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Abstract 

In this paper we introduce new power exponentiated family of continuous univariate probability 

distributions with application on two real-life datasets. The proposed distribution possesses density 

function with three parameters and constant hazard rate function. We studied the nature of distribution 

with the help of its mathematical and statistical properties. Probability density function of order 

statistics for this distribution is also obtained. We perform classical estimation of parameters by using 

the technique of maximum likelihood estimate. Application of the model on two real data sets is finally 

presented and compared to the fit attained by some other well-known distributions. 

______________________________ 

Keywords: Exponential distribution, moments, Renyi entropy, order statistics, maximum likelihood estimation. 

 

1. Introduction 

In recent years, an impressive set of new statistical distributions has been explored by statisticians. 

The need to generate new distributions arise either due to theoretical considerations or practical 

applications or both. The necessity to develop an extended class of classical distributions is even more 

in areas such as survival data analysis, insurance, finance and risk modelling, modelling weather data 

etc. so as to increase its flexibility to acquire high degree of skewness and kurtosis. A considerable 

progress has been made towards the generalization of some well-known distributions and their 

successful application to problems in these areas. 

The modifications in the classical distribution has been proved useful in exploring tail properties 

and also for improving the goodness-of-fit of the family under study. Recently many researchers are 

working upon this area and have proposed new methods to develop improved probability distributions 

with utility. For instance, we can refer, method of skew distributions by Azzalini (1985), method of 

adding parameters to an existing distribution by Mudholkar and Srivastava (1993) and Marshall and 

Olkin (1997), beta-generated method by Eugene et al. (2002), transformed-transformer method by 

Alzaatreh et al. (2013), composite method by Cooray and Ananda (2005). Length-biased weighted 

Maxwell distribution by Modi and Gill (2015). Inverse probability integral transformation method by 

Ferreira and Steel (2006), compounding approach by Barreto-Souza et al. (2011), alpha logarithmic 

transformed (αLT) method by Pappas et al. (2012). Distribution of product and ratio of random 
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variables approach by Modi and Joshi (2012). Logarithmic transformed method was given by Maurya 

et al. (2016). 

The aim of this paper is to discuss some properties of the power exponentiated exponential 

distribution. These include the shapes of the density and hazard rate functions, the moments and some 

associated measures and the limiting distributions of order statistics. Maximum likelihood estimators 

of the model parameter are derived. Further the efficient fitting of data with power exponentiated 

exponential distribution is also shown over the other well-known classical distributions. The following 

lemmas will also be needed to complete the derivations. 

 

Lemma 1 From Equation (1.110) of Gradshteyn and Ryzhik (2007, p.25), if   is a positive real non 

integer and 1,x   then by binomial series expansion we have 
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Lemma 2 From Equation (1.211.2) of Gradshteyn and Ryzhik (2007, p.26), 
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where a  and x  are any real numbers. 

 

Lemma 3 From Equation (3.312.1) of Gradshteyn and Ryzhik (2007, p.335), if Re 0,  Re 0   

and Re 0,   
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Lemma 4 From Equation (3.381.4) of Gradshteyn and Ryzhik (2007, p.346), for Re 0p   and 

Re 0,c   
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2. Power Exponentiated Family 

We introduce a new power exponentiated family of probability distributions to model lifetime 

data or survival data. The cdf ( )F x  and pdf ( )f x  of power exponentiated family are, respectively, 

given by 
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Using Lemma 2, we get 
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3. Exponential Distribution 

The exponential distribution is a well-known distribution and has its importance in study of 

growth, lifetime data, etc. It’s modification and generalization in the form of exponentiated exponential 

(EE) distribution and generalized exponential distribution (GED) had been given by different 

mathematicians and statisticians. A continuous random variable X  has Exponential distribution, if its 

cdf ( )G x  and pdf ( )g x  are, respectively, given by 

( ) 1 pxG x e                                                                   (3) 

and 

( ) ,pxg x pe  0, 0.x p                                                          (4) 

 

4. CDF and PDF of Power Exponentiated Exponential Distribution 

For the power exponentiated family using the cdf and pdf defined in (3) and (4) respectively, we 

propose a new power exponentiated exponential distribution. Thus, the cdf of the power exponentiated 

exponential distribution with   and v  as shape parameters and p  as scale parameter, can be defined 

as 
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and its corresponding pdf is given by 
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Using Lemma 2 and then using Lemma 1, we obtain 
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5. Hazard Rate Function and Survival Function 

The hazard rate function given by 
( )

( )
1 ( )

f x
h x

F x
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
 is an important measure for characterizing life 

phenomenon. It measures the conditional probability of a failure given the system is currently working. 

