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Abstract

In this article, we present some sharp convergence results for partial sums of arrays of rowwise extended negatively
dependent random variables. These results are established without assumptions of the identical distribution and stochastic
domination. The results generalize and improve the corresponding results of Hu and Taylor (1997), Wu and Zhu (2010),
and Wu et al. (2014).
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1. Introduction

By weakening the assumptions of validity of the law of large numbers, we provide an extension for possible
applications of the probability theory to various fields, especially to the field of statistics. In many theoretical statistical
frameworks, we assume that variables are independent. However, in real studies, this assumption is not plausible.
Therefore, many statisticians have revised this assumption in order to consider dependent cases, such as negatively
associated random variables, positively associated random variables, negatively orthant dependent random variables,
extended negatively dependent random variables (END), and many others. In this article, we consider the END structure,
which includes independent random variables, negatively associated random variables and negatively orthant dependent

random variables as special cases, and present some sharp results on complete convergence, complete ¢"™ moment

convergence and L, convergence for END random variables.

1.1. Extended negative dependence
The concept of extended negatively dependent random variables was introduced by Liu (2009) as follows.

Definition 1 A finite collection of random variables X, X,,...,X, is said to be extended negatively dependent (END) if
there exists a constant C >0 such that both inequalities

P(X, >x,X,>x,,...X,>x,)<C[[P(X, > x)

i=1
and
P(X,<x,X,<x,,.,X,<x,)< CﬁP(X,. <x,)
i=1

hold for all real numbers x,,x,,...,x,. An infinite sequence {Xﬂ ;n 2 1} is said to be END if every finite subset is END.
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Let {k nx 1} be a sequence of natural numbers such that k, — o as n —oco. An array of random variables

n?

{ o 1<i<k,n2> 1} is called rowwise END random variables if for every n>1, {Xm.;l <i< kn} are END random

variables.

Obviously, the negatively orthant dependent structure is a special case of the END structure with C =1. The END
structure is superordinate to the negatively orthant dependent structure which was introduced by Lehmann (1966) and
later developed by Ebrahimi and Ghosh (1981) (cf. also Joag-Dev and Proschan (1983). The END structure can reflect
not only a negative dependence structure but also a positive one to some extent. Liu (2009) pointed out that some sequences
of END random variables obey both negatively and positively dependent properties, and provided interesting examples
to support this idea.

Joag-Dev and Proschan (1983) proved that negatively associated random variables must be negatively orthant
dependent (but negatively orthant dependent is not necessarily negatively associated); thus negatively associated random
variables are also END.

Since the paper of Ebrahimi and Ghosh (1981) appeared, the convergence properties of negatively orthant dependent

random variables have been studied in various aspects by many authors. For example, Volodin (2002) established the
Kolmogorov exponential inequality; Ko and Kim (2005), Ko et al. (2006) investigated the strong laws of large numbers
for weighted sums; Amini and Bozorgnia (2003) studied the complete convergence; Asadian et al. (2006) obtained the
Rosenthal type inequality; Qiu et al. (2011) investigated the strong convergence rate and complete convergence, and so
forth.
Some probability limit properties and applications for END random variable sequences have also been obtained in
literature. We mention a few here. Liu (2010) studied the sufficient and necessary conditions of moderate deviations for
END random variables with heavy tails; Chen et al. (2010) established the strong law of large numbers for END random
variables and showed applications to risk theory and renewal theory; Shen (2011) presented some probability inequalities
for END random variables and gave some applications; Wang and Wang (2012) investigated the extended precise large
deviations of random sums in the presence of END structure and consistent variation; Wu and Guan (2012) presented
some convergence properties for the partial sums of END random variables; Wang and Wang (2013) investigated a more
general precise large deviation result for random sums of END real-valued random variables in the presence of consistent
variation; Qiu et al. (2011), Wang et al. (2013a, 2013b, 2014) and Hu et al. (2015) provided results on complete
convergence for END random variables; Wu et al. (2014) established the complete moment convergence for arrays of
rowwise END random variables; Wang et al. (2015) studied the complete consistency for the estimator of nonparametric
regression models based on END errors.

1.2. Complete convergence
The concept of complete convergence was first introduced by Hsu and Robbins (1947) as follows: a sequence

{Xn; n= 1} of random variables is said to converge completely to a constant A if for all ¢ >0, ZP(|XH - /1| > g) <00,

n=1
In view of the Borel-Cantelli lemma, this implies that X, — A4 almost surely. Therefore, the complete convergence
is a very important tool in establishing almost sure convergence of summation of random variables.

