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Abstract 

In this paper, we determine the parameter estimators of the Geographically Weighted Regression 

(GWR) model with measurement errors through the mixed linear model approach. In contrast to model 

that does not pay attention to geographic location factors, GWR is very concerned about geographic 

location factors. This model will produce the parameter estimators of the local model for each point 

or location where data is collected. The mixed linear model approach in the GWR model is form a 

weighting matrix for each observation location. The estimation method used to estimate parameters in 

the mixed linear model is Restricted Maximum Likelihood (REML) method. Asymptotic normality 

properties  of  the  estimators  are  obtained.  The  estimators  are  shown  to  be  consistent.  From  the 

estimation results obtained, we illustrate the data of malnutrition sufferers in East Java province. 

______________________________ 
Keywords:   Mixed  linear  model,  restricted  maximum  likelihood  method,  asymptotic  normality  properties, 

weighting matrix. 

 

1. Introduction 

Measurement error  is an error  that arises when a recorded value is not exactly the same as the 

actual value in relation to a measurement process. The actual value of the covariate is represented by 

a value obtained through a measurement process that is not necessarily in accordance with the actual 

value. For example  in economic applications related  to  income  issues,  if  the  interviewee could not 

accurately state  their  income,  the results of the  research records would be higher or lower  than the 

actual  value.  Another  example  in  medicine  field  was  systolic  blood  pressure  (SBP)  measurement. 

During SBP measurement, various sources of errors could occur such as recording equipment errors 

and administrative errors (Carroll et al. 2006). The presence of measurement errors causes parameter 

estimators to be biased and inconsistent, which leads to incorrect conclusions (Chen et al. 2011). In 

overcoming this problem, measurement error models were used. 

There were several important sources that may cause measurement errors. Biemer et al. (1991) 

identified four main sources of measurement errors, namely questionnaire design, data,  interviewer 

and  respondent.  Based  on  the  estimation  of  regression  curve  parameters,  Fuller  (1987)  stated  that 

measurement errors in the slope of the regression curve (Fuller 1987). Moreover, Caroll et al. (2006) 



Ida Mariati Hutabarat and Yacob Ruru  295 

affirmed  that  errors  may  cause  bias  in  regression  estimators  and  also  lead  to  not  exactly  models 

(Carroll  et  al.  2006). The  presence  of measurement  errors  causes  the  parameters  to  be biased  and 

inconsistent (Chen et al. 2011). In solving this problem is a model of measurement error. 

The researches on parametric regression models with errors are Carroll et al. (1996), Fuller and 

Hidiroglou  (1978).  The  results  obtained  namely  measurement  error  will  affect  the  regression 

coefficient.  In  simple  regression,  the  magnitude  of  the  regression  coefficient  is  greater  than  if 

calculated  without  using  a  measurement  error  model.  This  is due  to  a  correction  factor  of  various 

errors.  Nonparametric  regression  model  with  measurement  error  has  been  developed  by  Fan  and 

Truong (1993) which predicts the parameter of measurement error model with kernel deconvolution 

method.  In  addition,  Carroll  et  al.  (1999)  had  conducted  a  study  to  estimate  parameters  in  the 

measurement error model using the modified spline method. Several studies that have been conducted 

on nonlinear regression models with measurement errors include: Stefanski and Carroll (1985), in the 

logistic regression model, namely the process of cardiac development. Stefanski (1987) conducted a 

study  on  Generalized  Linear  Models  (GLM).  Nakamura  (1992)  suspected  the  parameters  in  the 

proportional Hazard model.  

Spatial effects are common among regions.  In some cases,  the  independent variables observed 

were related to observations in different regions, especially adjacent areas. The existence of a spatial 

relationship  in  the  dependent  variable  will  cause  the  estimation  to  be  inaccurate because  the  error 

randomness assumption is violated. To overcome  the above problems, we need a regression model 

that  incorporates  spatial  relationships  between  regions  into  the  model.  The  existence  of  spatial 

relationship  information  between  regions  causes  the  need  to  accommodate  spatial  diversity  in  the 

model, so the model used is a spatial regression model. 

