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Abstract
A new lifetime model called the odd log-logistic Chen distribution is being introduced in this

paper. We provide a comprehensive account of the mathematical properties of the proposed family
including the hazard rate function, moments, conditional moments, coefficient of skewness, coeffi-
cient of kurtosis, entropy and order statistics. The parameters of this distribution are estimated by
several methods of estimation. A simulation study is performed in order to investigate the proper-
ties of the proposed estimators. Finally, in order to show the NOLL-Ch distribution flexibility, two
applications using real data sets are presented.

Keywords: Hazard rate function, moments, skewness, kurtosis, entropy.

1. Introduction
Chen (2000) proposed a new two parameter lifetime distribution with bathtub shaped or increas-

ing hazard rate function. A new generalization of this distribution was recently defined by Chaubey
and Zhang (2015) which called the Extended Chen (EC) family. The cumulative distribution function
(cdf) and probability density function (pdf) are given by the following:

FEC(x;λ, β, α) =

(
1− eλ(1−ex

β
)

)α

, x > 0,

fEC(x;λ, β, α) = αβλxβ−1ex
β

eλ(1−ex
β
)

(
1− eλ(1−ex

β
)

)α−1

, x > 0,

where λ, β, α > 0 and denoted by X ∼ EC(λ, β, α). Dey et al. (2017) studied further various
properties and estimation methods for the EC distribution. In literature, there exist many generalized
(G-) classes of distributions where one or more parameter(s) are added to the baseline distribution.
Gleaton and Lynch (2006) introduced a new class of distribution which called Generalized Logis-
tic family (GLL-G). The cdf and pdf of this family for any baseline cdf G(x;θ) are given by the
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following:

F (x;α,θ) =

∫ G(x;θ)

Ḡ(x;θ)

0

αtα−1

(1 + tα)2
dt =

G(x;θ)α

G(x;θ)α + Ḡ(x;θ)α
, x > 0,

f(x;α,θ) =
αg(x;θ)G(x;θ)α−1Ḡ(x;θ)α−1

[G(x;θ)α + Ḡ(x;θ)α]2
, x > 0.

Alizadeh et al. (2015) and Cordeiro et al. (2016) used odd log-logistic (OLL-G) instead of
GLL-G, since we can obtain this family using odd transform from log-logistic distribution. The cdf
and pdf of this family are obtained as follows:

F (x; γ, δ,θ) =

∫ G(x;θ)γ

Ḡ(x;θ)δ

0

dt

(1 + t)2
=

G(x;θ)γ

G(x;θ)γ + Ḡ(x;θ)δ
, x > 0, (1)

f(x; γ, δ,θ) =
g(x;θ)G(x;θ)γ−1Ḡ(x;θ)δ−1 [γ + (δ − γ)G(x;θ)][

G(x;θ)γ + Ḡ(x;θ)δ
]2 , x > 0,

where γ and δ are two shape parameters, θ is the vector of parameters for baseline cdf G and

g(x;θ) = dG(x;θ)
dx . By inserting G(x;θ) = 1 − eλ(1−ex

β
) as Chen cdf for any x > 0 and λ, β > 0

in (1), we propose a new distribution called new odd log-logistic Chen distribution. The cdf of this
distribution is equal to

F (x; γ, δ, λ, β) =

[
1− eλ(1−ex

β
)
]γ

[
1− eλ(1−ex

β
)
]γ

+ eδλ(1−ex
β
)
, x > 0, (2)

where x > 0 and γ, δ, λ, β > 0. A random variable X with the cdf (2), is denoted by X ∼ NOLL-
Ch(γ, δ, λ, β). The corresponding pdf of NOLL-Ch distribution is given by

f(x; γ, δ, λ, β) =
λβxβ−1ex

β

eλ(1−ex
β
)
[
1− eλ(1−ex

β
)
]γ−1

e(δ−1)λ(1−ex
β
){[

1− eλ(1−ex
β
)
]γ

+ eδλ(1−ex
β
)
}2

×
{
γ + (δ − γ)

[
1− eλ(1−ex

β
)

]}
x > 0. (3)

A significant amount of researches have been attributed towards developing the Odd Log-Logistic
family of lifetime distributions. In 2015 and 2016, Cordeiro et al. introduced the Zografos-Balakrishnan
odd log-logistic and the beta odd log-logistic generalized distributions and studied some mathemati-
cal properties of these distributions. Cordeiro et al. (2017a,b) defined two new classes of continuous
distributions named the odd log-logistic generalized half-normal distribution and the generalized odd
log-logistic family of distributions, respectively with a discussion on some properties of these fam-
ilies. A new three parameters model called the odd loglogistic normal (OLLN) distribution defined
and studied by Da Silva et al. (2016). Ozel et al. (2017) defined two lifetime models called the
odd log-logistic Lindley (OLL-L) and odd log-logistic Lindley Poisson (OLL-LP) distributions with
various hazard rate shapes. Haghbin et al. (2016) introduced and derived general mathematical
properties of a new generator of continuous distributions, called the new generalized odd log-logistic
family of distributions.

In this paper, we propose an extension of the EC distribution and discuss distributional proper-
ties of this distribution, including survival and hazard rate functions, moments, moment generating
function and order statistics. We estimate the model parameters by different estimation procedures.
Real data sets are used to illustrate the potentiality of the proposed family.
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The paper is organized as follows: In Section 2, Shape characteristics of pdf and hazard rate
function (hrf) of the new distribution are investigated. Also, statistical properties of the proposed
distribution include moments, conditional moments, skewness, kurtosis, entropy and order statistics
are derived and studied. In Section 3, estimation of the model parameters by maximum likelihood,
least square, Cram’er-von Mises, Anderson Darling and right-tailed Anderson Darling estimators are
presented. Simulation study is investigated in Section 4. In Section 5, applications to real data sets
illustrate the performance of the new family. The paper is concluded in Section 6.

