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Abstract 

This paper discussed the unknown parameters of extended Weibull distribution under adaptive 

type II progressive hybrid censoring scheme (AT-II PHCS) in the existence of the competing risks 

model. Depending on this scheme the maximum likelihood and Bayesian estimators of the 

distribution parameters are obtained. Bayes estimators have been developed using the standard 

Bayes method under square error, using gamma prior for the parameter. Also, the asymptotic 

confidence intervals and two bootstrap conference intervals are offered. As a final point, the 

maximum likelihood, bootstrap and Bayes estimates are set in a comparison via a Monte Carlo 

simulation study. Finally, a set of real data is used to test the hypothesis that the causes of failure 

follow extended Weibull distribution. 

______________________________ 
Keywords:  Maximum likelihood estimation, Bayesian estimation, bootstrap confidence intervals, extended 

Weibull model, Markov chain Monte Carlo. 

 

1. Introduction 

The combination of type I and type II censoring schemes is known as the hybrid censoring 

scheme and was initially proposed by Epstein (1954) in the setting of life testing experimentations. 

In such a scheme, the experiment is halted at time :min{ , }m nT X T   where (0, )T    and 

1 m n   are fixed in advance, and :m nX  is indicated the thm  failure time in which n  items are 

employed in a life test. Several authors, for example Gupta and Kundu (1998), Childs et al. (2003), 

Kundu (2007), Banerjee and Kundu (2008), Dube et al. (2011) and Almetwally et al. (2018), have 

considered this sampling scheme. 

Absence of elasticity to remove the units from the experiment at any point excluding the 

terminal point is the foremost disadvantage of the conventional type I, type II or hybrid censoring 

schemes. Thus, we are driven straightforward to the range of progressive hybrid censoring. Kundu 
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and Joarder (2006a) and Childs et al. (2008) set a general rule for the above-mentioned hybrid 

censoring scheme to the case in which the observed sample is progressively censored. They thought 

that the progressive type II hybrid censoring scheme in which n  units undergo a test with censoring 

scheme 1 2( , ,..., )mR R R  and stopping time : :min{ , },m m nT X T   where 1: : 2: : : :...m n m n m m nX X X    

be the observed ordered failure times driven from the progressively censored experiment and T  is 

fixed ahead. Briefly, if : : ,m m nX T  the experiment terminates at time 
: :m m nX  and m  failures occur. 

As an alternative, the experiment stops at time T  and only J  failure happens before time ,T  where 

: : 1: : ,J m n J m nX T X    and 0 .J m   The detailed description of the progressive type II hybrid 

censoring scheme is presented in Kundu and Joarder (2006a) and Childs et al. (2008) (see Kundu et 

al. (2009)). Although, in order to control the total on test, the experiment time is fixed by the 

experiment, so less than m  failures (or even equal to zero) might be observed which delivers an 

advance effect on the efficiency of the inferential producer based on the progressive type II hybrid 

censoring scheme. Consequently, it is appropriate to have a model that takes into account an 

adaption process. 

For the purpose of increasing the efficiency of statistical analysis as well as saving the total test 

time, Ng et al. (2009) presented a modification of progressive type II hybrid censoring scheme, so 

called adaptive type II progressive hybrid censoring scheme (AT-II PHCS), and investigated the 

statistics under the assumptions of experiment lifetime distribution of the experimental units. 

