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Abstract 

In this paper, a comparative analysis of alternative methods for the moving average (MA) control 

chart for dispersion is developed using robust estimators. To compare the ability and performance of 

the existing moving average (MA) control charts for dispersion based on the sample standard deviation 

(S) and the proposed alternative methods based on robust estimators to detect shifts in a process, a 

Monte Carlo simulation study is used. It is observed from the results of the simulation study that the 

proposed robust alternative methods are effective in determining small shifts in the process and gives 

better performance as compared to the existing moving average (MA) control charts for dispersion, 

i.e. it provides swift indication about shifts in a process. An application numerical example with a real 

data set is used to illustrate the application and implementation of the control charts considered in this 

study which also supported the findings of the simulation study to some extent. 

______________________________ 
Keywords: Moving average control chart, robust dispersion estimator, standard deviation, non-normal 

distribution, simulation study, average run length. 

 

1. Introduction 

The control charts for variables, which first introduced by Walter Shewhart in 1924, are widely 

used and powerful tools for monitor and detect the variation in the process (Noiplab and 

Mayureesawan, 2019). They are also provide a quick indication of when the process is shifting to an 

out-of-control state which can help engineers to bring it back into an under-control state. The Shewhart 

control charts are simple to apply in industry. However, as Stoumbos et al. (2000) stated, such simple 

control charts may be inappropriate for detecting a small to moderate shift in the process. To overcome 

this problem, researchers have been attempting to introduce various control charts that can detect small 

to moderate changes in a manufacturing process. 

The moving average (MA) control chart is one of these introduced methods. It is quite simple to 

interpret and to apply because it is based on familiar simple averages of the different sizes (Wong et 

al. 2004). The moving average (MA) control charts have been widely used in industry for monitoring 
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of the process because they use information obtained from entire sequence of points while the 

Shewhart control chart only use current information (Chen and Yang 2002). Further the moving 

average (MA) control charts are more sensitive to detect small to moderate shift in the process as 

compared to Shewhart control chart (see Chen and Yu 2003, Yu and Chen 2005, Montgomery 2009, 

Chananet et al. 2014, etc). Other recent work on the construction and analysis of MA control charts 

includes Khoo and Wong (2008), Ghute and Shirke (2013), Ghute and Rajmanya (2014), Pawar and 

Shirke (2014), Akhundjanov and Pascua (2015), Alghamdi et al. (2017) and reference therein. All 

these studies identified the importance and use of MA control charts in application for detecting small 

to moderate shifts as close competitor to EWMA and CUSUM control charts. 

Adeoti and Olaomi (2016) proposed a moving average (MA) S-control chart, using the sample 

standard deviation (S), for quick detection of small shifts in dispersion level of the manufacturing 

process. The results of their work shows that “the performance of the moving average (MA) S-control 

chart for varying values of the span w  outweigh those of the Shewhart S-control chart for small and 

moderate shifts in the process variability”. Actually, the moving average (MA) S-control chart 

proposed by Adeoti and Olaomi (2016) depends on the sample standard deviation (S). For normally 

distributed quality characteristics, the sample standard deviation (S), is the most efficient estimator of 

dispersion. However, studies have shown that it can be sensitive to departures from normality and 

outliers, that is not robust, see for examples, Abu-Shawiesh (2009), Aslam (2016), Alghamdi et al. 

(2017) and Khan et al. (2018). Robustness is a desire property of an efficient control chart. By 

exploring the literature and to the best of authors’ knowledge, there is no work on the design of a 

moving average (MA) control chart for dispersion using robust scale estimators. Therefore, for 

efficient monitoring of small changes in the process dispersion, the current study extends the work of 

Adeoti and Olaomi (2016) to develop a moving average (MA) control chart for monitoring process 

dispersion using robust scale estimators. 

The rest of the paper is organized as follows: the moving average S-control chart for dispersion 

is presented in Section 2. The robust estimators of process dispersion used in this study are discussed 

in Section 3. Section 4 gives the design structure of alternative robust moving average (MA) control 

charts for dispersion proposed in this study. The performance evaluation of the proposed moving 

average (MA) control charts for dispersion with respect to the average run length (ARL) values of 

different shift levels have been discussed in Section 5. The Monte-Carlo simulation study is given in 

Section 5. To illustrate the application and implementation of the control charts discussed in the study, 

a numerical examples uses a real data set is provided in Section 6. Finally, Section 7 includes summary 

of the whole study with conclusive remarks. 

 

2. The Moving Average (MA) S-Control Chart 

Adeoti and Olaomi (2016) proposed a moving average (MA) control chart based on the sample 

standard deviation (S) statistic, namely MAS-control chart, for monitoring the small to moderate 

changes in process dispersion. When the process standard deviation ( )  is unknown, which is the 

case for many real life applications, then   is estimated by 4/S c  where 4c  is a constant that make 

S be an unbiased estimator of .  The structure of MAS-control chart as given by Adeoti and Olaomi 

(2016) is given as follows: 
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2.1. Design structure 

Suppose that, we have a random sample of size n  at time i  from a normal distribution 2( , )N    

and 1 2, ,..., ,...iS S S  be the sample standard deviation of each subgroup .i  The moving average (MA) 

statistic of span w  at time i  denoted by iMA  is defined as follows:  
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The mean for the moving average, ( ),iE MA and the variance for the moving average, ( ),iVar MA  

are given as follows (Adeoti and Olaomi 2016): 

