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Abstract

In this article, Bayesian estimators of the population parameters of the power transmuted inverse
Rayleigh (PTIR) distribution are discussed. The posteriors distribution of the PTIR distribution based
on informative and non-informative priors represented by gamma and Jeffery’s priors, respectively,
are derived. Four loss functions, namely minimum expected, squared error, precautionary and linear
exponential are considered. The highest posterior density credible interval is constructed by using the
Markov Chain Monte Carlo (MCMC) method. Simulation study is performed to examine and compare
the Bayes estimates using MCMC method based on Random Walk Metropolis-Hastings (RWMH)
sampling algorithms. The results of the study show that the Bayes estimates under minimum expected
loss function in case of non-informative prior are preferable than the other estimates in approximately
most of the situations. While, the Bayes estimates under squared error loss function in case of
informative prior are superior to the other estimates in approximately most of the situations.

Keywords: Power transformation, informative prior, squared error loss function, precautionary loss function,
Markov Chain Monte Carlo.

1. Introduction

One of the widely-used statistical distributions in the context of reliability studies is the inverse
Rayleigh (IR) distribution as introduced by Trayer (1964). Different works have been used for the IR
distribution for various purposes. For example, Howlader et al. (2008) used a Bayesian approach to
predict the bounds for Rayleigh and IR lifetime models. Aslam et al. (2009) designed an acceptance
sampling plan from a truncated life test when the lifetime of an item followed either an IR or a log-
logistic distribution. Soliman et al. (2010) discussed Bayesian and non-Bayesian estimators of
parameter for the IR distribution based on record values. Sindhu et al. (2013) obtained a Bayesian
estimator of the IR parameter in left censored data under different loss functions. Bayesian estimators
of parameter and reliability function for the IR distribution using informative prior (IP) and non-
informative prior (NIP) have been provided by Rasheed and Aref (2017). Recently Ahmed et al.
(2014) studied the transmuted IR (TIR) distribution and discussed its theoretical properties. The
cumulative distribution function (cdf) of the TIR distribution is given by
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F(;0,)=¢® (14+2-2¢"); 0>0,]4|<1, y > 0. )

where 6 and A are the scale parameters. The probability density function (pdf) corresponding to (1)
is given by
(50,2 =20y7¢" (14 2-22¢7"); 0> 0,4/ <1,y > 0. )
Several generalizations and extended forms of the IR distribution have been provided by several
authors. For example, modified IR distribution (Khan 2014), transmuted modified IR distribution
(Khan and King 2015), transmuted exponentiated IR distribution (Haq 2015), Kumaraswamy
exponentiated IR distribution (Haq 2016), weighted IR distribution (Fatima and Ahmad 2017) and
odd Fréchet IR distribution (Elgarhy and Alrajhi 2018). More recently, Hassan et al. (2019) introduced
power TIR (PTIR) with an extra shape parameter as a new generalized form of the TIR distribution.
The PTIR is obtained depending on the transformation, X =Y"#, where the random variable Y
follows the TIR distribution (2). The cdf of a random variable X has the PTIR distribution is defined
as

-6 -6 -20

F(x;0,,B) = (erT” +Ae”” —;LexT”); 6,8>0,]2 <1, x>0, 3)
where 6 and A are scale parameters and f is the shape parameter. The pdf of the PTIR distribution
corresponding to (3) is given by

-6 -0
f(x;0,4,8) = 22% e’ (1 +A-24e"" ); 6,8>0,|A|<1,x>0. 4)
X

The pdf (4) generalizes both the IR and TIR models. They discussed several properties of the
PTIR distribution and estimated the model parameters through maximum likelihood, least squares and
percentiles methods.

This paper concerns with Bayesian estimators of the unknown parameters € and £ of the PTIR
distribution while assuming A to be known. The Bayesian estimators and credible intervals are
derived by considering informative priors (independent gamma prior) and non-informative priors
(Jeffrey’s prior). The Bayesian estimators are motivated by four loss functions which are minimum
expected loss (MEL) function, squared error loss (SEL) function, precautionary loss (PL) function and
linear exponential (LINEX) loss function. The Markov Chain Monte Carlo (MCMC) method is
implemented for investigating the accuracy of estimates for different sample sizes. Simulation study
is performed based on relative absolute biases, estimated risk and the width of credible intervals in
order to examine and compare the behavior of the parameters’ Bayesian estimates.

The rest of the paper is organized as follows; Bayesian estimators of & and f based on non-

informative priors under MEL function, SEL function, PL function and LINEX loss function are
derived in Section 2. In Section 3, Bayesian estimators of & and £ based on informative priors under
four loss functions are derived. Credible intervals of the Bayesian estimators regarding non-
informative and informative priors are investigated in Section 4. In Section 5, the MCMC method is
conducted based on Random Walk Metropolis-Hastings (RWMH) algorithm to compare the efficiency
of the resulting estimates. Finally, the simulation results are provided in Section 6.

