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Abstract 

In this article, Bayesian estimators of the population parameters of the power transmuted inverse 

Rayleigh (PTIR) distribution are discussed. The posteriors distribution of the PTIR distribution based 

on informative and non-informative priors represented by gamma and Jeffery’s priors, respectively, 

are derived. Four loss functions, namely minimum expected, squared error, precautionary and linear 

exponential are considered. The highest posterior density credible interval is constructed by using the 

Markov Chain Monte Carlo (MCMC) method. Simulation study is performed to examine and compare 

the Bayes estimates using MCMC method based on Random Walk Metropolis-Hastings (RWMH) 

sampling algorithms. The results of the study show that the Bayes estimates under minimum expected 

loss function in case of non-informative prior are preferable than the other estimates in approximately 

most of the situations. While, the Bayes estimates under squared error loss function in case of 

informative prior are superior to the other estimates in approximately most of the situations. 

______________________________ 
Keywords:  Power transformation, informative prior, squared error loss function, precautionary loss function, 

Markov Chain Monte Carlo. 

 

1. Introduction 

One of the widely-used statistical distributions in the context of reliability studies is the inverse 

Rayleigh (IR) distribution as introduced by Trayer (1964). Different works have been used for the IR 

distribution for various purposes. For example, Howlader et al. (2008) used a Bayesian approach to 

predict the bounds for Rayleigh and IR lifetime models. Aslam et al. (2009) designed an acceptance 

sampling plan from a truncated life test when the lifetime of an item followed either an IR or a log-

logistic distribution. Soliman et al. (2010) discussed Bayesian and non-Bayesian estimators of 

parameter for the IR distribution based on record values. Sindhu et al. (2013) obtained a Bayesian 

estimator of the IR parameter in left censored data under different loss functions. Bayesian estimators 

of parameter and reliability function for the IR distribution using informative prior (IP) and non-

informative prior (NIP) have been provided by Rasheed and Aref (2017). Recently Ahmed et al. 

(2014) studied the transmuted IR (TIR) distribution and discussed its theoretical properties. The 

cumulative distribution function (cdf) of the TIR distribution is given by 
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  2 2

( ; , ) 1 ;y yF y e e    
     0, 1, 0.y                   (1) 

where   and   are the scale parameters. The probability density function (pdf) corresponding to (1) 

is given by 

  2 23 / /( ; , ) 2 1 2 ; 0, 1, 0.y yf y y e e y                             (2) 

Several generalizations and extended forms of the IR distribution have been provided by several 

authors. For example, modified IR distribution (Khan 2014), transmuted modified IR distribution 

(Khan and King 2015), transmuted exponentiated IR distribution (Haq 2015), Kumaraswamy 

exponentiated IR distribution (Haq 2016), weighted IR distribution (Fatima and Ahmad 2017) and 

odd Fréchet IR distribution (Elgarhy and Alrajhi 2018). More recently, Hassan et al. (2019) introduced 

power TIR (PTIR) with an extra shape parameter as a new generalized form of the TIR distribution. 

The PTIR is obtained depending on the transformation, 1/ ,X Y   where the random variable Y  

follows the TIR distribution (2). The cdf of a random variable X has the PTIR distribution is defined 

as  

  2 2 2

2

( ; , , ) ; , 0, 1, 0,x x xF x e e e x
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                    (3) 

where   and   are scale parameters and   is the shape parameter. The pdf of the PTIR distribution 

corresponding to (3) is given by 
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2 1

2
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The pdf (4) generalizes both the IR and TIR models. They discussed several properties of the 

PTIR distribution and estimated the model parameters through maximum likelihood, least squares and 

percentiles methods. 

This paper concerns with Bayesian estimators of the unknown parameters   and   of the PTIR 

distribution while assuming   to be known. The Bayesian estimators and credible intervals are 
derived by considering informative priors (independent gamma prior) and non-informative priors 
(Jeffrey’s prior). The Bayesian estimators are motivated by four loss functions which are minimum 
expected loss (MEL) function, squared error loss (SEL) function, precautionary loss (PL) function and 
linear exponential (LINEX) loss function. The Markov Chain Monte Carlo (MCMC) method is 
implemented for investigating the accuracy of estimates for different sample sizes. Simulation study 
is performed based on relative absolute biases, estimated risk and the width of credible intervals in 
order to examine and compare the behavior of the parameters’ Bayesian estimates. 