The according to Li et al. (2009) spatial data are susceptible to measurement errors in covariates. 

Research  for  spatial  regression  models  with  measurement  errors  began  to  develop,  because  in  its 

application there are variables that cannot be measured precisely which have a spatial effect. In the 

mixed  linear spatial model, Li et al.  (2009) used  the conditional auto-regressive model  (CAR).    In 

addition to CAR, one method for analyzing spatial data is a geographically weighted regression model 

(GWR) (Fotheringham et al. 2002). GWR is the development of a classical linear regression model. 

In  the  linear  regression model produces  estimator parameters  that  apply globally, but  in  the  GWR 

model, a parameter estimator of the model is produced which is local for each observation location. 

Differences  from  previous  research;  Zare  et  al.  (2012)  studied  a  linear  mixed  model  with 

measurement errors in effects, they did not included location factors so that the resulting parameter 

estimators  are  global.  In  this  paper  we  will  discuss  the  linear  approach  to  the  GWR  model  with 

measurement errors. In contrast to models that do not pay attention to location factors, GWR model is 

very concerned about the location so as to produce estimators of local model parameters for each point 

or location where the data is collected. 

The basic and necessary component of the spatial regression model is the weighting matrix. The 

weighting  matrix  is  basically  a  matrix  that  describes  relationships  between  regions.  This  matrix 

reflects the relationship between one location and another (Arbia 2006). The weighting matrix depends 

on the proximity between the observation locations. The closer a location is, the greater the weight 

will be. Some literature can be used to determine the amount of weighting for each different location. 

According to Fotheringham et al.  (2002), spatial weighting functions that can be used  in GWR are 

adaptive spatial kernel a bi-square and biweight. 

Our study concentrates on determine the parameter estimators of the Geographically Weighted 

Regression (GWR) model with measurement errors through the mixed linear model approach.  This 

paper  is organized  as  follows:  In Section 2, we  present  the model  definition.  In Sections 3  and  4, 
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determine  the  estimated  parameters  and  the  algorithm.  In  Section  5,  we  state  their  asymptotic 

properties for the estimates. A real data example is presented in Section 6. Finally, in Section 7, we 

present our summary. 

 

2. Model Definition 

Mixed  linear  model  with  measurement  error  in  covariate  with  fixed  effect  can  be  written  as 

follows: 

=   y  Xβ Ub ε  

 Z = X + t  (1) 

In this model,  y  is an  1n  vector of random variables whose observed;  X  is a matrix, which 

is the fixed effect with dimension     n p  and U  is a matrix which is the random effect with dimension 

;n q   β  is an  1p  vector of parameter, which is the fixed effect; b  is an  1q  vector of unobservable 

random effect with  2( , );N  0 bb   ε  is an  1n  vector of random errors with   2( , ).N 0 R  

Variable  Z  is the observed value of  X with the measurement error  ,t  where  t  is a matrix of size 

n p  of the distribution of   0,N I   where    is a croneker and    is a known block matrix with 

dimensions  .np np  We assume that  ,b     and  t  are mutually independent. 

Let  in  model  (1),  covariate  X   is  measured  with  error  and  correlation  structure derived  from 

random effect. If we replaced  X with  ,Z  then the estimation derived from score function is generally 

inconsistent. Some methods are proposed in the measurement error model. In this article, using score 

corrected method is adopted from Nakamura (1990) as a general approach in the measurement error 

model.  In this method, it is define corrected score function where its expected value related to the 

distribution of measurement error with score function based on covariate t which is already known. 

The first step from mixed linier model approach in GWR model is to form weighted matrix for 

each location observed. Let   ( , )i iu vW  is a spatial weighted matrix of location  i  which its diagonal 

element values defined by location  i  with other location (location  j ).  

The model (1) becomes 

  * ( , ) ( , ) ,i i i iu v u v  W Xβ W Uby                   (2a) 

  ,Z X t                    (2b) 

 ,i iu vW   is  an  n n   matrix  whose  off-diagonal  elements  are  zero  and  whose  diagonal  elements 

denote the geographical weighting of each of the  n  observed data for location  i  of the form  

 

1 1

2 2

0 0

0 0

( , )

( , )
( , )

( ,0 )

.