2. Statistical Properties
In this section, we introduce the new distribution and present shapes of the pdf and hrf. We also

derive some useful expansions of this distribution and discuss some structural properties.

2.1. Survival and hazard rate functions
The survival function (sf) and the hrf of NOLL-Ch distribution are equal as follows:

S(x; γ, δ, λ, β) =
eδλ(1−ex

β
)[

1− eλ(1−ex
β
)
]γ

+ eδλ(1−ex
β
)
,

h(x; γ, δ, λ, β) =
λβxβ−1ex

β
[
1− eλ(1−ex

β
)
]γ−1 {

γ + (δ − γ)
[
1− eλ(1−ex

β
)
]}

{[
1− eλ(1−ex

β
)
]γ

+ eδλ(1−ex
β
)
} .

Figure 1 and Figure 2 provide the pdf and the hrf of NOLL-Ch(γ, δ, λ, β) for different parameter
values.
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Figure 1 The sample curves of pdf of NOLL-Ch

Special cases: The NOLL-Ch(γ, δ, λ, β) distribution contains as special sub-models the follow-
ing well-known distributions:
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Figure 2 The sample curves of hrf function of NOLL-Ch

• For γ = δ, we obtain odd log-logistic Chen (OLL-Ch).
• For γ = δ = 1, we obtain Chen distribution.

In Figure 3 some pdfs for above special cases of NOLL-Ch have been drown.
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Figure 3 The sample curves of pdf in special cases

Table 1 illustrates that additional parameters add more right tail probability for NOLL-Ch dis-
tribution with respect to Chen and OLL-Ch distributions with same λ and β parameters for special
cases in Figure 3.

Table 1 Right tail probabilities of Chen, NOLL-Ch and OLL-Ch distributions

Model P (X > 20) Model P (X > 1.25)
NOLL-Ch(2,0.1,0.05,0.5) 0.39984 NOLL-Ch(2,0.5,1,2) 0.13720
Chen(0.05,0.5) 0.01320 Chen(1,2) 0.02304
OLL-Ch(2,0.05,0.5) 0.00018 OLL-Ch(2,1,2) 0.00056
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2.2. Asymptotic
The following results can be easily obtained from the cdf properties. The asymptotic of cdf, pdf,

and hrf of NOLL-Ch as x → 0 are given by

F (x) ∼ (λxβ)γ , as x → 0,

f(x) ∼ γβλγxβγ−1, as x → 0,

h(x) ∼ γβλγxβγ−1, as x → 0.

The asymptotic of cdf, pdf, and hrf of NOLL-Ch as x → ∞ are given by

1− F (x) ∼ e−δλex
β

, as x → ∞,

f(x) ∼ βδλxβ−1ex
β

e−δλex
β

, as x → ∞,

h(x) ∼ βδλxβ−1ex
β

, as x → ∞.

2.3. Mixture representations for pdf and cdf
We show that the NOLL-Ch distribution can be viewed as a mixture of EC distributions. First

using Generalized binomial expansion for any |u| < 1 and γ > 0, we can write as the following:

uγ = [1− (1− u)]γ =

∞∑
i=0

(−1)i
(
γ

i

)
(1− u)i

=

∞∑
i=0

i∑
k=0

(−1)i+k

(
γ

i

)(
i

k

)
uk

=

∞∑
k=0

∞∑
i=k

(−1)i+k

(
γ

i

)(
i

k

)
uk =

∞∑
k=0

aku
k

where ak =
∑∞

i=k(−1)i+k
(
γ
i

)(
i
k

)
. Therefore[

1− eλ(1−ex
β
)

]γ
=

∞∑
k=0

ak

[
1− eλ(1−ex

β
)

]k
,

[
eλ(1−ex

β
)

]δ
=

[
1−

(
1− eλ(1−ex

β
)

)]δ
=

∞∑
k=0

(
δ

k

)
(−1)k

[
1− eλ(1−ex

β
)

]k
.

So, we have [
1− eλ(1−ex

β
)

]γ
+ eδλ(1−ex

b
) =

∞∑
k=0

bk

[
1− eλ(1−ex

β
)

]k
where bk = ak +

(
δ
k

)
(−1)k. By using the ratio of two power series, we obtain as follows:

F (x) =

∑∞
k=0 ak

[
1− eλ(1−ex

β
)
]k

∑∞
k=0 bk

[
1− eλ(1−ex

β
)
]k =

∞∑
k=0

ck

[
1− eλ(1−ex

β
)

]k
,

where c0 = a0

b0
and for any k ≥ 1,

ck =
1

b0

[
ak − 1

b0

k∑
r=1

brck−r

]
. (4)
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So we have as the following:

F (x) =

∞∑
k=0

ck FEC(x;λ, β, k),

f(x) =

∞∑
k=0

ck+1 fEC(x;λ, β, k + 1),

where FEC(x;λ, β, k) and fEC(x;λ, β, k) denote the cdf and the pdf of EC distribution with param-
eters λ, β and k.

2.4. Moments
Let X be a random variable following NOLL-Ch distribution with parameters γ, δ, λ and β.

We define and compute

A(a, b, c, r; θ) =

∫ ∞

0

xrxθ−1eax
θ

eb(1−eaxθ)

(
1− eb(1−eaxθ

)

)c

dx,

for a, b > 0 and c > −1. By substituting xr =
(
xθ
) r

θ and u = 1 − eb(1−eaxθ
) and using the

expanding of function log
[
1− 1

b log(1− u)
]
, we have

A(a, b, c, r; θ) =

∞∑
i=0

∞∑
j=0

ai

(r
θ

)
aj

(r
θ
+ i
) (−1)

2r
θ +i

a
r
θ+1b

r
θ+i+1[(i+ j + c+ 1)θ + r]

,

where ai
(
r
θ

)
is the coefficient of

[
1
b log(1− u)

] r
θ+i

in the expansion of
[∑∞

l=1
( 1
b log(1−u))l

l

] r
θ

and

aj
(
r
θ + i

)
is the coefficient of ui+j+ r

θ in the expansion of
(∑∞

k=1
uk

k

) r
θ+i

. (For more details see
Dey et al. 2017).
Next, the n-th moment of the NOLL-Ch distribution will be

E(Xn) = λβ

∞∑
k=0

(k + 1)ck+1A(1, λ, k, n;β).