 4( ) for and .iE MA c i w i w                   (2) 

 

2 2
4

2 2
4

(1 )
,

( )
(1 )

, .

i

c
i w

i
Var MA

c
i w

w





 


 
 



                (3) 

The 3  control limits of MAS-control chart, when   is estimated by 4/ ,S c  as proposed by 

Adeoti and Olaomi (2016) are: 

Case (I): For periods i w  
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Case (II): For periods i w  
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The constants * * *
5 6 7, ,D D D  and *

8D  depends on the values of time 1,2,i  span 2,3,4w  and 

sample size 2,3,4,...,15n . These values can be found in Adeoti and Olaomi (2016). 
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2.2. Out-of-control signals 

The MAS-control chart is constructed by plotting the iMA  statistic on the chart against the 

subgroup .i  The probability that a MAS-control chart signals an out-of-control when a point plots 

outside the control limits is given as ( ). i iP MA UCL or MA LCL  If the LCL is calculated to be less 

than zero, then it is set to be zero. 

The MAS-control chart proposed by Adeoti and Olaomi (2016) is based on the sample standard 

deviation ( ),S  which is not a robust estimator of dispersion. Even that, the sample standard deviation 

( )S  is the most common dispersion estimator that provides a logical point estimate of the population 

standard deviation ( ), but unfortunately, it is a non-linear function of data and is very sensitive to the 

presence of outliers in the data (Tukey 1960, Bonett 2006). In this paper, three common alternatives 

to the sample standard deviation ( )S  are considered as robust estimators of dispersion to be used in 

the estimating of the process standard deviation ( )  for the proposed robust moving average (MA) 

control charts for dispersion.  

 

3. Robust Estimators of Dispersion Alternative to the Sample Standard Deviation 

In this section, we describe the three robust dispersion estimators that have been used as 

alternatives to the sample standard deviation ( S ) in the construction of the proposed moving average 

(MA) control charts (see Tiku and Akkaya 2004, Abu-Shawiesh 2008, Abbasi and Miller 2012, Akyüz 

et al. 2017, etc). 

 

3.1. The median absolute deviation from the sample median estimator 

The median absolute deviation from the sample median denoted by MAD is a simple, easy to 

calculate and robust scale estimator proposed by Hampel (1974). Let X  be the quality variable of 

interest, and let 1 2, ,..., nX X X  be a random sample of size n  with a sample median (MD), then the 

MAD can be calculated as follows: 

  1.4826 ; 1, 2,3, ... ,iMAD MD X MD i n                  (6) 
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Rousseeuw and Croux (1993) showed that the estimate MAD nb MAD 


 is an unbiased estimator 

for the process standard deviation ( ),  where nb  is a constant depends on the sample size n  given in 

the literature. Wu et al. (2002) showed that for contaminated normal data, the MAD outperformed 

some other robust estimators. 

 

3.2. The Rousseeuw and Croux Sn estimator  

The nS  estimator was proposed by Rousseeuw and Croux (1993) as a powerful alternative to the 

MAD. This estimator is very simple and easy to compute. It is based on the use of repeated medians: 

the inner median and the outer median. Therefore, the nS  estimator can be defined as the median of 

the n  medians of the absolute differences between the values. Let X  be the quality variable of 
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interest, and let 1 2, ,..., nX X X  be a random sample of size ,n  then the nS  estimator can be calculated 

as follows: 

  1.1926 ; , 1, 2,3, ... , .n i j i jS MD MD X X i j n    

(8) 

where the factor 1.1926 is for consistency. The statistic 
nS n nd S 


 is an unbiased estimator of the 

process standard deviation ( )  where nd  is a constant factor depends on the sample size n  given in 

the literature. 

 

3.3. The Rousseeuw and Croux Qn estimator 

The nQ  estimator was proposed by Rousseeuw and Croux (1993) as another powerful alternative 

to the MAD. This estimator is very simple and easy to compute. Let X be the quality variable of 

interest, and let 1 2, ,..., nX X X  be a random sample of size ,n  then the nQ  estimator can be calculated 

as follows: 
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 is the integer part of fraction / 2.n  In simple 

terms, nQ  is the thg  order statistic of n -choose-2 interpoint distances. The 
nQ n ne Q 


 will be an 

unbiased estimator of process standard deviation ( )  where ne  is a constant factor depends on the 

sample size n  given in literature. 
 

4. The Proposed Robust Moving Average (MA) Control Charts for Dispersion 

In this section, three moving average (MA) control charts, based on robust statistics namely MAD, 

nS  and nQ  defined in the previous section, are proposed for monitoring small to moderate changes in 

process dispersion more efficiently. In this study, we will refer to the moving average (MA) control 

charts for dispersion based on S, MAD, nS  and nQ  as MAS-control chart (proposed by Adeoti and 

Olaomi (2016)), MAMAD-control chart, MASn-control chart and MAQn-control chart for the rest of 

this study. 
 

