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Abstract

In this paper we introduce new power exponentiated family of continuous univariate probability
distributions with application on two real-life datasets. The proposed distribution possesses density
function with three parameters and constant hazard rate function. We studied the nature of distribution
with the help of its mathematical and statistical properties. Probability density function of order
statistics for this distribution is also obtained. We perform classical estimation of parameters by using
the technique of maximum likelihood estimate. Application of the model on two real data sets is finally
presented and compared to the fit attained by some other well-known distributions.
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1. Introduction

In recent years, an impressive set of new statistical distributions has been explored by statisticians.
The need to generate new distributions arise either due to theoretical considerations or practical
applications or both. The necessity to develop an extended class of classical distributions is even more
in areas such as survival data analysis, insurance, finance and risk modelling, modelling weather data
etc. so as to increase its flexibility to acquire high degree of skewness and kurtosis. A considerable
progress has been made towards the generalization of some well-known distributions and their
successful application to problems in these areas.

The modifications in the classical distribution has been proved useful in exploring tail properties
and also for improving the goodness-of-fit of the family under study. Recently many researchers are
working upon this area and have proposed new methods to develop improved probability distributions
with utility. For instance, we can refer, method of skew distributions by Azzalini (1985), method of
adding parameters to an existing distribution by Mudholkar and Srivastava (1993) and Marshall and
Olkin (1997), beta-generated method by Eugene et al. (2002), transformed-transformer method by
Alzaatreh et al. (2013), composite method by Cooray and Ananda (2005). Length-biased weighted
Maxwell distribution by Modi and Gill (2015). Inverse probability integral transformation method by
Ferreira and Steel (2006), compounding approach by Barreto-Souza et al. (2011), alpha logarithmic
transformed (aLT) method by Pappas et al. (2012). Distribution of product and ratio of random
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variables approach by Modi and Joshi (2012). Logarithmic transformed method was given by Maurya
et al. (2016).

The aim of this paper is to discuss some properties of the power exponentiated exponential
distribution. These include the shapes of the density and hazard rate functions, the moments and some
associated measures and the limiting distributions of order statistics. Maximum likelihood estimators
of the model parameter are derived. Further the efficient fitting of data with power exponentiated
exponential distribution is also shown over the other well-known classical distributions. The following
lemmas will also be needed to complete the derivations.

Lemma 1 From Equation (1.110) of Gradshteyn and Ryzhik (2007, p.25), if a is a positive real non

integer and |x| <1, then by binomial series expansion we have

(1 _x)a—l — i(_l)l [O( _ 1] xi'

J

Lemma 2 From Equation (1.211.2) of Gradshteyn and Ryzhik (2007, p.26),

where a and x are any real numbers.

Lemma 3 From Equation (3.312.1) of Gradshteyn and Ryzhik (2007, p.335), if Re f#>0, Rev>0
and Re u >0,

T[l—e;J e "dx = BB(fu,v),

r r
where B(ﬂ,u,v) :M.
T(Bu+v)
Lemma 4 From Equation (3.381.4) of Gradshteyn and Ryzhik (2007, p.346), for Re p >0 and
Rec >0,

2. Power Exponentiated Family
We introduce a new power exponentiated family of probability distributions to model lifetime
data or survival data. The cdf F(x) and pdf f(x) of power exponentiated family are, respectively,

given by
() _
Fooy=Y— "1 (D
v—I1
and
(G(x))* 1 G p-1
f(x)=ﬂv nv(6) g(x), x>0,v>0,8>0. 2)

v—1
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Using Lemma 2, we get

© lnv

(G))" " g(0).

i=0

3. [Exponential Distribution

The exponential distribution is a well-known distribution and has its importance in study of
growth, lifetime data, etc. It’s modification and generalization in the form of exponentiated exponential
(EE) distribution and generalized exponential distribution (GED) had been given by different
mathematicians and statisticians. A continuous random variable X has Exponential distribution, if its
cdf G(x) and pdf g(x) are, respectively, given by

G(x)=1-e”™ 3)
and
gx)=pe ™, x>0,p>0. 4)

4. CDF and PDF of Power Exponentiated Exponential Distribution
For the power exponentiated family using the cdf and pdf defined in (3) and (4) respectively, we
propose a new power exponentiated exponential distribution. Thus, the cdf of the power exponentiated
exponential distribution with £ and v as shape parameters and p as scale parameter, can be defined
as
(G’
v -1
F(x)=——7, )
v—-1
and its corresponding pdf is given by

ﬂpv{lfeim / In v(l —e )ﬂfl e’

v—1

f(x)= , x>0,v>0,>0,p>0. (6)