2. Bayesian Estimators in Case of Non-informative Priors
In this section Bayesian estimators are obtained assuming the scale parameter € and the shape
parameter £ have uniform distribution while considering the transmuted parameter A is a known

under MEL function, SEL function, PL function and LINEX loss function.
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A non-informative prior represented in Jeffrey’s prior is proposed for parameters € and f.

Assuming independence of parameters, hence the joint prior distribution for € and S is given by

1
m(0,0|x)=—. 5
(0.0 = % )
The expression for the joint posterior can be written as
L8, B|x) 7,(6, B|x)
h1,z o, ﬂ|£) = | 1 | 5
J,1,100.x)7,0.5|x) d6d p

where the likelihood function of the PTIR is given by

-0

L=(26p)" Hx-<2/’”> g (1+4 21@7 ) (6)

Hence, the joint posterior #,,(6, B |§) of the parameters 6 and £ is obtained by using likelihood
function (6) and joint prior density (5) as follows:
-0

-9
hl,z(é’,ﬂIz)océ’”’lﬂ”"H meanla (1+/1 20e" )

i=1
Thus, the marginal posterior distributions of 8 and £ take the following forms
-0

-0
h(0)x) = K@“jﬂ"‘ X B (1+,1 22e" )d,B

i=1

and
-6

79
h(Blx)=Kp" l1—[x*<“”*”j¢9"11—[e (1+1 22e" )de,

where
6

0 o0 79
K'=[[or'p" lnx*zﬁ‘*” d (1+1 22e" )d&dﬁ
00

i=l1

2.1. Bayesian estimators under MEL function
The MEL function is suggested by Tummala and Sathe (1978) and it is considered to be a special
case of the widely used quadratic loss function which is given by

L (9.9) = (9= 9. ©)
If =1 in (7), then it reduces to SEL function and for ¢ = ¢ it becomes
01 (9.9) = 92 (9- 9.
Based on MEL function, the Bayesian estimator of the unknown parameters is given by
9" h(9|x) d3

ME T B9 |£) - ]3194 h(19|£) 49
0

) ®)

where .9MEL is the Bayesian estimator for ¢ under MEL function. Considering (8), the Bayesian

estimator of @ under MEL function, say HME is obtained as follows:

>
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T&‘]hl (0]x)d6

G
MEL — — T w N
Hence,
o0 00 i)
[[op- ln XA (1+,1 22" ]dod p
O = i: £ )
”.9" s 11—[ X P e (1+,1 21e" )d&dﬂ
00
Similarly, the Bayesian estimator of # under MEL function, say ,BMEL, is given by
. B h,(B|x)d p
B _ E(p 1|£) _ }[ ’ |
MEL — -2 T » N
E
FR ( pnploap
0
Hence ﬁMEL is obtained as
[[B2o- T 50 (1+,1 22¢"" ) dod p
B =2 = (10)

= :
”ﬂ” 30"11—[{(2/’*” o (1+/1 22e" )d&dﬂ

Integrals (9) and (10) can’t be solved analytically, since they have not a closed form. So, the
RWMH algorithm will be used to obtain the Bayesian estimator of 6 and £ under MEL function.

2.2. Bayesian estimators under SEL function
The SEL is considered to be one of the most useful symmetric loss functions, it is defined by

Uy (%P = (I-9)*.

The Bayesian estimator of the ¢ under SEL function is given by
3y, = E(9]x) = [ 9h(I|x)d 8, (11)
0

where 9SEL is the Bayesian estimator for $ under SEL function. Regarding (11), the Bayesian

estimator of € under SEL function, denoted by d,,, can be obtained as posterior mean as follows:
,g )
"B 11_[ x;, e o (1+A 24¢"" o dp

o]
_ ‘('). i=1
SEL )

,,9 :
J'J'en g 1Hx—(2ﬁ+1> i (1+/1 22" )d¢9 dp

S 8

>

(12)

By similar way, the Bayesian estimator of £ under SEL function, denoted by /?SEL , can be

obtained as posterior mean as follows
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—9

B —6/
.[ﬁ O X7 e (1+l 22e" )dﬁ dp
0

i= ]

S ey 8

,BSEL = (13)

—9

- —H
J'g" lﬂnln A o (1+/1 24e" )d@dﬁ
0

i=l1

S =38

Integrals (12) and (13) are difficult to obtain, so RWMH is used to compute the Bayes’ estimators.