The following theorem give the required condition for convergence of series.

Theorem 1 If distribution G(x) has a moment generating function, then distribution function F (x) =
G(x)α

G(x)α+Ḡ(x)β
has a moment generating function.

Proof: Let m = inf{x|G(x) ≥ 0.5}, then

MX(t) =

∫ ∞

−∞
et x f(x)dx =

∫ ∞

−∞
et x

g(x)G(x)α−1Ḡ(x)β−1[α+ (β − α)G(x)]

[G(x)α + Ḡ(x)β ]2
dx

≤
∫ ∞

−∞
et x

α g(x)

[G(x)α + Ḡ(x)β ]2
dx

=

∫ m

−∞
et x

α g(x)

[G(x)α + Ḡ(x)β ]2
dx +

∫ ∞

m

et x
α g(x)

[G(x)α + Ḡ(x)β ]2
dx

The first integral in last line is finite, the second integral is no greater than∫ ∞

m

et x
α g(x)

[G(x)α]2
dx.
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For x > m, we have G(x) ≥ 0.5, so that∫ ∞

m

et x
α g(x)

[G(x)α]2
dx < α 22α

∫ ∞

m

et x g(x)dx < ∞.

Then MX(t) < ∞.

Corollary 1 Every distribution in NOLL-G class has exactly the same number of moments of G(x).

The measures of skewness and kurtosis of the NOLL-Ch distribution can be obtained as follows:

Skewness(X) =
µ′
3 − 3µ′

2µ
′
1 + 2(µ′

1)
3

(µ′
2 − (µ′

1)
2)

3
2

,

Kurtosis(X) =
µ′
4 − 4µ′

1µ
′
3 + 6(µ′

1)
2µ′

3 − 3(µ′
1)

4

µ′
2 − (µ′

1)
2

.

respectively, where µ′
n = E(Xn) for integer values of n. Moreover, the moment generating function

of NOLL-Ch distribution is equal to

MX(t) =

∞∑
r=0

tr

r!
E(Xr) = λβ

∞∑
r=0

∞∑
k=0

tr

r!
(k + 1) ck+1 A(1, λ, k, r;β).

In Figure 4 some skewness and kurtosis for NOLL-Ch have been drown.
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2.5. Conditional moments
Here, we define and compute the following equation for the conditional moments

B(a, b, c, r, t; θ) =

∫ ∞

t

xrxθ−1eax
θ

eb(1−eaxθ
)

(
1− eb(1−eaxθ

)

)c

dx,

for a, b > 0 and c > −1. Then, one can obtain

B(a, b, c, r, t; θ) =

∞∑
i=0

∞∑
j=0

ai

(r
θ

)
aj

(r
θ
+ i
) (−1)

2r
θ +i

{
1−

[
1− eb(1−eatθ )

] (i+j+c+1)θ+r
θ

}
a

r
θ+1b

r
θ+i+1[(i+ j + c+ 1)θ + r]

.

So, the n-th conditional moments of X obtained as follows:

E(Xn|X > x) =
λβ
∑∞

k=0(k + 1) ck+1 B(1, λ, k, n, x;β)

1−
∑∞

k=0 ck V
k(x)

,

where V (x) = 1− eλ(1−ex
β
).

In a real life situation, we sometimes need the conditional moments of kind E(Xn|X ≤ x).
Therefore, in the following we give an expression for these moments. For a, b > 0 and c > −1, we
define

C(a, b, c, r, t; θ) =

∫ t

0

xrxθ−1eax
θ

eb(1−eaxθ
)

(
1− eb(1−eaxθ

)

)c

dx.

Then we have

C(a, b, c, r, t; θ) =

∞∑
i=0

∞∑
j=0

ai

(r
θ

)
aj

(r
θ
+ i
) (−1)

2r
θ +i

{
1− eb(1−eatθ )

} (i+j+c+1)θ+r
θ

a
r
θ+1 b

r
θ+i+1 [(i+ j + c+ 1)θ + r]

.

Therefore we can write

E(Xn|X ≤ x) =
λβ
∑∞

k=0(k + 1) ck+1 C(1, λ, k, n, x;β)∑∞
k=0 ck V

k(x)
.

2.6. Mean deviations
The mean deviations can be used as a measure of spread in a population. The mean deviations

about the mean and about the median are given by the following:

D(µ) =

∫ ∞

0

|x− µ|f(x)dx = 2µF (µ)− 2

∫ µ

0

xf(x)dx,

D(m) =

∫ ∞

0

|x−m|f(x)dx = µ− 2

∫ m

0

xf(x)dx,

respectively, where µ = E(X) and m = median(X). These quantities can be calculated as

D(µ) = 2µF (µ)− 2λβ

∞∑
k=0

(k + 1) ck+1 C(1, λ, k, 1, µ;β),

D(m) = µ− 2λβ

∞∑
k=0

(k + 1) ck+1 C(1, λ, k, 1,m;β).
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2.7. Bonferroni and Lorenz curves
Bonferroni and Lorenz curves have applications in several fields such as economics, reliability,

demography, insurance and medicine. If X ∼NOLL-Ch(γ, δ, λ, β), then one can obtain

B(F (x)) =
1

µF (x)

∫ x

0

tf(t)dt =
λβ

µF (x)

∞∑
k=0

(k + 1) ck+1 C(1, λ, k, 1, x;β),

L(F (x)) =
1

µ

∫ x

0

tf(t)dt =
λβ

µ

∞∑
k=0

(k + 1) ck+1 C(1, λ, k, 1, x;β).

