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Abstract
The aim of this study is to propose the robust outliers detection method called MH boxplot for

skewed distribution. The proposed method is modified from Hubert’s boxplot by embedding the
Bowley coefficient, the ratio of lower split interquartile range and upper split interquartile range into
the fences of the boxplot. The performance of the boxplot is evaluated by the percentage of outlier
ratio mean in three cases of simulated data (truncated, uncontaminated and contaminated data) and
real data. Furthermore, the existing boxplots for outliers detection are used to make a comparison
with the MH boxplot as well. The results from simulated and real data show that the MH boxplot
efficiently detects outliers and is robust to skewness of data over the other boxplots for any sample
size. Moreover, the MH boxplot efficiently detects outliers as the shape of real data.

Keywords: Robust outlier detection, skewed data, split interquartile range.

1. Introduction
An outlier is an observation which differs or deviates so much from the other observations.

The outliers could be very large or very small when it is compared to the other in the data set. The
outliers might occur from incorrect measurements, including data entry errors, or different population.
Outliers might have a negative influence on the real data characteristics, e.g. outliers go against
the normality of data, increases in variance value and reduces the power of statistical hypothesis
tests. Therefore, the outliers detection methods play an important role in data preprocessing step to
filter them out before further data analysis. In recent years, outliers detection methods have been
developed to detect and remove them from the original data. One type of outliers detection methods
is the outliers labelling techniques or informal test in which potential outliers could be considered
as extreme values (Iglewicz and Hoaglin 1993). The main idea of outliers labelling methods is to
construct an interval for detecting observations which are outside the interval and then are labelled
as outliers. The type of these methods is also considered as statistical outliers detection approach. A
suitable interval is constructed by various location and scale parameters without hypothesis testing.

For univariate data, one of the traditional and popular methods for outliers detection is a boxplot,
which was introduced by Tukey (1977). The outliers are labelled by the observations outside a defined
interval called fences such as [Q1 − 1.5IQR ,Q3 + 1.5IQR] where Q1, Q3 and IQR stand for
the first and the third quartiles, and the interquartile range, respectively. Several researchers have
reported that the Tukey’s boxplot is fitted to symmetrical data (Walker and Chakraborti 2013; Adil
and Irshad 2015; Zhao and Yang 2019). For skewed data, especially, there are too many observations
as being potential outliers. Generally, some of the marked observations were presumed to occur
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naturally in skewed data rather than the real outliers Hubert and Vandervieren (2008). For instance,
for symmetrical data, the lower and upper fences, obtained from Tukey’s boxplot for standard normal
distribution, contain 99.3% of all observations, approximately. Hence, the left observations outside
the fences are labelled as outliers. While, for skewed data, the fences, obtained from Tukey’s boxplot
for χ2 distribution with one degree of freedom, approximately contain 92.44% of all observations
and so, 7.56% of the data are outliers which is rather more than usual.

To enhance the efficiency of boxplot-based outliers detection for skewed data, a variety of box-
plot techniques has been proposed in the literature. Kimber (1990) proposed the fences of boxplot
for skewed data, called split interquartile range (SIQR), in which a position of the split was at the
median of the data. Carling (2000) replaced Q1 and Q3 in Tukey’s fences by the median and men-
tioned that the constant 1.5 fold of IQR should be varied and depended on sample size. To reduce
the effect of the sample size on the number of detected outliers, he proposed a reasonable constant
of 2.3 instead of 1.5. Barnett and Cohen (2000) proposed the modified boxplot based on lognormal
distribution to solve problems of right censoring with high skewness in lifetime data. Hubert and
Vandervieren (2008) proposed the adjusted boxplot by using a robust measure of skewness, namely
a medcouple (MC) which was introduced by Brys et al. (2004). In their work, they also used the
families of skewed distributions for choosing the appropriate constant to insert into exponential terms
of fences for efficient applying with skewed data. Walker and Chakraborti (2013) extended Tukey’s
fences based on SIQR to insert the ratios of SIQR for skewed data. Adil and Irshad (2015) proposed
the modified boxplot for solving extreme fences problem by incorporating a moment coefficient of
skewness to construct lower and upper fences. Babura et al. (2017) extended the adjusted Hubert's
boxplot by using the Bowley coefficient which is a robust measure of skewness and they estimated
the constant on lower and upper fences by conducting the simulation on extreme data from Gener-
alized Extreme Value (GEV) distribution. Recently, Promwongsa et al. (2018) proposed a variation
of Kimber, called MK. In their work, the lower and upper fences were modified by using the ratio of
lower and upper SIQR.

In this study, we propose a modified boxplot by using the Bowley coefficient with the ratio of
SIQR for constructing the proper fences which are robust to data skewness. The modified boxplot
improves the performance of detecting outliers with any data regardless of the distribution. For eval-
uation, simulated data of both symmetric and skewed data distributions are generated. Moreover, real
data sets in various situations are also tested. The standard and popular boxplot-based methods are
used to make a comparison with the proposed boxplot, as well.