The rest of the paper is organized as follows; Bayesian estimators of   and   based on non-

informative priors under MEL function, SEL function, PL function and LINEX loss function are 

derived in Section 2. In Section 3, Bayesian estimators of   and   based on informative priors under 

four loss functions are derived. Credible intervals of the Bayesian estimators regarding non-

informative and informative priors are investigated in Section 4. In Section 5, the MCMC method is 

conducted based on Random Walk Metropolis-Hastings (RWMH) algorithm to compare the efficiency 

of the resulting estimates. Finally, the simulation results are provided in Section 6. 

 

2. Bayesian Estimators in Case of Non-informative Priors 

In this section Bayesian estimators are obtained assuming the scale parameter   and the shape 

parameter   have uniform distribution while considering the transmuted parameter   is a known 

under MEL function, SEL function, PL function and LINEX loss function. 
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A non-informative prior represented in Jeffrey’s prior is proposed for parameters   and .  

Assuming independence of parameters, hence the joint prior distribution for   and   is given by 

 1

1
( , ) .x  


                  (5) 

The expression for the joint posterior can be written as 
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where the likelihood function of the PTIR is given by 

  2 2(2 1)
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Hence, the joint posterior 1,2 ( , )h x   of the parameters   and 
 
is obtained by using likelihood 

function (6) and joint prior density (5) as follows: 
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Thus, the marginal posterior distributions of   and   take the following forms 
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2.1. Bayesian estimators under MEL function 

The MEL function is suggested by Tummala and Sathe (1978) and it is considered to be a special 

case of the widely used quadratic loss function which is given by 

 2ˆ ˆ( , ) ( ) .MEL                        (7) 

If = 1  in (7), then it reduces to SEL function and for 2 =    it becomes 

2 2ˆ ˆ( , ) ( ) .MEL        

Based on MEL function, the Bayesian estimator of the unknown parameters is given by 

 

1

1

0

2
2

0

 ( ) 
( )ˆ ,
( )

 ( ) 
MEL

h x d
E x

E x
h x d

  





  






 


 



                (8) 

where ˆ
MEL  is the Bayesian estimator for   under MEL function. Considering (8), the Bayesian 

estimator of   under MEL function, say ˆ ,MEL  is obtained as follows:  
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Hence, 
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Similarly, the Bayesian estimator of   under MEL function, say ˆ ,MEL  is given by 
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Hence ˆ
MEL  is obtained as 
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Integrals (9) and (10) can’t be solved analytically, since they have not a closed form. So, the 

RWMH algorithm will be used to obtain the Bayesian estimator of   and   under MEL function. 

 

2.2. Bayesian estimators under SEL function 

The SEL is considered to be one of the most useful symmetric loss functions, it is defined by 
2ˆ ˆ( , ) ( ) .SEL       

The Bayesian estimator of the   under SEL function is given by 
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where ˆ
SEL  is the Bayesian estimator for   under SEL function. Regarding (11), the Bayesian 

estimator of  under SEL function, denoted by ˆ
SEL can be obtained as posterior mean as follows: 
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By similar way, the Bayesian estimator of   under SEL function, denoted by ˆ
SEL , can be 

obtained as posterior mean as follows 
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Integrals (12) and (13) are difficult to obtain, so RWMH is used to compute the Bayes’ estimators. 

 

2.3. Bayesian estimators under PL function 

A very useful and simple asymmetric PL function is defined as follows 
2ˆ( )ˆ( , )  .