0 0

i

n n

i

w u v

w u v
u v

w u v

 
 
 
 
 
 









   
W    

Hence  the  weighting  matrix  has  to  be  computed  for  each  point i  and  the  weights  depict  the 

proximity of each data point to the location of  i  with points in closer proximity carrying more weight 

in the estimation of the parameters for location  .i  
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3. Parameter Estimation 

One of the estimation methods to estimate the parameter in the mixed linier model is restricted 

maximum likelihood (REML). If  β  is a fixed effect parameter, expected value and matrix covariance 

for  *y  from (2a) is  *( )E y WXβ  and  * 2var( ) ,y V  where 

T

1

.
m

T
i i i

i




    b
V R WU U W R WU U W  

 

Variable  *y  has normally distributed, i.e.   2~ , ,N *y WXβ V  so that log-likelihood function 

from  *y  based on above distribution is 

         
T2 * 1 *

2

1 1
, , log 2 log ,

2 2 2

n
l 


      

  
*β θ X y V y WXβ V y WXβ  

where     2 2
1, , , , m     θ γ  is an element in    2Ω ; 0, 0;  1, , .i i m     θ  

Conditional  distribution  of  *b y   is    * T 1 2~ ,N   *

b b
b y U WV y WXβ   T   with

 
1

T .


  b
T R WU U W  The probability log function from  *b y  is 

     2 1
, , log 2 log

2 2

q
l    *
b b

β θ X y T  

       
T 1

T 1 * T 1 *

2

1
.

2


      

    b b b
b U WV y WXβ T b U WV y WXβ  

 

i) Predictor of fixed effect and random effect 

Suppose  E   represents  the  conditional  expectation  value  Z   if  *y   is  known.  The  probability 

corrected function   * , ,l *β θ Z y  must satisfy  

   * , , / , , /E l l     
 

* *β θ Z y β β θ X y β  

   * 2 2
1 1, / , /E l l      

 
* *θ Z y θ X y  

and 

   *
1 1, / , / ,   1, , ,i iE l l i m        

 
* *θ Z y θ X y  

with      1
ˆ, , , ,l l* *θ X y β γ θ X y  where  ˆ ( )ˆβ β γ  is  a  maximum  probability  estimation  of  β  

and      *
1 , , ,ˆl l* * *θ Z y β γ θ Z y with  ˆ ( )ˆβ β γ is  the  solution  of  the  equation  of 

 * , , / 0.l  *β θ Z y β The  probability  corrected  function   * , ,l *
b β θ Z y is 

   * , , / , , / .E l l     
 

* *
b bβ θ Z y b β θ X y b   

 

Theorem 1 If t  is a random vector   ,n p  and T ,  b
V R WU U W  then 

     T 1 T 1 1tr .E     ΛZ WV WZ X WV WX V                  (3) 
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Proof: By the substitution of the   Z X t  from (1), then 

      
 

TT 1 * 1

* T 1 T 1 T 1 T 1                         

E E

E

 

   

  

   

Z WV WZ X t WV W X t

X WV WX X WV Wt t WV WX t WV Wt
 

 
       

 

* T 1 * T 1 * T 1 * T 1

T 1 1

 

tr .

E E E E   

 

   

  Λ

X WV WX X WV Wt t WV WX t WV Wt

X WV WX V
 

Using (3), it is obtained  l*  and  *lb  as follows 

 
     

      

* 2

T* 1 * 1 T

2

1
, , log 2 log

2 2

1
                         tr

2

n
l 


 

  

    Λ

*β θ Z y V

y WZβ V y WZβ V β β

               (4) 

and 

          
   

T 1
* 2 T 1 *

2

T 1 * 1 T

1 1
, , log 2 log

2 2 2

                          tr( ) .

q
l 






 

     

   

  

 Λ

*
b b b b

b

β θ Z y T b U WV y WZβ T

b U WV y WZβ I V β β

   (5) 

If in (4) is derived to  ,β  then the results are equated with zero, then we obtained 

 * , ,l



0

*β θ Z y

β
  

 

T 1 T 1 1

2

T 1 1 T 1

1T 1 1 T 1

1
2 2 2tr( )

2

tr( )

tr( ) .