2. The Proposed Boxplot
Let Xn = {x1, x2, . . . , xn} be a set of n univariate samples. The skewness of the univariate

data could be measured by computing medcouple (MC) value (Brys et al. 2004). If MC > 0, then
the distribution of Xn is right-skewed and if MC < 0, then the distribution of Xn is left-skewed.
MC is mathematically expressed as follows:

MC = med
xi≤mn≤xj

h(xi, xj), for xi ̸= xj ,

where mn is the median of Xn, and h(xi, xj) is a kernel function given by

h(xi, xj) =
(xj −mn)− (mn − xi)

xj − xi
. (1)

For the special case xi = mn = xj , the kernel function is defined as follows. Let m1 < m2 <
... < mk be the indices of the observations which are tied to the median mn, i.e. xml

= mn for all
l = 1, 2, ..., k. Then,

h(xmi
, xmj

) =

{ −1 if i+ j − 1 < k,
0 if i+ j − 1 = k,
+1 if i+ j − 1 > k.
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In Hubert and Vandervieren (2008), the lower and upper fences for the right-skewed data are defined
by

[Q1 − 1.5e−4MCIQR , Q3 + 1.5e3MCIQR], (2)

and the fences for the left-skewed data are defined by

[Q1 − 1.5e−3MCIQR , Q3 + 1.5e4MCIQR], (3)

where Q1, Q3 and IQR stand for the first and the third quartiles, and the interquartile range, re-
spectively. Kimber (1990) introduced a lower and upper split interquatile range, named SIQRL and
SIQRU, respectively, by splitting IQR at the median location for expressing the spread of the data.

In this work, the proposed method is modified from the Hubert boxplot by substituting the ex-
ponent of exponential terms with the ratio between SIQRL and SIQRU, and Bowley coefficient (δ)
in (2.2) and (2.3). The proposed method is called Modified Hubert or MH boxplot and given by

[
Q1 − 1.5e

(
SIQRL
SIQRU

δ
)
IQR , Q3 + 1.5e

(
SIQRU
SIQRL

δ
)
IQR

]
, (4)

where SIQRL = Q2 −Q1, SIQRU = Q3 −Q2, and δ = Q3+Q1−2Q2

Q3−Q1
.

The proposed MH boxplot is capable of adapting automatically fences to the shape of data, since
the data are right-skewed, then the upper fence is longer, and the lower fence is shorter. Otherwise,
the data are left-skewed, then the upper fence is shorter, and the lower fence is longer.

3. Experiments
For performance evaluation, the proposed MH boxplot method was evaluated on both simulated

and real univariate data sets with the various distributions. Six standard and popular boxplot-based
methods for outliers detection including Tukey (1977), Kimber (1990), Hubert and Vandervieren
(2008), Walker and Chakraborti (2013), Adil and Irshad (2015), and Promwongsa et al. (2018) called
MK were used to make a comparison with the proposed MH method.

Case I: Truncated data: n simulated samples of each of eight distributions, namelyN(0, 1), χ2
1, χ

2
5, χ

2
20,

F(10,10), F(10,90), F(90,10), and F(90,90), were generated. 40% out of data including 20% on the
leftmost and rightmost were trimmed. The experiments were conducted in the following steps:

Step 1: For each distribution D̃ ∈ {N(0, 1), χ2
1, χ

2
5, χ

2
20, F(10,10), F(10,90),

F(90,10), F(90,90)} do Steps 2-15.
Step 2: For each method i ∈ {1, 2, . . . , 7}
Step 3: Form = 1, 2, . . . ,M do Steps 4-12.
Step 4: Simulate a set of n samples X = {x1, x2, . . . , xn},

where X ∼ D̃.
Step 5: Sort the samples in X in ascending order.
Step 6: Create a data set Xtrimmed = {x′1, x′2, . . . , x′ntrimmed

} by
trimmimg 40% out of data in X .

Step 7: Compute the lower fence (lim) and the upper fence (uim)
based on Xtrimmed.

Step 8: For each x ∈ Xtrimmed do
Step 9: If x < lim or x > uim then label x as an outlier.
Step 10: End For in Step 8.
Step 11: Count the number of detected outliers (doim).
Step 12: Compute outlier ratio (orm) by

orm = doim
ntrimmed
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Step 13: End For in Step 3.
Step 14: Compute the percentage of the ith outlier ratio mean (ōri%) by

ōri% =
∑M

m=1 orm
M × 100%

Step 15: End For in Step 2.
Step 16:End For in Step 1.

Case II: Uncontaminated data: n simulated samples of each of eight distributions, namelyN(0, 1), χ2
1, χ

2
5,

χ2
20, F(90,10), F(10,90), F(90,90), and F(10,10), were generated. The experiments were conducted in

the following steps:

Step 1: For each distribution D̃ ∈ {N(0, 1), χ2
1, χ

2
5, χ

2
20, F(90,10), F(10,90),

F(90,90), F(10,10)}, do Steps 2-13.
Step 2: For each method i ∈ {1, 2, . . . , 7}
Step 3: Form = 1, 2, . . . ,M do Steps 4-10.
Step 4: Simulate a set of n samples X = {x1, x2, . . . , xn}, where

X ∼ D̃.
Step 5: Compute the lower fence (lim) and the upper fence (uim)

based on X .
Step 6: For each x ∈ X do
Step 7: If x < lim or x > uim then label x as an outlier.
Step 8: End For in Step 6.
Step 9: Count the number of detected outliers (oim).
Step 10: Compute an outlier ratio (orm) by

orm = oim
n

Step 11: End For in Step 3.
Step 12: Compute the percentage of the ith outlier ratio mean (ōri%) by

ōri% =
∑M

m=1 orm
M × 100%

Step 13: End For in Step 2.
Step 14:End For in Step 1.