2.3. Bayesian estimators under PL function
A very useful and simple asymmetric PL function is defined as follows

EPL(‘galg): M

The Bayesian estimators of the unknown parameters under PL function is given by

={E@ ) = /Tszh(gh)dg, (14)

where @PL is the Bayesian estimator for ¢ under PL function. The Bayesian estimator of 8 and S

under PL function, say éPL and ﬁ’PL, are obtained as follows

-0
J-J'Hmﬂn H LA (1+/1 226" )dﬂdﬂ
Oy, = | 7 7 ’ "
J‘J'gq ﬂn—ln ~2p+1) Vp(l—i—ﬂ—zﬂ,ex}/:)dgdﬂ

and

—:9

-6
B X e (1+z 20e" ﬂ)d&dﬁ

i=l1

8 |[o=—38
8 |o—=38

ﬂAPL = (16)

-0

,g :
[Joms T e i 222267 Daoap

00 i=1
The integrals involved in (15) and (16) are not solvable analytically and therefore RWMH
algorithm is applied to obtain 9PL and ﬁPL.

2.4. Bayesian estimators under LINEX loss function
Klebanov (1972) introduced the LINEX loss function as asymmetric loss function. The LINEX
loss function with parameters v and w is defined by
e (85 lé) = WI:eV(léﬂg) - V(g -9)- 1:| >

where, w> 0 and v # 0. The constant v determines the direction and shape (degree of symmetry) of
loss function. The posterior risk corresponding to this loss function is given by

9, = —%lnE[e’”q = —%mﬁe”h(s@}d& (17)
0

where ‘§L1NEX is the Bayesian estimator for ¢ under LINEX loss function. Based on (17), the Bayesian

estimator of @ under LINEX loss function, denoted by éL can be obtained as follows

INEX >
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0w -0 79
| J‘J’Hn 1 pn— 1efv9H xf(zpu) 57 (l-i—l 2 1e" )d@dﬂ

00 = . (18)
0

—In
v

eLlNEX = 0

- -0
Jen lﬁ" IH x*(zﬂ“) X (1.’.1 21@ )d@dﬂ
0

i=1

Similarly, the Bayesian estimator of £ under LINEX loss function, denoted by ﬁ’L,NEX, can be

obtained as follows

79
| jjg'i 1 n-1 ’VﬂH xf(zﬁ“) (1+l 2e" )d@dﬂ
Brwex=——In 9 _9 ' (9
» A =3
J‘J'en g IH x PP 1 A~ 2e" dedp

The integrals (18) and (19) are very complicated to obtain, so the RWMH algorithm will be

utilized to obtain éuszx and BL,NEX.

3. Bayesian Estimator in Case of Informative Priors
In this section Bayesian estimators will be obtained assuming the scale parameter € and the shape
parameter £ have gamma priors while considering the transmuted parameter A is known.
Following Rasheed and Aref (2017) and Prakash (2013), the gamma priors for € and f are

suggested with the following pdfs

7,(0)a,,b,) = T 9>0,a,>0,b, >0, (20)

1

and

a

I'(a,)

where a,a,,b, and b, are the hyper parameters. Assuming independence of parameters, the joint

my(Blay.b,) = Bele ™ p>0,a,>0,b, >0, 1)

prior distribution of parameters € and S can be obtained by combining (20) and (21) to be

be b
I'(a)(a,)
where a, and b, are assumed to be known for i =1,2. The joint posterior distribution of parameters
6 and f is defined as follows

z, (9 ,B| ) — eal 7118112 7leflqﬁeszﬂ , (22)

L(6.8) x) 7,0, B|x)
(6.8 x)7,0.8|x) d0d g’

Hence, h,,(0,8 |§) can be obtained by using likelihood function (6) and joint prior (22) as

34(9 ﬂ| X)=
J ],

follows
-0

70
34(9 ﬂ| x)OC €u1+n lﬂa +n-1 —b,é) bzﬂl—[ x—(Z/JH) x7 (1_,’_1 216 )

Hence, the marginal posterior distributions of #and £ take the following forms
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—6

-0
h (9|x) Cealﬂz 1 _-b6o J.ﬂaZJrn 1 7b2ﬁ1—‘[x7(2ﬁ+1) x (1+ﬂ_2le‘2/j )dﬂ,

and

-0

- -0
Ay N 0 o 2P 25
h4(ﬁ|£): Cﬂaz+l1 le bzﬁH X; (2ﬁ+l)"-9al+n le b6 e (1+l—2ﬂ,e ;
i=1 0

i=l1

)d&,

where
—9 -0

C = J‘J‘Ha,w 1 az+n 1 71;,9 bzﬂH —(2ﬂ+1) x? (1_’_/1_2165”
00

)dedﬁ.

i=l1

3.1. Bayesian estimators under MEL function
Here, the Bayesian estimator of § and f under MEL function are derived. Considering (8), the

