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Abstract 

Reliability  analysis  is  considered  as  one  of  the  most  used  approaches  in  various  real  data 

applications. Usually, the reliability function is based on a statistical distribution. The three-parameter 

gamma continuous distribution is a widely used in the study of reliability. A lot of attention has been 

considered  on  theirs  parameter  estimation.  In  this  paper,  a  particle  swarm  optimization  (PSO)  is 

proposed to estimate the three-parameter gamma distribution and then to estimate the reliability and 

hazard  functions.  The  real  data  results  demonstrate  that  our  proposed  estimation  method  is 

considerably  consistent  in  estimation  compared  to  the  maximum  likelihood  estimation  method,  in 

terms of log likelihood and mean time to failure (MTTF). 

______________________________ 
Keywords: Reliability analysis, swarm optimization algorithm, maximum likelihood estimation method. 

 

1. Introduction 

Attention has begun to the object reliability since half century specifically after the Second World 

War,  studies  and  theories  have  been  rolled  to  become  the  object  of  reliability  independent  has 

foundations, theories and applications in the scientific life. Then, recently there have been considerable 

methods developed in field of reliability engineering in order to help the management in determining 

the  reliability  function  of  their  equipment’s  and  combined  this  function  with  the  maintenance  and 

replacements methods. 

The  concept  of  the  reliability  is  ability  the  device  or  machine  to  make  the  processes  without 

failure. But  the concept of  reliability  is statistically  the probability  that device or machine work  to 

fulfill a certain work for a span of time until the breakdown has occurred. The study of reliability need 

to the study breakdowns and stops the machines and equipments which is need to describe the times 

of machines life, then it get on data set to one machine represent life or system of machines. 

The gamma distribution is one from the continuous probability distributions which is use in reliability 

and other application. It is used as distribution for service times and waiting times (Whitt 2000). The swarm 

intelligence  based  techniques  have  successfully  been  applied  for  many  engineering  optimization 

problems as these techniques processes search speed in finding optimized result for such applications. 
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The particle swarm optimization  is a population based search algorithm which was  inspired by  the 

collective behavior of swarm (Zhu et al. 2009).   

In  this paper,  a  three-parameter gamma distribution  is used and a particle  swarm optimization 

(PSO) algorithm is employed to estimate the reliability function with application on several datasets. 

Further, a comparison is made with the maximum likelihood estimation method. 

 

2. The Gamma Distribution 

The  gamma  distribution  is  an  important  continuous  distributions  which  is  widely  used  in 

reliability applications and test life. This distribution consider by Stacy (1962). Can be in two types 

the  one  is  two  parameters  and  other  three  parameters.  The  probability  density  function  for  two 

parameters is (Kirimi et al. 2014) 
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The three parameters of gamma distribution has probability density function as (Chen and Kotz 

2013) 
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where   represent the shape parameter,    represent the scale parameter,    represent the location 

parameter (threshold), and  ( )   is the gamma function. The cumulative distribution function and the 

expectation are 
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and  ( ) .E t                         (4) 

 

3. Reliability Concepts 

3.1. Reliability function 

Known as probability of not failure of the machine to time  t  where  0.t   The extensive meaning 

for reliability which scale of performance. From the scientific concept the reliability function has the 

same mathematical concept for the survived function, which use the concept in the studying be alive 

in community of  living organisms. Let T is a  random variable nonnegative as failure  time and has 

probability density function although about cumulative probability function as (Bakar et al. 2002) 

  ( ) ( ),  0 ,R t P T t t                        (5) 

where  ( )R t  is the reliability function, and can be rewrite Equation (5),   

  ( ) 1 ( ) 1 ( ).R t P T t F t                        (6) 

  Then the reliability function for three parameters gamma distribution is 
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3.2. Failure function 

 Probability the machine failure during interval   t T t t     which probability not successful 

during the same interval and denote to  ( )f t  and it’s 
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3.3. Hazard function 

The mathematical definition for hazard function or failure rate is (Lawless 2003) 
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where    ( )h t  is the hazard function. Then the hazard function for this distribution and mean time to 

failure (MTTF) are 
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and  ( ).MTTF E t   (3) 

 

4.    Maximum Likelihood Method for Estimation of the Reliability Function 

There  are  many  used  methods  in  estimating  of  the  reliability  function  of  which  parametric 

methods as in ML or using unbiased estimator uniformly minimum variance. When use these methods 

for reliability function estimation you need to knowledge probability distribution for failure models, 

almost  the  using  of  extension  distributions  in  the  failure  models  is  (normal,  gamma,  Weibull  and 

exponential distributions). The other methods for estimating the reliability function are nonparametric 

methods and can use intelligent techniques in estimate this function. There are many references which 

explain  parametric  methods  are  (Cohen  1965,  Li  1984,  Pugh  1963),  and  the  maximum  likelihood 

method is one of important parametric estimation methods which aim to make likelihood function for 

the variables in the end of maximum. Then the likelihood function for this distribution is (Bowman 

and Shenton 2002) 
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If we take the logarithm, we get on  
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To find the maximum likelihood estimator to  , ,    parameters derived it (13) with respect to 

, ,    and equal it with zero it get on 

   
 
 1

ln
ln ln ,

Γ

n

i
i

L
t n n


 

 


   


                  (14) 

 
2

1

ln
,

n
i

i

tL n 

 

 
  

  
                   (15) 

 
1

ln 1
( 1) .