Case III: Contaminated data: n simulated samples of each of eight distributions, namelyN(0, 1), χ2
1, χ

2
5, χ

2
20,

F(90,10), F(10,90), F(90,90), and F(10,10), were generated. For symmetrical data, r% out of samples
on both the leftmost and rightmost half by half were contaminated. For skewed data, r% out of sam-
ples on either the leftmost or rightmost are contaminated. The experiments were conducted in the
following steps:

Step 1: For each distribution D̃ ∈ {N(0, 1), χ2
1, χ

2
5, χ

2
20, F(90,10), F(10,90), F(90,90), F(10,10)}, do

Steps
Step 2: For each method i ∈ {1, 2, . . . , 7}
Step 3: Form = 1, 2, . . . ,M do Steps 4-10.
Step 4: Simulate a set of n samples X = {x1, x2, . . . , xn}, where

X ∼ D̃.
Step 5: Sort the samples in X in ascending order.
Step 6: If D̃ is symmetric then go to Step 7, else go to Step 8.
Step 7: r

2% of the lower and upper tails of the data in X are
multiplied by a constant c and c > 0, and
go to Step 9.
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Step 8: r% of the lower and upper tails of the data in X are
multiplied by a constant c and c > 0.

Step 9: Compute the lower fence (lim) and the upper fence (uim).
Step 10: For each x ∈ X do
Step 11: If x < lim or x > uim then label x as an outlier.
Step 12: End For in Step 10.
Step 13: Count the number of detected outliers oim.
Step 14: Compute outlier ratio orm by

orm = oim
n

Step 15: End For in Step 3.
Step 16: Compute the percentage of the ith outlier ratio mean (ōri%) by

ōri% =
∑M

m=1 rom
M × 100%

Step 17: End For in Step 2.
Step 18:End For in Step 1.

3.1. Simulated data sets
In this section, the experiments on three different scenarios of simulated data, including trun-

cated, uncontaminated and contaminated data, were conducted. The evaluation was not only per-
formed on symmetrical data but also skewed data. For symmetrical data, standard normal distribution
N(0, 1) was selected as a case study. For skewed data, χ2 and F distributions with having mildly
and moderately skewed levels were selected. By considering the coefficient of skewness, the mildly
skewed distributions consisted of χ2

5, χ2
20, F(10,90) and F(90,90). The moderately skewed distribu-

tions consisted of χ2
1 , F(10,10) and F(90,10). Let D̃ and M be a given distribution and the number

of simulation times, respectively.

3.2. Real data sets
In this section, four real data sets were used to evaluate the performance of the proposed MH

method. The description of each data set is briefly explained as follows:

1) Coal mine data set (Jarrett 1979) contains 190-time intervals in days between explosions in
coal mines from 15th March 1851 to 22nd March 1962 inclusive.

2) Mississippi River Maximum Daily Discharge data set (Gumbel 1941) contains the maximum
daily discharge of the Mississipi river for 50 years from 1890-1939.

3) Indian Liver Patient data set (Ramana et al. 2012) contains Alamine Aminotransferase of
416 liver patients and 167 non-liver patients that were collected from the northeast of Andhra
Pradesh, India.

4) Facebook metrics data set (Moro et al. 2016) contains the number of people who clicked
anywhere in all posts published in the Facebook’s page of 500 worldwide renowned cosmetic
brands between January 1st, 2014 to December 31st, 2014.

From the above four data sets, we created a histogram and a plot of the sorted data points for
each data set to identify that which observations were far from the most of observations visually and
they were flagged as potential outliers. Afterwards, we computed the lower and upper fences of each
boxplot for detecting outliers. For evaluation, the numbers of the detected outliers obtained from all
boxplots were compared to the number of potential outliers. The descriptive statistics for each data
set such as minimum (min), maximum (max), mean (x̄), median (med), the first quartile (Q1),
the third quartile (Q3), medcouple (MC), and Bowley coefficient (δ) were computed and given in
Table 1.
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Table 1 Descriptive statistics for each data set

Data set min max x̄ med Q1 Q3 MC δ

Coal mine 0 2,366 213.42 113.50 37.75 270 0.40 0.35
Daily discharge 760 2,334 1,355.78 1,355 1,063.25 1,507 −0.13 −0.32
Alamine 10 4,929 109.91 25 42 87 0.54 0.46
Number of clicks 9 11,328 798.78 551.50 332.50 955.50 0.36 0.30

3.3. Experimental results on the simulated data
In this section, the simulated data with sample size n for each distribution were generated, re-

peatedly and independently. The number of repetitions (M) was 100. The samples size (n) was varied
from 15, 20, 25, 30, 50, 100, 250, 500, 750 and 1000. The sample size n was considered as small
size if n ≤ 30 (n = 15, 20, 25 and 30). Otherwise, it was considered as a large size (n = 50, 100,
250, 500, 750 and 1000). For evaluation, the percentage of outlier ratio mean (ōr%) was computed.
The average and range statistics of ōr% for small and large sample sizes on each distribution were
measured. The range statistic was computed from the maximum value minus minimum value of ōr%
in each group of small or large size. All experiments were implemented by R programming. The
experimental results of each case are given as follows:

Case I: Truncated data
For each of simulation, 40% out of samples including 20% on the leftmost and rightmost are

trimmed. Since the trimmed data were generated by the given distribution, the average of outlier ratio
mean (ōr%) should be zero in this case. The best average of ōr% among seven methods is the value
closest to zero. In Table 2, the first, second and third averages of ōr% are boldface and noticed by
the superscript with the number 1, 2 and 3 in parentheses, respectively.