ˆPL

 
 




  

The Bayesian estimators of the unknown parameters under PL function is given by 
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where ˆ
PL  is the Bayesian estimator for   under PL function. The Bayesian estimator of   and   

under PL function, say ˆ
PL  and ˆ ,PL  are obtained as follows 
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The integrals involved in (15) and (16) are not solvable analytically and therefore RWMH 

algorithm is applied to obtain ˆ
PL  and ˆ .PL  

 

2.4. Bayesian estimators under LINEX loss function 

Klebanov (1972) introduced the LINEX loss function as asymmetric loss function. The LINEX 

loss function with parameters v  and w  is defined by 
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loss function. The posterior risk corresponding to this loss function is given by 

0

1 1ˆ = ln ln ( ) ,v v
LINEX E e e h x d

v v
   


  

      
 
                                 (17) 

where ˆ
LINEX  is the Bayesian estimator for   under LINEX loss function. Based on (17), the Bayesian 

estimator of   under LINEX loss function, denoted by ˆ ,LINEX  can be obtained as follows 
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Similarly, the Bayesian estimator of   under LINEX loss function, denoted by ˆ ,LINEX  can be 

obtained as follows 
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The integrals (18) and (19) are very complicated to obtain, so the RWMH algorithm will be 

utilized to obtain ˆ
LINEX  and ˆ .LINEX  

 

3. Bayesian Estimator in Case of Informative Priors 

In this section Bayesian estimators will be obtained assuming the scale parameter   and the shape 

parameter   have gamma priors while considering the transmuted parameter   is known. 

Following Rasheed and Aref (2017) and Prakash (2013), the gamma priors for   and    are 

suggested with the following pdfs 
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where 1 2 1, ,a a b  and 2b  are the hyper parameters. Assuming independence of parameters, the joint 

prior distribution of parameters   and   can be obtained by combining (20) and (21) to be 
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where ia  and ib  are assumed to be known for 1,2.i   The joint posterior distribution of parameters 

  and   is defined as follows 
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Hence, 3,4 ( , )h x   can be obtained by using likelihood function (6) and joint prior (22) as 

follows 
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Hence, the marginal posterior distributions of  and   take the following forms 
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3.1. Bayesian estimators under MEL function 

Here, the Bayesian estimator of   and   under MEL function are derived. Considering (8), the 

Bayesian estimator of   denoted by MEL  is obtained as follows 
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By similar way, the Bayesian estimator of   denoted by MEL  is obtained as follows 
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The integrals (23) and (24) are very hard to obtain, so the RWMH algorithm is employed to get 

MEL  and .MEL  

 

3.2. Bayesian estimators under SEL function 

Here, the Bayesian estimator of   and   under SEL function are derived. Hence, based on (11), 

the Bayesian estimator of   under the SEL function, say SEL  is obtained as follows 
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Similarly, the Bayesian estimator of   under the SEL function, say SEL  is given by 
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The integrals (25) and (26) are very hard to be solved analytically, so the RWMH algorithm will 

be used. 

 

3.3. Bayesian estimators under PL function 

Based on (14), the Bayesian estimators of   and   under the PL function, denoted by PL  and 

PL  are obtained as follows 
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By similar way, PL  is as follows: 
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Integrals (27) and (28) are obtained via RWMH algorithm.

  

3.4. Bayesian estimators under LINEX loss function 

The Bayesian estimators of   and   are obtained under LINEX loss function therefore, 

depending on (17), the Bayesian estimator of ,  denoted by LINEX  is obtained as follows 
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By similar way, the Bayesian estimator of ,  denoted by LINEX  is given by 
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(30)

 

The integrals (29) and (30) can’t be solved analytically, so the RWMH algorithm will be used. 

 

4. Credible Intervals 

Credible interval (CI) is an interval within which an unobserved parameter value falls with a 

particular subjective probability. It is an interval in the domain of a posterior probability distribution 

or a predictive distribution. In the following sub-sections, the CI of   and    is obtained under 

informative and non-informative priors. 
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4.1. Credible interval under non-informative prior 

The CI of   and   is obtained under non-informative. The CI of ,  denoted by ˆ
CI  is obtained 

as follows 
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Similarly, the CI of   under non-informative prior, denoted by ˆ
CI  can be obtained as follows 
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The integrals (31) and (32) are obtained via RWMH algorithm. 