2.8. Entropy
An entropy is a measure of variation or uncertainty of a random variable X . Two popular entropy

measures are due to Renyi (1961) and Shannon (1948). The Renyi entropy of a random variable
with pdf f(x) is defined by

IR(γ) =
1

1− γ
log

(∫ ∞

0

fγ(x)dx

)
,

for γ > 0 and γ ̸= 1. In Figure 5 one can see some curves of the Renyi entropy function of the
NOLL-Ch distribution for some parameters.
The Shannon entropy of a random variable X is defined by E {− log [f(X)]}. It is the special case

0.0 0.5 1.0 1.5 2.0

−2
0

−1
0

0
10

20

EGGo(γ, 3, 0.5, 0.7)

γ

I R(γ
)

0.0 0.5 1.0 1.5 2.0

−2
0

−1
0

0
10

20

0.0 0.5 1.0 1.5 2.0

−2
0

−1
0

0
10

20

0.0 0.5 1.0 1.5 2.0

−2
0

−1
0

0
10

20

0.0 0.5 1.0 1.5 2.0

−2
0

−1
0

0
10

20 γ=1
γ=0.5
γ=0.3
γ=0.1
γ=0.01

0.0 0.5 1.0 1.5 2.0

−4
−2

0
2

4

EGGo(10, δ, 1.2, 1)

γ

I R(γ
)

0.0 0.5 1.0 1.5 2.0

−4
−2

0
2

4

0.0 0.5 1.0 1.5 2.0

−4
−2

0
2

4

0.0 0.5 1.0 1.5 2.0

−4
−2

0
2

4

0.0 0.5 1.0 1.5 2.0

−4
−2

0
2

4 δ=1
δ=2
δ=3
δ=5
δ=10

0.0 0.5 1.0 1.5 2.0

−0
.4

−0
.2

0.0
0.2

0.4

EGGo(0.8, 2, λ, 3)

γ

I R(γ
)

0.0 0.5 1.0 1.5 2.0

−0
.4

−0
.2

0.0
0.2

0.4

0.0 0.5 1.0 1.5 2.0

−0
.4

−0
.2

0.0
0.2

0.4

0.0 0.5 1.0 1.5 2.0

−0
.4

−0
.2

0.0
0.2

0.4

0.0 0.5 1.0 1.5 2.0

−0
.4

−0
.2

0.0
0.2

0.4 λ=0.5
λ=0.8
λ=1
λ=1.5
λ=2

0.0 0.5 1.0 1.5 2.0

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0
1.5

2.0

EGGo(8, 0.01, 0.5, β)

γ

I R(γ
)

0.0 0.5 1.0 1.5 2.0

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0
1.5

2.0

0.0 0.5 1.0 1.5 2.0

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0
1.5

2.0

0.0 0.5 1.0 1.5 2.0

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0
1.5

2.0

0.0 0.5 1.0 1.5 2.0

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0
1.5

2.0 β=1
β=2
β=3
β=4
β=5

Figure 5 Plots of Renyi entropy of NOLL-Ch distribution for parameters

of the Renyi entropy when γ ↑ 1.
We tend to derive an expression for the Shannon entropy of the NOLL-Ch distribution. If X is a

non-negative continuous random variable with pdf f(x), then Shannon’s entropy of X is defined as

H(X) = E [− ln f(X)] = −
∫ ∞

0

f(x) ln(f(x))dx.
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Here, we consider the Shannon’s entropy for NOLL-Ch distribution as follows:

H(X) = −E{log g(X)]}+ (1− γ)E{logG(X)}+ (1− δ)E{log Ḡ(X)}
− E{log[γ + (δ − γ)G(X)]}+ 2E{log[G(X)γ + Ḡ(X)δ]}.

Let D(a1, a2, a3, a4; γ, δ) =

∫ 1

0

ua1(1− u)a2 [γ + (δ − γ)u]a3

[uγ + (1− u)δ]a4
du.

Using binomial expansion, one can obtain

D(a1, a2, a3, a4; γ, δ) =

∞∑
i=0

∞∑
j=0

∞∑
k=0

(
−a4
i

)(
a3
j

)(
a2 + iδ

k

)
× (−1)kγa3−j(δ − γ)j

a1 + j − γ(i+ a4) + k + 1
. (5)

Using (5), we obtain the following theorem.

Theorem 2 Suppose X ∼ NOLL− Ch(γ, δ, λ, β). Then

E{logG(X)} =
∂

∂t
D(γ − 1 + t, δ − 1, 1, 2; γ, δ)

∣∣∣
t=0

,

E{log Ḡ(X)} =
∂

∂t
D(γ − 1, δ − 1 + t, 1, 2; γ, δ)

∣∣∣
t=0

,

E{log[γ + (δ − γ)G(X)]} =
∂

∂t
D(γ − 1, δ − 1, 1 + t, 2; γ, δ)

∣∣∣
t=0

,

E{log[G(X)γ + Ḡ(X)δ]} =
∂

∂t
D(α− 1, δ − 1, 1,−t+ 2; γ, δ)

∣∣∣
t=0

,

E{log g(X)} = log(λβ) + (β − 1)E(logX) + E(Xβ) + λE(1− eX
β

),

where

E(logX) =
1

β

∞∑
i=1

i∑
j=0

∞∑
k=0

∞∑
l=0

ak(j)al(k + j)

(
i

j

)
(−1)3j+k+1

iλk+j

×D(j + k + l + γ − 1, δ − 1, 1, 2; γ, δ),

E(Xβ) =

∞∑
i=1

∞∑
j=0

aj(i)
(−1)i+1

iλi
D(i+ j + γ − 1, δ − 1, 1, 2; γ, δ),

E(1− eX
β

) = − 1

λ

∞∑
i=1

1

i
D(i+ γ − 1, δ − 1, 1, 2; γ, δ).