4.1. The MAMAD-control chart 

In this section, the structure design of the MAMAD-control chart, proposed as a robust alternative 

to the MAS-control chart, will be given. Let 1 2, ,..., ,...iMAD MAD MAD be the median of the absolute 

deviations from a series of subgroups obtained from normal distribution. The moving average of span 

w  at time i  denoted by iMAMAD  is defined as follows:   
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where 1
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 and ˆ .nb MAD   The control limits (LCL and UCL) and the center line 

(CL) for the MAMAD-control chart will be calculated as follows: 
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Case (II): For periods i w  
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The constants * * * *
9 10 11 12, , ,D D D D  and *

13D  which are required in the construction of MAMAD-

control chart, are also depends on the sample size n  and span .w  These constants are calculated and 

provided here in Table 1. These constants are also not monotonic for 2n   as compared to 2.n   

The results are expected as discussed by Adekeye and Azubuike (2012). 

 

Table 1 The control limit factors for the MAMAD-control chart  

n  

i w  i w  i w  

and  

i w  

i  w 

1i   2i   2w  3w  4w  

*
9D  *

11D  *
9D  *

11D  *
12D  *

13D  *
12D  *

13D  *
12D  *

13D  *
10D  

2 0.000 3.117 0.000 2.484 0.000 2.484 0.000 2.203 0.000 2.036 0.954 
3 0.000 3.403 0.000 2.794 0.000 2.794 0.125 2.525 0.286 2.364 1.325 

4 0.000 2.846 0.131 2.380 0.131 2.380 0.338 2.174 0.461 2.051 1.256 

5 0.000 2.368 0.261 2.006 0.261 2.006 0.421 1.846 0.516 1.751 1.134 

6 0.034 2.249 0.359 1.925 0.359 1.925 0.502 1.781 0.588 1.696 1.142 

7 0.129 2.058 0.412 1.776 0.412 1.776 0.537 1.651 0.611 1.576 1.094 

8 0.201 1.978 0.461 1.718 0.461 1.718 0.577 1.602 0.645 1.534 1.089 

9 0.256 1.890 0.496 1.650 0.496 1.650 0.602 1.544 0.665 1.481 1.073 

10 0.301 1.814 0.522 1.592 0.522 1.592 0.620 1.494 0.679 1.436 1.057 

11 0.339 1.764 0.547 1.556 0.547 1.556 0.640 1.463 0.695 1.408 1.051 

12 0.371 1.723 0.569 1.525 0.569 1.525 0.657 1.437 0.709 1.385 1.047 

13 0.398 1.690 0.587 1.501 0.587 1.501 0.671 1.417 0.721 1.367 1.044 

14 0.423 1.658 0.604 1.478 0.604 1.478 0.684 1.397 0.732 1.350 1.041 

15 0.444 1.631 0.618 1.457 0.618 1.457 0.695 1.380 0.741 1.334 1.037 
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Now, the MAMAD-control chart is constructed by plotting the MAMADi statistic on the chart 

against the subgroup .i  The probability that a MAMAD-control chart signals an out-of-control when 

a point plots outside the control limits is given as ( or ). i iP MAMAD UCL MAMAD LCL  If the LCL 

is calculated to be less than zero, then it is set to be zero. 

 

4.2. The MASn-control chart 

In this section, the structure design of the MASn-control chart, proposed as a robust alternative to 

the MAS-control chart, will be given. Let 
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Case (II): For periods i w   
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The constants * * * *
14 15 16 17, , ,D D D D  and *

18D  which are required in the construction of MASn-control 

chart, are also depends on the sample size n  and span .w  These constants are calculated and provided 

in Table 2. 

Now, the MASn-control chart is constructed by plotting the MASni statistic on the chart against 

subgroup .i  The probability that a MASn-control chart signals an out-of-control when a point plots 
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outside the control limits is given as ( or ). i iP MASn UCL MASn LCL  If the LCL is calculated to 

be less than zero, then it is set to be zero. 

 

Table 2 The control limit factors for the MASn-control chart  

n  

i w  i w  i w  

and 

i w  

i  w 

1i   2i   2w  3w  4w  

*
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16D  *
14D  *
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18D  *
17D  *

18D  *
17D  *

18D  *
15D  

2 0.000 1.936 0.000 1.543 0.000 1.543 0.000 1.369 0.000 1.265 0.593 
3 0.000 4.213 0.000 3.460 0.000 3.460 0.155 3.126 0.354 2.927 1.640 

4 0.000 1.986 0.092 1.661 0.092 1.661 0.236 1.517 0.321 1.431 0.876 

5 0.000 2.653 0.292 2.248 0.292 2.248 0.472 2.068 0.579 1.961 1.270 

6 0.028 1.861 0.297 1.593 0.297 1.593 0.416 1.474 0.487 1.403 0.945 

7 0.136 2.163 0.433 1.866 0.433 1.866 0.564 1.735 0.643 1.656 1.149 

8 0.179 1.761 0.411 1.529 0.411 1.529 0.513 1.426 0.574 1.365 0.970 

9 0.262 1.931 0.506 1.686 0.506 1.686 0.615 1.578 0.679 1.513 1.096 

10 0.277 1.669 0.480 1.465 0.480 1.465 0.571 1.375 0.625 1.321 0.973 

11 0.342 1.782 0.553 1.571 0.553 1.571 0.646 1.478 0.702 1.422 1.062 

12 0.346 1.609 0.531 1.424 0.531 1.424 0.613 1.342 0.662 1.293 0.978 

13 0.401 1.702 0.592 1.512 0.592 1.512 0.676 1.428 0.727 1.377 1.052 

14 0.399 1.563 0.569 1.393 0.569 1.393 0.645 1.317 0.690 1.272 0.981 

15 0.447 1.643 0.622 1.468 0.622 1.468 0.700 1.390 0.746 1.344 1.045 

 