From Table 2, it is shown that for symmetric distribution, Turkey’s, Adil’s and Kimber’s methods
are of the first three best averages of ōr% in both small and large sample sizes. The average of ōr%
values of proposed MH are slightly less than these of Kimber and Adil in large sample size. For
moderately skewed distribution, the averages of ōr% values of Adil, the prpposed MH, and Tukey
are of the first three bests in both small and large sample sizes, respectively. For mildly skewed
distribution, the averages of ōr% of Turkey and Adil are of the first two bests in both small and large
sizes. The averages of ōr% of the proposed MH and Kimber are quite small, especially in large
sample size. The individual average of ōr% of each method for each distribution in small and large
sample sizes are shown in Figures 1 and 2 in which the width of a sign shows the range of the ōr%
and the red dot line is located at the optimal value of the average ōr%.

Case II: Uncontaminated data
As suggested in Adil and Irshad (2015), they assumed that the extream values of the given

distribution are considered as outliers. So, the central 95% of the simulated data are normal data and
the rest data are outliers. The efficient boxplot should detect the number of outliers less than 5% of
sample size n. In Table 3, the averages of ōr% that is less than 5% are boldface.

From Table 3, it is shown that for symmetric distribution, the averages of ōr% of the five meth-
ods namely Turkey, Kimber, Walker, Adil and the proposed MH are less than 5% in both small and
large sizes. Hubert and MK only provide good results in a large size. For moderately skewed distri-
bution, only Adil and the proposed MH, their averages of ōr% are less than 5% in both small and
large sizes. The averages of ōr% of Kimber, Hubert, Walker and MK are less than 5% only in a
large size. The average of ōr% of Turkey is more than 5% for all distributions in the moderately
skewed. For mildly skewed distribution, Tukey’s, Kimber’s, Walker’s, Adil’s and the proposed MH
methods perform well in both small and large sizes but Hubert and MK work well only in large size.
Additionally, the individual average of ōr% of each method for each distribution in small and large
sample sizes are shown in Figures 3 and 4 in which the width of a sign implies the range of the ōr%
and the red dot line is placed at the optimal value of the ōr%.
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Table 2 Average and range of ōri% for small sample size (n = 15, 20, 25, 30) and for large sample
size (n = 50, 100, 250, 500, 750, 1000) on each distribution in truncated data simulation

Skewed level D̃ n Stats. Tukey Kimber Hubert Walker Adil MK MH

Symmetric N(0, 1)
n ≤ 30

range 3.83 3.53 5.39 4.13 4.33 5.61 4.11
average 1.55(1) 2.24(3) 4.82 3.71 1.80(2) 6.44 3.09

n > 30
range 0.40 0.50 2.17 1.27 0.47 2.57 1.30

average 0.07(1) 0.08(2) 0.54 0.26 0.08(2) 0.64 0.24(3)

Moderately
Skewed

χ2
1

n ≤ 30
range 2.22 3.67 2.50 4.39 1.56 4.72 2.33

average 2.89(3) 2.93 4.98 3.33 1.40(1) 5.93 2.19(2)

n > 30
range 1.29 0.53 1.57 0.77 0.27 2.40 0.37

average 0.29 0.11(3) 0.55 0.16 0.05(1) 0.60 0.08(2)

F(10,10)

n ≤ 30
range 2.61 4.11 3.50 4.44 2.91 4.06 4.58

average 1.79(2) 2.88 5.18 3.90 1.50(1) 6.85 2.54(3)

n > 30
range 0.80 0.77 2.60 1.20 0.27 2.63 0.83

average 0.19(2) 0.18 0.65 0.30 0.06(1) 0.66 0.17(3)

F(90,10)

n ≤ 30
range 3.17 5.51 5.28 6.67 3.11 5.78 3.20

average 2.26(2) 3.47 5.55 4.52 1.75(1) 7.08 2.88(3)

n > 30
range 0.47 0.43 2.07 0.70 0.20 2.33 0.40

average 0.08(3) 0.08(3) 0.46 0.13 0.03(1) 0.50 0.07(2)

Mildly
Skewed

χ2
5

n ≤ 30
range 1.76 3.72 3.78 4.44 1.17 4.56 2.39

average 1.43(2) 2.48(3) 5.04 3.90 1.10(1) 6.97 2.57

n > 30
range 0.07 0.57 1.90 0.97 0.10 2.93 0.50

average 0.02(1) 0.11 0.44 0.19 0.03(2) 0.63 0.09(3)

χ2
20

n ≤ 30
range 1.78 3.06 3.11 4.00 2.00 5.39 3.28

average 1.16(1) 2.51(3) 4.57 3.71 1.14(2) 5.78 2.77

n > 30
range 0.07 0.40 2.07 1.23 0.07 3.00 0.73

average 0.01(1) 0.07(2) 0.39 0.23 0.01(1) 0.59 0.12(3)

F(10,90)

n ≤ 30
range 1.80 2.93 2.61 3.58 1.56 3.94 3.60

average 1.15(2) 2.25(3) 4.92 3.35 1.02(1) 6.03 2.34

n > 30
range 0.17 0.37 1.67 1.27 0.13 2.73 0.20

average 0.03(1) 0.08 0.32 0.25 0.03(1) 0.55 0.05(3)

F(90,90)

n ≤ 30
range 2.00 3.72 2.67 4.50 2.06 5.22 4.33

average 1.08(1) 2.37(3) 4.17 3.69 1.14(2) 6.25 3.02

n > 30
range 0.23 0.47 1.87 0.87 0.17 2.23 0.63

average 0.04(2) 0.08(3) 0.40 0.22 0.03(1) 0.64 0.12

Case III: Contaminated data
For generating contaminated data, 5% of data are selected and multiplied by a constant c. The

constant c is used to move the selected data away from the true position. The more value of c is
the more move get. The selected data are randomly and equally obtained from the upper and lower
tails for the normal distribution and only obtained from the upper tail for the χ2 and F distributions.
In this case, two types called Type I and Type II of contaminated data were generated based on the
constant c. The selected data were multiplied by 2 and 10 for Type I and Type II, respectively. Since
the percentage of contaminated data is 5%, the optimal value of the average of ōr% would be 5 as
well. In Tables 4 and 5, the first, second and third averages of ōr% are also boldface and noticed by
the superscripts with the number 1, 2 and 3 in parentheses, respectively.

