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Abstract

In this paper, we determine the parameter estimators of the Geographically Weighted Regression
(GWR) model with measurement errors through the mixed linear model approach. In contrast to model
that does not pay attention to geographic location factors, GWR is very concerned about geographic
location factors. This model will produce the parameter estimators of the local model for each point
or location where data is collected. The mixed linear model approach in the GWR model is form a
weighting matrix for each observation location. The estimation method used to estimate parameters in
the mixed linear model is Restricted Maximum Likelihood (REML) method. Asymptotic normality
properties of the estimators are obtained. The estimators are shown to be consistent. From the
estimation results obtained, we illustrate the data of malnutrition sufferers in East Java province.

Keywords: Mixed linear model, restricted maximum likelihood method, asymptotic normality properties,
weighting matrix.

1. Introduction

Measurement error is an error that arises when a recorded value is not exactly the same as the
actual value in relation to a measurement process. The actual value of the covariate is represented by
a value obtained through a measurement process that is not necessarily in accordance with the actual
value. For example in economic applications related to income issues, if the interviewee could not
accurately state their income, the results of the research records would be higher or lower than the
actual value. Another example in medicine field was systolic blood pressure (SBP) measurement.
During SBP measurement, various sources of errors could occur such as recording equipment errors
and administrative errors (Carroll et al. 2006). The presence of measurement errors causes parameter
estimators to be biased and inconsistent, which leads to incorrect conclusions (Chen et al. 2011). In
overcoming this problem, measurement error models were used.

There were several important sources that may cause measurement errors. Biemer et al. (1991)
identified four main sources of measurement errors, namely questionnaire design, data, interviewer
and respondent. Based on the estimation of regression curve parameters, Fuller (1987) stated that
measurement errors in the slope of the regression curve (Fuller 1987). Moreover, Caroll et al. (2006)
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affirmed that errors may cause bias in regression estimators and also lead to not exactly models
(Carroll et al. 2006). The presence of measurement errors causes the parameters to be biased and
inconsistent (Chen et al. 2011). In solving this problem is a model of measurement error.

The researches on parametric regression models with errors are Carroll et al. (1996), Fuller and
Hidiroglou (1978). The results obtained namely measurement error will affect the regression
coefficient. In simple regression, the magnitude of the regression coefficient is greater than if
calculated without using a measurement error model. This is due to a correction factor of various
errors. Nonparametric regression model with measurement error has been developed by Fan and
Truong (1993) which predicts the parameter of measurement error model with kernel deconvolution
method. In addition, Carroll et al. (1999) had conducted a study to estimate parameters in the
measurement error model using the modified spline method. Several studies that have been conducted
on nonlinear regression models with measurement errors include: Stefanski and Carroll (1985), in the
logistic regression model, namely the process of cardiac development. Stefanski (1987) conducted a
study on Generalized Linear Models (GLM). Nakamura (1992) suspected the parameters in the
proportional Hazard model.

Spatial effects are common among regions. In some cases, the independent variables observed
were related to observations in different regions, especially adjacent areas. The existence of a spatial
relationship in the dependent variable will cause the estimation to be inaccurate because the error
randomness assumption is violated. To overcome the above problems, we need a regression model
that incorporates spatial relationships between regions into the model. The existence of spatial
relationship information between regions causes the need to accommodate spatial diversity in the
model, so the model used is a spatial regression model.

The according to Li et al. (2009) spatial data are susceptible to measurement errors in covariates.
Research for spatial regression models with measurement errors began to develop, because in its
application there are variables that cannot be measured precisely which have a spatial effect. In the
mixed linear spatial model, Li et al. (2009) used the conditional auto-regressive model (CAR). In
addition to CAR, one method for analyzing spatial data is a geographically weighted regression model
(GWR) (Fotheringham et al. 2002). GWR is the development of a classical linear regression model.
In the linear regression model produces estimator parameters that apply globally, but in the GWR
model, a parameter estimator of the model is produced which is local for each observation location.

Differences from previous research; Zare et al. (2012) studied a linear mixed model with
measurement errors in effects, they did not included location factors so that the resulting parameter
estimators are global. In this paper we will discuss the linear approach to the GWR model with
measurement errors. In contrast to models that do not pay attention to location factors, GWR model is
very concerned about the location so as to produce estimators of local model parameters for each point
or location where the data is collected.