 

4.2. Credible interval under informative prior   

The CI estimators of   and   under informative prior are obtained. The CI of  denoted by 

CI  is obtained as follows 
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Similarly, the CI of   under informative prior, denoted by CI  can be obtained as follows 
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The integrals (33) and (34) are very hard to be solved analytically, so the RWMH algorithm will be 

used. 
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5. Simulation Study 

A numerical study is done to examine and compare the behavior of the different Bayesian 

estimates for the PTIR distribution. The Bayesian estimators are obtained using Jeffery’s and gamma 

priors under MEL function, SEL function, PL function and LINEX loss function. The major difficulty 

in the implementation of the Bayesian procedure is that of obtaining the posterior distribution. The 

RWMH algorithm is one of the most famous subclasses of MCMC method in Bayesian literature to 

simulate the deviates from the posterior density and produce the good approximate results.  

The following steps are designed as: The MCMC simulations are performed for different sample 

sizes n  = 10, 20, 30, 50 and 100 under MEL function, SEL function, PL function and LINEX loss 

function. Let 0.7  and select   and   as (1, 0.5), (0.5, 1), (1, 1), (1, 1.5), (1.5, 1) and (1.5, 1.5). 

The hyper-parameters for gamma priors are selected as 1a =0.1, 2a =0.3, 1b =0.2, 2b =0.4 and v = −2. 

Each chain is performed for NR = 5000, where NR = number of replications. The performance of the 

estimates is evaluated through the relative absolute bias (RAB), estimated risks (ERs) and width for 

CI of the Bayesian estimates where these measures are computed as follows: 

 
2

1
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ER(estimator) = ,
NR

NR

i



 
estimator true value

RAB(estimator) = ,
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and  Width (CI)= Upper credible interval bound –Lower credible interval bound. 

RWMH algorithm will be implemented via R 3.4.3 program as follows:  Let *g( )  be defined 

as 
* ,     

where *  is the initial value given to start the program,   is a random value for the estimator given 
* ,  q   where q  is a probability density symmetric about zero. According to that definition,  

*g( ) ( ),q    

and *g( ) ( ) ( ).q q       

Because *g( )   is symmetric in   and *  the RWMH acceptance ratio *( )    simplifies to 
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The RWMH algorithm proceeds as follows: 

Step 1 Initialize a starting parameter value 0.3,o  0.5o   and determine the number of 

samples .N  

Step 2 Simulate q   and draw a candidate parameter *  from ( , )g   which is the proposal 

density considering * .     

Step 3 Compute 
*

* ( )
( ) min ,1 .
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  

 
 



Amal Soliman Hassan et al. 403 

Step 4 Generate u  from uniform (0, 1). 

Step 5 If *( )u     then, set *i  otherwise, set .i   

Step 6 Set 1i i   then return to Step 2 and repeat the previous steps N  times. 

Parts of simulated results are listed in Tables 1 to 4 and represented through Figures 1 to 4. 

From the Tables 1 and 2 and Figures 1 and 2, the following observations can be detected about 

the behavior of Bayes estimates under different loss functions in case of informative prior as follows: 

The RAB and ER for Bayesian estimates of , 
 
under non-informative decrease as the sample 

sizes increase for all sets of parameters under MEL function, SEL function, PL function and LINEX 

loss function (see Figure1). 
 

(a) RAB of Bayes estimates under 

LINEX loss function  

(b) ER of Bayes estimates under MEL 

loss function  

 
Figure 1 Bayes estimates based on non-informative prior 

 
The width of the Bayesian CI under non-informative priors for estimates of   is shorter than the 

corresponding Bayesian CI for estimates of   (see Tables 1 and 2). 

The RABs and ERs of ˆ
MEL  and ˆ

MEL  have the smallest values followed by ˆ
SEL  and ˆ ,SEL  then 

by ˆ
PL  and ˆ

PL  and finally by ˆ
LINEX  and ˆ

LINEX  in approximately most of the cases (see Tables 1 

and 2). 

History plots for different estimates of 
 
and   are represented in case of non- informative priors 

(see for example; Figure 2 shows the case of ˆ
MEL  and ˆ

MEL  at 10n   for 1, 0.5).    The plots 

of chains for parameters   and   look like a horizontal band with no long upward or downward 

trends which are an indicators to convergence. 

From Tables 3 and 4 and Figures 3 and 4, we observe the following about the behavior of Bayes 

estimates under different loss functions in case of informative prior. 