Bayesian estimator of @ denoted by 6,,, is obtained as follows

-0

00 00 79
@ ”9“1” 2 gratnl gt ”zﬁH X CAD (1+,1 24e" )d@dﬁ
n E i=1
MEL = E(H’z |x) = ii ,9 6 23)
z J""ealJrn Xﬂaz+n 1 _-b6- bzﬂH x7(2ﬁ+l) x (1_"_1 zﬂ/e )d@dﬂ
00 i=1
By similar way, the Bayesian estimator of £ denoted by EMEL is obtained as follows
0 0 n -6 7'9 )
E(ﬂfl |x) J‘J‘ﬁaz+n720al+nfle—bl<97bzﬂl—‘[ x;(zﬁﬂ)ex? (1+/1 2/18 d0dp
n = 00 i=1
= 24
ﬂMEL E(ﬂ,z |£) o 0 ( )

-0
J~J’ﬂg +n— 39a1+n 1 _-b0- [Jz/iH —(2ﬂ+1) X7 (1+/1 2/1@ 26 )d@dﬂ

The integrals (23) and (24) are very hard to obtain, so the RWMH algorithm is employed to get

gMEL and BMEL'

3.2. Bayesian estimators under SEL function
Here, the Bayesian estimator of 6 and S under SEL function are derived. Hence, based on (11),

the Bayesian estimator of @ under the SEL function, say 6, is obtained as follows

0 w0 70 7,9
; [[orpetet BT e (1+,1 22e" )dedﬁ
O, J Oh: (9|x) do = OOOOOO = -6 79 (25)
0 J'J'ga,w 1 a2+n 1 7b19 bz,BH x—(zﬂﬂ) x? (1_'_1 24e” )dﬁdﬂ
00 i=1
Similarly, the Bayesian estimator of # under the SEL function, say BSEL is given by
0 ® -0 76
B J-J.ﬂaz+n0a,+n 1_-b6- bz,BH -2+, X (1_'_1 20" )dﬁdﬂ
Bsew = | B h(Blx) d =22 = = (26)
0

0

00 00 i
J’J‘ga,m 1 azm Lph0- bzﬁl—[ -2Ah, 7 (l+ﬁ 206" ﬂ)d@dﬂ
00

i=1
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The integrals (25) and (26) are very hard to be solved analytically, so the RWMH algorithm will
be used.

3.3. Bayesian estimators under PL function
Based on (14), the Bayesian estimators of @ and B under the PL function, denoted by 8,, and

BPL are obtained as follows

-0

0 o0 79
J‘J‘ea,+»z+1ﬂaz+n 1706~ b,BH -2pn, x? (1+ﬁ, 20e" )dﬁdﬂ

= i=1

Op, = Zz ) g 27)
Jjga,+n IIBazﬂz le bo— bzﬂH —(2ﬂ+1) A (1_,’_1 216 )d&dﬁ
00 i=l

By similar way, EPL is as follows:

0 o0 =0 79 )
J'J'ﬂa +n+19a|+n 1 _-bo- b7,BH —(2ﬂ+1) x? (1+ﬂ, Zﬂe dlgdﬂ

IBPL = | — (28)

-0 H
J.J.6a]+n 1 a2+n 1 7}7,49 bzﬂH —(2ﬂ+l) A (1_,’_21 216 )d@dﬁ

Integrals (27) and (28) are obtained via RWMH algorithm.

3.4. Bayesian estimators under LINEX loss function
The Bayesian estimators of # and [ are obtained under LINEX loss function therefore,

depending on (17), the Bayesian estimator of €, denoted by ngNEX is obtained as follows

0 —6’ —19
J‘ 9u1+n -1 pay+n-1 —blﬂ—lzzﬁ—vﬁn —(2/J+1) x (1+ﬂ, 2/1@ )d&dﬂ
0

o0
0 i=1
0
0

1

§L1NEX = _;ln . = ,9 (29)
J‘Haﬁrn 1 pay+n-1 7b\¢9 bzﬂH x*(lﬂﬂ) x (1_"_1 22@ )dgdﬂ
0 i=1
By similar way, the Bayesian estimator of f, denoted by £, ., is given by
0 0 7‘9 ( 7‘9 )
Jjgal+n 1 pay+n-1 7b‘¢9 b, f— vﬂH x7(2ﬂ+1) x 1+/’i 22@ d@dﬁ
Brnex =——In| 22 = 0 (30)
S
0

. —f)
J.Hal+n 1 a,+n 1 —hlf) l:,/)‘l—I —(2/)‘+1) \f (1_,’_/1 218 )d@dﬂ
0

i=l1

The integrals (29) and (30) can’t be solved analytically, so the RWMH algorithm will be used.