4.3. The MAQn-control chart 

In this section, the structure design of the MAQn-control chart, proposed as a robust alternative 

to the MAS-control chart, will be given. Let 
1 2
, ,..., ,...

in n nQ Q Q  be the Rousseeuw and Croux (1993) 

estimators from a series of subgroups obtained from normal distribution. The moving average (MA) 

of span w  at time i  denoted by iMAQn is defined as follows:  

 

1 1
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i i i w
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i
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where 
1

/
i

m

n n
i

Q Q m


   and ˆ .n ne Q   The control limits (LCL and UCL) and the center line (CL) 

for the MAQn-control chart will be calculated as follows: 

Case (I): For periods i w  
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            (17) 

Case (II): For periods i w  
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The constants * * * *
19 20 21 22, , ,D D D D  and *

23D  which are required in the construction of MAQn-control 

chart, are also depends on the sample size n  and span .w  These constants are calculated and provided 

in Table 3. 

Now, the moving average MAQn-control chart is constructed by plotting the MAQni statistic on the 

chart against the sample .i  The probability that a moving average MAQn-control chart signals an out-

of-control when a point plots outside the control limits is given as 

( or ). i iP MAQn UCL MAQn LCL  If the LCL is calculated to be less than zero, then it is set to be 

zero.  

 

Table 3 The control limit factors for the MAQn-control chart 

n  

i w  i w  
i w  

and 
i w  

i  w 

1i   2i   2w  3w  4w  

*
19D  *

21D  *
19D  *

21D  *
22D  *

23D  *
22D  *

23D  *
22D  *

23D  *
20D  

2 0.000 1.040 0.000 0.829 0.000 0.829 0.000 0.735 0.000 0.679 0.318 
3 0.000 2.256 0.000 1.852 0.000 1.852 0.083 1.673 0.190 1.567 0.878 

4 0.000 1.069 0.049 0.894 0.049 0.894 0.127 0.817 0.173 0.770 0.472 

5 0.000 1.657 0.183 1.404 0.183 1.404 0.295 1.292 0.361 1.225 0.793 

6 0.017 1.145 0.183 0.980 0.183 0.980 0.256 0.907 0.299 0.863 0.581 

7 0.097 1.547 0.309 1.335 0.309 1.335 0.404 1.241 0.460 1.185 0.822 

8 0.119 1.172 0.273 1.018 0.273 1.018 0.342 0.949 0.382 0.909 0.646 

9 0.202 1.488 0.390 1.300 0.390 1.300 0.474 1.217 0.524 1.167 0.845 

10 0.200 1.210 0.348 1.062 0.348 1.062 0.414 0.997 0.453 0.958 0.705 

11 0.279 1.452 0.450 1.280 0.450 1.280 0.527 1.204 0.572 1.158 0.865 

12 0.263 1.221 0.403 1.081 0.403 1.081 0.465 1.019 0.502 0.982 0.742 

13 0.337 1.431 0.498 1.271 0.498 1.271 0.569 1.200 0.611 1.158 0.884 

14 0.314 1.230 0.448 1.096 0.448 1.096 0.508 1.037 0.543 1.001 0.772 

15 0.385 1.413 0.535 1.262 0.535 1.262 0.602 1.196 0.642 1.156 0.899 

 

5. Performance Evaluation of Moving Average Control Charts for Dispersion 

The performance comparison of the control charts is evaluated by using different measures, 

among these, the Average Run Length (ARL). The ARL defines as “the average number of samples 

(subgroups) collected before an out-of-control signal is shown”. Therefore, the ARL value is of high 

interest in the development of any control chart scheme (Knoth 2007). The average run length (ARL) 

comparison for in-control and out-of-control processes have been studied by many authors, see for 

example the following studies: Crowder (1987), Molnau et al. (2001), Li et al. (2014), Chananet et al. (2014) 
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and Abu-Shawiesh et al. (2019). In case of in-control process, a large ARL value is desired while a small 

ARL value is desired when 0  shift to 1 0 ( 1).      Let the in-control process of quality 

characteristic follows a normal distribution, i.e. 2
0( , )N    and in case of out-of-control, the process follows 

2
0( , ).N     The ARL for in-control and out-of-control situations is used as a performance of moving 

average (MA) control charts for dispersion (based on S, MAD, nS  and )nQ  and are calculated using 

a mathematical approximation proposed by Khoo (2004) and Adeoti and Olaomi (2016). The 

expression for this mathematical approximation is given as follows: 
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( 1),w

       (19) 

where T  is either S, MAD, nS  or .nQ  The amount of shift values is given as 1 0    where