( )

n

i i

L n

t


  


   

 
                   (16) 

 



Shaimaa Waleed Mahmood and Zakariya Yahya Algamal  311 

5. Particle Swarm Optimization Algorithm 

  The particle swarm optimization which is one of the intelligent techniques to solve optimization 

problems  and  this  algorithm  consider  by  Kennedy  and  Eberhart  (1995).  Let  an  unconstrained 

maximization problem (Bai 2010) 

maximize ( ), ,l uf x X X X   

whereas  lX  and 
uX  indicated the lower and upper bounds on  .X  The steps of the PSO algorithm 

can be implement as follows: 

1)  Let  the  size  of  the  swarm  number  of  particles  is  .N   To  less  the  total  number  of  function 

evaluations need to find a solution, we must suppose a smaller of the swarm. But in this case you take 

long time to find the perfect solution. Usually a size of 20 to 30 particles is supposed for the swarm as 

compromise. 

2)  Generate  the  initial  population  of  X  in  the  range  ,l uXX    randomly  like  1 2, ,. , ,.. NX X X  

after that for fit the position of  j  and its velocity in iteration  i  are indicated  ( )jX i  and   .jV i  Thus 

the particle generated initially are indicated  1 2(0) (0), ,.., 0).(NX X X  The vectors  ,  1, 2, .,(0)jX j N   

are called particles. Then evaluate  the objective function values corresponding  to  the particles  like 

     1 2(0) (0),  ,...,  .(0)Nf X f X f X  

3)  Find the velocity of particles. All particles will be moving to the optimal point with velocity. 

Initially, all particles velocity are supposed to be 0. Let the iteration number  1.i   

4) In the  thi  iteration, we find the two important parameters used by particle  .j  

a) The best position for the particle. 

b) Find the velocity of particle  j  in the  thi  iteration as in 

  1 1 2 2  ,    1, 2, ,( ) ( 1) ( 1 ,) ( 1)j j best j best jV V c r P X c r G X ji i i Ni                          (17) 

so that 

( )jV i   : As velocity particle in the  thi iteration, 

1 2, c c   : As acceleration coefficients and usually take value 2, 

1 2, r r   : As random values in the range 0 to 1, 

bestP   : As best position to the particle swarm, 

bestG   : As best position to the particle includes all swarm. 

c) Find the position of the  thj  particle in the  thi  iteration,  

  ( ) ( 1) ( ,   1,) 2, , .j j jX Xi V j Ni i      (4) 

Then, evaluate the objective function values corresponding to the particle as 

     1 2( ) ( ),  , .,  .( )Nf X f X f Xi i i  

5) Test the convergence of the current solution. If the position of all particles converge to itself 

set of values, the method is supposed to have converged. If the convergence criterion is not got on, 

Step 4 is repeated with updating the iteration number to be  1,i i   and by computing the new values 

of  bestP  and  .bestG   The iterative process is continued until all particles converge to the same optimum 

solution. 
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6. The Proposed Method 

In  this  section,  we  propose  to  use  the  particle  swarm  optimization  algorithm  to  estimate  the 

reliability function of three-parameter gamma distribution. The proposed fitness is defined as 

 
1 1
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n n

i
i

i i

t
L t n n


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where the parameters  ,     and    is the search variable. The aim is to find the values of parameters  

,     and    such that the function  ln L  is minimum. 

Let  ( )jX i  is the position vector of particle  j  in the multidimensional search space in step  ( ),i  where 

(       ,(  )   )jX i     then the procedures of the solution of PSO are illustrated in the following steps: 

1) Let the size of the swarm number of particles is  50.N   

2) Generate the initial population of  X  in the range  ,l uX X    randomly, 

   ( ) ,   1, 2,.( .., .  0) l u l
jX X rand X X i N                   (20) 

where     l l l lX        and     u u u uX       are lower and upper bounds of parameters           ,  

here  0 500,  0 500       and  0 2.5    for  Data  1,  0 0.25    for  Data  2  and 

0 1.6667    for Data 3,  and  ( )rand    random  numbers  in  the  range  0  and  1.  Then  evaluate  the 

objective  function  values  corresponding  to  the  particles  as     1 2ln ,  ln(0) (0) ,L X L X   

 .., ln 0 .( )NL X  

3) Find the velocity of particles. All particles will be moving to the optimal point with velocity. 

