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Abstract 

In this article, we present some sharp convergence results for partial sums of arrays of rowwise extended negatively 

dependent random variables. These results are established without assumptions of the identical distribution and stochastic 

domination. The results generalize and improve the corresponding results of Hu and Taylor (1997), Wu and Zhu (2010), 

and Wu et al. (2014). 

______________________________ 
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1. Introduction 

By  weakening  the  assumptions  of  validity  of  the  law  of  large  numbers,  we  provide  an  extension  for  possible 

applications of the probability theory to various fields, especially to the field of statistics. In many theoretical statistical 

frameworks,  we  assume  that  variables  are  independent.  However,  in  real  studies,  this  assumption  is  not  plausible. 

Therefore,  many  statisticians  have  revised  this  assumption  in  order  to  consider  dependent  cases,  such  as  negatively 

associated  random  variables,  positively  associated  random  variables,  negatively  orthant  dependent  random  variables, 

extended negatively dependent random variables (END), and many others. In this article, we consider the END structure, 

which includes independent random variables, negatively associated random variables and negatively orthant dependent 

random  variables  as  special  cases,  and  present  some  sharp  results  on  complete  convergence,  complete  thq  moment 

convergence and  qL  convergence for END random variables. 

 

1.1. Extended negative dependence 

The concept of extended negatively dependent random variables was introduced by Liu (2009) as follows. 

 

Definition 1 A finite collection of random variables 1 2, ,..., nX X X  is said to be extended negatively dependent (END) if 

there exists a constant 0C   such that both inequalities  

1 1 2 2
1

( , , ) (. ),..
n

n n i i
i

P X x X x X x C P X x


      

and 

   1 1 2 2
1

, ,...,  
n

n n i i
i

P X x X x X x C P X x


      

hold for all real numbers 1 2 ,... ., , nx x x  An infinite sequence  ; 1nX n is said to be END if every finite subset is END. 
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Let   , 1nk n   be  a  sequence  of  natural  numbers  such  that  nk   as  .n    An  array  of  random  variables 

 ; 1 , 1ni nX i k n   is  called  rowwise END random  variables  if  for  every  1,n     ;1ni nX i k    are END random 

variables. 

Obviously, the negatively orthant dependent structure is a special case of the END structure with  1.C  The END 

structure is superordinate to the negatively orthant dependent structure which was introduced by Lehmann (1966) and 

later developed by Ebrahimi and Ghosh (1981) (cf. also Joag-Dev and Proschan (1983). The END structure can reflect 

not only a negative dependence structure but also a positive one to some extent. Liu (2009) pointed out that some sequences 

of END random variables obey both negatively and positively dependent properties, and provided  interesting examples 

to support this idea. 

Joag-Dev  and  Proschan  (1983)  proved  that  negatively  associated  random  variables  must  be  negatively  orthant 

dependent (but negatively orthant dependent is not necessarily negatively associated); thus negatively associated random 

variables are also END. 

Since the paper of Ebrahimi and Ghosh (1981) appeared, the convergence properties of negatively orthant dependent 

random variables have been studied in various aspects by many authors. For example, Volodin (2002) established the 

Kolmogorov exponential inequality; Ko and Kim (2005), Ko et al. (2006) investigated the strong laws of large numbers 

for weighted sums; Amini and Bozorgnia (2003) studied the complete convergence; Asadian et al. (2006) obtained the 

Rosenthal type inequality; Qiu et al. (2011) investigated the strong convergence rate and complete convergence, and so 

forth. 

Some  probability  limit  properties  and  applications  for  END  random  variable  sequences  have  also  been  obtained  in 

literature. We mention a few here. Liu (2010) studied the sufficient and necessary conditions of moderate deviations for 

END random variables with heavy tails; Chen et al. (2010) established the strong law of large numbers for END random 

variables and showed applications to risk theory and renewal theory; Shen (2011) presented some probability inequalities 

for END random variables and gave some applications; Wang and Wang (2012) investigated the extended precise large 

deviations of random sums in  the presence of END structure and consistent variation; Wu and Guan (2012) presented 

some convergence properties for the partial sums of END random variables; Wang and Wang (2013) investigated a more 

general precise large deviation result for random sums of END real-valued random variables in the presence of consistent 

variation;  Qiu  et  al.  (2011),  Wang  et  al.  (2013a,  2013b,  2014)  and  Hu  et  al.  (2015)  provided  results  on  complete 

convergence for END random variables; Wu et al. (2014) established the complete moment convergence for arrays of 

rowwise END random variables; Wang et al. (2015) studied the complete consistency for the estimator of nonparametric 

regression models based on END errors. 