Using Lemma 2 and then using Lemma 1, we obtain

foy=Briv s () ew),f,we,m:ﬂplnvii( ) (inv) [ﬁl+ﬁ 1] NI

—1 i=0 l! V_l i=0 j=0 l' ]

5. Hazard Rate Function and Survival Function
The hazard rate function given by /(x) = f (x () is an important measure for characterizing life

phenomenon. It measures the conditional probability of a failure given the system is currently working.
For the cdf and pdf defined in (5) and (6) respectively, A(x) takes the form

Y
v ey

hxy =2 e , @®)
vV—v
and its survival function is given by
SR ot
S(x)=1-F(x)=1— . . )

v—-1 v—-1
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Figure 1 Graph of density function of power exponentiated exponential distribution for different
combination of values of its parameters v, p and S
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Figure 2 Graph of distribution function of power exponentiated exponential distribution for different
combination of values of its parameters v, p and S

6. Mode and Median

If a random variable X has the pdf given by (6), then the corresponding mode is given by
S'(x)=0.

—e Y —-px\f-1 _—px
Lplny v (1—e ) ler
x)=
f) —
Lplnv p=ery (1-e?™ )ﬁ_2 e’ (—p +pfe ™ + (1 —e )ln V)

v—1

>

f'(x)=

:O,

:>—p+p,b’e"”‘+(l—e"”‘)1nv=0

:Modezleln[MJ .

10
p p—Inv (10)
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Figure 3 Graph of hazard rate function of power exponentiated exponential distribution for different
combination of values of its parameters v, p and S
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Figure 4 Graph of survival function of power exponentiated exponential distribution for different
combination of values of its parameters v, p and g

Median is obtained by

1

If(x)dx =E

ﬂp llllvj.v(lfe”’x)ﬂ (l_epr)[)’flefpxdx — 1
oo

]l.v("e_w)ﬂ (I—e Py ey =—0 L
0 2 phnv

Put (I—e ™) =t = Bp(l—e ™) e Pdx =dt
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e Y
U e
0 24°p* Inv

—pm\? —
|:V(le ) _1i| _ 14 _ 12
2p°p

In(v-1+28’p*)-In(24° p*)

Inv

)—ln(2ﬂ2p2>r

(1—e™) =

-pm _ 1 _

. (11)

Inv

[ln(v—1+2ﬂ2p2

Thus, median for proposed distribution can be obtained by solving above equation form.

7. Moments
th

If a random variable X has the pdf given by (7), then the corresponding »

=E(X")= j " f(x)dx

plnvii (nv) (- [ﬂﬂrﬂ 1]] i) g
J=

i=0 J 0

moment is given by

Using Lemma 4, we get
, ﬂp]nv 11’11/ ( l)] pi+ -1 F(I"-i—l)
ZZ : l+1
L]

i = (12)

i=0 j=0

8. Moment Generating Function
If a random variable X has the pdf given by (7), then the corresponding »" moment is given by

E@™)= Te’xf(x)dx

ﬂplnvzz(lnm 1y (ﬁwﬂ IJI o) g

i=0 j=0 .]

Solving integral, we obtain

x ﬂplnv (lnv)( 1 (Bi+p- 1) 1
£ — 13
€T Zo:; ( i Jp+pi-t) ()

9. Renyi Entropy
The variation of the uncertainty is measured by the entropy of a random variable. The Renyi
entropy defined by Renyi (1961) as

E, (V)—

ln(T fX(x) dx], v>0,v=1.

Using pdf defined in equation (6), we get
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v—1

w (=Y i1 _—peyp-l_—px )
b [ e
0

ﬂplnvj T v(l ey (1 pX)V(ﬂl)evpxdx]

RN (
(

/J’plnvj Zw: (Inv)

Using Lemma 3,

E,(v)= _1 )ln[[ﬂplnvjvivi(.lnv)iB(v,v—vﬂ+iﬂ+l)]. (14)

10. Order Statistics
In this section, we derive closed form expression for the pdf of the i order statistic of the power
exponentiated exponential distribution. Let X ,..., X, be a simple random sample from power

exponentiated exponential distribution with cdf and pdf given by (5) and (6), respectively. Let

X, ., <X

am S X . <X, denote the order statistics obtained from this sample. We now give the

say f. (x) of X

rm?

r=1,2,...,n given by (David 1981)

probability density function of X

)

i=1,2,..,n. The probability density

th

function of the " order statistics X

rin?

fa@)=C[Fsa, fop)]  [1-F(xa, B, p)] f(x;0, 8. p), x>0,
n!

where F(-) and f(-) are given by (5) and (6) respectively, and C,, = —————.
T (r=Dl(n-r)!