Initially, all particles velocity are supposed to be 0. Let the iteration number  1.i   

4) In the  thi  iteration, we find the two important parameters used by particle  .j  

a) The best position for the particle. 

b) Find the velocity of particle  j  in the  thi  iteration as in 

1 1 2 2  ,( ) ( 1) ( 1) ( 1      1, 2, , ,)j j best j best ji i iV wV c r P X c r G X i j N                

where 

w  : intertia weight, 

( )jV i   : As velocity particle in the  thi  iteration, 

1 2  , c c   : As acceleration coefficients and usually take value 2, 

1 2, r r   : As random values in the range 0 to 1, 

bestP   : As best position to the particle swarm (the less value of the objective function), 

bestG   :  As  best  position  to  the  particle  include  all  swarm  (the  less  value  of  the  objective 

function). 

The value of inertia weight decreases linearly with the iteration number has been used, 

  ( )   ,max min
max

max

w w
w i w i

i

 
   

 
                  (21) 

where  maxw  and  minw  are the initial and final values of the inertia weight respectively. The values of 

maxw  and  minw  are usually assumed to be 0.9 and 0.4 respectively, and  maxi  is the maximum number 

of iterations. 
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c) Find the position of the  thj  particle in the  thi  iteration 

( ) ( 1) ,   1, 2,.( ) .., .j j ji i iX X V j N    

Then, evaluate the objective function values corresponding to the particle as  

     1 2ln ,  ln , ..., ln .( ) ( ) ( )Ni iL X L L X iX    

5)  Test the convergence of the current solution. If the position of all particles converge to itself 

set of values, the method is supposed to have converged. If the convergence criterion is not got on, 

Step 4 is repeated with updating the iteration number to be  1,i i   and by computing the new values 

of  bestP  and  .bestG  The iterative process is continued until all particles converge to the same optimum 

solution. 

 

7. Application 

In this paper, three datasets with different sample size are used, First, the operating times (hours) 

for the machine. Second, the operating times (hours) of the construction machine first phase (Saffawy 

and Algamal 2006). Third, the stops times (hours) of the oven (Jassim 2013). To test that if the three 

datasets follow three parameters gamma distribution according to the hypothesis and the Kolmogorov-

Smirnov (K-S) goodness of fit. The null and alternative hypotheses are given by 

0 :H  Data follow three parameters gamma distribution 

1 :H  Data not follow three parameters gamma distribution. 

Depending on the Kolmogorov-Smirnov goodness of fit test, Table1 shows that the used datasets 

belong to the three parameters gamma distribution under significant level of 0.05. 

 

Table 1 Test the fit of the data to three parameters gamma distribution 

Data n  K-S test Critical value p-value 

Data 1 29 0.1164 0.2457 0.7847 

Data 2 33 0.1438 0.2308 0.4604 

Data 3 84 0.0927 0.1461 0.4392 

 

Using  maximum  likelihood  method  and  the  proposed  PSO  algorithm,  Table  2  summarized  the 

parameters estimation values. 

 

Table 2 ML and PSO estimators of gamma distribution parameters 

Data    ˆ
ML       ˆ

M L  ˆ
M L         

  

ˆ
PSO      ˆ

PSO  ˆ
PSO  

Data 1 0.6187 201.2300 2.4900 0.6008 208.9065 2.49000 

Data 2 0.8702 109.7400 0.2400 0.8824 110.9388 0.2400 

Data 3 0.9104 1.1941 0.1666 0.9396 1.1929 0.1666 

 

  In Table 3, the −log likelihood value is reparation for both ML and the PSO over the three datasets. 

As we can see from Table 3 the −log likelihood values in proposed PSO is less than the −log likelihood 

values in ML, then the PSO algorithm is the best comparing with ML in parameters estimation. To 

find of the reliability function and the hazard function for three parameters gamma distribution of the 

three datasets the Figures 1 and 2 show them using ML and PSO estimators. 
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Table 3 −log likelihood values of gamma distribution 

Data  ML   Proposed PSO 

Data 1  166.0613  166.0518 

Data 2  184.1038  184.0928 

Data 3  93.5425  93.4790 

 

 

 

 

 

 

 

 

 

  a) ML (Data 1)  b) PSO (Data 1) 

 

 

 

                                  

                                  

 

   

 

 

  c) ML (Data 2)   d) PSO (Data 2) 

 

 

 

 

 

 

 

 

 

  e) ML (Data 3)  f) PSO (Data 3) 

 

Figure 1 The reliability function using ML and PSO estimators 
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  a) ML (Data 1)  b) PSO (Data 1) 

 

 

 

 

 

 

 

 

 

 

 

 

  c) ML (Data 2)   d) PSO (Data 2) 

 

 

 

 

 

 

 

 

 

 

  e) ML (Data 3)  f) PSO (Data 3) 

 

  e) ML (Data 3)  f) PSO (Data 3) 

 

Figure 2 The hazard function using ML and PSO estimators 
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to both methods was calculated and reported in Table 4. 
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Table 4 MTTF values to estimate methods 

Data  ML  PSO 

Data 1  126.9970  128.0010 

Data 2  95.7336  98.1324 

Data 3  1.2536  1.2874 

 

We note that MTTF values for three datasets in PSO are higher than ML. This indicates that the 

PSO algorithm is the best comparing with ML. 

 

8. Conclusions 

We note that MTTF values for three datasets in PSO are higher than ML. This indicates that the 

PSO algorithm is the best comparing with ML. 
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