The RAB and ER for Bayesian estimates of ,   under MEL function, SEL function, PL function  

and LINEX loss function decrease as the sample sizes increase for all sets of parameters (see for 

example; Figure 3). 
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  
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          Iteration                          Iteration 

Figure 2 ˆ
MEL  and ˆ

MEL  at 10n   for 1,  0.5    in case of non- informative priors 

 

(a) RAB of Bayes estimates under 
SEL loss function  

(b) ER of Bayes estimates under PL 
loss function  

 
Figure 3 Bayes estimates based on informative prior 

 

The width of the Bayesian credible intervals under informative priors for estimates of   is 

shorter than the corresponding Bayesian credible intervals for estimates of   (see Tables 3 and 4). 

The RABs and ERs of SEL  and SEL
 
take the smallest values followed by MEL  and ,MEL  then 

by PL  and PL  and finally by LINEX  and LINEX  in approximately most of  the cases (see Tables 3 

and 4). 

History plots of different estimates of  and    
are represented in case of informative priors (see 

for example; Figure 4 shows the case of PL and PL  at 20n   for 1.5, 1)    with no long 

upward or downward trends which are an indicators to convergence. 

 

6.    Conclusions 

In this paper, the Bayesian estimators of the PTIR distribution concerning parameters   and   

based on informative and non-informative priors are considered. The MEL function, PL function and 

LINEX are employed as asymmetric loss functions, while we use the SEL function as symmetric loss 

function. Based on numerical study, it is observed that the RAB and ER for Bayesian estimates of   

take the smallest values compared to the RAB and ER for Bayesian estimates of   under informative 

and non-informative priors in approximately most of the situations. Moreover the width of the 
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Bayesian credible intervals under informative and non-informative priors for estimates of   is shorter 

than the corresponding Bayesian credible intervals for estimates of   under informative and non- 

informative priors in approximately most of the situations. 
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Figure 4 PL  and PL  at 20n   for 1.5, 1    in case of informative priors 
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Table 1 Bayes estimates, RAB, ER and width of credible intervals based on Jeffery’s prior for 1.5,  1  
 

Parameters Sample size 
10 20 30 50 100 

β θ β θ β θ β θ β θ 

MEL 

Estimates 2.1059 2.1188 1.0414 1.4075 1.4000 1.2701 1.5928 0.8895 1.4790 0.9232 

RAB 0.4040 1.1188 0.3057 0.4075 0.0667 0.2701 0.0619 0.1105 0.0140 0.0768 

ER 3.68E-06 1.25E-05 2.11E-06 1.66E-06 1.00E-07 7.30E-07 8.63E-08 1.22E-07 4.41E-09 5.90E-08 

Width 2.7828 2.9123 1.2175 1.6939 1.5456 1.2729 1.8123 0.6627 1.4713 0.5829 

SEL 

Estimates 2.2139 1.8669 1.1722 1.3302 1.2828 1.3114 1.6686 0.7747 1.4013 0.8037 

RAB 0.4760 0.8669 0.2185 0.3302 0.1448 0.3114 0.1124 0.2253 0.0658 0.1963 

ER 5.10E-06 7.52E-06 1.08E-06 1.09E-06 4.72E-07 9.71E-07 2.85E-07 5.08E-07 9.76E-08 3.86E-07 

Width 3.2139 2.2730 1.4007 1.6499 1.5043 1.4328 1.9464 0.6750 1.6125 0.5783 

PL 

Estimates 2.4098 2.3567 1.1385 2.0621 1.8062 1.9025 1.6688 1.8361 1.5494 1.5664 

RAB 0.6066 1.3567 0.2410 1.0621 0.2041 0.9025 0.1125 0.8361 0.0329 0.5664 

ER 8.29E-06 1.84E-05 1.31E-06 1.13E-05 9.38E-07 8.15E-06 2.85E-07 7.00E-06 2.44E-08 3.21E-06 

Width 3.5304 3.5528 1.6010 2.8601 2.3927 2.4387 2.4326 2.2222 1.8245 1.7799 

LINEX 

Estimates 2.9872 2.2047 1.0495 1.4787 1.7025 0.6946 1.3274 1.2443 1.3716 0.8545 

RAB 0.9915 1.2047 0.3004 0.4787 0.1350 0.3054 0.1151 0.2443 0.0856 0.1455 

ER 2.21E-05 1.45E-05 2.03E-06 2.29E-06 4.10E-07 9.33E-07 2.98E-07 5.97E-07 1.65E-07 2.12E-07 

Width 4.3784 3.0078 1.4576 1.4107 2.0892 0.4905 1.4381 1.0934 1.5516 0.6257 
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Table 2 Bayes estimates, RAB, ER and width of credible intervals based on Jeffery’s prior for 1,  1.5    