Covered by this scheme, the number of observed failures m  is fixed beforehand but the experiment 

time is permitted to run over the (pre-fixed) threshold time 0.T   If : : ,m m nX T  the experiment 

stops at time : : ,m m nX  and we will have a usual progressive type II censoring scheme with the pre-

fixed progressive censoring scheme 1 2( , , ..., ).mR R R  If : : 1: : ,J m n J m nX T X    where 1 ,J m   we 

adapt the number of items progressively removed from the experiment upon failure by setting 

1 2 1... 0J J mR R R       and 
1

.
J

m i
i

R n m R


    Accordingly, the effectively involved scheme 

has to be 1 2
1

, ,..., ,0,...,0, ,
J

J i
i

R R R n m R


 
  

 
  where : :max{ : },J m nJ j X T   that is, the first 

observed failure time surpassing the perfect total time .T  To put in another way, as long as the 

failure happens ahead of time ,T  the initially organized progressive scheme is applied. After passing 

time ,T  we do not withdraw any items at all expect for the time of the thm  failure where all residual 

surviving items are eliminated. This resolution generates cessation of the experiment once the 
th( 1)J m   failure is higher than ,T  and the total test time will not be too far away from time .T   

If 0,T   the scheme will lead us to the case of the conventional type II censoring scheme, and if 

,T   we will have a usual progressive type II censoring scheme. This approach illustrates how 

an experiment can control the experiment. The experiment can decide to change the value of T  as a 

compromise between a shorter experiment time and a higher chance to observe extreme failures. 

Recently Lin et al. (2009), and Hemmati and Khorram (2013) discussed inference regarding the 

above two progressively censoring schemes for the Weibull and log-normal distributions, 

respectively. Also, extending the model of progressive type II censoring, Cramer and Iliopoulos 

(2010) presented an alteration procedure. It permits us to choose the following censoring number 

paying attention to both the preceding censoring numbers and previous failure times. In the 
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meantime, Balakrishnan and Cramer (2014) comprehensively discuss the progressive censoring. 

Ashour and Abu El Azm (2016a) obtained the maximum likelihood estimates and the corresponding 

Fisher information matrix of the generalized Weibull distribution based on Type-I hybrid 

progressive censoring scheme (Type-I PHCS) in the presence of competing risks when the cause of 

failure of each item is known. Ashour and Abu El Azm (2016b) introduced a new scheme called 

progressive hybrid Type-II censoring scheme in the presence of competing risks (Type-II PHCS). 

Based on this scheme and assumed that the lifetimes of the failure times have an exponential 

distribution, the maximum likelihood and Bayes estimators of the distribution parameters are 

obtained, and the asymptotic confidence intervals and Bayes credible intervals are also proposed. 

Nassar et al. (2017) used the maximum likelihood estimation to estimate the unknown parameters and 

acceleration factor based on Type I progressive hybrid censoring scheme (T-I PHCS) and adaptive 

Type-II progressive hybrid censoring scheme (AT-II PHCS) under step-stress partially accelerated 

life test model. Almetwally et al. (2019) estimated the unknown parameters of the generalized 

Rayleigh distribution under AT-II PHCS based on maximum product spacing, MLE and Bayesian 

method. 

Additionally, in reliability analysis, a failure is ordinarily related to one of numerous disastrous 

risk factors to which the test unit undergoes. As it is not commonly feasible to examine the test with 

a secluded risk factor, it necessitates weighing each risk factor alongside with other risk factors. For 

the sake of the analysis of such a competing risks model, every failure observation has to be stated in 

a two-way form that consists of a failure time and the root of failure. Over and above numerous 

causes of failure, censoring habitually takes place, in reliability experiment, for many reasons such 

as time restriction and cost reduction. Breaking down of different censoring schemes under 

competing risks gained rather wide popularity a few years ago. Kundu et al. (2004), Pareek et al. 

(2009) and Cramer and Schmiedt (2011) have all examined the progressive type II censoring scheme 

in the existence of competing risks and regarding some definite parametric lifetime distributions for 

every risks factor. In addition, Kundu and Joarder (2006b) made a study over the breaking down of 

progressively type II hybrid censored data in the current competing risks. As recognizable of failure 

causes is one of the established hypothesis in all the researches mentioned earlier. In definite 

situations, (see for example, Dinse 1982, and Miyakawa 1982) it is clear that the determination of 

the cause of failure may be very costly or difficult to obtain. In those conditions, one might observe 

the failure time, but not the corresponding cause of failure. In recent years, some of authors have 

investigated the competing failure models in partially accelerated life testing, see for example, Shi et 

al. (2013), Han and Kundu (2015), Haghighi and Bae (2015), Zhang et al. (2016), Shi et al. (2016), 

Lone et al. (2017), Wang (2018) and Hassan et al. (2020). 

