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Abstract

In this paper, a new count distribution has been introduced by mixing negative binomial with
reciprocal inverse Guassian distribution. This model is tractable with some important properties not
only limited to actuarial science but in other fields as well where over-dispersion pattern is seen. A
recurrence relation for the probabilities of the new distribution and an integral equation for the proba-
bility density function of the compound version, when the claim severities are absolutely continuous,
are derived. Brief idea about its respective multivariate version are also given. Parameters involved
in the proposed model have been estimated by maximum likelihood estimation technique. Finally,
applications of the model to real data sets are presented and compared with the fit attained by some
other well-known one and two-parameter distributions.

Keywords: Over-dispersion, goodness of fit, aggregate loss, maximum likelihood estimation.

1. Introduction

The classical Poisson distribution is one of the prominent distribution to model count data.
However, due to the presence of over-dispersion phenomenon in count data, one has to look for
such models which relaxes over-dispersion restriction of the Poisson distribution. Negative binomial
(NB) model takes care of the over-dispersion pattern. Keeping the wide applications of NB in con-
text, there has been significant development in the extension of NB distribution, like the negative
binomial-inverse Gaussian distributions (Déniz et al. 2008), the negative binomial-Beta exponential
distribution (Pudprommarat et al. 2012) and the negative binomial-Erlang distribution (Kongrod et
al. 2014).

Mixture approach is one of the prominent method of obtaining new probability distributions
in the applied field of probability and statistics, mainly because of its simplicity and unambiguous
interpretation of the unobserved heterogeneity that is likely to occur in most of practical situations. In
this article a NB mixture model that includes as mixing distribution the reciprocal inverse Gaussian
(RZG) distribution is proposed by taking § = exp(—w), (where 6 is negative binomial parameter)
assuming that w is distributed according to a RZG distribution, obtaining the negative binomial-
reciprocal inverse Gaussian distribution, denoted by N'BRZG, which can be viewed as a competitive
model to Poisson-reciprocal inverse Gaussian (PRZG), NB and Poisson distributions.
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The new distribution is unimodal, having thick tails, positively or negatively skewed and posses
over-dispersion character. Recursive expressions of probabilities are also obtained which are an im-
portant component in compound distributions particularly in collective risk model. Basically there
are three parameters involved in the new distribution which have been estimated by using an impor-
tant technique namely maximum likelihood estimation (MLE) and goodness of fit has been checked
by using chi-square criterion.

The main contents of the paper are: In Section 2, we study some basic characteristics of the
distribution like probability mass function (pmf), factorial moments and over-dispersion property. In
Section 3, we study NBRZG as compound distribution and recurrence relation of probabilities are
being discussed to compute successive probabilities. Extension of univariate to multivariate version
have been discussed briefly in Section 4. Section 5 contains information about estimation of param-
eters by MLE. Two numerical illustrations have been discussed in Section 6 followed by conclusion
in last section.

2. Basic Results

In this section we will start with classical negative binomial distribution (Johnson et al. 2005)
denoted as Y ~ NB(r, §) whose pmf is:

r+y—1

P == ("""

)‘”“—9)% y=0,1,..., (1)
with 7 > 0 and § € (0,1). Since its usage is important later, so we will discuss some important
characteristics of this distribution. The first three moments about zero of N'B(r, §) distribution (Bal-
akrishnan et al., 2003) are given by:

By) ="
E(y?) = r(l1—6) [10—2|— r(1—90)] ’
E(Y?) = Lag f) [1+@r+1)(1-0)+r*(1-6)7].

Also the factorial moment of N'B(r, 6) of order k is:

ppg (V) =EV (Y —1)...(Y — k + 1)

CT(r+k)(1-0)F _
=T e FELZe @)

where I'(r) = (r — 1)L
Let random variable Z has reciprocal inverse Gaussian distribution (Déniz et al., 2017) denoted
as Z ~ RZG(«a, m) whose probability density function (pdf) is given by

g(z,a,m) =1/ %e—%m(zrn—Q-&-ﬁ)’ z >0, 3)

where «, m > 0. The moment generating function (mgf) of RZG(«, m) is given by:

My (t) = \/Eeazp{; [m— \%m] } 2] < 1. )

Definition 1 A random variable Y is said to have negative binomial-reciprocal inverse Gaussian
distribution if it follows the stochastic representation as:

Y|w ~NB(r,0 = e™v),
w ~RIG(a,m),

®
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where r,t,m > 0 and we can write Y ~ NBRZG(r, «,m) and which is shown in Theorem 1.

Theorem 1 Let Y ~ NBRIG(r, v, m) as defined in (5) then pmf is given by

withy =0,1,...and r,a,m > 0.