4. Credible Intervals

Credible interval (CI) is an interval within which an unobserved parameter value falls with a
particular subjective probability. It is an interval in the domain of a posterior probability distribution
or a predictive distribution. In the following sub-sections, the CI of & and £ is obtained under

informative and non-informative priors.
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4.1. Credible interval under non-informative prior
The Clof 6 and g is obtained under non-informative. The CI of 6, denoted by éC, is obtained

as follows
U
6, =j0h (0]x)d6 = 0.95

L
U = 9 )
jj9a1+n lﬂa +n— 1 —b6— bzﬂH —(2ﬁ+1) v (1+2’ 22,6 dﬁdﬂ (31)

_ 10 =l _

=L : - i) =0.95.
Ij9a1+n—lﬁa2+n—le—b|9—b2ﬂn xi—(Z,BH)exfﬂ (l-i-l 26" s d@dﬁ
00

i=1

Similarly, the CI of £ under non-informative prior, denoted by ,6A’C, can be obtained as follows

cr _Tﬂh (:B|x)d:8_0 95

(1 +A-2e" @ )d@dﬁ (32)

U x
J’J’ea,w 1 a2+n 1o h0-b:p H x-(z/m)
1
=L0 = =0.95.

H

o0 00 H
'H’Ha,m 1 a2+n 1o700-b2f8 H x—(2ﬂ+1) (1_'_1 2 1e™ )dﬁdﬂ
The integrals (31) and (32) are obtained via RWMH algorithm.

4.2. Credible interval under informative prior
The CI estimators of & and f under informative prior are obtained. The CI of & denoted by

0,, is obtained as follows

%
I |

Oh,(6|x)d6 = 0.95

79
o lﬂn IH x—(2ﬂ+1) X (1_,_1 2e% )d@dﬂ (33)
=0.95.

S8 [N T N
Oty 8 O — ]

-0

-0
0 x e (1+/1 22e" ”)d@dﬂ

i=1

Similarly, the CI of £ under informative prior, denoted by EC, can be obtained as follows

o = j Bhy(Blx)d g =0.95

H
9" lﬁn IH x—<zﬂ+1> X (1+,1 21e" )dﬁdﬂ G4
=0.95.

-6

0" B lnx*”*” 7 (1+1 24e"

|
s

)d&dﬁ

St 8 [N T
St 8 (o= 8

The integrals (33) and (34) are very hard to be solved analytically, so the RWMH algorithm will be
used.



402 Thailand Statistician, 2021; 19(2): 393-410

5. Simulation Study

A numerical study is done to examine and compare the behavior of the different Bayesian
estimates for the PTIR distribution. The Bayesian estimators are obtained using Jeffery’s and gamma
priors under MEL function, SEL function, PL function and LINEX loss function. The major difficulty
in the implementation of the Bayesian procedure is that of obtaining the posterior distribution. The
RWMH algorithm is one of the most famous subclasses of MCMC method in Bayesian literature to
simulate the deviates from the posterior density and produce the good approximate results.

The following steps are designed as: The MCMC simulations are performed for different sample
sizes n = 10, 20, 30, 50 and 100 under MEL function, SEL function, PL function and LINEX loss

function. Let 2 =0.7 and select £ and @ as (1, 0.5), (0.5, 1), (1, 1), (1, 1.5), (1.5, 1) and (1.5, 1.5).
The hyper-parameters for gamma priors are selected as a,=0.1, a,=0.3, b =0.2, b,=0.4 and v=—2.

Each chain is performed for NR = 5000, where NR = number of replications. The performance of the
estimates is evaluated through the relative absolute bias (RAB), estimated risks (ERs) and width for

CI of the Bayesian estimates where these measures are computed as follows:
NR 5
Z (average — population parameter)

ER(estimator) = = ,
NR
. |estimator —true Value|
RAB (estimator) =
true value
and Width (CT)= Upper credible interval bound —Lower credible interval bound.

RWMH algorithm will be implemented via R 3.4.3 program as follows: Let g(&"|@) be defined

as
6 =0+c¢,
where 6" is the initial value given to start the program, € is a random value for the estimator given

0", &~q where q is a probability density symmetric about zero. According to that definition,
2(0'10) = q(&),
and £(0]6") = a(e) = g(-e).
Because g(f"|6) is symmetric in 6 and 6" the RWMH acceptance ratio y (6" |6) simplifies to
(0)g(6]0") 1}
m(0)g(0|6)

w(6'|0) = min{

The RWMH algorithm proceeds as follows:
Step 1 Initialize a starting parameter value 6° =0.3, £° =0.5 and determine the number of
samples N.

Step 2 Simulate ¢ ~ ¢ and draw a candidate parameter @  from g(-,#) which is the proposal

density considering 8" =6+ ¢.

Step 3 Compute y(6"|#) = min (0 ),1 )
7(0)
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Step 4 Generate u from uniform (0, 1).
Step 51f u <y/(0'|0) then, set &' =6 otherwise, set 6 =6.