 

1.2. Complete convergence 

The  concept  of  complete  convergence  was  first  introduced  by  Hsu  and  Robbins  (1947)  as  follows:  a  sequence 

 ; 1nX n   of random variables is said to converge completely to a constant    if for all  0,     
1

 . .n
n

P X  




     

In view of the Borel-Cantelli lemma, this implies that  nX  almost surely. Therefore, the complete convergence 

is a very important tool in establishing almost sure convergence of summation of random variables. 

Let   , 1nk n  be a sequence of natural numbers such  that  nk   as  .n   For an array of random variables 

 ;1 , 1 ,ni nX i k n     let   ; 1na n    be  a  sequence  of  positive  real  numbers  with  .na     We  say  that  the  array 

 ;1 , 1ni nX i k n    is centered if  0,niEX   for all 1 , 1.ni k n    

Suppose that  ( ); 1n tg n   is a sequence of positive, even functions such that  

 
( ) ( )

   and       as    ,
| |

n n

p

g t g t
t

t t
              (1) 

for some real number  1.p   

In the following, we will use the assumptions as follows  

 
1 1

( )

(
;

)

nk
i ni

n i i n

Eg X

g a



 

               (2) 
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1 1

,
n

s
rk

ni

r
n i n

E X

a



 

 
   
 
 

                                                                                   (3) 

where  0 2, 0;r s     

 
1

( )
0   as .

( )
   

nk
i ni

i i n

Eg X
n

g a

             (4) 

 
1

1
0   as    ,



 
n

r

nir
in

E X n
a

           (5) 

where  0 2 r . 

There are two exceptionally important manuscripts for the investigation presented in this article: Wu and Zhu (2010) 

and Wu et al. (2014). To explain their results and point out what is new in our article, we need to introduce some notation. 

Let   ; 1 , 1niX i n n     be  a  centered  array  of  rowwise  negatively  orthant  dependent  random  variables,  and

 ; 1na n    be  a  sequence  of  positive  real  numbers  with   ( ), ; 1n na tg n     being  a  sequence  of  nonnegative  even 

functions such that (1) holds. 

Wu and Zhu (2010) discussed the convergence properties of partial sums for arrays of rowwise negatively orthant 

dependent random variables and established the following three theorems, which extend and improve the corresponding 

results of Hu and Taylor (1997) for independent random variables. 

 

Theorem 1 If 1 2,p   then assumption (2) implies  

 
1 1

   


 

 
    

 
 

n

ni n
n i

P X a            (6) 

for all 0.   In addition, if 2,p   then assumptions (2) and (3) also imply (6). 

 

Theorem 2 If 1 2,p   then assumption (2) implies  

  1

1 1

  
n

n ni n
n i

a E X a




  

 
    

 
             (7) 

for all 0.   In addition, if 2,p   then assumptions (2) and (3) imply (7). 

 

Theorem 3 (1) If 1 2,p   then (4) implies  

 
1

1

1
0.




n L

ni
in

X
a

             (8) 

  (2) If 2p  then (4) and (5) with 0 2 r  imply that (8) still holds. 

 

Wu et al. (2014) discussed the convergence properties of partial sums for arrays of rowwise END random variables 

and established the following two theorems, which extend and improve the corresponding results of Hu and Taylor (1997) 

for independent random variables. 

Let   ;1 , 1niX i n n    be a centered array of rowwise END random variables, and   ; 1na n  be a sequence of 

positive real numbers with  .na    

 

Theorem 4 Let (( ) )n ttg    for all 1n  and all .t  If 1 2,p   then condition (2) implies thq  moment convergence  

 
1 1

  
n

q
k

q
n ni n

n i

a E X a




 


 
    

 
        (9) 

for all 0.   

 

Theorem 5 Let 1 .q p   

 (1) If 1 2,p   then assumption (4) implies 
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1

1
0.

n

q

k
L

ni
in

X
a 

                         (10) 

 

(2) If 2,p   then assumptions (4) and (5) imply (10).  

 

The following are the main differences between the results presented in Wu and Zhu (2010) and Wu et al. (2014) and 

our results 

1. In both manuscripts, Wu and Zhu (2010) and Wu et al. (2014) only consider triangular arrays, that is,  nk n  for 

all  1n   in (2) and (3). 

2. Wu and Zhu (2010) considered negatively orthant dependent random variables, whereas we consider a more 

general case of END random variables. 

3. Wu et al. (2014) considered the case of all the same functions  , 1,ng n   that is,  (( ) )n ttg    for all  1.n    

4. Assumption (3) is more general than a similar assumption used in Wu and Zhu (2010) and Wu et al. (2014). 

Their assumption is a special case of (3) with  2r   and  2 ,s k  where  k  is a positive integer. 

5. Our proofs are based on the results obtained in Wu et al. (2019); they are very different from, and much simpler 

than corresponding proofs from Wu and Zhu (2010) and Wu et al. (2014). 