The basic and necessary component of the spatial regression model is the weighting matrix. The
weighting matrix is basically a matrix that describes relationships between regions. This matrix
reflects the relationship between one location and another (Arbia 2006). The weighting matrix depends
on the proximity between the observation locations. The closer a location is, the greater the weight
will be. Some literature can be used to determine the amount of weighting for each different location.
According to Fotheringham et al. (2002), spatial weighting functions that can be used in GWR are
adaptive spatial kernel a bi-square and biweight.

Our study concentrates on determine the parameter estimators of the Geographically Weighted
Regression (GWR) model with measurement errors through the mixed linear model approach. This
paper is organized as follows: In Section 2, we present the model definition. In Sections 3 and 4,
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determine the estimated parameters and the algorithm. In Section 5, we state their asymptotic
properties for the estimates. A real data example is presented in Section 6. Finally, in Section 7, we
present our summary.

2. Model Definition
Mixed linecar model with measurement error in covariate with fixed effect can be written as
follows:
y=Xp+Ub+¢

Z=X+t (1

In this model, y is an nx1 vector of random variables whose observed; X is a matrix, which
is the fixed effect with dimension » x p and U is a matrix which is the random effect with dimension
nxgq; fisan px1 vector of parameter, which is the fixed effect; b isan g x1 vector of unobservable
random effect with b ~ N (0, O'ZZ ,); € isan nxl vector of random errors with & ~ N(0,6°R).
Variable Z is the observed value of X with the measurement error ¢, where ¢ is a matrix of size
nx p of the distribution of N (O,I ® A) where ® is a croneker and A is a known block matrix with
dimensions np xnp. We assume that b, ¢ and ¢ are mutually independent.

Let in model (1), covariate X is measured with error and correlation structure derived from

random effect. If we replaced X with Z, then the estimation derived from score function is generally

inconsistent. Some methods are proposed in the measurement error model. In this article, using score
corrected method is adopted from Nakamura (1990) as a general approach in the measurement error
model. In this method, it is define corrected score function where its expected value related to the
distribution of measurement error with score function based on covariate # which is already known.
The first step from mixed linier model approach in GWR model is to form weighted matrix for

each location observed. Let (W(ui,vi)) is a spatial weighted matrix of location i which its diagonal

element values defined by location i with other location (location j ).
The model (1) becomes
Y =W, ,v)XB+Wu,v,)Ub+e, (2a)

Z=X+t, (2b)
W(u. v.) is an nxn matrix whose off-diagonal elements are zero and whose diagonal elements

27

denote the geographical weighting of each of the n observed data for location i of the form

w(u,,v,) 0 0
W, v,) = 0 W(MZ:’VZ) 0
0 0 0 wu,,v,)

Hence the weighting matrix has to be computed for each point i and the weights depict the
proximity of each data point to the location of i with points in closer proximity carrying more weight
in the estimation of the parameters for location i.
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3. Parameter Estimation
One of the estimation methods to estimate the parameter in the mixed linier model is restricted
maximum likelihood (REML). If f is a fixed effect parameter, expected value and matrix covariance

for y* from (2a)is E(y')=WXp and var(y’) = o’V, where
V=R+WUY U'W =R+ yWUUW.

Variable y* has normally distributed, i.e. y" ~N (WXﬂ, O'ZV), so that log-likelihood function

from y* based on above distribution is

l(ﬁ’,0|X,y* ) = ——log(ZﬁU )——log(|V|)

(v -mxg) v (v - wxp) |,

where 0 =(0”,7)=(0"......7, ) is an element in Q:{a;a >0,7, 2 0;(i=1,...,m)}.
Conditional ~distribution of B|y" is by’ ~N (X, UWV(y -WXB), 0> T) with

T :(R+WUZbUTW)_1. The probability log function from b|y" is

A (ﬁ’,0|X,y*) = —%10g(27z0'2)—%10g(|sz|)
1

5o (=X (v -wxg)) (X,7) (- LU (5 -wxp)) |

i) Predictor of fixed effect and random effect
Suppose E represents the conditional expectation value Z if y* is known. The probability

corrected function /" (ﬂ,0|Z , y*) must satisfy
E[al*( : *)/aﬂ]=az(ﬁ,0|x,y*)/aﬂ

E[all* (0]z. y*)/ﬁaz} = a1, (0]X.y")/ 00

and
E[azf (0|Z,y*)/87/,} a1, (0]X.y") 0y, i=1....m
with (60X, y")=1(B(r).0

and 1(0]2, y*)zl*( y 0|Z y) with B=p(y) is the solution of the equation of
0.