Let {k,,n>1} be a sequence of natural numbers such that k, —> o as n — co. For an array of random variables
{ X, 1<i<k, n>1} let {an;nzl} be a sequence of positive real numbers with a, T 0. We say that the array

(X

1<i<k,,n>1} is centered if EX, =0, forall 1<i<k,n>1.
Suppose that {g, (¢); n>1} is a sequence of positive, even functions such that

gn(tl)T and ¢

f 2]

|) as |f| T, (N

for some real number p > 1.
In the following, we will use the assumptions as follows
Eg,(X.,) _

ZZ ; )

n=l1i=1 g;(a)
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(& Elx, [
Z[Z |a,."‘ ] <, 3
n=l\{ i=1 n
where 0<r <2, 5>0;
kn
;—Ez((j:’; ) —0 as n— oo, @
%EFMJ—Wasm»Q )

n i=l
where 0 <r<2.
There are two exceptionally important manuscripts for the investigation presented in this article: Wu and Zhu (2010)
and Wu et al. (2014). To explain their results and point out what is new in our article, we need to introduce some notation.

Let {Xﬂi;ISi <n,n 21} be a centered array of rowwise negatively orthant dependent random variables, and

{a ;n 1} be a sequence of positive real numbers with a, T oo, { g,(@);n= 1} being a sequence of nonnegative even

n’

functions such that (1) holds.

Wu and Zhu (2010) discussed the convergence properties of partial sums for arrays of rowwise negatively orthant
dependent random variables and established the following three theorems, which extend and improve the corresponding
results of Hu and Taylor (1997) for independent random variables.

Theorem 1 If 1< p <2, then assumption (2) implies

A

forall €>0. In addition, if p > 2, then assumptions (2) and (3) also imply (6).

ani

i=1

>5an]<oo (6)

Theorem 2 If 1< p <2, then assumption (2) implies

fp;E(f}g
i=1

n=1

—gan] <o (7

forall > 0. In addition, if p>2, then assumptions (2) and (3) imply (7).

Theorem 3 (1) If 1< p <2, then (4) implies
1

n L
—3'x, 0. ®)
a

n i=l1

) If p>2 then (4) and (5) with 0 <r <2 imply that (8) still holds.

Wu et al. (2014) discussed the convergence properties of partial sums for arrays of rowwise END random variables
and established the following two theorems, which extend and improve the corresponding results of Hu and Taylor (1997)
for independent random variables.

Let {Xm.; 1<i<nn> 1} be a centered array of rowwise END random variables, and {a";n > 1} be a sequence of

positive real numbers with a, T .

Theorem 4 Let g, (t)="¥(¢) forall n>1 and all t. If 1< p <2, then condition (2) implies q" moment convergence

© k,
zp/E[Eyg
n=l1 i=1

—ganJ < )

+

forall £>0.

Theorem 5 Let 1< g < p.
(1) If 1< p £2, then assumption (4) implies
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ky
iZXm. —%50. (10)
a, =1

(2) If p>?2, then assumptions (4) and (5) imply (10).

The following are the main differences between the results presented in Wu and Zhu (2010) and Wu et al. (2014) and

our results

1. In both manuscripts, Wu and Zhu (2010) and Wu et al. (2014) only consider triangular arrays, that is, k, =n for
all n>1 in (2) and (3).

2. Wu and Zhu (2010) considered negatively orthant dependent random variables, whereas we consider a more
general case of END random variables.

3. Wu et al. (2014) considered the case of all the same functions g, ,n >1, thatis, g (1) ="P(¢) forall n>1.

4. Assumption (3) is more general than a similar assumption used in Wu and Zhu (2010) and Wu et al. (2014).
Their assumption is a special case of (3) with » =2 and s =2k, where k is a positive integer.

5. Our proofs are based on the results obtained in Wu et al. (2019); they are very different from, and much simpler
than corresponding proofs from Wu and Zhu (2010) and Wu et al. (2014).
In this article, inspired by the aforementioned results by Wu and Zhu (2010) and Wu et al. (2014), we investigate the

complete convergence, the complete g™ moment convergence and the L, convergence properties of partial sums for
arrays of rowwise END random variables under some more general conditions, and obtain some improved theorems
without assumptions of identical distribution and stochastic domination.