Step 6 Set i =i+1 then return to Step 2 and repeat the previous steps N times.

Parts of simulated results are listed in Tables 1 to 4 and represented through Figures 1 to 4.
From the Tables 1 and 2 and Figures 1 and 2, the following observations can be detected about
the behavior of Bayes estimates under different loss functions in case of informative prior as follows:
The RAB and ER for Bayesian estimates of 3,6 under non-informative decrease as the sample

403

sizes increase for all sets of parameters under MEL function, SEL function, PL function and LINEX

loss function (see Figurel).

RAB of LINEX loss function based on
non informative prior for f=1.5 and 8=1.0

ER of MEL function based on non informative
prior for B=1.0and 6=1.0

1.4000 4.00E-06
1.2000

1,0000 3.00€-06
0.8000

0.6000 2,00E-06
0.4000 1,00E-06
0.2000

0.0000 0.00E+00

n=10 n=20 n=30 n=50 n=100 n=10 n=20 n=30 n=50 n=100
—— ~&~8 B -0

(b) ER of Bayes estimates under MEL
loss function

(a) RAB of Bayes estimates under
LINEX loss function

Figure 1 Bayes estimates based on non-informative prior

The width of the Bayesian CI under non-informative priors for estimates of £ is shorter than the
corresponding Bayesian CI for estimates of & (see Tables 1 and 2).

The RABs and ERs of f3,,;, and 6,,,, have the smallest values followed by A, and 6,

e then

by ﬁ’PL and éPL and finally by ,5'UNEX and éuszx in approximately most of the cases (see Tables 1
and 2).

History plots for different estimates of £ and @ are represented in case of non- informative priors
(see for example; Figure 2 shows the case of ﬁMEL and éMEL at n=10 for f#=1,8=0.5). The plots
of chains for parameters £ and € look like a horizontal band with no long upward or downward

trends which are an indicators to convergence.

From Tables 3 and 4 and Figures 3 and 4, we observe the following about the behavior of Bayes
estimates under different loss functions in case of informative prior.

The RAB and ER for Bayesian estimates of f,6 under MEL function, SEL function, PL function

and LINEX loss function decrease as the sample sizes increase for all sets of parameters (see for
example; Figure 3).
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o | ©
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0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iteration Iteration

Figure 2 /;’MEL and 9MEL at n=10 for =1, §=0.5 in case of non- informative priors

RAB of SEL function based on informative prior ER of PL function based on informative prior
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Figure 3 Bayes estimates based on informative prior

The width of the Bayesian credible intervals under informative priors for estimates of £ is
shorter than the corresponding Bayesian credible intervals for estimates of & (see Tables 3 and 4).

The RABs and ERs of S, and 6, take the smallest values followed by f$,,, and 6,,,, then
by f,, and 6,, and finally by f,,,, and 6,,,, in approximately most of the cases (see Tables 3

and 4).
History plots of different estimates of 8 and @ are represented in case of informative priors (see

for example; Figure 4 shows the case of S, and 6,, at n=20 for f=1.56=1) with no long

upward or downward trends which are an indicators to convergence.

6. Conclusions

In this paper, the Bayesian estimators of the PTIR distribution concerning parameters 6 and f
based on informative and non-informative priors are considered. The MEL function, PL function and
LINEX are employed as asymmetric loss functions, while we use the SEL function as symmetric loss
function. Based on numerical study, it is observed that the RAB and ER for Bayesian estimates of £
take the smallest values compared to the RAB and ER for Bayesian estimates of € under informative
and non-informative priors in approximately most of the situations. Moreover the width of the
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Bayesian credible intervals under informative and non-informative priors for estimates of £ is shorter

than the corresponding Bayesian credible intervals for estimates of &€ under informative and non-
informative priors in approximately most of the situations.
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Figure 4 BPL and 6_’PL at n =20 for f=1.5,0=1 in case of informative priors
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Table 1 Bayes estimates, RAB, ER and width of credible intervals based on Jeffery’s prior for f=1.5, =1