), where ,3 = ﬁ(y) is a maximum probability estimation of f

o (,0 0|2,y )/6ﬂ

[az (8.0z.y") /8b} ,(B.0|X.y")/ob.

The probability corrected function l; ( g, 0|Z Y ) is

Theorem 1 If ¢t is a random vector nxp, and V = R+ WUZbUTW, then

E(Z'WVv wZ)=X"WV WX +u(V ')A 3)
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Proof: By the substitution of the Z = X +¢ from (1), then

E(Z'WVWZ)=E ((X+0) WV W (X +1))
=E (X"WV WX+ X"WV W+ WV WX+ WV W)
=E'(X"WV WX )+ E (X"WV W)+ E (' WV WX )+ E (WY W)
=X"WV WX+ (VA

Using (3), it is obtained /" and /, as follows

r (/)’,0|Z, y*) = —%log(Z;wz)—%loguVD

4
- 2;2 {( v -wzg) v (y -wzp)-u(v) ﬂTAﬂ} @
and
L(p.0)z.y )= —%log(Zﬂaz ) —%log(|ZbT|) - 2;2 {(b S Uty (y -wzp)) (3,7) "
(b-> U™V (¥ -wzp))-ud - V’l)ﬂTAﬂ}.
If in (4) is derived to g8, then the results are equated with zero, then we obtained
or(p.olz.y) .
op
- 2;2 [22"wy 'y + 22" Wy WZzp—-2u(V HAB] =0
[Z'wv Wz -a(v A |p=2"Wr"y
B=(Z'WV ' WZ-u(VHA) ZWV 7y,
So, estimating the corrected score for f is
B.=(Z'Wv Wz -u(VA) 2wV 6)
If in (5) is derived to b, then the results is equated with zero, then we obtained
o (pofzy)
b
_ 2;2 [2(2{;)71 b-2(X,1) S Uwv (v - WZﬁ)] ~0
(1) o=(21) Zuwv (v -wzm)|
b= UWV'(y -wzp).
So, estimating the corrected score for b is:
b= UWV (y -WZp, )= i, with v =U"WV"'(y" ~WZB,). 7

ii) Variant component estimator
The probability corrected log function for estimation of @ is
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I (0|Z, y*) = —glog(Zﬁa2 )—%10g(|V|)
®)

! [( y —-WZp. )T y! ( y -Wzp. ) —tr(V BTAB, }

20°
Estimating the corrected score is a value of vector #eQ which maximises /. Ifin (8) is derived
to o, then the results is equated to zero, then we obtained
ol (0|z, y*)
oo’

n 1

20° +m
ot =| (v w2 ) v (v w2l )~ a0 A |

[(y* ~wzp) vy -wzp.) - g A/f} =0

I/ « AT . A
o = (y -wZh) v Wb )~ R |
So, the estimating corrected score for o is

6 =M (5w ) v (v W )-ulv )i | ©)

n

By using relationship |V| = |R”I +U TWRleUzb‘ from (8) it is obtained,

;(6]z.y")= —%log(27r0'2)—%log(|R|)—%log(|l+UTWR‘IWUZI,D

1 * ~ T — * ~ — o ~
—— | (v -wzB.) v (' -WZB.)-u(v BIAB, |. (10)
20
If oV /oy, =WUU]W, oV /oy, =V 'WUU'WV" and 0 /dy, = diag(0....,0,1,,.0.....0)
and in (10) is derived to & 7, then the result is equated to zero, then we obtained
ol (0|Z, y*)
9,
o, (0|12.y")
97,

=0, i=1...,m

= —%tr[([ +U'WR'WUY, ) U'WR'WU (azb /0y, )J

+

! [( y —WZp. )T veiwuuiwy s (y -wzp,)-u(v-wouiwy ) gl Aﬁc}

2
o

1
207

From (11), the estimating corrected score of o/ ,...,0., is

> m

_ % 77 (4~ (T) + = BB, —y (D] DB AR, | = 0. (11)

. 1 |:A N A A\ A ~
2 T T T .
o, = b b —tr(D. D, B AS J, i=1,...,m,
c ql tr(]-;l) wc-c ( 1 I) c c

where D, =7 U'WV ™" =(61/62)U'WV™".
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4. Algorithm of Parameter Estimation
The following theorem is an extension adopted from Harvill (1977) and Fellner (1986) for linear
mixed models with measurement errors.