Proof: Since Y|w ~ NB(r,0 = e™*) and w ~ RZG(«, m). Then unconditional pmf of Y is given

by
p(Y=y)= / hi(y|w)he (w; o, m)dw 7)
0
where hl(y|w) = (T + ::'; B 1) e—UJT’(l _ e—w)m

(R

Jj=0

and ho(w; a, m) is the pdf of RZG(cr, m).
Put (8) in Equation (7), we get
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Use (4) in Equation (9) to get the required pmf.
r=0.5,0=0.5,m=0.5 r=0.5,a=1,m=0.5
S 4 4
© . 3 e
7 o
8 | —
- ° - & -
= . 2 o
a g i
o
-~ - o
S = -
| o
8 _ ‘ I Tttt ey S _ { I Trre ey
o o

Figure 1 pmf plot for different value of parameters Figure 2 pmf plot for different value of parameters
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Theorem 2 Let Y ~ NBRZG(r,a,m) as defined in (5), then its factorial moment of order k is
given by

i (YY) = F(;(—:,_)k) Z <g> (—1)? %ewp{% [m - % a—2(k - J)} } )

=0

Proof: If Y|w ~ NB(r,0 = e™*) and w ~ RZG(«,m), then factorial moment of order k can be
find out as:

1) (y) = B [ (ylw)] -
Using the factorial moment of order k of N'B(r,0) , then

1k (y) = B {W(ew - 1)’6} = WE“’(ew _ 1)k,

Using the binomial expansion of (¥ — 1)¥ = Z?:o (’j) (—1)7e<(*=9) | we have

k
I'(r+k) (k> » (k—j
y) =——— (=1 E,, (e
) ==y 2 () (1P Bl )
) (—1)? Mo, (k — j).
From the mgf of RZG(«, m) given in Equation (4) with t = k — j, we get finally the required result

which proves the theorem.
The mean, second order moment and variance can be obtained directly from (10) which are
given by

E(Y) = r[M,(1)-1], (11)
E(Y?) = (r+71")My(2) = (r+2r")My(1) + 17, (12)
V(YY) = (r+r)M,(2) —rM,(1) —r*M2(1), (13)

where M, (v) is the mgf of RZG(a, m) defined in (4).

Index of Dispersion (ID), which is actually ratio of variance to mean can be calculated from
(11) and (13). Table 1 shows that the distribution is over-dispersed as ID > 1 for all combinations
of parameters. Further more, the next result which is in the form of a theorem establishes that the
NBRIG(r,«, m) distribution is over-dispersed as compared to the N B distribution with the same
mean.
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Table 1 I D for different value of parameters

r=1
« m 0.5 1.5 2.5 3.5
50 ID 85.12 10.37 7.19 6.26
8.0 ID 22.56 4.09 2.98 2.63
11.0 ID 15.46 3.15 2.33 2.06
r=>5
50 ID 230.76 25.63 17.51 1523
8.0 ID 48.06 7.56 5.40 4.75
11.0 ID 28.31 5.00 3.62 3.20
r=10
50 ID 230.76 25.63 17.51 15.23
8.0 ID 48.06 7.56 5.40 4.75
11.0 ID 28.30 5.00 3.63 3.20

Theorem 3 Let w ~ RZG(«,m) whose pdf is given in (3) and Y is another random variable
following negative binomial distribution i.e.Y ~ NB(r,0 = [E(e*)] ™). Suppose consider another
random variable Y ~ N'BRIG which is defined in (5). Then we have:

(i) EV)=E(Y) & Var(Y) > Var(Y),
(ii) Var(Y) > E(Y).
Proof: We have E(e”) = M, (1) > 1, then § = 55y is well defined. Using the definition of
conditional expectation, it follows that
E(Y) = E, (E(Y|w)) =r(M,(1) —1) =r[E(e”) - 1],
Var(Y)=E, [V(Y|w)] + V, [E(Y|w)]
= (r+1°)My(2) + rM,(1) — r*M2(1)
= 1M, (2) +1°M,(2) — rM, (1) — r*M2(1)
=rE [e*] + r*E [¢*] —rE[e¥] —r* (E [e¥])?
=rE [e*] +r*V(e¥) — rE [e*]
Var(Y) =r[E(e*) — E(e*)] + r*V(e¥). (14)

Also, since Y ~ NB(r,0 = [E(e®)] "), we have

~h
Il

EY)=r[E(e”) - 1] = E(Y),
and Var(Y) =r[E(e?) — 1] B(e¥).