Thus, using binomial expansion given in Lemma 1, we get

[ () = Z ("; ]F(xvﬂm]”“fcx;v,ﬂ,p)

e (r+s-1)
Cr nﬂp Inv & Z( 1) ( r]|:v(1 )1 _1:| V(lfe”" Y (1 _e*/?x)ﬁfl e ™
V —

Inv pi2sal [ BT 1 _reyp ) s e Bl —px
ﬁp C,HZ( 1 1[ )—(V TEa I N (R G

0 0 — + —1 — px \Blg+1
— ﬂp In VC,,:,, z Z (_l)r+q+2371 (n rj(r s j 1 , V(lfe )/( ) (1 _ e*PX)ﬂ*I e
s K

=0 ¢=0 q (V - 1)(”-“)
(15)

11. Maximum Likelihood Estimators
Let X is a random variable having the pdf of power exponentiated exponential distribution
defined as
Bpvi” " In v(l—e ™) e
v—1

S =
Then its log-likelihood function is given by
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L(x;v,p,p)= nlnp+nlnﬂ+nln(lnv)—nln(v—l)—pri +(ﬁ—l)21n(l—e’px’)
i=0 i=0

+lnvZ(l—ef‘"")ﬂ. (16)
i=0
Thus, the non-linear normal equations are given as follows:
. 0 0 —DPX; 0
GEVLP) 2Byt pinyY (=) e, (17)
op j Z—— o l—e i=0
R o _ P\
aL(x,v,,B,p): n _ n +Z(l e ) , (18)
ov vinv v-1 3 1%
dxv.fp) _n VY (- In(l—e )+ Y In(l—e ). (19)
op B pany i

We can estimate of the unknown parameter by the method of maximum likelihood by setting
these above non-linear equation (17)-(19) to zero and solving them simultaneously.

12. Application to Real Life Data

In this section, the proposed power exponentiated exponential distribution is applied on two real
data sets. We observe its flexibility over some well-known existing distributions. The results for the
analysis in this present study are obtained using R software. We have also calculated the Akaike
Information Criteria (AIC) and p-value for the considered distributions to observe their fit. Meanwhile,
the distribution with the highest log-likelihood value or the lowest AIC is considered the best. The pdf
of the distributions taken are as follows.

Power exponentiated exponential distribution:

) B v ey e
v—1

Log-logistic distribution:
S =

Exponentiated exponential distribution:
@) =a0(-e "y e,
Exponentiated gamma distribution:
f@) =00 % [1-e* (Ax+1)]
Let us assume the hypothesis at & =1% LOS,
H, : The data follow the power exponentiated exponential distribution
H, : The data do not follow the power exponentiated exponential distribution

Data set I: The data set is obtained from Smith and Naylor (1987). The data are the strengths of
1.5 cm glass fibres, measured at the National Physical Laboratory England. The data set is: 0.55, 0.93,
1.25,1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59,
1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84,
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2.24,0.81, 1.13,1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51,
1.55,1.61,1.63,1.67,1.70, 1.78, 1.89.

Data set II: In this example we use uncensored data set from Nichols and Padgett (2006). The data
gives 100 observations on breaking stress of carbon fibres (in Gba):
3.70, 2.74, 2.73, 2.50, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87,
3.15,4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31,
3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36,
0.98,2.76,4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17,
5.08,2.48,1.18,3.51,2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80,
1.57,1.08,2.03,1.61,2.12, 1.89, 2.88 ,2.82, 2.05, 3.65.

Table 1 The MLEs of the power exponentiated exponential distribution parameters and AIC value
for data set 1

Distributions Estimates  Log-likelihood D p-value AIC
. ~ v=14.73289
Power exponentiated exponential - 5 _ 53 15145, 2626765 020207  0.01166  58.53530
distribution
» =3.004398
~ 0 = 12.905928
Exponentiated gamma ~30.08129 022878  0.00274  64.16258
distribution A=03.202199
: : o = 26781075
Exponentiated exponential ~31.52905 021806  0.00500  67.05810
distribution 0 =2.485061
Log exponential distribution a =0.455181 —97.02823  0.41165 1.067e-09 194.05646

Table 2 The MLEs of the power exponentiated exponential distribution parameters and AIC value

for data set 2
Distributions Estimates  Log-likelihood D p-value AIC
Power exponentiated exponential v = 16.893490
distribution 5 — 5 583429 ~142.9224  0.09026  0.38910 291.84480
p =1.246344
Log-logistic distribution a = 2.498696