  

  

  

      

   

 

Λ 0

Λ

Λ

*

*

*

Z WV y Z WV WZβ V β

Z WV WZ V β Z WV y

β Z WV WZ V Z WV y

  

So, estimating the corrected score for  β  is  

   
1T 1 1 T 1tr( ) .ˆ

c

    Λ *β Z WV WZ V Z WV y                  (6) 

If in (5) is derived to  ,b  then the results is equated with zero, then we obtained 

 * , ,l



0

*
b β θ Z y

b
  

     

     

 

1 1
T 1

2

1 1
T 1 *

T 1 *

1
2 2

2

.

ˆ


 


 




    
  

  
  

 

  

  



0*

b b b

b b b

b

T b T U WV y WZβ

T b T U WV y WZβ

b U WV y WZβ

  

So, estimating the corrected score for  b  is: 

   T 1 *ˆ ˆ
c c c

    
b b

b U WV y WZβ υ  with   T 1 * ˆ .c c
 υ U WV y WZβ                (7) 

 

ii) Variant component estimator 

The probability corrected log function for estimation of  θ  is 
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     

   

* * 2
l

T
* 1 * 1 T

c2

1
, log 2 log

2 2

1
                     tr( ) .

2
ˆ ˆ ˆ ˆ

c c c

n
l 


 

  

    
  

Λ

θ Z y V

y WZβ V y WZβ V β β

               (8) 

Estimating the corrected score is a value of vector   Ωθ  which maximises  *
l .l  If in (8) is derived 

to  2 ,  then the results is equated to zero, then we obtained 

 

   

   

   

* *
l

2

T
* 1 * 1 T

c2 2 2

T
2 * 1 * 1 T

c

T
2 * 1 * 1 T

c

ˆ

,
0

1
tr(ˆ ˆ ˆ

ˆ ˆ

) 0
2 2( )

tr( )

1
(

ˆ ˆ

ˆ )ˆ ˆ .ˆ

c c c

c c c

c c c

l

n

n

tr
n



 





 

 

 






      
  

    
  

    
  

Λ

Λ

Λ

θ Z y

y WZβ V y WZβ V β β

y WZβ V y WZβ V β β

y WZβ V y WZβ V β β

  

So, the estimating corrected score for  2  is 

       
T

2 * 1 * 1 T
c

ˆ ˆ1
tr ˆ ˆˆ .c c c c

n
      

  
Λy WZβ V y WZβ V β β                  (9) 

By using relationship 
T 1  b

V R I U WR WU  from (8) it is obtained, 

       * * 2 T 1
l

1 1
, log 2 log log

2 2 2

n
l       b

θ Z y R I U WR WU  

   
T

* 1 * 1 T
c2

ˆ1
tr( ) .ˆ

2
ˆ ˆ

c c c


     
  

Λy WZβ V y WZβ V β β              (10) 

If  1 1 1/ ,    /T T
i i i i i i         V WU U W V V WU U WV   and   / diag 0, ,0, ,0, ,0i qiI      

and in (10) is derived to  2 ,i   then the result is equated to zero, then we obtained 

 * *
l ,

0,       1, ,
i

l
i m




  



θ Z y
 

 
   

     

* *
l T 1 T 1

T
* 1 1 * 1 1 T

c2

, 1
tr /

2

1
                       t ˆrˆ ˆ ˆ

2

i

i

T T
c i i c i i c

l






 

   


     
 

    
  

 

Λ

b b

θ Z y
I U WR WU U WR WU

y WZβ V WU U WV y WZβ V WU U WV β β

 

 1 2

2
ˆ ˆ ˆ1 1

tr( ) tr( ) 0.
2 2

ˆT T T
i i ii ic ic i i i c cq T 


       Λb b D D β β                (11) 

From (11), the estimating corrected score of  2 2
1 , , m   is 

 2 1
tr ,      1, , ,

tr( )
ˆ ˆ ˆ ˆˆ ˆˆ T T T

ic ic c i i c c

i ii

i m
q T

     
 

Λb b D D β β  

where   1 2 2 1ˆ ˆ / ˆ .T T
i ic i ic c i    D U WV U WV  
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4. Algorithm of Parameter Estimation 

The following theorem is an extension adopted from Harvill (1977) and Fellner (1986) for linear 

mixed models with measurement errors. 