From the results of Type I of contamination shown in Table 4, it is shown that for symmetric
distribution, Turkey, Walker and Adil are of the first three best averages of ōr% in both small and
large sample sizes. Kimber and the proposed MH provide good results only for the large size. For
moderately and mildly skewed distributions, the average of ōr% of the proposed MH outperforms
these of the other methods. From the results of Type II of contamination shown in Table 5, it is shown
that for symmetric distribution, Turkey, Kimber and Adil are of the first three bests of ōr% in both
small and large sample sizes. The proposed MH method provides good results only for the large
size. For moderately and mildly skewed distributions, the average of ōr% of the proposed MH still
outperforms these of the other methods. Additionally, the individual average ōr% of each method
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Table 3 Average and range of ōri% for small sample size (n = 15, 20, 25, 30) and for large sample
size (n = 50, 100, 250, 500, 750, 1000) on each distribution in untruncated data simulation

Skewed level D̃ n Stats. Tukey Kimber Hubert Walker Adil MK MH

Symmetric N(0, 1)
n ≤ 30

range 2.47 3.10 3.00 2.21 2.17 2.12 3.21
average 2.20 3.20 5.82 4.13 2.24 6.45 3.84

n > 30
range 0.89 1.22 2.79 1.89 0.83 2.85 0.98

average 0.94 1.10 1.85 1.36 0.93 1.82 1.04

Moderately
Skewed

χ2
1

n ≤ 30
range 1.60 1.89 4.53 1.49 2.07 4.77 0.90

average 8.13 6.24 4.87 4.05 3.02 5.55 3.45

n > 30
range 0.74 0.59 1.71 0.46 0.95 1.47 0.83

average 7.54 4.82 0.57 1.86 0.71 1.03 1.57

F(10,10)

n ≤ 30
range 0.84 1.28 1.57 1.87 0.82 2.45 1.13

average 5.94 5.56 7.27 5.50 4.11 7.30 4.08

n > 30
range 0.56 0.58 3.60 1.19 1.48 2.93 0.49

average 5.38 4.16 3.30 2.95 2.61 2.71 3.27

F(90,10)

n ≤ 30
range 0.93 1.23 2.63 1.80 1.37 2.80 1.23

average 5.76 5.54 7.40 5.58 4.17 7.33 3.96

n > 30
range 0.11 0.42 3.00 1.26 1.51 2.89 0.34

average 5.13 3.96 3.42 2.84 2.54 2.64 3.11

Mildly
Skewed

χ2
5

n ≤ 30
range 0.90 2.17 2.20 2.73 1.20 3.00 1.97

average 4.03 4.18 6.07 4.71 2.80 6.80 3.35

n > 30
range 0.52 0.95 3.99 1.53 0.50 3.79 0.44

average 2.84 2.17 1.80 1.63 1.57 1.78 1.72

χ2
20

n ≤ 30
range 1.40 2.77 3.20 2.93 1.27 3.50 2.64

average 2.54 3.76 6.02 4.80 2.37 6.77 3.41

n > 30
range 0.68 0.99 2.55 1.83 0.60 3.23 0.67

average 1.51 1.32 1.75 1.32 1.22 1.72 1.12

F(10,90)

n ≤ 30
range 0.53 1.67 1.59 2.20 0.90 2.73 1.10

average 3.58 4.08 6.34 4.93 2.97 7.05 3.21

n > 30
range 0.26 0.63 2.78 1.40 0.41 3.05 0.36

average 2.49 2.00 1.88 1.67 1.67 1.83 1.74

F(90,90)

n ≤ 30
range 1.02 1.13 2.70 1.60 0.94 2.73 1.15

average 3.08 3.88 6.24 4.69 2.79 6.87 3.48

n > 30
range 0.70 0.92 3.14 1.61 0.73 2.95 0.61

average 1.69 1.52 2.01 1.57 1.44 1.90 1.34

for each distribution in small and large sample sizes is shown in Figures 5-8 in which the width of a
sign implies the range of the ōr% and the red dot line is placed at the optimal value of the ōr%.

3.4. Experimental results on the real data
In this section, the proposed MH and six existing boxplots were evaluated on four real data sets

namely time interval in days of the coal mine, maximum daily discharge in cubic, alamine(U/L),
and the number of clicks in Facebook’s page. The descriptive statistics for each data set are shown
in Table 1. The histogram and a plot of the sorted data points for each data set are also given to
identifying the number of potential outliers visually.