 1.00,1.25,1.50,...,3.00 .   For the sack of generalization, the standardized normal distribution is 

considered here and fixed 0 370,L  when the process is in-control level. The moving average (MA) 

control chart for dispersion produces the minimum out-of-control average run length 1( )ARL is declared 

the more efficient control chart for the fixed in-control average run length 0( ).ARL  

 

5.1. Simulation study 

To evaluate the performance of various proposed robust moving average (MA) control charts for 

dispersion with the existing control charts considered in Sections 2 and 4, we performed a comprehensive 

Monte Carlo simulation study. A total of five dispersion control charts were studied. The run length 

characteristic is used as an evaluation measure. The Monte Carlo simulation is the most popular 

scheme for the evaluation of a control chart in the quality control literature which is used when the 

theoretical approach is difficult to implement. The application of the Monte Carlo simulation for 

evaluation of the control charts have been studied by many authors including Sullivan and Woodall 

(1996), Fu and Hu (1999), Testik et al. (2003) and Jones-Farmer et al. (2009). The ARLs are estimated 

by running the proposed schemes using the R-language program. An algorithm of evaluating ARLs 

based on the following steps is used:  

Step 1. An m  subgroups each of sample size n  is generated from either normal with the 

specified parameters.  

Step 2. The dispersion estimates and their average values are calculated. 

Step 3. The control limits of the moving average (MA) control chart for dispersion using these 

average estimates are determined.  

Step 4. Finally, using the mathematical approximation defined in (19), ARL is calculated for the 

control limits.  
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This process from Steps 1-4 is repeated 10,000 times. The mean value of the 10,000 ARLs, with 

standard error lies within the range 0.005-0.023, is reported as performance measure. The ARLs of 

moving average (MA) control chart using different estimates of dispersion are calculated for different 

amount of shifts in the process dispersion with sample sizes n  = 5, 10 and number of subgroups m  = 25. 

The results of the simulation study are reported in Tables 4-5, respectively. Tables 4-5 shows that ARL 

decreases as n  increases from 5 to 10 and ARL decreases more rapidly as w  increases from 2 to 4. 

Also, ARL decreases as the amount of shift values increases. 

Now, the comparison between Shewhart and moving average (MA) control charts from Tables 4-

5 reveals that 

(i) The moving average (MA) control chart for dispersion detects all shifts more quickly as 

compared to the traditional Shewhart S-control chart because it considers the previous observation 

along current data. However, its efficiency losses when large shift occur, say 2   (see Table 4). The 

ARL values are inversely proportional to the shift size ( ).  

(ii) The performance of moving average (MA) control chart for dispersion directly affected with 

span size ( )w  for small to moderate shift in the process dispersion. Therefore, the moving average 

(MA) control chart for dispersion performs better in case of small to moderate shifts ( )  for all sample 

sizes.  

 

Table 4 The ARL values for the Shewhart S-control chart 

Sample Size (n) 
Shift ( ) 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

5 370.158 31.552 9.052 4.256 2.981 1.965 1.705 1.589 1.352 
10 370.455 17.102 4.005 2.565 1.505 1.221 1.124 1.074 1.032 

 

Further, from Table 5 it can be seen that 

(a) The ARL results for the MAMAD-control chart shows that for any range of shifts ( ),  the 

MAMAD-control chart consistently gives smaller out-of-control ARL as compared to the Shewhart 

S-control chart and MAS-control chart for all sample sizes. Therefore, the MAMAD-control chart 

performs better than the Shewhart S-control chart and MAS-control chart for any range of shifts ( )  in 

the process dispersion. 

(b) The ARL results shows that MAQn-control chart performs better than its competitive robust 

MAMAD-control chart and MASn-control chart in the detecting small to moderate shifts in process 

dispersion. Among these, MAMAD-control chart shows the worst performance because of low 

Gaussian efficiency of MAD. 

Hence, it is concluded that the moving average (MA) control charts for dispersion are more 

efficient in terms of ARLs values and have shown better performance than the Shewhart S-control 

chart for detecting small to moderate shifts. The MAMAD-control chart, the MASn-control chart and 

the MAQn-control chart can be treated as strong robust competitors to the MAS-control chart. They 

have shown at least equal performance to the MAS-control chart for the detection of small to moderate 

shifts in the process standard deviation ( ).  The MAQn-control chart has the best performance followed 

by MASn-control chart, MAMAD-control chart and MAS-control chart. 
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Table 5 The ARL values for the moving average control charts for dispersion 

MAS-Control Chart  

Shift ( )  5n   10n     
2w   3w   4w   w = 2 3w   4w   

1.00 367.009 365.418 360.372 367.411 364.372 361.371 
1.25 20.536 15.332 12.514 10.560 7.562 6.965 
1.50 5.245 3.856 3.682 2.855 2.714 2.621 
1.75 2.526 2.401 2.461 1.623 1.655 1.766 
2.00 1.925 1.945 1.966 1.311 1.322 1.354 
2.25 1.445 1.405 1.492 1.172 1.198 1.194 
2.50 1.385 1.426 1.478 1.098 1.110 1.117 
2.75 1.284 1.320 1.350 1.061 1.069 1.058 
3.00 1.215 1.251 1.268 1.041 1.043 1.042 