 

Theorem 2 If ˆ
cβ and c

υ  are the 1p  and 1q  components of any solution to the linear system 

 

T 1 1 T 1 T 1

T 1T 1 T 1

tr( )
,

   

 

     
     

     




Λ 



*
b

*

b

Z WR WZ V Z WR WU Z WR yβ

U WR yU WR WZ I U WR WU υ
             (12) 

is ˆ
cβ β  and ,c υ υ  which ˆ

cβ  and c
υ  each is given in (6) and (7). 

 

Proof: 

  T 1 1 T 1 T 1tr( )     Λ   *

b
Z WR WZ V β Z WR WU υ Z WR y             (13) 

 
 

   

T 1 T 1 T 1

1
T 1 T 1 .

  


 

  

  





 



*

b

*

b

U WR WZβ I U WR WU υ U WR y

υ I U WR WU U WR y WZβ
               (14) 

By substituting  c
υ  to (13) we obtained 

 

 

T 1 1 T 1

1T 1 1 T 1

tr( )

tr( ) .

  

  

 

 

Λ

Λ





*

*

Z WV WZ V β Z WV y

β Z WV WZ V Z WV y
 

 

Corollary 1 Based on Theorem 2, that is ,c υ υ  then we obtained 

   T 1 T 1 * ˆ .c c
   

b
υ I U WR WU U WR y WZβ  

An iterative algorithm is needed to calculate the corrected score estimation .  Estimation steps 

are as follows (Fellner 1986): 

Step 1 Perform an iteration from  0t   in  2(0)  and  2(0) ,  1, ,i i m   . 

Step 2 Calculate estimator   ˆ t

cβ  and     
1 ,ˆ , ˆt t

c mcb b  as a linear equation (12). 

Step 3 Calculate 

               T
2 1 1 1* *ˆ ˆ1

tr ˆ ˆˆ ( ) ,t t t t t t T t

c c c c c
n

       
  

Λy WZβ V y WZβ V β β  

and 

 

 
            2 1 ˆ ˆ ˆ ˆˆ ˆ1

.ˆ t t T t t T t t T t

ic ic ic i i c c

i ii

tr
q tr T

    
 

Λb b D D β β  

Step 4 If it is convergent, specify   2 12ˆ ˆ t

c c    and   2 12ˆ ˆ t

ic ic   . 

Step 5 If it is not reach a converging parameter estimator, the Step 2 is done again until it reaches 

convergence. 

 

5. Asymptotic Properties 

In  this  section,  the  asymptotic  properties  of  estimation  will  be  examined.  Please  note  that  *y  

components are not independent each other. All derivatives related to a function are assumed to exist 

and parameters can be identified. In this case it is assumed that as  ,n    the limit of the following 
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functions  exist:   1 T 1 1 T 1 T 1 1 T 2 1 T,   ,  , , ,in n n n n        ΣbX WV WX X WU U WU  X WV WX  X WAWX

1 T 1 T 2 1 T 1 1 1 1 1 2 1 2, ,   ,   tr( ),   tr( ),   tr( ),   tr( ),i i i i i in n n n n n n         X WAVAWX    X WA WX X WAV WX A V V A

and  1tr( )i in AVA , where  T T 1;   .i i i i i i  A D D D U WV  

 

Lemma 1 Under the above conditions, we have 

  T 1 T 1 1 1/ 2tr( ) ).(p n     ΛZ WV WZ X WV WX V O                (15) 

 