Throughout this article, 7(A4) denotes the indicator function of the set 4. As usual, the symbol C denotes a positive

constant, which may be different in various places, and a, = O(b,) stands for a, < Cb,.

2. Main Results
Now we present the main, completely theoretical, results of this work. The proofs of the following five theorems will

be detailed in next section. In these five theorems, we let {kn,n > 1} be a sequence of natural numbers such that k&, — o

as n— oo;{X ;1<i<k, ,n> 1} be a centered array of rowwise END random variables, {an;n > 1} be a sequence of

ni?

positive real numbers such that a, T o and { g, ();n= 1} be a sequence of nonnegative even functions such that

_g,,(t|) 1 and —g"(tb { as |t| T, (11)

[ef [t

for some g and p to be specified in each theorem separately (of course, g < p).

Theorem 6 If 1< g < p <2, then assumption (2) implies

A

ky

ZXm'

i=1

> gan] <o, (12)
for all £ > 0.

Theorem 7 If 1< g < p and p > 2, then assumptions (2) and (3) imply (12) for all & > 0.
Theorem 8 If 1< g < p <2, then assumption (2) implies q -moment convergence (9) for all & > 0.
Theorem 9 If 1< g < p and p > 2, then assumptions (2) and (3) imply (9) for all &> 0.
Theorem 10 Let 1< g < p.

(D) If 1< p <2, then assumption (4) implies (10).

(2) If p> 2, then assumptions (4) and (5) imply (10).

The following important remarks discuss how our main results generalize and simplify some known ones.
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Remark 1 Since a sequence of independent random variables is a special case of END sequence, Theorems 7 and 8 hold
for arrays of rowwise independent random variables. Therefore, Theorems 7 and 8 are extensions and improvements of
the corresponding theorems of Hu and Taylor (1997) for independent random variables.

Remark 2 Take g =1 and k, =n,n>1, in the above theorems, then the conditions and the conclusions of the main

results are the same as those of Wu and Zhu (2010). Compared with the corresponding conslusions of Wu and Zhu (2010),
our conclusions are stronger and the assumptions are more general. In addition, it is worthy to point out that the methods
applied in this paper are different from those of Wu and Zhu (2010).

Remark 3 Take g, (¢) =¥(¢) for all n>1 and ¢, and k, =n, n>1, in the above theorems, then the conditions and the

conclusions of the main results are the same as those of Wu, Song, and Wang (2014). Compared with the corresponding
conclusions of Wu, Song, and Wang (2014), our conclusions are stronger and the assumptions are more general. In
addition, it is worthy to point out that the methods applied in this paper are different from those of Wu, Song, and Wang
(2014).

Remark 4 Note that ¢" moment complete convergence implies complete convergence. This fact is mentioned in Wu et
al. (2018) in the much more general situation of f -moment complete convergence. The argument is as follows.

For any random variable S and any & >0, we have
E{[s|-¢} ) = [ P{|s|-¢}’ > ot
= [.P(S| > & +")dt
> [T P(S|> e+
> £ P(S| > e +(e)"*)
=¢'P(S|>2¢).

1 & ) )
If we take S = —ZX . » then the last argument implies that
a

n i=1

Ky

ZXni

i=1

Ky
ZXni

i=1

q
Zaan[ —gan] ZCZP[ >2£an],
n=1 n=l1

which implies that ¢™ moment complete convergence is stronger than complete convergence.

In connection with this, Theorems 6 and 7 can be considered as corollaries of Theorems 8 and 9, respectively. We
present different, more direct and elegant proofs of Theorems 6 and 7.

3. Lemmata
To prove the main results, we need the following already known lemmas.

Lemma 1 (Liu 2010) Let {X ;N> 1} be a sequence of END random variables, and { fnz 1} be a sequence of Borel

n?

Sfunctions, all of which are monotone increasing. Then { f[i(X,);n> 1} is a sequence of END random variables.