For coal mine data set, referring to the MC and Bowley values given in Table 1, we obtain that
the distribution of this data is right-skewed. The potential outliers are the observations which are so
far from the majority of the data. From the histogram plot in Figure 9(a), the majority of the data
is between 0 and 1000. So, there are six points of potential outliers or 3.16% out of total data. The
potential outliers are marked by the red plus sign as shown in Figure 9(b). From Table 6, The numbers
of outliers detected by Tukey’s and Kimber’s boxplots are 11 and 13, respectively which are more
than the others. Since the upper fences of Hubert’s and Adil’s boxplots are greatly extended, the
numbers of detected outliers are only 3 and 1, respectively, which are much less than the observed
number of potential outliers. We see that Walker’s, MK and the proposed MH boxplots could detect 6,
5 and 6 outliers, respectively. The numbers of outliers, detected by these three boxplots, are satisfied
with the number of potential outliers identified from the relevant histogram and plot of sorted data
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Table 4 Average and range of ōri% for small sample size (n = 15, 20, 25, 30) and for large sample
size (n = 50, 100, 250, 500, 750, 1000) on each distribution for Type I of contamination

Skewed level D̃ n Stats. Tukey Kimber Hubert Walker Adil MK MH

Symmetric N(0, 1)
n ≤ 30

range 5.30 5.00 5.03 4.47 5.07 4.27 5.50
average 8.96(1) 9.16 10.00 9.07(3) 9.04(2) 9.99 9.13

n > 30
range 1.05 0.99 1.67 0.91 1.05 1.41 1.11

average 5.20(2) 5.20(2) 5.42 5.19(1) 5.20(2) 5.34 5.23(3)

Moderately
Skewed

χ2
1

n ≤ 30
range 1.55 2.25 2.47 1.48 1.40 2.98 1.25

average 9.57 8.30 6.27 5.95(3) 4.29(2) 6.60 4.78(1)

n > 30
range 0.96 2.09 1.42 0.60 2.45 0.55 0.43

average 7.90 5.87 3.12 5.12(1) 1.46 4.28(3) 4.54(2)

F(10,10)

n ≤ 30
range 2.13 2.21 1.58 2.23 2.12 1.90 1.86

average 8.18 8.30 9.88 8.12(3) 7.86(2) 9.40 6.57(1)

n > 30
range 1.70 1.89 2.59 1.56 0.53 2.65 1.08

average 5.98 5.48(3) 6.92 5.35(2) 6.82 5.68 5.27(1)

F(90,10)

n ≤ 30
range 1.89 2.43 2.43 2.08 1.07 3.53 1.86

average 8.18 8.30 9.88 8.12(3) 7.86(2) 9.40 6.57(1)

n > 30
range 1.49 1.47 2.89 1.36 0.52 2.14 0.82

average 5.78 5.42(3) 6.98 5.35(2) 6.86 5.70 5.25(1)

Mildly
Skewed

χ2
5

n ≤ 30
range 2.71 2.38 3.07 2.17 2.45 3.40 1.63

average 7.27(2) 7.90 9.21 7.67 7.30(3) 9.21 6.27(1)

n > 30
range 1.38 1.48 2.63 1.62 1.69 2.48 0.68

average 5.30(2) 5.31(3) 5.90 5.34 5.37 5.54 5.17(1)

χ2
20

n ≤ 30
range 2.46 2.81 2.32 2.33 1.89 2.77 1.90

average 7.19(1) 8.02(3) 10.34 8.51 8.38 10.47 7.45(2)

n > 30
range 1.06 1.17 2.21 1.64 1.75 2.51 1.00

average 5.23(1) 5.26(2) 6.12 5.42(3) 5.65 5.77 5.23(1)

F(10,90)

n ≤ 30
range 2.83 2.23 4.53 2.13 3.07 2.64 2.03

average 7.14(1) 7.57(3) 9.60 8.13 7.86 9.70 7.27(1)

n > 30
range 1.12 1.34 2.82 1.66 1.70 2.68 0.91

average 5.23(2) 5.27(3) 6.29 5.37 5.59 5.73 5.15(1)

F(90,90)

n ≤ 30
range 2.65 2.76 2.89 2.76 2.19 2.60 2.65

average 7.18(1) 8.12(3) 10.81 9.07 9.31 10.86 7.79(2)

n > 30
range 1.20 1.34 3.25 1.95 2.30 2.78 1.16

average 5.26(2) 5.34(3) 6.45 5.54 6.01 5.97 5.25(1)

points visually.
For discharge data, referring to the MC and Bowley values given in Table 1, we obtain that

the distribution of this data is left-skewed. From the histogram in Figure 10(a), the majority of the
data is between 0 and 2000. So, there are three points of potential outliers or 6.00% out of total
data. The potential outliers are marked by the red plus sign as shown in Figure 10(b). From Table
7, Kimber and Hubert provide the numbers of three detected outliers which are satisfied with the
number of potential outliers identified from the relevant histogram and plot of sorted data points
visually. Turkey, Walker, Adil and the proposed MH equally provide two percentage away from the
number of observed potential outliers.

For Alamine data set, referring to the MC and Bowley values given in Table 1, we obtain that the
distribution of this data is right-skewed. From the histogram plot in Figure 11(a), the majority of the
data is between 0 and 700. So, there are 16 points of potential outliers or 2.74% out of total data. The
potential outliers are marked by the red plus sign as shown in Figure 11(b). Among these outliers,
there are at least two or four potential outliers which are so far away from the rest of the data and
could affect the real mean or standard deviation of the data. From Table 8, the numbers of detected
outliers, obtained from the proposed MH, MK, and Walker, are 26, 32 and 38 which are rather close
to the number of potential outliers, whereas the numbers of detected outliers obtained from Tukey
and Adil are 68 and 136 which are quite the larger numbers of outliers than usual. It is simply noticed
that these far away outliers could affect the range of the fences obtained from these two methods.