Proof: Using   Z X t  from (2b), we have 

   1 T 1 T 1 1 1 T 1 T 1tr( ) ,n n          Λ CZ WV WZ X WV WX V X WV Wt t WV WX  

where  T 1 1tr( ) .  C Λt WV Wt V  Since  ~ (0, ),N  Λt I  then 

1/ 2 T 1 1 T 2~ (0, .n N n    ΛX WV Wt X WV WX  

By assumption, the limit  1 T 2n X WV WX  exists as  ,n    obtained  1 T 1 1/ 2( )pn n  X WV Wt O  and 

1 T 1 1/ 2 .( )pn n  t WV WX O  Suppose the element  C at the  ( , )a b  is  .abC  Then 

1 1 1

,
n n n

ij ii
ab ia jb ab

i i i  

   ΛC t V t V  

where     1,   ,    , 1  , 2, , ,, ij
ia ab i j n   Λ Λt t V V=   and  , 1,2, , .a b p   ia ib abE  Λt t   and 

  0.abE C  Furthermore, 

     

 

22 2 1

, ,

2 2

tr( )

              tr( ).

ij kl
ab ia jb ka lb ab

i j k l

aa bb ab

E E 



 

 

 Λ

Λ Λ Λ

C t t t t V V V

V

 

By assumption the limit  1 2tr( )n V  exists,   
21/ 2 (1)ab pE n C O  for  n    and  ( 1) ( 1/2)( ).pn C O n   

By combining all the results above, we get (15). 

 

Theorem 3 ˆ
cβ  is asymptotically normally distributed. The asymptotic mean and variance of ˆ

cβ  are 

respectively given as β  at the (2a) and 

       
1 1 12 T 1 T 1 T 1a ˆvar( ,)c 

     β X WV WX X WV WX B X WV WX              (16) 

where   2 1 T 2tr( ) .T   ΛB V β X WV WX β  

 

Proof: Let  1/ 2 T  ΓΦΓV  denote the spectral decomposition of  1/ 2 ,V  where  T ,nΓΓ I

 1/2 1/2
1 nΦ diag λ , , λ    and  λi  are the eigen values of V  and  T 1 / ,n *ξ Z WV y  then we have 

1 1/ 2 *1
,

1 1T T T T

n n n

     Γ Γ y* *ξ Z WV y Z W Φ V y Z WΦ  

where 

 T T~ N , n Z Γ WZ Γ WX Λ I ,  * T 1/2 T 1/ 2 2~ N ,σ .n
 y Γ Γ*V y V WXβ I  

The element  th  of  ξ  is  



302                                                                    Thailand Statistician, 2021; 19(2): 294-307 

1/ 2 *

1 1

1 1
.

n n

i i i i
i in n

  

 

   ξ Z y  

Since  i  are independent and the limit of  var( )ξ  exists as  ,n    by the central limit theorem, ξ  

is asymptotically normal. It follows from (6) and (15) that, 

 

   

  

11 T 1 1/ 2 1 T 1

1 11/ 2 1 T 1 1 T 1

11/ 2 1 T 1 1 T 1

    

    

ˆ ( )

( )

( ) ,

c p

p p

p p

n n n

n n n

n n n

    

     

    

 

 

 

*

*

*

β X WV WX O Z WV y

I O X WV WX Z WV y

I O X WV WX Z WV y

 

where  ( 1/2) ( 1) ( 1/2)( ) ( )p p p pI O n I O n      is obtained from Taylor series expansion. So 

    
11/ 2 1 T 1 T 1ˆ ( ) .

1
c p pn n n

n

     *β I O X WV WX Z WV y           (17) 

Moreover, since the limit of  1 T 1n X WV WX  exists, and let  1 T 1 ,n M X WV WX  then (17) can be 

written as 

 
 

11 T 1 T 1 1/ 2

1 1/ 2

ˆ (
1

          ).

)

(

c p

p

n n n
n

n

   

 

 

 

*β X WV WX Z WV y O

M ξ O

               (18) 

From   T 1 T 1E  *Z WV y X WV WXβ  or  ( )E nξ Mβ  that  ( )ˆ
cn β β  is asymptotically normal 

with mean 0. To find the asymptotic variance of  ˆ ,cβ  from (18) is rewritten as follows 

  

1 1 1/ 2

1 1/ 2

( )

                   .