This article could be curated in the following manner. Section 2 presents model description plus 

Notations. Maximum likelihood estimation and asymptotic variances and covariance matrix of the 

unknown parameters are to be dealt with in Section 3. Section 4 provides the two parametric 

bootstrap confidence intervals (CIs) and approximate confidence interval for unknown parameters. 

Section 5 considers the Bayesian approach that utilizes the well-known Markov chain Monte Carlo 

(MCMC) models. Section 6 provides an explanation of the simulation study and the theoretical 

results. Section 7 presents a numerical example to illustrate all methods of inference established in 

the article in hand. Finally, conclusions are included in Section 8. Tables are displayed in the 

Appendix. 
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2. Model Description and Notations 

In reliability analysis, the failure of items could be assigned to multiple causes simultaneously. 

These causes are competing for the failure of the experiment unit. Let’s inspect a life time 

experiment with n N  identical units, where its lifetimes are defined by independent and 

identically distributed (i.i.d.) random variables 1 2, ,..., .nX X X  Without loss of generality, assume 

that there are only two causes of failure. We have 1 2min{ , }i i iX X X  for 1,..., ,i n  where 

, 1,2,kiX k   represents the latent failure time of the thi  unit under the thk  cause of failure. We 

assume that the latent failure times 1iX  and 2iX  are i.i.d. and the failure times follow the two 

parameter bathtub-shaped life time (extended Weibull) distribution. The cumulative distribution 

(cdf), the probability density function (pdf) and failure rate function are as follows 

( ; , ) 1 exp (1 ) ; 0 , , 0, 1,2,
kx

k k k k k kF x e x k


          
 

                       (1) 

  1( ; , ) exp (1 ) ; 0 , , 0, 1,2,
k k

k x x
k k k k k k k kf x x e e x k

             
 

             (2) 

and 1( ; , ) ; 0 ,
k

k x
k k k k kh x x e x

       

where 0k   is the shape parameter and 0k   is the scale parameter. ( ; , )k k kh x    has a bathtub 

shape when 1k   and might be increasing when 1.k   Specifically, when X  is from Chen 

distribution with parameter k  and ,k  let exp( ) 1,kZ X    the new variable Z  is distributed as 

exponential distribution with parameter .k  

Chen (2000) discussed exact confidence intervals and exact joint confidence regions for the 

parameters depending on a type II censored sample. Wu et al. (2004) explained statistical inference 

about the shape parameter of this distribution based on type II right censored data. Wu (2008) 

explored the estimation problem of progressively type II censored data from this distribution 

utilizing the maximum likelihood technique. Zhang and Shi (2016) introduced the maximum 

likelihood method to estimate the unknown parameters and speeded up factors in the general step-

stress accelerated life tests depending on adaptive type II progressively hybrid censoring data. 

Under AT-II PHCS competing risks data we have the following observation 

1: : 1 1 : : 1: : 1 1: : 1 : :( , , ),..., ( , , ), ( , ,0),..., ( , ,0), ( , , ),m n D m n D D D m n D m m n m m m n m mX R X R X X X R         

where : :max{ : },D m nD D X T 
1

D

m i
i

R n m R


    and (1,2).i   Here, 1,2i   means the unit i  

has failed at time : :i m nX  because of the first and the second cause of failures, respectively. Let  

1

1, 1,
( 1)

0, elsewhere,

i

iI





  


 2

1, 2,
( 2)

0, elsewhere,

i

iI





  


 and 3

1, ,
( )

0, elsewhere.

i

iI



 

   


 