Theorem 2 If ﬁ’c and o, are the px1 and gx1 components of any solution to the linear system

ZWRWZ-u(VHA  ZWR'WUY, |[j [z'wry 12)
U'WR'WZ I+U'WR'WUY_ U'WR'y |
b
is B = ﬁc and v =0,, which ,I;’L, and v, each is given in (6) and (7).
Proof:
(Z'WR'WZ-t(V")A)p+ Z'WR'WUY 5= Z"WRy' (13)
UWR'WZB+(1+UWR'WUY. )i =U"WR'y’

(14)

5=(1+UWR'WUY,) U'WR(y' ~W2Zp).
By substituting o, to (13) we obtained
(z'wv ' wz—uv A p=2"WwV'y

B=(Z'Wvwz-u(vHA) ZWr 'y,

Corollary 1 Based on Theorem 2, that is 0 =0,, then we obtained
b, =(I+UWR'WUY. \U'WR™ (y' ~W2p, ).
An iterative algorithm is needed to calculate the corrected score estimation 6. Estimation steps

are as follows (Fellner 1986):

Step 1 Perform an iteration from ¢ =0 in ¢*”

and 0'2(0) =1

NN B
Step 2 Calculate estimator ,5’5’) and I;l(?,,l;ﬁﬂ’z as a linear equation (12).
Step 3 Calculate

62 = l[(y* -wzp) v (y -wzp)- tr(V*“”)ﬁf’”Aﬁi’)},
n

and
A —+ 1 ~ A ay ay A A
T W P
q, —tr(T..)
Step 4 If it is convergent, specify 62 =& and 62 = 62"

Step 5 If it is not reach a converging parameter estimator, the Step 2 is done again until it reaches
convergence.

5. Asymptotic Properties
In this section, the asymptotic properties of estimation will be examined. Please note that y*

components are not independent each other. All derivatives related to a function are assumed to exist

n—> 0

and parameters can be identified. In this case it is assumed that as > the limit of the following
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functions exist: » ' X"WV'WX, n”' X"WU,n™' (UTWU—i-Z,:l),n_lXTWV_ZWX, n'lXTWAI.WX,
n X TWAVAWX, n' X' WAWX, n”' X" WAV WX, n”'tr(4), n”'te(V"), n”'e(V?), n”'te(4)),
and n'tr(4VA,), where A, =D/D,; D, =y,U'WV ™"

Lemma 1 Under the above conditions, we have
Z'WVWZ=X"WV WX +u(V)A+0,(n""?). (15)

Proof: Using Z = X +¢ from (2b), we have
n {ZWV I WZ - XTWY WX — (VAL = XTIV W WYX+ C,
where C=¢"WV "Wt —tr(V"")A. Since ¢ ~ N(0,1 ® A), then
nPXTWV Wt~ NO,n ' XTWV X ®A.
By assumption, the limit 7~ X WV WX exists as n — oo, obtained n”' X "WV "'Wt=0,(n""*) and
n't'WVTWX =0,(n™"*). Suppose the element C at the (a,b) is C,,. Then

Cab = Zn:Zn:tiaVijtjb - Zn:Vii Aub i

i=1 i=1 i=1

where t=(t,), V' =V’, A=(A,), i,j=12,..,n, and a,b=12,...p. E(t,t,)=A, and

ia”ib

E(C,,)=0. Furthermore,

E(Cy )2 - ZZE (tfutjhtkutzb ) Vivi—AZ {tr( V! )}2

i,j ki

= (AaaAhh +A;

ab ) tr(V72 )
By assumption the limit n'tr(V ) exists, E(n_”zCab )2 =0,(1) for n —> oo and n'C= o, (n").

By combining all the results above, we get (15).