—146.2795 0.09016 0.39050 296.55900
60 =4.118730

Exponentiated gamma 0 =3.468442

distribution  , _ 5 485061 ~145.0898  0.83509  22e-16  294.17960

Exponentiated exponential o =17.826723

distribution 0 = 1.015015 —146.1826 0.10767 0.19660 296.36520

From Tablel and Table 2, the power exponentiated exponential distribution has the highest log-
likelihood value from other two parameter distributions and lowest AIC value, thus making it to be
fitted better than the log-logistic distribution, exponentiated gamma distribution and exponentiated
exponential distribution. The AIC can be calculated using AIC = -2log, L +2k, where log,6 L
denotes the log-likelihood function calculated at the maximum likelihood estimates, & is the number
of parameters. Since p-value > &, we cannot reject the null hypothesis and hence assume that data
follows power exponentiated exponential distribution.
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13. Conclusions

In this paper, we propose the cdf and pdf of power exponentiated family in Section 2. Further the
expressions for the cdf and pdf of power exponentiated exponential distribution with two shape and
one scale are derived in Section 4. We have considered the mathematical and statistical properties for
the derived distribution. From the graphs drawn for pdf of derived distribution, we observe that derived
distribution is unimodal and positively skewed. The hazard rate function, survival function and their
graphs for new distribution are given in Section 5. Derived distribution has constant hazard rate
function, as depicted in graphs. The expressions for finding mode and median are given in Section 6.
The expression for its »" moment of derived distribution is given in (12). We have also derived the
expressions for the Renyi entropy and the pdf of its 7" order statistics in (14) and (15), respectively.
The method of MLE to estimate its parameters is discussed in Section 11. Moreover, the derived
distribution is applied on two real data sets and compared with the other well-known distributions in
Section 12. Results show that the power exponentiated exponential distribution provides a better fit
than other well-known distributions.

Acknowledgments
The author is grateful to the reviewers and editor for carefully reading the manuscript and for
offering substantial suggestions for article improvement.

References

Alzaatreh A, Lee C, Famoye F. A new method for generating families of continuous distributions.
Metron. 2013; 71(1): 63-79.

Azzalini A. A class of distributions which includes the normal ones. Scand J Stat. 1985; 12: 171-178.

Barreto-Souza WM, Cordeiro GM, Simas AB. Some results for beta Fréchet distribution. Commun
Stat Theory Methods. 2011; 40: 798-811.

Cooray K, Ananda MMA. Modeling actuarial data with a composite lognormal-Pareto model. Scand
Actuar J. 2005; 5: 321-334.

David HA. Order statistics. New York: John Wiley & Sons; 1981.

Eugene N, Lee C, Famoye F. Beta-normal distribution and its applications. Commun Stat Theory
Methods. 2002; 31: 497-512.

Ferreira JT, Steel MF. A constructive representation of univariate skewed distributions. J Am Stat
Assoc. 2006; 101: 823-829.

Gradshteyn IS, Ryzhik IM. Table of integrals, series and products, San Diego: Academic Press; 2007.

Marshall AW, Olkin I. A new method for adding a parameter to a family of distributions with
application to the Exponential and Weibull families. Biometrika. 1997; 84:641-652.

Maurya SK, Kaushik A, Singh RK et al. A new method of proposing distribution and its application
to real data. Imp J Interdiscip Res. 2016; 2(6): 1331-1338.

Modi K, Gill V. Length-biased weighted Maxwell distribution. Pak J Stat Oper Res. 2015; 11(4): 465-
472,

Modi K, Joshi L. On the distribution of product and ratio of t and Rayleigh random variables. J Cal
Math Soc. 2012; 8(1): 53-60.

Mudholkar GS, Srivastava DK. Exponentiated Weibull family analyzing bath-tub failure-rate data.
IEEE Trans Reliab. 1993; 42: 299-302.

Nichols MD, Padgett WJ. A bootstrap control chart for Weibull percentiles. Qual Reliab Eng Int. 2006;
22: 141-151.



546 Thailand Statistician, 2021; 19(3): 536-546

Pappas V, Adamidis K, Loukas S. A family of lifetime distributions. Qual Reliab Eng Int. 2012;
doi:10.1155/2012/760687.

Renyi A. On measures of information and entropy. Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics;
1961. pp.547-561.

Smith RL, Naylor JC. A comparison of maximum likelihood and Bayesian estimators for the three-
parameter Weibull distribution. J Appl Stat. 1987; 36: 358-369.