Therefore, the Shannon entropy is obtained as follows:

H(X) = − log(λβ) +
β − 1

β

∞∑
i=1

i∑
j=0

∞∑
k=0

∞∑
l=0

ak(j)al(k + j)

(
i

j

)
(−1)3j+k+1

iλk+j

D(j + k + l + γ − 1, δ − 1, 1, 2; γ, δ) +

∞∑
i=1

∞∑
j=0

aj(i)
(−1)i+1

iλi

D(i+ j + γ − 1, δ − 1, 1, 2; γ, δ)−
∞∑
i=1

1

i
D(i+ γ − 1, δ − 1, 1, 2; γ, δ)

+(1− γ)
∂

∂t
D(γ − 1 + t, δ − 1, 1, 2; γ, δ)

∣∣∣
t=0
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+(1− δ)
∂

∂t
D(γ − 1, δ − 1 + t, 1, 2; γ, δ)

∣∣∣
t=0

− ∂

∂t
D(γ − 1, δ − 1, 1 + t, 2; γ, δ)

∣∣∣
t=0

+2
∂

∂t
D(γ − 1, δ − 1, 1,−t+ 2; γ, δ)

∣∣∣
t=0

.

2.9. Order statistics
Suppose X1, X2, · · · , Xn is a random sample from (3). The pdf of the ith order statistic Xi:n,

is given by

fi:n(x) =
1

B(i, n− i+ 1)
F i−1(x)(1− F (x))n−if(x)

=
1

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i

j

)
F j+i−1(x)f(x)

where B(i, n − i + 1) is the Beta function. We use an equation by Gradshteyn and Ryzhik (2007),
page 17, for a power series raised to a positive integer n, (n ≥ 1)( ∞∑

i=0

aiu
i

)n

=

∞∑
i=0

dn,iu
i, (6)

where the coefficients dn,i (for i = 1, 2, · · · ) are determined from the recurrence equation (with
dn,0 = an0 )

dn,i = (ia0)
−1

i∑
m=1

[m(n+ 1)− i] amdn,i−m.

Using (6), the pdf of the i-th order statistic of any NOLL-Ch distribution is obtained as follows:

fi:n(x) =

∞∑
r,k=0

er,k fEC(x;λ, β, r + k + 1)

where fEC(x;λ, β, r + k + 1) denotes the pdf of EC distribution with parameters λ, β and
r + k + 1 and

er,k =
n!(r + 1)(i− 1)! cr+1

(r + k + 1)

n−i∑
j=0

(−1)jwj+i−1,k

(n− i− j)!j!
.

Here the quantities wj+i−1,k can be determined given that wj+i−1,0 = cj+i−1
0 and recursively

we have

wj+i−1,k = (kc0)
−1

k∑
m=1

[m(j + i)− k] cm wj+i−1,k−m, k ≥ 1,

and cr is given by (4). Therefore the pdf of the ith order statistic from NOLL-Ch is a linear com-
bination of EPL distributions. So, some of mathematical quantities of these order statistics such as
moments, moment generating function, mean deviations and so on can be derived using this result.

The m-th moment of Xi:n can be written as

E(Xm
i:n) = λβ

∞∑
r,k=0

(r + k + 1) er,k A(1, λ, r + k,m;β).
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3. Estimation

There are several approaches to estimate the parameters of distributions that each of them has
characteristic features and benefits. In this section, four of these methods are briefly introduced and
will be numerically investigated in the simulation study. For more details, interested readers can refer
to Dey et al. (2017).

3.1. Maximum-likelihood estimators

Here, the maximum likelihood estimates (MLEs) of the parameters of NOLL-Ch distribution are
determined. Let X1, · · · , Xn is a random sample from NOLL-Ch model with unknown parameters
γ, δ, λ and β. The log likelihood function based on observed random sample of size n is given by

l(γ, δ, λ, β;x) = n log(λβ) + (β − 1)

n∑
i=1

log xi +

n∑
i=1

xβ
i + λ(n−

n∑
i=1

ex
β
i )

+(γ − 1)

n∑
i=1

log ti + (δ − 1)

n∑
i=1

log(1− ti)

+

n∑
i=1

log[γ + (δ − γ)ti]− 2

n∑
i=1

log[tγi + (1− ti)
δ],

where ti = G(xi) = 1− eλ(1−ex
β
i ). Therefore

∂l

∂γ
=

n∑
i=1

log ti +

n∑
i=1

1− ti
γ + (δ − γ)ti

− 2

n∑
i=1

(log ti)t
γ
i

tγi + (1− ti)δ
= 0,

∂l

∂δ
=

n∑
i=1

log(1− ti) +

n∑
i=1

ti
γ + (δ − γ)ti

− 2

n∑
i=1

(log(1− ti))(1− ti)
δ

tγi + (1− ti)δ
= 0,

∂l

∂λ
=

n

λ
+

(
n−

n∑
i=1

ex
β
i

)
+

n∑
i=1

t
(λ)
i [γ − 1− (γ + δ − 2)ti]

ti(1− ti)

+(δ − γ)

n∑
i=1

t
(λ)
i

γ + (δ − γ)ti
− 2

n∑
i=1

t
(λ)
i

[
γtγ−1

i − δ(1− ti)
δ−1
]

tγi + (1− ti)δ
= 0,

∂l

∂β
=

n

β
+

n∑
i=1

log xi

[
1 + xβ

i (1− λex
β
i )
]
+

n∑
i=1

t
(β)
i [γ − 1− (γ + δ − 2)ti]

ti(1− ti)