For the cdf and pdf defined in (5) and (6) respectively, ( )h x  takes the form 

 1 1

(1 )

ln . (1 )
( ) ,

px

px

e px px

e

p e e
h x





  

 





   







                                              (8) 

and its survival function is given by 
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Figure 1 Graph of density function of power exponentiated exponential distribution for different 

combination of values of its parameters ,v p  and   

 

 
Figure 2 Graph of distribution function of power exponentiated exponential distribution for different 

combination of values of its parameters ,v p  and   

 

6. Mode and Median 

If a random variable X  has the pdf given by (6), then the corresponding mode is given by 
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Figure 3 Graph of hazard rate function of power exponentiated exponential distribution for different 

combination of values of its parameters ,v p  and   

 

 
Figure 4 Graph of survival function of power exponentiated exponential distribution for different 

combination of values of its parameters ,v p  and   

 

Median is obtained by 

0

1
( )

2

m

f x dx   

(1 ) 1

0

ln 1
(1 )

1 2

px
m

e px pxp
e e dx

  




    
   

(1 ) 1

0

1
(1 ) .

2 ln

px
m

e px pxe e dx
p

  


 

    
   

Put 1(1 ) (1 )px px pxe t p e e dx dt          



Kanak Modi 541 

 1

2 2

0

1

2 ln

pme

t dt
p






 




  

 1

2 2

1
1

2

pme

p

 




  
  

 
 

 2 2 2 2ln 1 2 ln(2 )
(1 )

ln
pm

p p
e 

  




  
   

 
 

1/
2 2 2 2ln 1 2 ln(2 )

1 .
ln

pm
p p

e



  




   
  
  

             (11) 

Thus, median for proposed distribution can be obtained by solving above equation form. 

 

7. Moments 

If a random variable X  has the pdf given by (7), then the corresponding thr  moment is given by 
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Using Lemma 4, we get 

 
   

 
 1

0 0

ln ( 1) 11ln
.

1 ! 1

i j

r r
i j

rip

ji j

   


 

 


 

    
   

     
              (12) 

 

8. Moment Generating Function 

If a random variable X  has the pdf given by (7), then the corresponding thr  moment is given by 
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Solving integral, we obtain 
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9. Renyi Entropy 

The variation of the uncertainty is measured by the entropy of a random variable. The Renyi 

entropy defined by Renyi (1961) as 
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Using pdf defined in equation (6), we get 
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Using Lemma 3, 
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10. Order Statistics 

In this section, we derive closed form expression for the pdf of the thi  order statistic of the power 

exponentiated exponential distribution. Let 1,..., nX X  be a simple random sample from power 

exponentiated exponential distribution with cdf and pdf given by (5) and (6), respectively. Let 

(1: ) (2: ) ( : )...n n n nX X X    denote the order statistics obtained from this sample. We now give the 

probability density function of : ,r nX  say : ( )r nf x  of : ,r nX  1, 2,..., .i n  The probability density 

function of the thr  order statistics :r nX , 1, 2, ...,r n  given by (David 1981) 
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11. Maximum Likelihood Estimators 

Let X  is a random variable having the pdf of power exponentiated exponential distribution 

defined as 
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Then its log-likelihood function is given by 
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Thus, the non-linear normal equations are given as follows: 
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We can estimate of the unknown parameter by the method of maximum likelihood by setting 

these above non-linear equation (17)-(19) to zero and solving them simultaneously. 