Theorem 3 ﬁc is asymptotically normally distributed. The asymptotic mean and variance of ﬁp are

respectively given as f at the (2a) and
-1 -1

avar(B) = o” (X'WV wx) " +(X WV wx) B(X'Wvwx) ', (16)

where B = {O'Ztr( VO (XTWYHX) ﬁ} A.

Proof: Let V"> =T®I'" denote the spectral decomposition of V>, where IT' =1,
D= diag(kl’”z,...,kg”z) and ), are the eigen values of V and &=Z"WV 'y’ /Nn, then we have
| . 1 N .
E=—=Z'WV'y =—=Z'"Wreor'v'"?y = —Z'"wWaey',
n Jn Jn

where
Z=T"WZ~N(I"WX,I,®A), § =TV’ ~N(I'V""Wxp,c1,).

The element ™ of & is
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1 n - N 1 n
S, = Ziaﬂ’i_l/zji =248
W W
Since ¢, are independent and the limit of var({,) exists as n — oo, by the central limit theorem, &,
is asymptotically normal. It follows from (6) and (15) that,
B =l XWV WX £ 0, w2 WYy

={1, 40, (' X WY WX) w2 vy

={1, 40, (' X WV WX) 02 Wvy
where /,+0, (n"HY = 1,+0, (n""?) is obtained from Taylor series expansion. So
Jnp, ={1,+0, (n-”z)}(n-IXTWVlWX)’1 LZTWV‘ly*. (17)
n

T
Moreover, since the limit of ™' X "WV 'WX exists, and let M =n"'X"WV'WX, then (17) can be
written as
~ -1 1 .
Jnp. = (0 X" WV WX) ITZTWV’ly +0,(n'"?)
n

=ME+0, ("),

(18)

From E(Z"WV™'y")=X"WV'WXB or E(&)=~/nMp that n(B, - ) is asymptotically normal
with mean 0. To find the asymptotic variance of ﬁc, from (18) is rewritten as follows
Nn(B. - ) =ME-M'MInp +0,(n""?)
=M (E-E(&))+0,(n ).
So we have var(\/nf,) = M~ var(€)M~'. The variance of & is
var(¢) = E* {Var* (f)} +var* {E* («f)}

=n'E* {var* (é’)} +n" var* {E* (é’)}

= 'E (yTVY A) S (XTWY X)),
Since E*(y"V72y" )=tV )+ (X WV WX)B, so var&)=n" {B +6 (XTWV’lWX)}

whose limit exists as # — oo. This completes the proof.

Theorem 3 is an extension (3) and (4) of Nakamura (1990) to the linear mixed models, and show

that f8_ is consistent (see (18)).

A

Corollary 2 Let f be given in (2a) the true value, then [, is consistent in probability and
B.~B=0,0n"").
Theorem 4 Let b given in (2a), then I;C -b=0, (n™"'?) and it’s asymptotically normally distributed
with the asymptotic variance

avar(h, —b) = M M,avar($)M! M;",
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where M, =n""' (UTU + 2'1) and M, =n"'U" X, whose limits exists by assumption.

Proof: From (7),
b -b=-(U'U+2") U Z(B. - p)
=~ (UTU+3" )}1 (nUTX 40, (B, - B)
=M M,(B.~ p)+0,(n")
We use theresult U'Z=U"X + o, (n""*) whose proof is similar to (15). Then from Theorem 3, we

get the desired results.

Lemma 2 Under conditions, n6’ has asymptotic representation
FTp -l % T pgl 12
yViy-EM $+0,(n7),

where & =n"""Z"WV'y" is asymptotically normal.

Proof: Using (9), we have
1
~2

5! [(y* —wzp ) v (y —WZﬁc)—trW*‘)ﬁfAﬁc}

T
Ir . - .
=—[yvy =g zZwry |
n
Since (Z"WV'WZ)= X"WV WX +tt(V YA+ 0 (n""?), then n B =M"'E+0 (n""'*) and
P ¢ p

BZWVy =ETME+ 0,(n""?*) and Lemma 2 will be proved.