In this article, inspired by the aforementioned results by Wu and Zhu (2010) and Wu et al. (2014), we investigate the 

complete convergence,  the complete  thq  moment convergence and the  qL  convergence properties of partial sums for 

arrays  of  rowwise  END  random  variables  under  some  more  general  conditions,  and  obtain  some  improved  theorems 

without assumptions of identical distribution and stochastic domination. 

Throughout this article,  ( )I A  denotes the indicator function of the set  .A  As usual, the symbol  C  denotes a positive 

constant, which may be different in various places, and  ( )n na O b  stands for  .n na Cb   

 

2. Main Results 

Now we present the main, completely theoretical, results of this work. The proofs of the following five theorems will 

be detailed in next section. In these five theorems, we let  , 1nk n   be a sequence of natural numbers such that  nk   

as   ; ;1 , 1ni nn X i k n     be  a  centered  array  of  rowwise  END  random  variables,   ; 1na n   be  a  sequence  of 

positive real numbers such that  na    and  ( ); 1n tg n   be a sequence of nonnegative even functions such that  

     and       as    ,
| |

) (

|

)

|

(n n

q p

g t g t
t

t t
                         (11) 

for some  q  and  p  to be specified in each theorem separately (of course,  ).q p  

 

Theorem 6 If 1 2,q p    then assumption (2) implies  

 
1 1

,
nk

ni n
n i

P X a


 

 
    

 
                        (12) 

for all  0.   

 

Theorem 7 If 1 q p   and 2,p   then assumptions (2) and (3) imply (12) for all 0.   

 

Theorem 8 If 1 2,q p    then assumption (2) implies q -moment convergence (9) for all 0.   

 

Theorem 9 If 1 q p   and 2,p   then assumptions (2) and (3) imply (9) for all 0.   

 

Theorem 10 Let 1 .q p   

(1) If 1 2,p   then assumption (4) implies (10). 

(2) If 2,p   then assumptions (4) and (5) imply (10). 

 

The following important remarks discuss how our main results generalize and simplify some known ones. 
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Remark 1 Since a sequence of independent random variables is a special case of END sequence, Theorems 7 and 8 hold 

for arrays of rowwise independent random variables. Therefore, Theorems 7 and 8 are extensions and improvements of 

the corresponding theorems of Hu and Taylor (1997) for independent random variables. 

 

Remark 2  Take  1q   and  , 1,nk n n   in  the  above  theorems,  then  the  conditions  and  the  conclusions  of  the  main 

results are the same as those of Wu and Zhu (2010). Compared with the corresponding conslusions of Wu and Zhu (2010), 

our conclusions are stronger and the assumptions are more general. In addition, it is worthy to point out that the methods 

applied in this paper are different from those of Wu and Zhu (2010). 

 

Remark 3 Take  (( ) )n ttg    for all  1n   and  ,t  and  , 1,nk n n   in  the above  theorems,  then  the conditions and the 

conclusions of the main results are the same as those of Wu, Song, and Wang (2014). Compared with the corresponding 

conclusions  of  Wu,  Song,  and  Wang  (2014),  our  conclusions  are  stronger  and  the  assumptions  are  more  general.  In 

addition, it is worthy to point out that the methods applied in this paper are different from those of Wu, Song, and Wang 

(2014). 

 

Remark 4 Note that  thq  moment complete convergence implies complete convergence. This fact is mentioned in Wu et 

al. (2018) in the much more general situation of  f -moment complete convergence. The argument is as follows. 

For any random variable  S  and any  0,   we have  

   
0

( ) ( )
qqE S P S t dt 



 
     

  1/

0
( )qP S t dt



    

  1/

0
( )

q

qP S t dt


    

   1/( )q q qP S      

  ( 2 )q P S   . 

If we take 
1

1
 

nk

ni
in

S X
a 

  , then the last argument implies that  

1 1 1 1

2 ,
n n

q
k k

q
n ni n ni n

n i n i

a E X a C P X a 
 



   


   
        

   
     

which implies that  thq  moment complete convergence is stronger than complete convergence. 

In connection with this, Theorems 6 and 7 can be considered as corollaries of Theorems 8 and 9, respectively. We 

present different, more direct and elegant proofs of Theorems 6 and 7.  

 

3. Lemmata 

To prove the main results, we need the following already known lemmas. 

 

Lemma 1 (Liu 2010)  Let  ; 1nX n   be a sequence of END random variables, and  ; 1nf n   be a sequence of Borel 

functions, all of which are monotone increasing. Then  ( ); 1n nf X n   is a sequence of END random variables. 