Lemma 2 (Shen, 2011, Corollary 3.2) Let »>2 and {X > 1} be a sequence of END mean zero random variables with

E|Xn|y <oo forall n>1. Then there exists a positive constant C = C(r) depending only on r, such that for all n>1,
n r n n r/2
EYX,| < C[2E|X,. ' +[2EX3] J :
i=1 i=1 i=1

Remark 5 For the case of negatively orthant dependent random variables, Lemmas 1 and 2 have been established in
Ebrahimi and Ghosh (1981) and Asadian et al. (2006), respectively.
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Lemma 3 Let g 21, {Xm-; 1<i<k,n= l} be a centered array of rowwise END random variables and {an;n > 1} be a

sequence of positive real numbers. Suppose that the following conditions hold

0 k,
@ Y a"> E|X, " I(| X, [>a,e) <o forany &> 0;

n=1 i=1

(b) there exist some constants s >q, 0<r<2 and 6 >0 such that

©

Z[“n’ iE|Xm,1(|Xm,| < ané)m <o,
i=1

n=1
q
—ang} <00,
+

Proof: In Corollary 4.3 of Wu et al. (2018), the following statement has been proved.

Then for any & >0,

Ky
ZXm'

i=1

ia;qE {
n=I1

Let ¢ >0, {X 1<i<k,,n> 1} be a centered array of rowwise END random variables and {an;n > 1} be a sequence

of positive real numbers. Suppose that the following conditions hold:
» k,
() D.a > E|X, " I(X,|>a,) <o forany &> 0;
n=1 i=1

(ii) there exist some constants s > max(l,g), 0 <r <2 and & >0 such that

0

Z[any kZ”E|Xm'1 (|Xni| < ana)_EXnil (|Xni| < an5)|’ J < 0]
i=1

n=1

k,
(iii) a,' > E|X,, >a,016s) —> 0, as n— o,
i=1

I(x,

Then for any ¢ > 0,

Ky
2K
=1

i

q
Zaan{ —ang} <.
n=l
First of all, we note that the assumption (iii) is a redundant assumption for ¢ >1 because its validity follows from (i)

by the following arguments

I-q
a'E|X,|1(X,|> a,6165) < —E| X, | a0 1(x,| > a,5165)
a, 16s
q-1
<[] e x, x> )
) 16s
Therefore,
£y a,d a a,0
o) Y E|X | |X,|> 2 <carYIE X, 1 1(X,|> 22 50
= 16s = 16s
th . . . 5
asthe n" term of the convergent series (i) with & = Tos
S

Next, assumption (ii) can be written as (b) by the famous c, -inequality, which can be formulated in the following
way. For any two random variables X and Y and r>1 such that their " absolute moments exist

E|x+¥[ <27 (E|X | +E|Y[). Hence,

E|X,1(X,|<a,0)-Ex,1(|X,]<a,5)

< E[x, (x| <a0) +[EX,1(X,]<a0)

<YEX,1(X,[<a,s) .
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Therefore,

M»

o

n=1

E|X 1(X,|<a,6)-EX,1(X,|<a, 5)”

IN

ci( iE|X 1(|X,|<a,) J

The proof of Lemma 3 is completed.

ni’

Remark 6 Note that Corollary 4.3 of Wu et al. (2018) considers the triangular array { ;1<i<nn> 1} of random

variables. A careful analysis of the proof shows that this corollary is valid for a general array {X

n

i 1<k<k,n>1} of

random variables with no changes.

4. Proofs

Proof of Theorem 6: For any 1<i<k, and n >1, define the so-called monotone truncation:
),m' = _anl(Xm' < _an ) + Xm'l(|Xm'| < an ) + an](Xm' > an )’ Zm' = Xni - },m"

Then for all ¢ >0,

Ky

Z Xm'

i=1

k,

en .= |U[E

| )

o0}

J (U( H)J. (13)

as n— oo, (14)

k/)

> 8an’ (Xm' # va)J

i=1

k,
>ganJ ZXm

kn
<[>y,

>8an]U{Q(

n
™M

(Y -EY,)

>é&a, -

which implies that

k,

P[> (v, -EY,)

i=1

>8a -

ZE

It is simple to see that

ZE

i=1

n

Really, for 1<i<k, ,n>1, note that |Z | < |X |I(| m| > an) and EY, =—-EZ, because EX, =0. By (2), we have

1 |&
—D EY, ZEZ
n | i=1 n i=1
<L ”Ezm.
a -
2 EXm.qI X,|>a,
& ; >
i=1 n
ku
cey B Lo (15)

i=1 gi(an)