MAMAD-Control Chart 

Shift ( )  n = 5 n = 10   
2w   3w   4w   w = 2 3w   4w   

1.00 370.715 370.370 370.372 370.371 370.371 370.372 
1.25 17.287 12.001 10.645 8.800 6.046 5.748 
1.50 3.948 2.995 2.795 2.652 2.654 2.521 
1.75 2.251 1.996 2.011 1.512 1.604 1.612 
2.00 1.788 1.755 1.767 1.201 1.284 1.287 
2.25 1.318 1.308 1.312 1.100 1.145 1.148 
2.50 1.286 1.287 1.275 1.051 1.052 1.053 
2.75 1.234 1.224 1.228 1.032 1.033 1.031 
3.00 1.164 1.160 1.161 1.021 1.023 1.022 

MASn-Control Chart 

Shift ( )  n = 5 n = 10   
2w   3w   4w   w = 2 3w   4w   

1.00 370.721 370.372 370.371 370.370 370.371 370.372 
1.25 16.407 12.001 10.645 8.800 6.046 5.748 
1.50 3.851 2.995 2.795 2.652 2.634 2.521 
1.75 2.217 1.996 1.895 1.512 1.604 1.612 
2.00 1.745 1.731 1.728 1.201 1.284 1.287 
2.25 1.309 1.295 1.298 1.100 1.145 1.148 
2.50 1.271 1.273 1.270 1.051 1.052 1.053 
2.75 1.220 1.215 1.224 1.032 1.033 1.031 
3.00 1.151 1.152 1.154 1.021 1.023 1.022 

MAQn-Control Chart 

Shift ( )  n = 5 n = 10   
2w   3w   4w   w = 2 3w   4w   

1.00 370.371 370.370 370.370 370.370 370.372 370.372 
1.25 15.744 11.958 10.012 8.654 5.895 5.748 
1.50 3.834 2.974 2.795 2.601 2.597 2.521 
1.75 2.202 1.975 1.895 1.454 1.424 1.612 
2.00 1.731 1.730 1.728 1.187 1.210 1.194 
2.25 1.294 1.291 1.298 1.084 1.091 1.092 
2.50 1.261 1.265 1.270 1.042 1.044 1.043 
2.75 1.214 1.210 1.224 1.029 1.030 1.029 
3.00 1.138 1.152 1.154 1.020 1.019 1.020 

 

5.2. Effect of contamination/outliers  

The above simulation procedure is again adopted in this subsection to see the impact of 

contamination on the performance of moving average (MA) control charts for dispersion. The 70% 

observations are drawn from (0,1)N  and 30% observations are drawn from (0,5),N  the set of 

observations now is contaminated with outliers. The results are reported here in Tables 6-7 for 

discussion purposes. Results of Tables 6-7 shows that: 
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Table 6 The ARL values for the Shewhart S-Control Chart when outliers exist 

Sample Size 

( )n  

Shift ( ) 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

5 378.501 42.192 15.256 9.120 6.468 4.125 3.450 2.152 1.790 

10 380.256 28.153 12.565 7.741 4.526 2.821 1.984 1.574 1.272 

 

Table 7 The ARL values for the MA control charts of dispersion for contamination 

MAS-Control Chart  

Shift ( )  5n   10n     
2w   3w   4w   w = 2 3w   4w   

1.00 376.405 377.569 376.172 378.813 376.072 375.852 
1.25 28.582 21.8522 17.123 22.185 17.152 14.132 
1.50 12.205 10.425 8.125 10.552 8.858 6.899 
1.75 8.745 7.025 6.001 7.523 5.958 4.452 
2.00 5.346 4.321 3.702 4.355 3.152 2.785 
2.25 3.156 2.856 2.123 2.985 1.980 1.750 
2.50 2.128 1.956 1.715 1.845 1.721 1.612 
2.75 1.785 1.589 1.301 1.504 1.350 1.254 
3.00 1.542 1.410 1.204 1.421 1.210 1.152 

MAMAD-Control Chart 

Shift ( )  n = 5 n = 10   
2w   3w   4w   w = 2 3w   4w   

1.00 377.132 376.689 376.541 377.459 376.895 375.203 
1.25 25.142 20.258 16.440 20.774 16.015 12.912 
1.50 11.005 9.450 7.758 9.742 7.985 5.112 
1.75 7.801 6.441 5.112 6.412 5.008 3.958 
2.00 4.986 3.152 2.852 3.856 2.945 2.245 
2.25 3.005 2.124 1.965 2.142 1.850 1.645 
2.50 1.988 1.845 1.605 1.720 1.660 1.550 
2.75 1.684 1.502 1.264 1.398 1.267 1.205 
3.00 1.465 1.375 1.184 1.290 1.208 1.131 

MASn-Control Chart 

Shift ( )  n = 5 n = 10   
2w   3w   4w   w = 2 3w   4w   

1.00 376.789 375.143 375.885 376.485 377.112 376.478 
1.25 24.554 18.988 15.850 19.145 15.004 11.0145 
1.50 10.558 8.441 6.884 8.855 6.887 4.956 
1.75 7.005 5.658 4.562 5.442 4.785 3.152 
2.00 4.102 2.879 2.008 2.859 2.152 1.958 
2.25 2.905 1.990 1.850 1.960 1.704 1.589 
2.50 1.881 1.745 1.550 1.652 1.542 1.475 
2.75 1.570 1.398 1.198 1.302 1.205 1.184 
3.00 1.387 1.275 1.141 1.201 1.185 1.105 