ˆ ( )

( )

c c p

p

n n n

E n

  

 

   

  

β β M ξ M M β O

M ξ ξ O
 

So we have  1 1var( )ˆ ( .var )cn  β M ξ M  The variance of  ξ  is  

     
     

   

* *

1 * 1 *

1 2 1 2 T 1

var( ) var var

            var var

            σ .T

E E

n E n E

n E n

 

   

    

 

 

 Λ* *

ξ ξ ξ

ξ ξ

y V y X WV WX

 

Since     2 2 1 T 2σ tr( ) ,T TE    * *y V y V β X WV WX β   so    1 2 T 1var( ) σn  ξ B X WV WX  

whose limit exists as  .n   This completes the proof.  

 

Theorem 3 is an extension (3) and (4) of Nakamura (1990) to the linear mixed models, and show 

that  ˆ
cβ  is consistent (see (18)).  

Corollary 2  Let β  be given in (2a) the true value, then ˆ
cβ  is consistent in probability and

1/ 2ˆ ( ).c p n β β O  

 

Theorem 4 Let b  given in (2a), then 1/ 2ˆ ( )c p n b b O  and it’s asymptotically normally distributed 

with the asymptotic variance 
1 1

1 2 2 1avar( ) avˆ ˆar( ) ,T
c M M M M  b b β  
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where  1 1
1 ΣTM n U U    and 1

2 ,TM n U X  whose limits exists by assumption. 

 

Proof:  From (7),  

 

    

11

1
1 1 1 1/ 2

1 1
1 2

Σ ( )

          Σ ( )

     

ˆ ˆ

ˆ( )

ˆ( )  )  (  

T T
c c

T T
p c

c p

U U U Z

n U U n U X n

M M n




   

 

    

    

   

b b β β

O β β

β β O

 

We use the result   1/ 2( )T T
pU Z U X O n   whose proof is similar to (15).  Then from Theorem 3, we 

get the desired results. 

 

Lemma 2 Under conditions, 2ˆ
cn  has asymptotic representation 

T 1 T 1 1/ 2 ,( )p n  * *y V y ξ M ξ O  

where  1/ 2 T 1n  *ξ Z WV y  is asymptotically normal. 

 

Proof: Using (9), we have 

   
T

2 1 1 T

T 1 T 1

1
tr( )

1
    

ˆ

.

ˆ ˆ ˆ ˆ

ˆ

c c c c c

T
c

n

n

  

 

    
  

   

Λ* *

* * *

y WZβ V y WZβ V β β

y V y β Z WV y

 

Since   T 1 T 1 1 1/ 2tr( ) ( ),p n     ΛZ WV WZ X WV WX V O  then 1/ 2 1 1/ 2ˆ ( )c pn n   β M ξ O  and 

T 1 T 1 1/ 2ˆ ( )c p n  *β Z WV y ξ M ξ O  and Lemma 2 will be proved. 

 

Lemma 3    2 2 2 21 1
     vaˆ ˆ ˆ,  .  rc c cFor E and n

n n
   

   
     

   
O O      

 

Proof:  Using Lemma 2 and the following relations the result is obtained 

 

 

 

 
 

 
 
 

2

T 1 2 1

T 1 4 4 1 1 2 2

T 1 2

T 1 4 2

T 1 T 1 4 2

,

var ,

tr( ) ,

var 2 4 tr( ) 2 ( ) 4 4 ,

,

var 2 4 ,

cov , 2 4 .

c

T
c c

T T
c c c c

T
c c

T
c c

T
c c

E n

E p n

p tr n n

E n n

n n

p n





  



 

 

 

  





 



 

  

    

 

 

 

* *

* *

* *

ξ  Mβ

ξ B  M

ξ M ξ M B β Mβ

ξ M ξ M B M B β Bβ β Mβ

y V y β Mβ

y V y β Mβ

y V y ξ M ξ β Mβ

 

For Lemma 2,  
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    
   

 