Prem Junsawang et al. 459

Table 5 Average and range of ōri% for small sample size (n = 15, 20, 25, 30) and for large sample
size (n = 50, 100, 250, 500, 750, 1000) on each distribution for Type II contamination

Skewed level D̃ n Stats. Tukey Kimber Hubert Walker Adil MK MH

Symmetric N(0, 1)
n ≤ 30

range 6.70 7.40 7.60 7.13 7.30 8.20 7.40
average 10.12(1) 10.62(3) 12.13 11.21 10.52(2) 12.84 10.92

n > 30
range 1.21 1.49 3.07 1.91 1.49 3.46 1.41

average 5.24(1) 5.30(3) 5.73 5.42 5.29(2) 5.81 5.30(3)

Moderately
Skewed

χ2
1

n ≤ 30
range 1.52 1.82 3.67 2.64 1.62 3.15 1.91

average 9.21 8.36 9.34 7.73(2) 8.11(3) 9.17 6.52(1)

n > 30
range 0.94 1.72 1.62 1.26 1.63 1.68 0.98

average 7.78 5.74 5.33(2) 5.29 6.26 5.34(3) 5.26(1)

F(10,10)

n ≤ 30
range 1.56 2.23 2.42 2.63 1.73 2.40 2.14

average 8.04(2) 8.18(3) 12.14 8.95 11.23 11.72 7.38(1)

n > 30
range 1.44 1.55 2.68 1.52 1.40 2.77 1.48

average 5.95 5.46(3) 6.81 5.36(1) 9.20 5.73 5.38(2)

F(90,10)

n ≤ 30
range 1.83 2.11 2.47 2.84 2.20 2.76 1.58

average 8.04(2) 8.18(3) 12.14 8.95 11.23 11.72 7.38(1)

n > 30
range 1.48 1.63 2.96 1.72 0.49 3.32 1.52

average 5.86 5.46(3) 7.25 5.45(2) 9.26 6.01 5.40(1)

Mildly
Skewed

χ2
5

n ≤ 30
range 2.57 2.55 4.58 3.42 3.65 4.18 2.52

average 7.23(2) 7.62(3) 10.74 8.57 9.95 10.43 7.19(1)

n > 30
range 1.10 1.22 2.97 1.48 2.35 2.40 1.06

average 5.27(2) 5.27(2) 6.09 5.32(3) 6.26 5.60 5.24(1)

χ2
20

n ≤ 30
range 3.18 3.09 4.53 2.68 2.33 2.91 3.37

average 7.15(1) 8.39(3) 11.73 9.53 10.83 11.50 7.96(2)

n > 30
range 1.20 1.47 3.39 2.16 3.05 3.25 1.36

average 5.25(1) 5.32(3) 6.29 5.52 6.31 5.91 5.29(2)

F(10,90)

n ≤ 30
range 2.36 2.25 3.38 2.09 1.92 2.95 2.20

average 7.32(1) 7.89(3) 11.40 8.51 10.50 10.77 7.49(2)

n > 30
range 1.22 1.44 3.32 1.94 2.91 3.36 1.30

average 5.25(1) 5.30(3) 6.37 5.41 6.52 5.81 5.27(2)

F(90,90)

n ≤ 30
range 2.50 2.47 3.75 2.82 3.37 3.60 3.05

average 7.28(1) 8.20(3) 11.90 9.55 11.10 11.73 8.13(2)

n > 30
range 1.19 1.59 3.05 1.95 2.81 2.93 1.50

average 5.26(1) 5.39(3) 6.44 5.57 6.47 6.02 5.34(2)

Table 6 The lower and upper fences, and the number of detected outliers of coal mine data set com-
puted from the seven boxplots

Method [ lower fence, upper fence ] Range #Outliers(%)

Tukey [ -310.63, 618.38 ] 929.00 13 (6.84%)
Kimber [ -189.50, 739.50 ] 929.00 11 (5.79%)
Hubert [ -33.06, 1,420.78 ] 1,453.84 3 (1.57%)
Walker [ -130.87, 989.74 ] 1,120.62 6 (3.16%)
Adil [ -47.34, 1,696.26 ] 1,743.61 1 (0.53%)
MK [ -72.24, 1,239.99 ] 1,312.23 5 (2.63%)
MH [ -374.47, 984.51 ] 1,358.99 6 (3.16%)

For the number of clicks data set, referring to the MC and Bowley values given in Table 1, we
obtain that the distribution of this data is right-skewed. From the histogram plot in Figure 12(a), the
majority of the data is between 0 and 3000. So, there are 11 points of potential outliers or 2.20%
out of the total data. The potential outliers are also noticed by the red plus sign as shown in Figure
12(b). Like Alamine data set, among these outliers, there are at least one outliers which considerably
deviate from the rest of the data. From Table 9, the numbers of detected outliers, obtained from MK,
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Table 7 The lower fences, upper fences and the number of outliers of discharge data set computed
from the seven boxplots

Method [ lower fence, upper fence ] Range #Outliers(%)

Tukey [ 397.63, 2,172.63 ] 1,775.00 1 (2.00%)
Kimber [ 188.00, 1,963.00 ] 1,775.00 3 (6.00%)
Hubert [ 118.22, 1,924.13 ] 1,805.91 3 (6.00%)
Walker [ -214.36, 1,853.79 ] 2,068.15 5 (10.00%)
Adil [ 347.37, 2,125.90 ] 1,778.53 1 (2.00%)
MK [ -616.71, 1,744.57 ] 2,361.28 7 (14.00%)
MH [ 699.58, 2,071.90 ] 1,372.32 1 (2.00%)