10 20 30 50 100
Parameters ~ Sample size
B 0 B 0 B 0 B 0 B 0
Estimates 2.1059 2.1188 1.0414 1.4075 1.4000 1.2701 1.5928 0.8895 1.4790 0.9232
RAB 0.4040 1.1188 0.3057 0.4075 0.0667 0.2701 0.0619 0.1105 0.0140 0.0768
MEL ER 3.68E-06 1.25E-05 2.11E-06 1.66E-06 1.00E-07 7.30E-07 8.63E-08 1.22E-07 4.41E-09 5.90E-08
Width 2.7828 29123 1.2175 1.6939 1.5456 1.2729 1.8123 0.6627 1.4713 0.5829
Estimates 2.2139 1.8669 1.1722 1.3302 1.2828 1.3114 1.6686 0.7747 1.4013 0.8037
SEL RAB 0.4760 0.8669 0.2185 0.3302 0.1448 0.3114 0.1124 0.2253 0.0658 0.1963
ER 5.10E-06 7.52E-06 1.08E-06 1.09E-06 4.72E-07 9.71E-07 2.85E-07 5.08E-07 9.76E-08 3.86E-07
Width 3.2139 2.2730 1.4007 1.6499 1.5043 1.4328 1.9464 0.6750 1.6125 0.5783
Estimates 2.4098 2.3567 1.1385 2.0621 1.8062 1.9025 1.6688 1.8361 1.5494 1.5664
PL RAB 0.6066 1.3567 0.2410 1.0621 0.2041 0.9025 0.1125 0.8361 0.0329 0.5664
ER 8.29E-06 1.84E-05 1.31E-06 1.13E-05 9.38E-07 8.15E-06 2.85E-07 7.00E-06 2.44E-08 3.21E-06
Width 3.5304 3.5528 1.6010 2.8601 2.3927 2.4387 2.4326 2.2222 1.8245 1.7799
Estimates 2.9872 2.2047 1.0495 1.4787 1.7025 0.6946 1.3274 1.2443 1.3716 0.8545
LINEX RAB 0.9915 1.2047 0.3004 0.4787 0.1350 0.3054 0.1151 0.2443 0.0856 0.1455
ER 221E-05 1.45E-05 2.03E-06 2.29E-06 4.10E-07 9.33E-07 2.98E-07 5.97E-07 1.65E-07 2.12E-07
Width 4.3784 3.0078 1.4576 1.4107 2.0892 0.4905 1.4381 1.0934 1.5516 0.6257
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Table 2 Bayes estimates, RAB, ER and width of credible intervals based on Jeffery’s prior for f=1, §=1.5

10 20 30 50 100
Parameters ~ Sample size
p 0 p 0 p 0 p 0 p 0
Estimates 1.5210 2.3318 1.2877 1.0139 1.2556 1.2320 0.8770 1.6885 0.9210 1.4018
RAB 0.5210 0.5545 0.2877 0.3241 0.2556 0.1787 0.1230 0.1257 0.0790 0.0655
MEL ER 2.72E-06 6.92E-06 8.29E-07 2.37E-06 6.54E-07 7.19E-07 1.51E-07 3.56E-07 6.25E-08 9.65E-08
Width 2.3452 2.7302 1.5709 1.2212 1.5915 1.2279 0.9059 1.9315 0.8729 1.3230
Estimates 1.5648 3.3525 1.4929 0.9641 1.2989 1.0083 0.7875 1.2061 1.0994 1.3687
SEL RAB 0.5648 1.2350 0.4929 0.3573 0.2989 0.3278 0.2125 0.1960 0.0994 0.0875
ER 3.19E-06 3.44E-05 243E-06 2.88E-06 8.94E-07 2.42E-06 4.52E-07 8.65E-07 9.89E-08 1.73E-07
Width 2.6305 6.3393 1.8875 0.9233 1.5620 0.7796 0.8445 1.1560 1.2111 1.4754
Estimates 1.8008 4.0122 1.7575 3.3731 1.4360 2.9344 1.2414 2.3327 1.1590 2.0298
PL RAB 0.8008 1.6748 0.7575 1.2487 0.4360 0.9562 0.2414 0.5551 0.1590 0.3532
ER 6.42E-06 6.32E-05 5.74E-06 3.51E-05 1.90E-06 2.06E-05 5.83E-07 6.94E-06 2.53E-07 2.81E-06
Width 3.1285 8.2775 3.2468 5.0852 1.8768 3.9595 1.5358 3.0313 1.5192 2.5778
Estimates 3.0080 7.3248 1.4456 2.4289 1.3742 1.0723 0.7747 1.7893 1.1444 1.3017
LINEX RAB 2.0080 3.8832 0.4456 0.6192 0.3742 0.2851 0.2253 0.1928 0.1444 0.1322
ER 4.04E-05 3.40E-04 1.99E-06 8.64E-06 1.40E-06 1.83E-06 5.08E-07 8.38E-07 2.09E-07 3.94E-07
Width 4.6589  14.5955 1.8282 3.1534 1.8883 1.2149 0.7187 1.7776 1.2718 1.1696
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Table 3 Bayes estimates, RAB, ER and width of credible intervals based on gamma prior for =1, =1.5