2 T 1 T 1 1/ 2

T 1 T 1

2 2 1

2 2

2
2 2 2

            

             tr( )

             (1)

1

ˆ

1
ˆ .

c p

T T
c c c c

c

E n E n

E E

n n p n

n p

p
E

n n n



 

 


  

 

 



  

 

    

  

   
       

   

* *

* *

y V y ξ M ξ O

y V y ξ M ξ

β Mβ M B β Mβ

O

O O

 

 

   
     

 

2 T 1 T 1 1/ 2

T 1 T 1 T 1 T 1
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Theorem 5 The mean and variance of  2 2ˆ
cn    convergen to 0 and (1),O  respectively, as

.n   Hence 2ˆ
c  is a consistent estimator of 2 .  

 

Proof:  It is straightforward using Lemma 3. 
 

6. An Example 

We  apply  this  estimation  method  using  research  data  from  Hutabarat  et  al.  (2015).  The  data 

collected is the percentage of the poor population and the malnutrition committee in East Java Province 

consisting  of  38  districts.  The  occurrence  of  cases  of  spatial  heterogeneity  in  the  percentage  of 

malnourished children under five years of age in East Java province indicates that the parameters of 

the regression model are  influenced by observational  location factors,  in  this case  the geographical 

location  of  the  district.  Geographical  factors  are  one  of  the  causes  of  nutritional  status  disparities 

between regions. Covariates of the percentage of poor people who affect nutritional status have spatial 

effects  and  experience  measurement  errors.  Therefore,  it  is  necessary  to  do  modeling  by 

accommodating location factors, namely the GWR model with measurement errors. 

Estimating  the  model  parameters  is  obtained  by  entering  a  weighting  for  each  observation 

location. The weighting used is adaptive kernel bi-square function. The weighting value used depends 

on the distance between the locations of observation. Summary statistics of the estimated parameters 

of  the model parameters  for each  location  ( , );i iu v  for  1,2,...,38i   are presented  in Table 1. Real 

data set is analyzed using Software R version 3.5.3 (R Core Team 2019). 

 

Table 1 Summary statistics of GWR model with measurement error 

Parameters 
Parameter Coefficients 

Minimum  First Quartile  Median  Third Quartile  Maximum 

0    1.552  2.742  3.437  5.038  5.656 

1    −0.297  −0.126  0.171  0.237  0.357 

2
b    1.606  2.147  2.616  2.704  2.849 

2
    0.602  0.805  0.979  1.014  1.069 
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  The estimation of  0   and  1   at each observation location can be seen in Figures 1-2. Based on 

the two figures, it can be seen that and are quite diverse in each district. From Figure 2, it can be seen 

that in general the coefficient is positive, meaning that the large percentage of sufferers of malnutrition 

is increasing with the increasing percentage of the poor population. 

 

 
Figure 1 Estimator  0  of the GWR model with measurement error 

 

 
Figure 2 Estimator  1  of the GWR model with measurement error 

 

  Comparison of the GWR model and the GWR model with measurement errors based on the error 

variance estimate  2
  and the variance component  2

b  for each location are presented in Figures 3 and 

4,  respectively.  From  Figures  3  and  4,  it  can  be  seen  that  the  error  variance  estimate  2
  and  the 

variance component  2
b  of the GWR model with measurement errors tend to be smaller than the GWR 

model. 
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Figure 3 The error variance estimate  2
  of the GWR model (■), 

GWR model with measurement error (■) for 38 districts. 

 

 

Figure 4 The variance component  2
b  of the GWR model (■),  

GWR model with measurement error (■) for 38 districts. 

 

7. Summary 

 The GWR model estimator parameters with measurement errors for the fixed estimator are 

 
1T 1 1 T 1tr( )ˆ .c

    Λ *β Z WV WZ V Z WV y  

 The estimator for random effect is  

 T 1 *ˆ .ˆ
c c

 b
b U WV y WZβ

 
 The estimator for the component variance is 

   
T

2 * 1 * 1 T
c

1
tr( ˆˆ )ˆ ˆ .ˆ

c c c c
n

      
  

Λy WZβ V y WZβ V β β  
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