Thus the random variables 1 1

1

( 1)
m

i

i

m I 


   and 2 2

1

( 2)
m

i

i

m I 


   describe the number of 

failures due to the first and the second cause of failures, respectively and 3 3

1

( )
m

i

i

m I 


    is the 

number of failures having failure times but corresponding causes of failure are unknown. Hemmati 

and Khorran (2011), wrote the likelihood function in this case as follows  
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     
( 1) ( 2) ( )

1 2 2 1 1 2 2 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i i i

m
I I I

i i i i i i i i

i

L C f x F x f x F x f x F x f x F x
    



  
    

 1 2 1 2

1

( ) ( ) ( ) ( ) ,
i

D
R R

i i m m

i

F x F x F x F x




         

where 1 2 ,m m m   ( )kf x  is the pdf, ( )kF x  is the cdf, 1,2k   and ( ) 1 ( ).k kF x F x    

We assume that there are only two causes of failure and the case of failure is known, then under 

AT-II PHCS existence competing risks data, we have the following observation 

(1) 1 1 ( ) ( 1) 1 ( )( , , ),..., ( , , ) , ( , ,0) ,..., ( , , ).D D D D D m mx R x R x x R    
   

From the above equation we can write the likelihood function in this cause as follows 

   
( 1) ( 2)

1 2 2 1 1 2 1 2

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
i i i

m D
I I R R

i i i i i i m m

i i

L C f x F x f x F x F x F x F x F x
   

 

                   (3) 

where C  is a constant which does not dependent on parameters. 

 

3.    Maximum Likelihood Estimation 

In the existence of AT-II PHCS under competing risks data (3) and from the life time 

distribution (1) and (2), then the likelihood function of the observed data ignoring the constant can 

be written as: 

3
1 *

1 1 1 11

( ) exp
k k k k

k kk

m m m m D
m

k k i i k ki ki i ki km

i i i ii

L x x u u R u R u   




   

              
        

              (4) 

where ( ) (1 ),
k

ix
ki ki ku u e



   ( ) (1 ),
k

mx

km km ku u e


   1,2,k    1 2 1 2, , , ,L L      ( )i ix x  

for simplicity of notation 
1

1

1

( 1),

m

i

i

m I 


   and 
2

2

1

( 2)

m

i

i

m I 


   describe the number of failure 

that are attributable to the first and the second cause of failure, respectively. Taking the natural 

logarithm likelihood function lnl L  in (4) we obtain 

1

1
1 1 1 2 2 2 1 1 1 2 2

1

(ln ln ) (ln ln ) ( 1) ln
m

i i i i

i

l m m x x u u      


         
   

   
2

2

2 2 2 1 1 1 1 2 2 1 1 2 2
1 1

( 1) ln .
m D

i i i i i i i m m
i i

x x u u R u u R u u      

 

                   (5) 

The first order derivatives of (5) with respect to ,k k   and 1,2k   are given respectively by 

 
3

1 1 1 1

ln ln ,
k k k

k

m m m D
k

i i i k ki k ki k i ki k km
i i i ik k

ml
x x x V V RV R V    

 




   


        

                            (6) 

 
3

1 1 1

,
k km m D

k
ki ki i ki km

i i ik k

ml
u u R u R u

 




  


    


                                                                              (7) 

where ( ) ln ,
k

i kx

ki ki k i iV V e x x
    ( ) ln

k
m kx

km km k m mV V e x x
    and 1,2.k   

Based on Equation (7) the maximum likelihood estimator (MLE) of 1  and 2  is expressed by 
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3

1 1 1

ˆ , 1, 2.
k k

k
k m m D

ki ki i ki km
i i i

m
k

u u R u R u






  


 

    
                                   (8) 

Consequently, by substituting ˆk  into Equation (6), the system equation reduced to nonlinear 

equation as follows 

3
ˆ

1 1 1 1

ˆ ˆ ˆ ˆln ln 0 , 1,2.
ˆ

k k k

k

m m m D
k

i i i k ki k ki k i ki k km
i i i ik

m
x x x V V RV R V k    






   

        
          (9) 

Since the closed from solution to nonlinear Equation (9) is very hard to achieve the MLE of the 

unidentified parameters 1  and 2.  So a numerical method technique is required for competing the 

MLE of the parameters 1  and 2.  Therefore 1  and 2  is calculated easily from Equation (8).  