Lemma 3 For 67, E(é‘f): o’ +0(lj and Var(n&f) = 0[1)
n n

Proof: Using Lemma 2 and the following relations the result is obtained
E(&)=~/n Mp,,
var(§)=B+o’ M,
E(E"M'E) = po’ + (M ' B)+np MP,.,
var(&'M ') =2po’ + 40" tr(M ™ B) + 2tr(M ' B)’ +4nf] B, +4nc” B MB,,
E(y*TV_ly* ) =no’ +nf! MB,,
Var(y*TV’ly* ) =2nc* +4nc’ B MB,,
cov(y*TV’ly*,g"TM’lg") =2pc’ +4nc’ B MB..

For Lemma 2,
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E(né'f ) = E(y*TVfly* -§'M¢+o0, (”1/2 ))
_ E(y*TV—ly*)_E(éTM—lé:)
=no’ +nf! M, — pc’ +t(M ' B) +nfl MB.
=no’ - pc’ +0(1)

E(o“f) =c’ —p;‘z+0(l]:o-2 +0(1].

n n n
var(nG? ) =var(y"V 'y ="M E+0,(n71?))
=var(yVy )+ var (ETMTE) + 200v (yTV Y ETMTE)
—0(n)

Var(é'f)=0(lj.

n

Theorem 5 The mean and variance of Jn (UACZ —02) convergen to 0 and O(1), respectively, as

A2 . . . 2
n— o0, Hence O is a consistent estimator of o”.

Proof: It is straightforward using Lemma 3.

6. An Example

We apply this estimation method using research data from Hutabarat et al. (2015). The data
collected is the percentage of the poor population and the malnutrition committee in East Java Province
consisting of 38 districts. The occurrence of cases of spatial heterogeneity in the percentage of
malnourished children under five years of age in East Java province indicates that the parameters of
the regression model are influenced by observational location factors, in this case the geographical
location of the district. Geographical factors are one of the causes of nutritional status disparities
between regions. Covariates of the percentage of poor people who affect nutritional status have spatial
effects and experience measurement errors. Therefore, it is necessary to do modeling by
accommodating location factors, namely the GWR model with measurement errors.

Estimating the model parameters is obtained by entering a weighting for each observation
location. The weighting used is adaptive kernel bi-square function. The weighting value used depends
on the distance between the locations of observation. Summary statistics of the estimated parameters
of the model parameters for each location (u;,v;); for i =1,2,...,38 are presented in Table 1. Real

data set is analyzed using Software R version 3.5.3 (R Core Team 2019).

Table 1 Summary statistics of GWR model with measurement error
Parameter Coefficients

Parameters Minimum First Quartile Median Third Quartile Maximum
B, 1.552 2.742 3.437 5.038 5.656
B —-0.297 —0.126 0.171 0.237 0.357
o, 1.606 2.147 2.616 2.704 2.849

ol 0.602 0.805 0.979 1.014 1.069
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The estimation of £, and f, ateach observation location can be seen in Figures 1-2. Based on
the two figures, it can be seen that and are quite diverse in each district. From Figure 2, it can be seen
that in general the coefficient is positive, meaning that the large percentage of sufferers of malnutrition
is increasing with the increasing percentage of the poor population.

=3 A

! '|‘| | I

N | || ‘
0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Distriet

Figure 1 Estimator S, of the GWR model with measurement error

7 9 11 13 15 17

District

Figure 2 Estimator S, of the GWR model with measurement error

Comparison of the GWR model and the GWR model with measurement errors based on the error

variance estimate o and the variance component o, for each location are presented in Figures 3 and
4, respectively. From Figures 3 and 4, it can be seen that the error variance estimate o and the

variance component o, of the GWR model with measurement errors tend to be smaller than the GWR

model.
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12

1
0.8
0.6
0.4
Il
0 | |

1L 3 53 7 9 11 131§ 17 19 21 25 25 27 29 31 33 35 37
District

Figure 3 The error variance estimate o of the GWR model (»),

GWR model with measurement error () for 38 districts.

. H ‘IA |

2
Oy

> = [ae] 5] B W (=% ~ 0 o
I L L 1 1 y

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
District

Figure 4 The variance component o; of the GWR model (=),

GWR model with measurement error () for 38 districts.

7. Summary
e The GWR model estimator parameters with measurement errors for the fixed estimator are

B.=(Zz'wv Wz -u(v" )A) Z'wyty'
o The estimator for random effect is
n T 1 * N
b= UWV"(y -W2B,).
o The estimator for the component variance is

62 = %[( Y -WZp) V(5 -W2Zp)-u(v BB, }
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