10 20 30 50 100
Parameters ~ Sample size
B 0 B 0 B 0 B 0 B 0
Estimates 1.4461 0.6928 0.7985 1.1985 1.1319 1.3123 1.3284 0.0798 0.9542 1.4228
RAB 0.4461 0.5381 0.2015 0.2010 0.1319 0.1251 0.0798 0.1144 0.0458 0.0515
MEL ER 1.99E-06 6.52E-06 4.06E-07 9.10E-07 1.74E-07 3.53E-07 6.37E-08 2.95E-07 2.10E-08 5.97E-08
Width 1.6600 0.7166 0.8232 1.1482 1.4732 1.4222 0.8576 1.1633 0.9520 1.3429
Estimates 1.3596 3.2065 1.2411 1.2358 1.1107 1.2588 0.9085 1.3655 1.4626 0.9445
SEL RAB 0.3596 1.1376 0.2411 0.1761 0.1107 0.1608 0.0915 0.0897 0.0249 0.0555
ER 1.29E-06 2.91E-05 5.82E-07 6.99E-07 1.23E-07 S5.82E-07 8.38E-08 1.81E-07 1.40E-08 3.09E-08
Width 1.5360 4.1606 1.4789 1.7802 1.2649 1.1934 0.9899 1.2845 1.3281 0.6239
Estimates 1.4782 3.3590 1.1581 2.7410 1.1078 2.2983 1.0646 2.0457 1.0403 2.0191
PL RAB 0.4782 1.2393 0.1581 0.8273 0.1078 0.5322 0.0646 0.3638 0.0403 0.3461
ER 2.29E-06 3.46E-05 2.50E-07 1.54E-05 1.16E-07 6.38E-06 4.18E-08 2.98E-06 1.63E-08 2.70E-06
Width 2.1255 6.0800 1.4452 3.6384 1.3679 3.4077 1.0529 2.4579 1.6146 2.4984
Estimates 1.5483 0.9437 0.7428 2.0350 1.2205 1.1806 1.1636 1.7199 0.8891 1.3186
LINEX RAB 0.5483 0.3709 0.2572 0.3566 0.2205 0.2130 0.1636 0.1466 0.1109 0.1209
ER 3.01E-06 3.10E-06 6.62E-07 2.86E-06 4.87E-07 1.02E-06 2.68E-07 4.84E-07 1.23E-07 3.29E-07
Width 1.8221 0.9502 0.7725 2.6919 1.2713 1.1663 1.2526 1.6411 0.7567 1.1209
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Table 4 Bayes estimates, RAB, ER and width of credible intervals based on gamma prior for g=1.5, §=1.5

10 20 30 50 100
Parameters ~ Sample size
B 0 B 0 B 0 B 0 B 0
Estimates 1.8731 2.2299 1.8203 1.1069 1.2596 1.2575 1.6613 1.2848 1.3701 1.2889
RAB 0.2488 0.4866 0.2135 0.2621 0.1603 0.1617 0.1076 0.1435 0.0866 0.1408
MEL ER 1.39E-06 5.33E-06 1.03E-06 1.55E-06 5.79E-07 5.89E-07 2.61E-07 4.64E-07 1.69E-07 4.46E-07
Width 2.8469 2.9482 2.5629 1.0800 1.5197 1.3014 2.0691 1.2291 1.4065 1.1533
Estimates 1.8312 1.1454 1.3009 1.2069 1.4033 1.3142 1.4214 1.3339 1.4522 1.3474
SEL RAB 0.2208 0.2364 0.1328 0.1954 0.0645 0.1238 0.0524 0.1107 0.0319 0.1017
ER 1.10E-06 1.26E-06 3.97E-07 8.60E-07 9.37E-08 3.45E-07 6.18E-08 2.76E-07 2.29E-08 2.33E-07
Width 2.4876 1.3677 1.5095 1.4238 1.7072 1.3410 1.6593 1.2647 1.5593 1.2081
Estimates 1.9266 3.5632 1.7552 2.5262 1.6731 2.4807 1.5625 2.3559 1.5575 2.2627
PL RAB 0.2844 1.3754 0.1701 0.6842 0.1154 0.6538 0.0417 0.5706 0.0383 0.5084
ER 1.82E-06 4.26E-05 6.52E-07 1.05E-05 3.00E-07 9.63E-06 3.91E-08 7.33E-06 3.31E-08 5.82E-06
Width 3.0007 6.7965 2.4589 4.0046 1.8976 2.7728 1.8460 2.7747 1.6293 2.5734
Estimates 3.1724 3.4663 2.2971 2.3576 1.2180 1.1939 1.2397 1.2158 1.3470 1.2618
LINEX RAB 1.1149 1.3109 0.5314 0.5717 0.1880 0.2041 0.1735 0.1894 0.1020 0.1588
ER 2.80E-05 3.87E-05 6.36E-06 7.36E-06 7.96E-07 9.38E-07 6.78E-07 8.08E-07 2.34E-07 5.68E-07
Width 4.8664 5.3489 3.2854 3.6969 1.5452 1.13702 1.4693 1.2272 1.3936 1.1652

(18%
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