Now, using Equation (14), we have

Var(Y)—Var(Y) =r [E(e*) — E(e¥)] +r°V(e¥) — Var(Y)
r[E(e®) — E(e®)] + r*V(e”) — r [E(e”) — 1] E(e¥)

It follows that R
Var(Y) > Var(Y) (15)
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(ii) Since ¥ ~ NB(r,0 = [E(e*)] ")

=Var(Y)> E(Y), butE(Y) = E(Y)

=Var(Y)> E(Y) (16)

Combining (15) and (16), it follows that Var(Y) > E(Y).

3. Collective Risk Model under Negative Binomial-Reciprocal Inverse Gaussian Distribution

In non-life Insurance portfolio, the aggregate loss () is a random variable defined as the sum
of claims occurred in a certain period of time. Let us consider

S=Y +Ys+...+ Yy, (17)

where S denote aggregate losses associated with a set of V observed claims, Y7, Y5, ..., Yy satisfy-
ing independent assumptions:

1. The Yy 4(j = 1,2,...,N) are independent and identically distributed (i.i.d) random variables
with cumulative distribution function (cdf) Fy (y) and pdf fy (y).

2. The random variables N, Y7, Y5, ... are mutually independent.

Here N be the claim count variable representing number of claims in certain time period and
Y; :j=1,2,...be the amount of jth claim (or claim severity). When NBRZG(r, «c, m) is chosen as
primary distribution (N), the distribution of aggregate claim .S is called compound negative binomial-
reciprocal inverse Gaussian distribution (CN'BRZG) whose cdf is as:

Fs(y) =P(S <y)

=Y PP(S<ylN =n)

n=0
= Z pnF)tn (y)
n=0

where Fy (y) = P(Y < y) is the common distribution of Y;sand p, = P(N = n) is given by (6).
F¥ (n) is the n-fold convolution of the cdf of Y. It can be obtained as

" 0, y<0,
FYO(y): {1 y >0

Next, we will obtain the recursive formula for the pmf of NBRZG(r, o, m) in the form of a
theorem.

Theorem 4 Let p(k; 1) denote the pmf of NBRIG(r,,m) and for r = 1,2,. .., the expression for
recursive formula is:

r+k—1

p(k;r) = . [p(k;—l;r) (k—1;r+1)|, fork=12,.... (18)

k- 1P
Proof: The pmf of N'BB can be written as

p(k|w) = (7" + Z - 1>ewr(1 —e )R k=0,1,....
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Now plhlw) (e —eme)t
p(k — 1|w) (T';i;g)e_m(l —ew)k-1
- 7%7—1(1 — %)
p(z = k|w) r+k—1

e 1— —w N :12....
p(ZZk—1|w) k ( € )a 7k‘. ) 4y

r+k—1

Pl = k) = p(s = k= 1)

1—ev), k=12,.... (19)
Using the definition of NBRZG(r, a, m) and (19), we have:

mmm=AwMz=mmeMw

_ /Ooo TR eyp(s = b — 1w)ha (w)dw

k
:/ iiﬁl%@:kaMMWMw*/ e = b= e (@)
0 k 0 "
:W%p(k — 1) - #/ e “p(z =k — ljw)h (w)dw.
0

Also, we obtain now

o0 (o] _ 2 i
/ e “p(z =k — lw)hy (w)dw = / e <r —l: b 1 )e_w(l — e )1 h (w)dw
0 0 -

T > 7"+1+k_2 —w(r+1) —wnk—1
_ w(r 1_ w h d
r+k—1/0 ( k1 )e (1= ™) h(w)dw

p(k—1Lr+1),

_r
r+k—1
and thus (18) is obtained.

Theorem 5 If'Y; have pdf fy (y) for y > 0, then the pdf gs(y;r) of the (CN'BRIG) satisfies:

Yrz4+y—z
Y

Yorz
—/ ;gs(y —z;r+ 1)hi(2)dz. (20)
0

galyir) = mmm+£ 9y — 2 7)ha (2)dz

Proof: The aggregate claim distribution is given by

oo

gs(y;r) = > _plk;r)hi*(y)

k=0

= p(0;7)RY*(y) + Y plk; )Rt ().
k=1

Using (18), we get:
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> kox r+k—1 r
s(y; ) =p(0; — —Lr)- ————=plk—1L;r+1
) =2l07) + 3 ) [ e (=10~ et -1 )|
_ . - r—1 k* kx
—p(Oﬂ")Jrk:1 —p(k = 15m)h] +Zp r)hi* ()
o0 r .
—|—ng —1;7 + 1Rk (y). Q1
k=1
Using the identities:
k Y (k—1)x
™y = / hy (y—2)f(z)dz, k=1,2,..., (22)
0
kx
b (y) = / h(k 1)*(y —2)f(2)dz, k=1,2,.... (23)
k 0o Y
Therefore, now (21) can be written as:
Z(r —)p(k —1; r)/ Z =y — 2 hy(2)dz
k=1