+(δ − γ)

n∑
i=1

t
(β)
i

γ + (δ − γ)ti
− 2

n∑
i=1

t
(β)
i

[
γtγ−1

i − δ(1− ti)
δ−1
]

tγi + (1− ti)δ
= 0,

where t
(λ)
i =

∂ti
∂λ

= −
(
1− ex

β
i

)
eλ(1−ex

β
i ) (7)

t
(β)
i =

∂ti
∂β

= λ (log xi)x
β
i e

xβ
i eλ(1−ex

β
i ). (8)

The maximum likelihood estimates γ̂, δ̂, λ̂ and β̂ of γ, δ, λ and β are obtained by solving these
nonlinear system of equations.
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3.2. Least-Square estimators
Suppose F (Xi:n) denotes the cdf of i-th order statistic of a random sample X1, · · · , Xn. The

least square estimators (LSE) of γ, δ, λ and β are obtained by minimizing the following function

S(γ, δ, λ, β) =

n∑
i=1

[
F (xi:n|γ, δ, λ, β)−

i

n+ 1

]2
,

with respect to γ, δ, λ and β, where F (.) is defined in (2). So, the estimators obtained by solving

n∑
i=1

[
F (xi:n|γ, δ, λ, β)−

i

n+ 1

]
ϕ1(xi:n|γ, δ, λ, β) = 0,

n∑
i=1

[
F (xi:n|γ, δ, λ, β)−

i

n+ 1

]
ϕ2(xi:n|γ, δ, λ, β) = 0,

n∑
i=1

[
F (xi:n|γ, δ, λ, β)−

i

n+ 1

]
ϕ3(xi:n|γ, δ, λ, β) = 0,

n∑
i=1

[
F (xi:n|γ, δ, λ, β)−

i

n+ 1

]
ϕ1(xi:n|γ, δ, λ, β) = 0,

where ϕ1(xi:n|γ, δ, λ, β) =
(log ti)t

γ
i (1− ti)

δ

[tγi + (1− ti)δ]
2 ,

ϕ2(xi:n|γ, δ, λ, β) =
−(log(1− ti))t

γ
i (1− ti)

δ

[tγi + (1− ti)δ]
2 ,

ϕ3(xi:n|γ, δ, λ, β) =
t
(λ)
i tγ−1

i (1− ti)
δ−1 [γ + (δ − γ)ti]

[tγi + (1− ti)δ]
2 ,

ϕ4(xi:n|γ, δ, λ, β) =
t
(β)
i tγ−1

i (1− ti)
δ−1 [γ + (δ − γ)ti]

[tγi + (1− ti)δ]
2 . (9)

Here, t(λ)i and t
(β)
i are defined in (7) and (8).

The weighted least square estimators (WLSE) can be obtained by minimizing

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
F (xi:n|γ, δ, λ, β)−

i

n+ 1

]2
.

These estimators obtained by similar manner to least square estimators.

3.3. Cram’er-von-Mises estimators
The Cram’er-von Mises estimators γ̂CME , δ̂CME , λ̂CME and β̂CME are obtained by minimiz-

ing,

C(γ, δ, λ, β) =
1

12n
+

n∑
i=1

(
F (xi:n|γ, δ, λ, β)−

2i− 1

2n

)2

,

with respect to the parameters γ, δ, λ and β, respectively, which is equivalent to solving the following
equations

n∑
i=1

(
F (xi:n|γ, δ, λ, β)−

2i− 1

2n

)
ϕ1(xi:n|γ, δ, λ, β) = 0,
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n∑
i=1

(
F (xi:n|γ, δ, λ, β)−

2i− 1

2n

)
ϕ2(xi:n|γ, δ, λ, β) = 0,

n∑
i=1

(
F (xi:n|γ, δ, λ, β)−

2i− 1

2n

)
ϕ3(xi:n|γ, δ, λ, β) = 0,

n∑
i=1

(
F (xi:n|γ, δ, λ, β)−

2i− 1

2n

)
ϕ4(xi:n|γ, δ, λ, β) = 0,

where ϕ1(.), ϕ2(.), ϕ3(.) and ϕ4(.) are defined in (9).

3.4. Anderson–Darling and right-tailed Anderson–Darling estimators
The Anderson–Darling (ADE) and right-tailed Anderson–Darling estimators (RTADE) are ob-

tained by minimizing the following functions

A(γ, δ, λ, β) = −n− 1

n

n∑
i=1

{logF (xi:n|γ, δ, λ, β) + logS(xn+1−i:n|γ, δ, λ, β)} ,

R(γ, δ, λ, β) =
n

2
− 2

n∑
i=1

F (xi:n|γ, δ, λ, β)−
1

n

n∑
i=1

(2i− 1) logS(xn+1−i:n|γ, δ, λ, β),

respectively. These estimators for γ are denoted by γ̂ADE and γ̂RTADE and obtained by solving the
following equations

n∑
i=1

(2i− 1)

[
ϕ1(xi:n|γ, δ, λ, β)
F (xi:n|γ, δ, λ, β)

− ϕ1(xn+1−i:n|γ, δ, λ, β)
S(xn+1−i:n|γ, δ, λ, β)

]
= 0,

−2

n∑
i=1

ϕ1(xi:n|γ, δ, λ, β) +
1

n

n∑
i=1

(2i− 1)
ϕ1(xn+1−i:n|γ, δ, λ, β)
S(xn+1−i:n|γ, δ, λ, β)

= 0.

The estimators δ̂ADE (δ̂RTADE), λ̂ADE (λ̂RTADE) and β̂ADE (β̂RTADE), are similarly obtained.