Hence for n large enough, by (13) we have

k”
P
-1

Therefore, to prove (12), it needs only to show that

k,

. >8anJSP(

Z(Ku _EY;i) >

i=1

ca, | &
: ] + ;P( X
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For J,, we have

277
o k,
J, ;ZIP[ZI(YM—EY ) >%j<oo, (16)
w k,
J, =23 P(|X,]>a,) (17)
n=1 i=1
ok,
J,=>YEI(X,]>a,)
n=1 i=l
> b EX,|"I(|X,]|>a,
ey lI>a)
n=1 i=1 n
s Egi(Xm')
<C 18
ZZ gi(an) ( )

For J,, by Lemma 1, {X —EY 1<i<k ,n> 1} is still a centered array of rowwise END random variables. Hence, for

1< ¢ < p <2, by the Markov inequality, Lemma 2 with » =2 and (2), we have that

The proof of Theorem 6 is completed.

Ky
Z(Ym _EYm’)
=1

i

J<CZ [
n=l1 n

21

nlnll
g

P

=k EY,
s;(?%é;;g;-—i;f——
Eg, (|%.])

n=l i=1 g,(an)

=& Eg, Xm

Eg (X,,)
n=li=1 gz (an

25%

(19)

Proof of Theorem 7: Following the notations and methods from the proof in Theorem 6, we have that (13), (14) and

J, <o hold. It suffices to prove J, <o for 1<g< p and p>2.

<|x,|7(jx

<a, ) By the Markov inequality, Lemma 2 with » > p > 2, the ¢, inequality, (2) and

(3) forsome 0 <u <2 and s >0, we have that

J<CZ

n=1 n [
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= Egl ( ni ) < < E| ni S
< sz ( ) ZI[Z] a" <. (20)
The proof of Theorem 7 is completed.

Proof of Theorem 8: To prove (2), we just need to check that the assumptions (a) and (b) of Lemma 3 are true.
(a) For any ¢ >0, we have by (11) and (2) that

o k,
YarY|Ex zzE'X
n=1 k=1 n=1 k=1
w k,
< Ea (X)) (21)
=1 i=1 gi(an)

1/s
(b) Note that for any sequence of positive numbers {cn;n > 1} , if s>1, then (Z c;) < ch. Hence, it is enough
n=1

n=1

to prove that

nk <o,
n=1 k=1 ar{)
By (11) and (2), we have that
o b E[X, (X, <a,6) ek Eg ()
S <C = 7 3
227wy 22 a(a)

The proof of Theorem 8 is completed.

Proof of Theorem 9: We will need again to check that the assumptions of Lemma 3 are satisfied. Assumption (a) is
already checked in (21). Assumption (b) follows easily from (3). The proof of Theorem 10 is completed.

Proof of Theorem 10: In Remark 3, we showed that the ¢ -moment complete convergence implies the usual complete
convergence. Now we show that the g -moment convergence is stronger than convergence in g -means. Really, by c, -
inequality, for any number a and any ¢ >0, we have that

lal'<c, {(|a|—£)‘i +é‘”}.
Hence for any random variable S,

E|S{<c,{E(S|-&) +&'}.

Take S = z ;» then by Theorems 8 and 9, for any ¢ > 0, there exists n(¢) such that for all n > n(g) we have that

n i=1
q
S2cq8". Therefore, E

q

1 & . .
—>X,| >0 as n—oo. It is obvious that the

E(S|-¢)! <&'. And then E L
a, =1

n i=1

conclusion of Theorem 10 follows now from Theorems 8 and 9. The proof of Theorem 10 is completed.

Acknowledgements

The authors are grateful to the referees for carefully reading the manuscript and for offering substantial suggestions
that enabled us to improve our paper. This work is supported by the Humanities and Social Sciences Foundation for the
Youth Scholars of the Ministry of Education of China (15YJCZHO066), the Science and Technology Plan Project of Hunan
Province (2016TP1020), Hunan Provincial Natural Science Foundation of China (2018JJ4024), the Scientific Research
Fund of Hunan Provincial Education Department (17A030), the Ministry of Science and Technology, R.0.C. (MOST
107-2118-M-007-004-MY?2. The work of A. Volodin was carried out in the framework of the program of support of the
Mathematical Center of the Volga Region Federal District (Project No. 075-02-2020-1478). This Research was financially
Supported by Faculty of Science, Mahasarakham University (Grant year 2021), Thailand.