Parameters Sample size 
10 20 30 50 100 

β θ β θ β θ β θ β θ 

MEL 

Estimates 1.5210 2.3318 1.2877 1.0139 1.2556 1.2320 0.8770 1.6885 0.9210 1.4018 

RAB 0.5210 0.5545 0.2877 0.3241 0.2556 0.1787 0.1230 0.1257 0.0790 0.0655 

ER 2.72E-06 6.92E-06 8.29E-07 2.37E-06 6.54E-07 7.19E-07 1.51E-07 3.56E-07 6.25E-08 9.65E-08 

Width 2.3452 2.7302 1.5709 1.2212 1.5915 1.2279 0.9059 1.9315 0.8729 1.3230 

SEL 

Estimates 1.5648 3.3525 1.4929 0.9641 1.2989 1.0083 0.7875 1.2061 1.0994 1.3687 

RAB 0.5648 1.2350 0.4929 0.3573 0.2989 0.3278 0.2125 0.1960 0.0994 0.0875 

ER 3.19E-06 3.44E-05 2.43E-06 2.88E-06 8.94E-07 2.42E-06 4.52E-07 8.65E-07 9.89E-08 1.73E-07 

Width 2.6305 6.3393 1.8875 0.9233 1.5620 0.7796 0.8445 1.1560 1.2111 1.4754 

PL 

Estimates 1.8008 4.0122 1.7575 3.3731 1.4360 2.9344 1.2414 2.3327 1.1590 2.0298 

RAB 0.8008 1.6748 0.7575 1.2487 0.4360 0.9562 0.2414 0.5551 0.1590 0.3532 

ER 6.42E-06 6.32E-05 5.74E-06 3.51E-05 1.90E-06 2.06E-05 5.83E-07 6.94E-06 2.53E-07 2.81E-06 

Width 3.1285 8.2775 3.2468 5.0852 1.8768 3.9595 1.5358 3.0313 1.5192 2.5778 

LINEX 

Estimates 3.0080 7.3248 1.4456 2.4289 1.3742 1.0723 0.7747 1.7893 1.1444 1.3017 

RAB 2.0080 3.8832 0.4456 0.6192 0.3742 0.2851 0.2253 0.1928 0.1444 0.1322 

ER 4.04E-05 3.40E-04 1.99E-06 8.64E-06 1.40E-06 1.83E-06 5.08E-07 8.38E-07 2.09E-07 3.94E-07 

Width 4.6589 14.5955 1.8282 3.1534 1.8883 1.2149 0.7187 1.7776 1.2718 1.1696 
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Table 3 Bayes estimates, RAB, ER and width of credible intervals based on gamma prior for 1,  1.5    