4. Simulation Study
Here, we evaluate the performance of the different parameter estimators in terms of bias and

mean square error.

4.1. The maximum likelihood estimators
In this subsection, the maximum likelihood estimators of parameters of purpose density function

has been assessed by simulating: (γ, δ, λ, β) = (2, 0.5, 1, 1). The pdf has been indicated in Figure 6.
To verify the validity of the maximum likelihood estimator, the bias of MLE and the mean

square error of MLE have been used. For example, as described in Subsection 3.1, for (γ, δ, λ, β) =
(2, 0.5, 1, 1), r = 1000 times have been simulated samples of n = 50, 51, ..., 110 of NOLL-Ch(2, 0.5, 1, 1).
To estimate the numerical value of the maximum likelihood, the optim function (in the stat package)
and Nelder-Mead method in R software has been used. If ξ = (γ, δ, λ, β), for any simulation by n

volumes and i = 1, 2, ..., r, the maximum likelihood estimates are obtained as ξ̂i = (γ̂i, δ̂i, λ̂i, β̂i).
To examine the performance of the MLE’s for the NOLL-Ch distribution, we perform a simula-

tion study:

1. Generate r samples of size n from (3).
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Figure 6 The pdf for simulation study

2. Compute the MLE’s for the r samples, say (γ̂, δ̂, λ̂, β̂) for i = 1, 2, . . . , r.

3. Compute the standard errors of the MLE’s for r samples, say (sγ̂ , sδ̂, sλ̂, sβ̂) for i = 1, 2, . . . , r.

4. Compute the biases and mean squared errors given by the following:

Biasξ̂(n) =
1

r

r∑
i=1

(ξ̂i − ξi),

MSEξ̂(n) =
1

r

r∑
i=1

(ξ̂i − ξi)
2
,

for ξ = (γ, δ, λ, β).

We repeat these steps for r = 1000 and n = 50, 51, . . . , n∗ (n∗ is different in each issue) with
different values of (γ, δ, λ, β), so computing Biasξ̂(n) and MSEξ̂(n).

Figures 7 and 8, respectively reveals how the four biases, mean squared errors vary with respect
to n. As expected, the Biases and MSEs of estimated parameters converges to zero while n growing.

4.2. The other estimation methods
In order to explore the efficiency of the estimators introduced in the previous section, we consider

one model that have been used above, and investigate MSE of these estimators for different samples.
For instance according to what has been mentioned, for (γ, δ, λ, β) = (2, 0.5, 1, 1), we have simulated
r = 1000 times with sample size of the n = 50, 55, 60, · · · 550. Then the MSE formula that are
mentioned in the subsection 4.1 are calculated for them. To obtain the value of the estimators, we
have used the optima function and Nelder-Mead method in R.

The result of the simulations of this subsection is shown in Figure 9. As it is clear from the MSE
plot for two parameters with the increase in the volume of the sample all methods will approach to
zero and this verifies the validity of the these estimation methods and numerical calculations for the
parameters of NOLL-Ch distribution.
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Figure 7 Bias of (γ̂, δ̂, λ̂, β̂) for i = 1, 2, . . . , r versus n when (γ, δ, λ, β) = (2, 0.5, 1, 1)
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Figure 8 MSE of (γ̂, δ̂, λ̂, β̂) for i = 1, 2, . . . , r versus n when (γ, δ, λ, β) = (2, 0.5, 1, 1)

5. Applications
In this section, we present two applications by fitting the NOLL-Ch model and some famous

models. The Akaike information criterion (AIC), Bayesian information criterion (BIC), Cramér–von
Mises (W∗), Anderson-Darling (A∗), Kolmogorov Smirnov (K.S) and the P-Value of K.S test, have
been chosen for comparison of models for the first two examples. For the two applications, we adopt
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Figure 9 MSE of (γ̂, δ̂, λ̂, β̂) versus n when (γ, δ, λ, β) = (2, 0.5, 1, 1)

only the A∗ statistics.
The Gamma-Chen distribution (GaC) (Alzaatreh et al. 2014), The Beta-Chen distribution (BC)

(Euguene et al. 2002), Marshall-Olkin Normal distribution (MOC) (Jose 2011), The Kumaraswamy
Chen distribution (KwC) (Cordeiro and De Castro (2011)), The Transmuted Chen (TC) (Khan et
al. 2013), The Transmuted Exponentiated Chen (TEC) (Khan et al. 2016), The Extended Chen
(EC) (Chaubey and Zhang 2015), Odd Log-Logistic Chen (OLL-C) and Chen distribution have been
selected for comparison in the two examples. The parameters of models have been estimated by the
MLE method.

5.1. The relief times of twenty patients data
This subsection is related to study of the data set (Gross and Clark 1975, p. 105) on the relief

times of twenty patients receiving an analgesic is 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8,
1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.

In the Tables 2 and 3, a summary of the fitted information criteria and estimated MLE’s for
this data with different models have come, respectively. Models have been sorted from the lowest to
the highest value of A∗. As you see, the NOLL-Ch is selected as the best model with more criteria
(W ∗, A∗,K.S, p-value). The histogram of the relief times of twenty patients data and the plots of
fitted pdf are displayed in Figure 10. In Figure 11, the plot of uni-modality of profile likelihood
functions of parameters of NOLL-Ch is shown.
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Table 2 The relief times of twenty patients data

Model AIC BIC W ∗ A∗ K.S p-value
NOLL-Ch 38.32 42.31 0.02 0.14 0.09 0.996
GaC 46.35 50.33 0.03 0.20 0.99 0
TEC 39.56 43.55 0.04 0.23 0.12 0.949
EC 38.14 41.13 0.05 0.30 0.13 0.864
KwC 40.02 44.00 0.05 0.30 0.14 0.820
OLL-C 39.10 42.08 0.05 0.32 0.11 0.963
BC 40.51 44.49 0.06 0.34 0.15 0.769
MOC 44.88 47.87 0.14 0.84 0.15 0.774
TC 53.63 56.62 0.27 1.57 0.23 0.243
Chen 53.14 55.13 0.29 1.66 0.24 0.206