 

Lemma 2 (Shen, 2011, Corollary 3.2) Let 2r   and  ; 1nX n   be a sequence of END mean zero random variables with 

r

nE X    for all 1.n   Then there exists a positive constant ( )C C r  depending only on ,r  such that for all 1,n    

/2

2

1 1 1

   . .

r r
n n n

r

i i i
i i i

E X C E X EX
  

  
       

    

 

Remark 5  For  the  case  of  negatively  orthant  dependent  random  variables,  Lemmas  1  and  2  have  been  established  in 

Ebrahimi and Ghosh (1981) and Asadian et al. (2006), respectively. 
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Lemma 3 Let  1, ;1 , 1ni nq X i k n     be a centered array of rowwise END random variables and  ; 1na n   be a 

sequence of positive real numbers. Suppose that the following conditions hold 

(a) 
1 1

| | (| | )  for any  0;
nk

q q
n ni ni n

n i

a E X I X a  




 

      

(b) there exist some constants ,s q  0 2r   and 0   such that  

 
1 1

 . .
n

s
k

r
r

n ni ni n
n i

a E X I X a




 

 
   

 
    

Then for any 0,    
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Proof: In Corollary 4.3 of Wu et al. (2018), the following statement has been proved. 

 

Let   0, ;1 , 1ni nq X i k n     be a centered array of rowwise END random variables and  ; 1na n   be a sequence 

of positive real numbers. Suppose that the following conditions hold: 

(i) 
1 1

| | (| | )  for any  0;
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q q
n ni ni n

n i

a E X I X a  
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(ii) there exist some constants  max(1, ),s q   0 2r   and  0   such that  
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(iii)  1

1
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Then for any  0,  
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First of all, we note that the assumption (iii) is a redundant assumption for  1q   because its validity follows from (i) 

by the following arguments 
1
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as the  thn  term of the convergent series (i) with  .
16s




  

Next, assumption (ii) can be written as (b) by  the famous  rc -inequality, which can be formulated in  the following 

way.  For  any  two  random  variables  X  and  Y  and  1r   such  that  their  thr  absolute  moments  exist

 1  2 | | .
r r r rE X Y E X E Y    Hence,  
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Therefore,  
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The proof of Lemma 3 is completed.  

 

Remark 6  Note  that  Corollary  4.3  of  Wu  et  al.  (2018)  considers  the  triangular  array   ; 1 , 1niX i n n    of  random 

variables. A careful analysis of the proof shows that this corollary is valid for a general array  ; 1 , 1nk nX k k n    of 

random variables with no changes. 

 

4. Proofs 

Proof of Theorem 6: For any 1 ni k   and  1,n   define the so-called  monotone truncation:  
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which implies that  
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It is simple to see that  
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Really, for 1 , 1ni k n   , note that   ni ni ni nZ X I X a   and  ni niEY EZ   because  0.niEX   By (2), we have  
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Hence for  n  large enough, by (13) we have  
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Therefore, to prove (12), it needs only to show that  
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For  2 ,J  we have  
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For  1,J  by Lemma 1,  ;1 , 1ni ni nY EY i k n     is still a centered array of rowwise END random variables. Hence, for 

1 2,q p    by the Markov inequality, Lemma 2 with  2r   and (2), we have that  
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The proof of Theorem 6 is completed. 

 

Proof of Theorem 7: Following the notations and methods from the proof  in Theorem 6, we have  that (13), (14) and 

2J    hold. It suffices to prove  1J    for 1 q p   and  2.p   

Note that   ni ni ni nY X I X a  . By the Markov inequality, Lemma 2 with  2,r p   the  rc  inequality, (2) and 

(3) for some  0 2u   and  0,s   we have that  
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The proof of Theorem 7 is completed. 

 

Proof of Theorem 8: To prove (2), we just need to check that the assumptions (a) and (b) of Lemma 3 are true. 

(a) For any  0,   we have by (11) and (2) that  
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(b) Note that for any sequence of positive numbers  ; 1 ,nc n   if  1,s   then 
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By (11) and (2), we have that  
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The proof of Theorem 8 is completed. 

 

Proof of Theorem 9: We will need again  to check that  the assumptions of Lemma 3 are  satisfied. Assumption (a)  is 

already checked in (21). Assumption (b) follows easily from (3). The proof of Theorem 10 is completed. 

 

Proof of Theorem 10: In Remark 3, we showed that the  q -moment complete convergence implies the usual complete 

convergence. Now we show that the  q -moment convergence is stronger than convergence in  q -means. Really, by  rc -

inequality, for any number  a  and any  0,   we have that  
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   then by Theorems 8 and 9, for any  0,   there exists  ( )n   such that for all  ( )n n   we have that 
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   as  .n    It  is  obvious  that  the 

conclusion of Theorem 10 follows now from Theorems 8 and 9. The proof of Theorem 10 is completed. 
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