£3 k- 1) ) [ 100 = s
k=1

0 y
=S ek - L7+ 1) / 2ROy — )y (2)d
o Y

k=1

TZ+Y— 2 (k—1)*
= /OThg )(—zhl dzZp —1;r)

y
_/0 %hgkfl)*(y — 2)hi(2)dz Zp(k —Lir+1). (24)
k=1

Also, we can write:

r) = Zp(k: — 1;r)h§k71)*(y), k=1,2,...,
y—z,T) Zp —1rh(k 1)( 2),

gs(y —z,m+1) = Zp(k: —1;r+ 1)h§k_1)*(y —z),
k=1

thus (24) becomes:

) 3 Y
/ m—#hl(z)dzgs(y —z,r)— / %hl(z)dzgs(y —zr+1).
o 0

Therefore we finally get:
Yrz4y—=z

gs(y;r) = p(O;T)+/O "

y
—/ %gs(y — z;r + Dhy(2)dz.
0

9s(y — z;m)h1(2)dz
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Hence proved.

The Integral equation obtained in above theorem can be solved numerically in practice and the
discrete version of it can be obtained in a similar fashion by interchanging foy to 25:1 in expressions
(22) and (23) (Rolski et al., 1999). So its discrete version obtained are as

y
rz+y—=z
gs(;r) = pO;r)+ ) Tgs(y = z;1)ha(y)
z=1
Y rz
Z— y—z;r+ 1hi(2).
z=1 y

4. Multivariate Version of NBRZG
Here we propose the multivariate version of NBRZIG(r, o, m) which is actually extension of

definition (5). The multivariate version of N'BRZIG can be considered as a mixture of independent
NB(r;,0 =e %),i=1,2,...,d combined with a RZG(c, m) (Déniz et al., 2008).

Definition 2 A multivariate negative binomial-reciprocal inverse Gaussian distribution (Y1,Ya, ..., Yy)
is defined by stochastic representation:
Yilw ~NB(r;,e™™), i=1,2,...,dare independent,
w ~RIG(c,m).

Using the same arguments as mentioned in Section 2, the joint pmf obtained is:

PYi=y,Yo=y2,...,Ya H( +yl_1> Z(I)J<ij>

i=1 j=0 (25)
— % erp! L m- a+2(7+7)
at20+g) P \m Va i
where y1,92,...,9¢4 =0,1,2,...;a,m,71,72,...,7q > 0 and
r=r1+r9+...+14, (26)
g=y1+y2+...+Ya. 27

The above joint pmf can be written in a more convenient form for the purpose of computing
multivariate probabilities. Let Y ~ NBRZG(7,«a,m), where 7 is given in (4.2), an alternative
structure for (25) with d > 2 is given by:

H@_l (rrHryﬁl) ~
P(Yi=y,Ya=ys,...,Ya=ya) = J%@%Tffw=@, (28)
]
where j is defined in equation (4.3). The marginal distribution will be obviously as Y ~ N'BRZG(r;, o, m),
t=1,2,...,dandany subvector (Y7, Y5, ..., Y;) with s < dis again a multivariate NBRZG(r, v, m)
distribution of dimension s. Using (11) and (13), the following expressions for moments can be ob-
tained as:

(Y) = T [Mw(l) - 1]7 i= ]-723 YA (29)
V(Y) = (ri+r)My(2) —riM,(1) —r2M2(1), i=1,2,...,r (30)
Cov(Y3,Y;) = rrj [Mu(2) — M2(1)], i#j. 31

Since M,,(2) = E [e**] and M, (1) = E[e¥] = V(e*) = M,(2) — M2(1).
Therefore Couv (Y;,Y;) = rir;V(e®);i # j. Now p(Y;,Y;) = Cele¥s) _ rnVier) o

Ty;,v; Oy; v
thus, it follows p(Y;,Y;) > 0.
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5. Maximum Likelihood Estimation

Suppose y = {y1,%2,...,Yn} be a random sample of size n from the NBRIG(r, o, m) with
pmf given in (6). The log-likelihood function is:

log L(m, a, ly) Zlo (“Lyz )—l—ZlOg i(;)(—l)j %

Jj=1
n
« A
+Zmz[m‘m o
=1

For simplification point of view, it is assumed that « + 2(r + j) = A. The ML estimates 7 of
m, & of a and 7 of r, respectively, can be obtained by solving equations

(32)

810gL_0 dlog L dlog L

om da =0 and or =0,
A
no 2 -1
where OlogL _ (Ve ) (33)
om m?2
pogs e Sty
Og J= 2./«
= —, (34)
Oa ; i (=17 (%) V%

Yi a(= 1)J (yb)

8logL n j=0"" \/>A2 ) )
_ 0 (PO + ) —pO@)), (39
- X myE )

with 1(k) = £T'(k) is a digamma function (Abramowitz et al. 1972). Since the above three nor-
mal equations are in implicit form and are complex to be solved numerically, so we make use of
Mathematica Software 9.0 to find the estimates numerically by using "NMaximize” function.