Haiwu Huang et al. 279

References

Amini M, Bozorgnia A. Complete convergence for negatively dependent random variables. J Appl Math Stoch Anal.
2003; 16(2): 121-126.

Asadian N, Fakoor V, Bozorgnia A. Rosenthal’s type inequalities for negatively orthant dependent random variables.
JIRSS. 2006; 5(1-2): 69-75.

Chen Y, Chen A, Ng KW. The strong law of large numbers for extended negatively dependent random variables. J Appl
Prob. 2010; 47(4): 908-922.

Ebrahimi N, Ghosh M. Multivariate negative dependence. Commun Stat-Theory Methods. 1981; 10(4): 307-337.

Hsu PL, Robbins H. Complete convergence and the law of large numbers. Proceedings of the National Academy of
Sciences of the United States of America. 1947; 33(2): 25-31.

Hu TC, Taylor RL. On the strong law for arrays and for the bootstrap mean and variance. Int J Math Sci. 1997; 20(2):
375-382.

Hu TC, Wang KL, Rosalsky A. Complete convergence theorems for extended negatively dependent random variables.
Sankhya. 2015; 77(1): 1-29.

Joag-Dev K, Proschan F. Negative association of random variables with applications. Ann Stat 1983; 11(1): 286-295.

Ko MH, Han KH, Kim TS. Strong laws of large numbers for weighted sums of negatively dependent random variables.
J. Korean Math. Soc. 2006; 43(6): 1325-1338.

Ko MH, Kim TS. Almost sure convergence for weighted sums of negatively orthant dependent random variables. J Korean
Math Soc. 2005; 42(5): 949-957.

Lehmann EL. Some concepts of dependence. Ann Math Stat. 1966; 37(5): 1137-1153.

Liu L. Precise large deviations for dependent random variables with heavy tails. Stat Prob Lett. 2009; 79(9): 1290-1298.

Liu L. Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails. Sci
China Math 2010; 53(6): 1421-1434.

Qiu D, Chang KC, Giuliano Antonini R, Volodin A. On the strong rates of convergence for arrays of rowwise

negatively dependent random variables. Stoch Anal Appl. 2011; 29(3): 375-385.

Shen A. Probability inequalities for END sequence and their applications. J Inequal Appl. 2011; (1): 1-12.

Volodin A. On the Kolmogorov exponential inequality for negatively dependent random variables. Pak J Stat. 2002; 18(2):
249-253.

Wang S, Wang W. Extended precise large deviations of random sums in the presence of END structure and consistent
variation. J Appl Math. 2012; (1): 155-172.

Wang S, Wang X. Precise large deviations for random sums of END real-valued random variables with consistent
variation. J Math Anal Appl. 2013; 402(2): 660-667.

Wang X, Hu TC, Volodin A, Hu S. Complete convergence for weighted sums and arrays of rowwise extended negatively
dependent random variables. Commun Stat-Theory Methods. 2013a; 42(13): 2391-2401.

Wang X, Li X, Hu S, Wang X. On complete convergence for an extended negatively dependent sequence. Commun Stat-
Theory Methods. 2014; 43(14): 2923-2937.

Wang X, Wang S, Hu S, Ling J, Wei Y. On complete convergence of weighted sums for arrays of rowwise extended
negatively dependent random variables. Stochastics. 2013b; 85(6): 1060-1072.

Wang X, Zheng L, Xu C, Hu S. Complete consistency for the estimator of nonparametric regression models based on
extended negatively dependent errors. Statistics. 2015; 49(2): 396-407.

Wu Y, Guan M. Convergence properties of the partial sums for sequences of END random variables. J Korean Math Soc.
2012; 49(6): 1097-1110.

Wu 'Y, Ordoéiiez Cabrera M, Volodin A. Complete convergence and complete moment convergence for arrays of rowwise
END random variables. Glas Mat. 2014; 49(69): 449-468.

Wu Y, Wang X, Hu TC, Volodin A. Complete f-moment convergence for extended negatively dependent random
variables. Racsam Rev R Acad A. 2019; 113(2): 333-351.

Wu Y, Zhu D. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random

variables. J Korean Stat Soc. 2010; 39(2): 189-197.

Wu Y, Song M, Wang C. Complete moment convergence and mean convergence for arrrays of rowwise extended

negatively dependent random variables. Sci World J. Article ID 478612. 2014; 7 pages.