The asymptotic variance covariance matrix for 1 2 1, ,    and 2  can be achieved by reversing 

the information matrix with the elements that are not positive of the expected values of the second 

order derivatives of logarithms of the likelihood functions. Hence, the Fisher information matrix 

related to 1 2 1 2( , , , )      can be prescribed as 

2 2

2
1 11

2 2

2
2 22

2 2

2
1 1 1

2 2

2
2 2 2

0 0

0 0

( ) ,

0 0

0 0

l l

l l

I
l l

l l

 

 


  

  

  
 

  
 

  
  
 
  
 
   

   
   

 

The elements of 4 4  matrix ( ) , ( ), , 1, 2,3, 4ijI I i j    can be obtained as follows: 

2

2 2
,k

k k

ml

 


 


 

32

1 1 1

,
k km m D

ki ki i ki km
i i ik k

l
V V RV R V

 




  

 
     

   
    

32
2

2 2
1 1

(ln ) 1 (1 ) ln (1 )
k k

k
k i k k

m m
xk

i i k i k ki i i
i ik k

ml
x x e x V x x

   
 



 

        
 

   

            
1

ln (1 ) ln (1 ).k k

D

k i ki i i k km m m
i

R V x x R V x x   



     

Now, we derive the relative risk rates, 1  and 2  due to case 1 and 2, respectively. The relative 

risk due to case 1 is defined as 

 
1 2

1 11
1 1 2 1 2 1 1 1 2

0 0

( ) ( ) ( ) exp (1 ) (1 ) .i ix x
i i i iP X X f x F x dx x x e e dx

      
 

         
      (10) 

Once 1  is computed, we determine 2  using the relation 2 11 ,    

1 2
1 11

2 1 1 1 2

0

1 exp (1 ) (1 ) .i ix x
i ix x e e dx

      


       
   
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As the integral in the right side of (10) is not to be attributed to any methodical clarification, we 

have to use a numerical procedure to resolve the integral. As maintained by the invariance property 

of the MLE, the MLE of the relative risk rates 1  and 2 ,  may be achieved by replacing the MLE 

of 1 2 1, ,    and 2  in (10). 

 

4.    Confidence Interval 

Here, we introduced different confidence intervals. The first is established on the asymptotic 

distribution of , ,k k   1, 2k   and two different bootstrap confidence intervals. 

 

4.1. Asymptotic confidence interval (ACI) 

We may derive the approximate confidence intervals of the parameters on the asymptotic 

distribution of the MLEs of the elements of the vector of unknown parameters ( , )k k    and 

1,2.k   It is known that the asymptotic distribution of the MLEs of 
ˆ

ˆVar( )

 



  
 
 

 can be 

approximated by a standard normal distribution, where ˆ( )Var   is estimated as the asymptotic 

variance, then, the approximate 100(1 )%  two sided confidence interval for ( , )k k    and 

1,2k   are achieved, hence; 

2 2
ˆ ˆ ˆ ˆ( ) ( ) ,P Z Var Z Var           

  
 

where 2Z  is the 100(1 / 2)%  standard normal percentile. 

 

4.2. Bootstrap confidence interval 

In this subsection, we construct two parametric bootstrap confidence intervals for ,k k   and 

1,2k   as: 

4.2.1. Percentile bootstrap confidence interval (Boot-P) 

1) Compute the MLE of ( , )k k    and 1,2k   based on AT-II PHCS under competing 

risks data. 

2) Generated a bootstrap samples using ,k k  and 1,2k   to obtain the bootstrap estimate 

of k  say ˆ ,b
k k   say ˆb

k  and 1,2k   using the bootstrap sample. 

