model.1$FixCoef[,2]),model.1$RandCoef)
Loglik1 <- model.1$likelihood
aic1 <- model.1$aic

model.2 <- frailtyHL(Surv(Fup, Event) ~ gender + sks+(1|w),
varfixed=TRUE,varinit=c(0),data=newdata)

coef2 <- cbind(t(model.2$FixCoef[,2]),model.2$RandCoef)
Loglik2 <- model.2$likelihood
aic2 <- model.2$aic

model.3 <- frailtyHL(Surv(Fup, Event) ~ gender + sks+strata(st)+(1|w),
varfixed=TRUE,varinit=c(0),data=newdata)

coef3 <- cbind(t(model.3$FixCoef[,2]),model.3$RandCoef)
Loglik3 <- model.3$likelihood
aic3 <- model.3$aic

colnames(coef1) <- paste0(1,colnames(coef1))
colnames(coef2) <- paste0(2,colnames(coef2))
colnames(coef3) <- paste0(3,colnames(coef3))

colnames(Loglik1) <- paste0(1,colnames(Loglik1))
colnames(Loglik2) <- paste0(2,colnames(Loglik2))
colnames(Loglik3) <- paste0(3,colnames(Loglik3))

colnames(aic1) <- paste0(1,colnames(aic1))
colnames(aic2) <- paste0(2,colnames(aic2))
colnames(aic3) <- paste0(3,colnames(aic3))

out1 <- cbind(coef1,Loglik1,aic1,coef2,Loglik2,aic2,coef3,Loglik3,aic3)
out <- rbind(out,out1)
}

rownames(out) <- NULL

```