 

12. Application to Real Life Data 

In this section, the proposed power exponentiated exponential distribution is applied on two real 

data sets. We observe its flexibility over some well-known existing distributions. The results for the 

analysis in this present study are obtained using R software. We have also calculated the Akaike 

Information Criteria (AIC) and p-value for the considered distributions to observe their fit. Meanwhile, 

the distribution with the highest log-likelihood value or the lowest AIC is considered the best. The pdf 

of the distributions taken are as follows. 
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 
(1 ) 1ln (1 )

,
1

pxe px pxp e e
f x

   



   



 

Log-logistic distribution: 
1

2
( ) ,

1

x

f x
x












 
 
 

  
     

 

Exponentiated exponential distribution: 
1( ) (1 ) ,x xf x e e        

Exponentiated gamma distribution: 

 
12( ) 1 1x xf x xe e x

  
       

Let us assume the hypothesis at  =1% LOS, 

0H : The data follow the power exponentiated exponential distribution 

1H : The data do not follow the power exponentiated exponential distribution 

Data set I: The data set is obtained from Smith and Naylor (1987). The data are the strengths of 

1.5 cm glass fibres, measured at the National Physical Laboratory England. The data set is: 0.55, 0.93, 

1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 

1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 
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2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 

1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89. 

Data set II: In this example we use uncensored data set from Nichols and Padgett (2006). The data 

gives 100 observations on breaking stress of carbon fibres (in Gba): 

3.70, 2.74, 2.73, 2.50, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 

3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 

3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 

0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 

5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 

1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88 ,2.82, 2.05, 3.65. 

 

Table 1 The MLEs of the power exponentiated exponential distribution parameters and AIC value 

for data set 1  

Distributions Estimates Log-likelihood D p-value AIC 

Power exponentiated exponential 

distribution 

 = 14.732890 

 = 23.421452 

p = 3.004398 

−26.26765 0.20207 0.01166 58.53530 

Exponentiated gamma 

distribution 

 = 12.905928 

 = 03.202199 
−30.08129 0.22878 0.00274 64.16258 

Exponentiated exponential 

distribution 

 = 26.781075 

 = 2.485061 
−31.52905 0.21806 0.00500 67.05810 

Log exponential distribution  = 0.455181 −97.02823 0.41165 1.067e-09 194.05646 

 

Table 2 The MLEs of the power exponentiated exponential distribution parameters and AIC value 

for data set 2 

Distributions Estimates Log-likelihood D p-value AIC 

Power exponentiated exponential 

distribution 

 = 16.893490 

 = 5.583429 

p = 1.246344 

−142.9224 0.09026 0.38910 291.84480 

Log-logistic distribution  = 2.498696 

 = 4.118730 
−146.2795 0.09016 0.39050 296.55900 

Exponentiated gamma 

distribution 
 = 3.468442 

 = 2.485061 
−145.0898 0.83509 2.2e-16 294.17960 

Exponentiated exponential 

distribution 

 = 7.826723 

 = 1.015015 
−146.1826 0.10767 0.19660 296.36520 

 

From Table1 and Table 2, the power exponentiated exponential distribution has the highest log-

likelihood value from other two parameter distributions and lowest AIC value, thus making it to be 

fitted better than the log-logistic distribution, exponentiated gamma distribution and exponentiated 

exponential distribution. The AIC can be calculated using AIC = 2 log 2 ,e L k   where loge L  

denotes the log-likelihood function calculated at the maximum likelihood estimates, k  is the number 

of parameters. Since p-value ,  we cannot reject the null hypothesis and hence assume that data 

follows power exponentiated exponential distribution. 
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13.   Conclusions 

In this paper, we propose the cdf and pdf of power exponentiated family in Section 2. Further the 

expressions for the cdf and pdf of power exponentiated exponential distribution with two shape and 

one scale are derived in Section 4. We have considered the mathematical and statistical properties for 

the derived distribution. From the graphs drawn for pdf of derived distribution, we observe that derived 

distribution is unimodal and positively skewed. The hazard rate function, survival function and their 

graphs for new distribution are given in Section 5. Derived distribution has constant hazard rate 

function, as depicted in graphs. The expressions for finding mode and median are given in Section 6. 

The expression for its thr  moment of derived distribution is given in (12). We have also derived the 

expressions for the Renyi entropy and the pdf of its thr  order statistics in (14) and (15), respectively. 

The method of MLE to estimate its parameters is discussed in Section 11. Moreover, the derived 

distribution is applied on two real data sets and compared with the other well-known distributions in 

Section 12. Results show that the power exponentiated exponential distribution provides a better fit 

than other well-known distributions. 
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