MAQn-Control Chart 

Shift ( )  n = 5 n = 10   
2w   3w   4w   w = 2 3w   4w   

1.00 378.009 378.150 376.850 374.895 378.002 377.102 
1.25 23.112 17.556 14.850 18.441 14.552 10.552 
1.50 9.258 7.665 5.995 7.158 5.258 3.885 
1.75 6.580 4.485 3.958 4.458 3.885 2.805 
2.00 3.458 2.005 1.920 2.005 1.852 1.802 
2.25 2.450 1.801 1.782 1.820 1.620 1.456 
2.50 1.785 1.675 1.490 1.510 1.452 1.345 
2.75 1.490 1.299 1.170 1.258 1.165 1.154 
3.00 1.298 1.190 1.120 1.185 1.102 1.009 
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(a) The performance of the Shewhart S-control chart is highly effected when data contains 

outliers. It is efficiency almost 73.81% decreases in presence of outliers to detect shifts in dispersion. 

(b) The MAS-control chart performance is better than the Shewhart S-control chart in presence 

of outliers. The efficiency of MAS-control chart also decreases almost 71.43% in presence of outliers 

for detecting small to moderate shifts.   

(c) The MAMAD-control chart performance is better than the Shewhart S-control chart and MAS-

control chart. It is efficiency of detecting small to moderate shifts decreases almost 68% in presence 

of outliers.  

(d) The efficiency of MASn-control chart almost 66.54% decreases in detecting small to moderate 

shifts while the efficiency of MAQn-control chart almost decreases 65.01% in presence of outliers.  

(e) The ARL results shows that MAQn-control chart performs better than other moving average 

(MA) control charts for dispersion under study in the presence of outliers. 

This study suggests the use of MAS-control chart in case of data follows normal distribution and 

no outlier exist in the data. In the case of violation of any assumptions, robust moving average (MA) 

control charts for dispersion (MAMAD, MASn and MAQn) for monitoring small to moderate shifts 

in process dispersion is recommended to be used instead of the MAS-control chart. 

 

6. Application Example Using Real Data 

In this section, a numerical example is used to illustrate the application of the Shewhart S-control 

chart and the alternative robust moving average (MA) control charts for dispersion considered in this 

study with a real data set taken from Yang and Arnold (2015) for 10m   subgroups each of subgroup 

size 10.n   Also, the data will be used to show the out-of-control detection ability for each subgroup. 

Table 8 shows the data, which represents the service time (in minutes) of a bank branch in Taiwan 

from new automatic service system of the bank. According to Yang and Arnold (2015), the data is 

non-normal from an unknown distribution with a variance of 27.805.  

 

Table 8 The service times from 10 counters of a bank branch in Taiwan 

Subgroup 

Number ( )i

(i) 

Service Time Data 

1X 2X  3X  4X  5X  6X 7X  8X 9X  10X

1 3.54 0.01 1.33 7.27 5.52 0.09 1.84 1.04 2.91 0.63 
2 0.86 1.61 1.15 0.96 0.54 3.05 4.11 0.63 2.37 0.05 

3 1.45 0.19 4.18 0.18 0.02 0.70 0.80 0.97 3.60 2.94 

4 1.37 0.14 1.54 1.58 0.45 6.01 4.59 1.74 3.92 4.82 

5 3.00 2.46 0.06 1.80 3.25 2.13 2.22 1.37 2.13 0.25 

6 1.59 3.88 0.39 0.54 1.58 1.70 0.68 1.25 6.83 0.31 

7 5.01 1.85 3.10 1.00 0.09 1.16 2.69 2.79 1.84 2.62 

8 4.96 0.55 1.43 4.12 4.06 1.42 1.43 0.86 0.67 0.13 

9 1.08 0.65 0.91 0.88 2.02 2.88 1.76 2.87 1.97 0.62 

10 4.56 0.44 5.61 2.79 1.73 2.46 0.53 1.73 7.02 2.13 

 

The control limits, central line and number of points falling outside the control limits of the 

process for the Shewhart S-control chart are: LCL = 0.467, CL = 1.645, UCL = 2.823. The Shewhart 

S-control chart declared that there is no shift occur in the process, as all points lie within the control 

limits, as shown in Figure 1. Table 9 gives summary information for the values of the dispersion 

statistics used in this paper.  
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Figure 1 The Shewhart S-control chart for the service times data 

 

Table 9 The scale estimators values for service times data  

Subgroup Number (�) 
Scale Estimators Values 

S MAD Sn Qn 

1 2.41516 2.904 7 1.830640 2.93291 
2 1.27268 0.793190 0.855690 1.510890 
3 1.51761 1.3782 0 0.9839 1.510890 
4 2.3707 0 2.237 5 1.76803 2.73294 
5 1.5105 0 0.80802 0.876560 1.688640 
6 2.283 1 1.193490 1.195580 1.910830 
7 1.361950 1.526 5 1.311860 1.88862 
8 1.73654 1.20832 1.107 3 1.688640 
9 0.86314 0.85250 0.99284 1.510890 

10 2.167410 1.72723 1.896230 2.866250 
Average 1.64509 1.27874 1.27221 2.02415 

 

The results regarding the control limits (LCL and UCL), the central line (CL) and the number of 

points falling outside the control limits for the process are estimated for the moving average (MA) 

control charts of dispersion MAS-control chart, MAMAD-control chart, MASn-control chart and 

MAQn-control chart and given in Table 10. 