6. Numerical Illustrations

To explore the potential of the proposed model, two data sets have been taken into consideration
from actuarial literature.

Hlustration 1: The first data set is about automobile liability policies in Switzerland (see Klug-
man et al. (2008), pp.488-489). Models like Poisson (P), NB, PRZG and NBRZG distribution are
being fitted to the given data set and parameters of each model were estimated by MLE. In order to
test the goodness of fit, chi-square test criterion has been employed. It is pertinent to mention that
expected frequencies have been grouped into classes for getting cell frequencies greater than five.
Based on the results like log-likelihood, Chi-square (x2) value, p-value and Akaike’s information
criterion (AIC) that there exists enough statistical evidence that the N'BRZG distribution fits the data
very well (Table 2).

Illustration 2: The second data set is about about 23,589 automobile drivers where number of
accidents per driver in one year is mentioned (Klugman et al. 2008, pp. 249-250). Again, P, NB,
PRZIG and NBRIG distributions have been fitted to data by MLE. Observed and expected values
together with parameter estimates including log-likelihood, x? value, p-value and AIC are exhibited
in Table 3 . Based on the results, it clearly suggests that the NBRZG distribution outperforms other
three competing models.
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Table 2 Number of automobile liability policies in Switzerland

Observed Expected frequency
Count Frequency P NB PRIG  NBRIG
0 103704 102630 103724 102643.9 103710
1 14075 15921.9 13989.9 15909.81 14054.8
2 1766 1235.07 1857.07 1233.01 1787.35
3 255 63.87* 245.20 63.71* 251.93
4 45 2.48* 32.29* 2.47* 40.22
5 6 0.08* 4.24* 0.08* 7.22%
6 2 0.01* 0.56* 0.01* 1.44~*
Total 119853 119853 119853 119853 119853
Estimated
parameter A=0.155 #=1.03 g{) =1.572 x 107 7 = 3.40
6=0.87 f=0.16 1 = 35.90
& =61.50
log-likelihood -55108.5  -54615.3 -55108.5 -54609
XA(d.f)  1332.130(2) 12.205(2) 1334.856(1) 0.940(2)
p-value 0.0001 0.0022 0.0001 0.6240
AIC 110219  109234.6 110221 109224

*Expected frequencies have been combined for the calculation of x 2.

Table 3 Number of accidents per driver

Observed Expected frequency
Count Frequency P NB PRIG NBRIG
0 20592  20420.90  20596.80 20420.95 20595.30
1 2651 2945.11 2631.03 2945.09 2637.36
2 297 212.37 318.37 212.37 311.71
3 41 10.21* 37.81 10.21* 38.72
4 7 0.37* 4.45% 0.37* 5.10%
5 0 0.02* 0.52* 0.02* 0.71*
6 1 0.01* 0.06* 0.01* 0.10*
Total 23589 23589 23589 23589 23589

Estimated

parameter A =0.144 7#=1.118 ¢=324x10% 7 =21.427
0 = 0.886 fi=0.144 1 = 317.520
& = 28.492
log likelihood -10297.8 -10223.4 -10297.8 -10222.3
x3(d.f)  203.63(2) 3.59(2) 203.63(1) 1.63(1)
p-value 0.0001 0.1650 0.0001 0.2010
AIC 20597.6 20450.8 20450.6 20450

*Expected frequencies have been combined for the calculation of x?.
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7. Conclusions

In this paper, we introduce a new three-parameter NBRZG(r, v, m) distribution including its
multivariate extension as well. This model is obtained by mixing the NB with RZG(c, m) distri-
bution. In addition, the moments of the NBRZG(r, o, m) distribution which includes the factorial
moments, mean, variance, are derived. Moreover, the parameters have been estimated by MLE. The
superior fit of the proposed model as compared to Poisson, NB and PRZG have been illustrated
on two real data sets containing extra proportion of zeros. We are hopeful that NBRZG(r, o, m)
distribution may attract wider applications in analyzing count data.
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