Parameters Sample size 
10 20 30 50 100 

β θ β θ β θ β θ β θ 

MEL 

Estimates 1.4461 0.6928 0.7985 1.1985 1.1319 1.3123 1.3284 0.0798 0.9542 1.4228 

RAB 0.4461 0.5381 0.2015 0.2010 0.1319 0.1251 0.0798 0.1144 0.0458 0.0515 

ER 1.99E-06 6.52E-06 4.06E-07 9.10E-07 1.74E-07 3.53E-07 6.37E-08 2.95E-07 2.10E-08 5.97E-08 

Width 1.6600 0.7166 0.8232 1.1482 1.4732 1.4222 0.8576 1.1633 0.9520 1.3429 

SEL 

Estimates 1.3596 3.2065 1.2411 1.2358 1.1107 1.2588 0.9085 1.3655 1.4626 0.9445 

RAB 0.3596 1.1376 0.2411 0.1761 0.1107 0.1608 0.0915 0.0897 0.0249 0.0555 

ER 1.29E-06 2.91E-05 5.82E-07 6.99E-07 1.23E-07 5.82E-07 8.38E-08 1.81E-07 1.40E-08 3.09E-08 

Width 1.5360 4.1606 1.4789 1.7802 1.2649 1.1934 0.9899 1.2845 1.3281 0.6239 

PL 

Estimates 1.4782 3.3590 1.1581 2.7410 1.1078 2.2983 1.0646 2.0457 1.0403 2.0191 

RAB 0.4782 1.2393 0.1581 0.8273 0.1078 0.5322 0.0646 0.3638 0.0403 0.3461 

ER 2.29E-06 3.46E-05 2.50E-07 1.54E-05 1.16E-07 6.38E-06 4.18E-08 2.98E-06 1.63E-08 2.70E-06 

Width 2.1255 6.0800 1.4452 3.6384 1.3679 3.4077 1.0529 2.4579 1.6146 2.4984 

LINEX 

Estimates 1.5483 0.9437 0.7428 2.0350 1.2205 1.1806 1.1636 1.7199 0.8891 1.3186 

RAB 0.5483 0.3709 0.2572 0.3566 0.2205 0.2130 0.1636 0.1466 0.1109 0.1209 

ER 3.01E-06 3.10E-06 6.62E-07 2.86E-06 4.87E-07 1.02E-06 2.68E-07 4.84E-07 1.23E-07 3.29E-07 

Width 1.8221 0.9502 0.7725 2.6919 1.2713 1.1663 1.2526 1.6411 0.7567 1.1209 
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Table 4 Bayes estimates, RAB, ER and width of credible intervals based on gamma prior for 1.5,  1.5    

Parameters Sample size 
10 20 30 50 100 

β θ β θ β θ β θ β θ 

MEL 

Estimates 1.8731 2.2299 1.8203 1.1069 1.2596 1.2575 1.6613 1.2848 1.3701 1.2889 

RAB 0.2488 0.4866 0.2135 0.2621 0.1603 0.1617 0.1076 0.1435 0.0866 0.1408 

ER 1.39E-06 5.33E-06 1.03E-06 1.55E-06 5.79E-07 5.89E-07 2.61E-07 4.64E-07 1.69E-07 4.46E-07 

Width 2.8469 2.9482 2.5629 1.0800 1.5197 1.3014 2.0691 1.2291 1.4065 1.1533 

SEL 

Estimates 1.8312 1.1454 1.3009 1.2069 1.4033 1.3142 1.4214 1.3339 1.4522 1.3474 

RAB 0.2208 0.2364 0.1328 0.1954 0.0645 0.1238 0.0524 0.1107 0.0319 0.1017 

ER 1.10E-06 1.26E-06 3.97E-07 8.60E-07 9.37E-08 3.45E-07 6.18E-08 2.76E-07 2.29E-08 2.33E-07 

Width 2.4876 1.3677 1.5095 1.4238 1.7072 1.3410 1.6593 1.2647 1.5593 1.2081 

PL 

Estimates 1.9266 3.5632 1.7552 2.5262 1.6731 2.4807 1.5625 2.3559 1.5575 2.2627 

RAB 0.2844 1.3754 0.1701 0.6842 0.1154 0.6538 0.0417 0.5706 0.0383 0.5084 

ER 1.82E-06 4.26E-05 6.52E-07 1.05E-05 3.00E-07 9.63E-06 3.91E-08 7.33E-06 3.31E-08 5.82E-06 

Width 3.0007 6.7965 2.4589 4.0046 1.8976 2.7728 1.8460 2.7747 1.6293 2.5734 

LINEX 

Estimates 3.1724 3.4663 2.2971 2.3576 1.2180 1.1939 1.2397 1.2158 1.3470 1.2618 

RAB 1.1149 1.3109 0.5314 0.5717 0.1880 0.2041 0.1735 0.1894 0.1020 0.1588 

ER 2.80E-05 3.87E-05 6.36E-06 7.36E-06 7.96E-07 9.38E-07 6.78E-07 8.08E-07 2.34E-07 5.68E-07 

Width 4.8664 5.3489 3.2854 3.6969 1.5452 1.13702 1.4693 1.2272 1.3936 1.1652 
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