Table 8 The lower fences, upper fences and the number of outliers of Alamine data set computed
from the seven boxplots

Method [ lower fence, upper fence ] Range #Outliers(%)

Tukey [ -68.00, 180.00 ] 248.00 68 (11.66%)
Kimber [ -26.00, 222.00 ] 248.00 54 (9.26%)
Hubert [ 14.32, 558.33 ] 544.01 41 (7.03%)
Walker [ -10.13, 333.18] 343.31 38 (6.51%)
Adil [24.68, 27,222.11] 27,197.43 136 (23.33%)
MK [ 5.73, 444.35 ] 438.62 26 (4.46%)
MH [ -85.30, 394.37 ] 479.67 32 (5.49%)

Walker, and the proposed MH, are 11, 13, and 16, respectively which are very close to the number
of potential outliers, while the other methods give the number of detected outliers more than this of
potential outliers.

Table 9 The lower fences, upper fences and the number of outliers of number of clicks data set
computed from the seven boxplots

Method [ lower fence, upper fence ] Range #Outliers(%)

Tukey [ -602.00, 1890.00 ] 2492.00 38 (7.60%)
Kimber [ -324.50, 2167.50 ] 2492.00 32 (6.40%)
Hubert [ 108.46, 3683.00 ] 3574.54 25 (5.00%)
Walker [ -174.07, 2678.42 ] 2852.49 13 (2.60%)
Adil [ 175.89, 6531.74 ] 6355.85 43 (8.60%)
MK [ -23.65, 3191.34 ] 3214.99 11 (2.20%)
MH [ -765.21, 2571.66 ] 3336.87 16 (3.20%)

4. Conclusions and Discussion
The boxplot is a practical and simple tool for detecting outliers in a univariate data set. Unfor-

tunately, when drawing the boxplot of a skewed distribution, many more observations are typically
labelled as potential outliers. In this work, we proposed the boxplot-based method called MH boxplot
for handling the outliers detection problem in a skewed distribution. The proposed MH boxplot was
modified from Hubert’s boxplot by embedding the Bowley’s coefficient, the ratio of lower and upper
split interquartile ranges into the fences of the boxplot. For performance evaluation, the family of
boxplots-based methods, including Tukey (1977), Kimber (1990), Hubert and Vandervieren (2008),
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Walker and Chakraborti (2013), Adil and Irshad (2015), and Promwongsa et al. (2018), was used to
make a comparison in terms of the percentage of outlier ratio mean (ōr%). The experiments were
conducted on three cases of simulated data i.e. truncated, uncontaminated and contaminated data, and
four real data sets. For truncated data, the ōr% of the proposed MH is very close to these of Tukey,
Kimber, Walker and Adil in large sample size for all of symmetric, moderately and mildly skewed
distributions. Moreover, Turkey and Adil perform well the same and better than other methods. For
uncontaminated, the ōr% values from all methods are the same level of efficiency but Tukey is not
good in moderately skewed distribution. Contaminated data, the proposed MH method provides good
results for moderately and mildly skewed distributions, especially in moderately skewed distribution,
but Turkey performs well in symmetric and mildly skewed distributions, Kimber gives good results
in performance for symmetric and mildly skewed distribution and Adil gives good results in perfor-
mance for symmetric skewed distribution. For real dataset, the proposed MH performs quite well in
all real data sets but the performances of the others drop in some data sets such as Turkey, Kimber
and Adil by which they flag many observations as outliers on Alamine data set. The results from sim-
ulated and real data show that the proposed MH boxplot efficiently detects outliers and is robust to
skewness of data for any sample size. Moreover, the proposed MH boxplot efficiently detects outliers
as the shape of real data, especially right-skewed distribution considering with real data sets.
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(a) N(0, 1) (b) χ2
1

(c) F(10,10) (d) F(90,10)

Figure 1 Symmetric and moderately skewed distribution for case I
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(a) χ2
5 (b) F(10,90)

(c) F(10,10) (d) F(90,90)

Figure 2 Mildly skewed distribution for case I
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(a) N(0, 1) (b) χ2
1

(c) F(10,10) (d) F(90,10)

Figure 3 Symmetric and moderately skewed distribution for case II
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(a) χ2
5 (b) χ2

20

(c) F(10,90) (d) F(90,90)

Figure 4 Mildly skewed distribution for case II
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(a) N(0, 1) (b) χ2
1

(c) F(10,10) (d) F(90,10)

Figure 5 Symmetric and moderately skewed distribution for type I contamination



Prem Junsawang et al. 467

(a) χ2
5 (b) χ2

20

(c) F(10,90) (d) F(90,90)

Figure 6 Mildly skewed distribution for type I contamination
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(a) N(0, 1) (b) χ2
1

(c) F(10,10) (d) F(90,10)

Figure 7 Symmetric and moderately skewed distribution for type II contamination
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(a) χ2
5 (b) χ2

20

(c) F(10,90) (d) F(90,90)

Figure 8 Mildly skewed distribution type II contamination
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(a) Histogram plot (b) Plot of sorted data points

Figure 9 Histogram and the plot of sorted data points of coal mine data set

(a) Histogram plot (b) Plot of sorted data points

Figure 10 Histogram and the plot of sorted data points of discharge data set



Prem Junsawang et al. 471

(a) Histogram plot (b) Plot of sorted data points

Figure 11 Histogram and the plot of sorted data points of Alamine data set

(a) Histogram plot (b) Plot of sorted data points

Figure 12 Histogram and the plot of sorted data points of clicks data set
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