 

Table 10 Comparison of control charts for the service times data 

Span ( )w (w) MA Control Chart  LCL CL UCL Number of Points Out  

2 

MAS 0.813 1.645 2.477 0 

MAMAD 0.668 1.352 2.036 1 

MASn 0.611 1.238 1.864 0 

MAQn 0.704 1.427 2.150 4 

3 

MAS 0.966 1.645 2.325 1 

MAMAD 0.793 1.352 1.910 1 

MASn 0.726 1.238 1.749 1 

MAQn 0.838 1.427 2.018 4 

4 

MAS 1.056 1.645 2.234 1 

MAMAD 0.868 1.352 1.836 1 

MASn 0.795 1.238 1.681 1 

MAQn 0.917 1.427 1.939 7 
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The MAS-control chart and the MASn-control chart for w = 2 declared that there is no shift occur 

in the process as all points lie within the control limits, while the MAMAD-control chart and the 

MAQn-control chart are able to detect a shift in dispersion when the shift occur where one point and 

more plotted outside the control limits for the two control charts. However, the MAS-control chart, 

the MAMAD-control chart, the MASn-control chart and the MAQn-control chart with span w = 3 and 

4 are able to detect a shift in dispersion when the shift actually occur. We also notice that the MAQn-

control chart produces the maximum number of points falling outside the control limits while the 

MAS-control chart, the MAMAD-control chart and the MASn-control chart produces the same 

number of points falling outside the control limits. This means that “the sensitivity of the MAQn-

control chart to detect a shift in the process dispersion when the shift occurs is more than that for the 

other control charts”. These results means that the moving average (MA) control charts for dispersion 

are more efficient and effective for the detection of dispersion shift than the Shewhart S-control chart 

and the MAS-control chart. Accordingly, it can confirm that the proposed control charts are more 

effective than the other control charts. Hence the results are consists with the simulation study data. 

Figures 2-4 shows the moving average (MA) control charts for dispersion together with their respective 

control limits and central line.  

 

Figure 2 The moving average (MA) control charts for dispersion for w = 2 

 

 

 

 

 

 

 

10987654321

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Subgroup Number (i)

M
o

vi
n

g
 A

ve
ra

g
e 

(M
A

i)

LCL = 0.813

CL = 1.645

UCL = 2.477

The MAS-Control Chart
Service Times Data [ m = 10 , n = 10 ]

Number of Points Out of Control Limits = 0

10987654321

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Subgroup Number (i)

M
o

v
in

g
 A

v
e
ra

g
e
 (

M
A

M
A

D
i)

LCL = 0.668

CL = 1.352

UCL = 2.036

The MAMAD-Control Chart
Service Times Data [ m = 10 , n = 10 ]

Number of Points Out of the Control Limits = 1

10987654321

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Subgroup Number (i)

M
o

vi
n

g
 A

ve
ra

g
e 

(M
A

Sn
i)

LCL = 0.611

CL = 1.238

UCL = 1.864

The MASn-Control Chart
Service Times Data [ m = 10 , n = 10 ]

Number of the Points Out of the Control Limits = 0

10987654321

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Subgroup Number (i)

M
o

vi
n

g
 A

ve
ra

g
 (

M
A

Q
n

i)

  LCL = 0.704

  CL = 1.427

  UCL = 2.150

The MAQn-Control Chart
Service Times Data [ m = 10 , n = 10 ]

Number of Points Out of the Control Limits = 4



244                                                                   Thailand Statistician, 2021; 19(2): 228-247 

Figure 3 The moving average (MA) control charts for dispersion for w = 3 

 

Figure 4 The moving average (MA) control charts for dispersion for w = 4 
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7. Summary and Conclusions 

In this paper, we compare the performance of moving average (MA) control charts based on robust 

dispersion estimators. The proposed robust moving average (MA) control charts for dispersion 

considered showed better overall performance as compared with the Shewhart S and MAS control 

charts. Among the proposed control charts, the MAQn-control chart has shown its superiority. The 

other two proposed methods, namely the MAMAD-control chart and the MASn-control chart, have 

shown reasonable and similar performance. The MAS-control chart is also performing reasonably 

well. The Monte-Carlo simulation study suggests the use of MAS-control chart in case of data follows 

a normal distribution without outliers. In the case of violation of any assumptions, robust moving 

average (MA) control charts for dispersion (MAMAD, MASn and MAQn) for monitoring small to 

moderate shifts in process dispersion is recommended to be used instead of MAS-control chart. These 

results proved that the power of a variability control chart is strongly related to the efficiency of the 

dispersion estimator used in its construction. Finally, the main conclusion one should draw from the 

paper’s results is that the proposed robust moving average (MA) control charts for dispersion are an 

additional and viable way of tracking a process and that, under conditions similar to that in the 

simulation study, will outperform the others. 
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