Table 3 Estimated MLE’s and Standard errors for the relief times of twenty patients data

Model MLE Standard errors
NOLL-Ch(γ, δ, λ, β) (31.40, 0.34, 1.06, 0.65) (36.25, 0.24, 0.51, 0.25)
GaC(γ, δ, λ, β) (7.59, 1.99, 5.00, 0.53) (2.09, 0.46, 1.07, 0.003)
TEC(γ, δ, λ, β) (300.01, 0.50, 2.43, 0.34) (587.04, 0.56, 1.08, 0.11)
EC(γ, λ, β) (250.01, 2.40, 0.37) (407.52, 0.89, 0.10)
KwC(γ, δ, λ, β) (160.07, 0.49, 2.21, 0.52) (222.41, 0.51, 0.75, 0.21)
OLL-C(γ, λ, β) (58.59, 0.39, 0.05) (120.36, 0.03, 0.09)
BC(γ, δ, λ, β) (85.87, 0.48, 2.01, 0.55) (103.13, 0.51, 0.69, 0.20)
MOC(γ, λ, β) (400.01, 2.32, 0.43) (488.06, 0.64, 0.08)
TC(γ, λ, β) (0.75, 0.07, 1.02) (0.28, 0.03, 0.09)
Chen(λ, β) (0.14, 0.95) (0.05, 0.09)

The relief times of twenty patients data.
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Figure 10 Histogram for the relief times of twenty patients data

5.2. Time to failure (103 h) of turbocharger
This subsection is related to study of the time to failure (turbocharger of one type of engine

which presented by Xu et al. 2003 that include 40 observations. The data are 1.6, 3.5, 4.8, 5.4, 6.0,
6.5, 7.0, 7.3, 7.7, 8.0, 8.4, 2.0, 3.9, 5.0, 5.6, 6.1, 6.5, 7.1, 7.3, 7.8, 8.1, 8.4, 2.6, 4.5, 5.1, 5.8, 6.3, 6.7,
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Figure 11 Uni-modality of profile likelihood functions of parameters of NOLL-Ch for the relief times
of twenty patients data

7.3, 7.7, 7.9, 8.3, 8.5, 3.0, 4.6, 5.3, 6.0, 8.7, 8.8, 9.0. Similar to the previous application example, we
have Tables 4 and 5. As it is clear, the NOLL-Ch is selected as the best model with more criteria. The
histogram of the Time to failure (103 h) of turbocharger data and the plots of fitted pdf are displayed
in Figure 12. In Figure 13, the plot of uni-modality of profile likelihood functions of parameters of
NOLL-Ch is shown.

Table 4 Time to failure (103 h) of turbocharger data

Model AIC BIC W∗ A∗ K.S p-value
NOLL-Ch 165.51 172.27 0.01 0.13 0.080 0.969
OLL-C 165.34 170.40 0.03 0.20 0.090 0.893
BC 167.51 174.27 0.03 0.22 0.080 0.964
MOC 166.16 171.23 0.03 0.24 0.070 0.923
KwC 168.14 174.89 0.03 0.24 0.090 0.920
TEC 168.20 174.95 0.03 0.24 0.092 0.891
EC 166.27 171.33 0.03 0.24 0.090 0.881
TC 166.31 171.38 0.03 0.25 0.091 0.895
Chen 164.29 167.66 0.03 0.25 0.090 0.880
GaC 168.14 174.90 0.04 0.31 0.070 0.990
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Table 5 Estimated MLE’s and Standard errors for the time to failure (103 h) of turbocharger data

Model MLE Standard errors
NOLL-Ch(γ, δ, λ, β) (0.89, 0.23, 0.003, 0.98) (0.21, 0.21, 0.001, 0.06)
OLL-C(γ, λ, β) (0.82, 0.004, 0.89) (0.19, 0.002, 0.04)
BC(γ, δ, λ, β) (0.71, 0.32, 0.01, 0.91) (0.30, 0.31, 0.01, 0.07)
MOC(γ, λ, β) (1.49, 0.01, 0.82) (1.03, 0.01, 0.05)
KwC(γ, δ, λ, β) (0.77, 0.11, 0.04, 0.87) (0.07, 0.10, 0.04, 0.03)
TEC(γ, δ, λ, β) (0.93,−0.25, 0.01, 0.84) (0.35, 0.55, 0.01, 0.05)
EC(γ, λ, β) (0.94, 0.01, 0.85) (0.23, 0.003, 0.04)
TC(γ, λ, β) (−0.22, 0.01, 0.83) (0.44, 0.01, 0.05)
Chen(λ, β) (0.01, 0.84) (0.002, 0.03)
GaC(γ, δ, λ, β) (0.96, 1.62, 0.01, 0.86) (0.82, 5.11, 0.01, 0.20)

time to failure of turbocharger data.
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Figure 12 Histogram for time to failure (103 h) of turbocharger data

6. Conclusions
A new four-parameter lifetime distribution is introduced in this paper. We studied the properties

of the pdf and hrf of this distribution. Several structural properties of it are discussed in details include
the general n-th moments, conditional moments, mean deviations and order statistics. Moreover,
we derived several estimation techniques for estimating the unknown parameters of the NOLL-Ch
distribution and presented an extensive simulation study in order to compare the efficiency of these
estimators. Finally, applications to real data are given to demonstrate the applicability of the new
distribution in practical situations.
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Figure 13 Uni-modality of profile likelihood functions of parameters of NOLL-Ch fortime to failure
(103 h) of turbocharger data
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