3) Repeat Step 2 B  times to get  (1) (2) ( ), ,...,b b b B
k k k    and  (1) (2) ( ), ,..., .b b b B

k k k    

4) Arrange  (1) (2) ( ), ,...,b b b B
k k k    and  (1) (2) ( ), ,...,b b b B

k k k    in ascending order as 

 [1] [2] [ ], ,...,b b b B
k k k    and  [1] [2] [ ], ,..., .b b b B

k k k     

5) A two-sided 100(1 )%  percentile bootstrap confidence interval for the unknown 

parameters ,k k   and 1,2k   is set by  [ 2] [ (1 2)]ˆ ˆ,b B b B
k k

     and 

 [ 2] [ (1 2)]ˆ ˆ, .b B b B
k k

     

4.2.2. Bootstrap-t confidence interval (Boot-t) 

1) The same steps as (1-2) in Boot-P. 
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2) Compute the t-statistic of ( , )k k    and 1,2k   as ˆ ˆ ˆ( ) ( )b b
k k kT Var     where 

ˆ( )b
kVar   is asymptotic variances of ˆb

k  and it can be obtained using the Fisher 

information matrix. 

3)  Repeat Steps 2-3 B  times and obtain (1) (2) ( ), ,..., .BT T T  

4) Arrange (1) (2) ( ), ,..., BT T T  in ascending order as [1] [2] [ ], ,..., .BT T T  

5) A two-sided 100(1 )%  percentile bootstrap-t confidence interval for the unknown 

parameters ,k k   and 1,2k   is given by 

 [ 2] [ (1 2)]ˆ ˆ ˆ ˆ( ) , ( ) ,B B
k k k kk kT Var T Var       

and         [ 2] [ (1 2)]ˆ ˆ ˆ ˆ( ) , ( ) .B B
k k k k k kT Var T Var       

 

 

5. Bayesian Estimation 

In this section, the Bayes estimate using squared error loss function under the assumption of 

gamma prior of the unknown parameters of the extended Weibull distribution is to be achieved 

depending on AT-II PHCS in the existence of competing risks data. One may consider the Bayesian 

estimation under the assumption that the random variables ,k k   and 1,2k   are independently 

distributed with gamma prior distribution with defined shape and scale parameters , , ,k k k kv b c d  and 

1,2,k   with pdf as 

1( ) exp( ), , 0, 1, 2kv
k k k k kk b v b k        

and 
1( ) exp( ), , 0, 1,2.kc

k k k k kk d c d k        

Hence, the joint prior density of unknown parameters k  and k  can be written as 

   1 1, exp , , , , 0, 1,2.k kv c
k k k k k k k k k kk k b d v b c d k                         (11) 

Combining (4) and (11) to obtain the posterior density of ( , )k k    and 1,2k   considering 

the next form 

 
( ). ( , )

( ) .
( ). ( , )

k k

k k

L x
x

L x d



   
 

    

 


              (12) 

Therefore, the Bayes estimates of the unknown parameters ( , )k k    and 1,2k   based on 

AT-II PHCS in the existence of competing risks under squared error denoted by (BESL) ;  can be 

calculated through the following equations as follows 

 (BESL)

0

( ) ( ) .E x x d     


                 (13) 

Normally, the ratio of four integrals given by Equation (13) are not to be obtained in a closed 

form. In this case, one may utilize the MCMC technique to generate samples from the posterior 

distributions, after that, compute the Bayes estimators of the individual parameters. 
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5.1. MCMC approach 

A broad diversity of MCMC schemes is accessible, and any researcher may find difficulty in 

selecting one of them. A vital sub-class of MCMC methods is Gibbs sampling and more general 

Metropolis within Gibbs samplers. The benefit of employing the MCMC method over the MLE 

method can be revealed as one may always attain a sound interval estimate of the parameters by 

constructing the probability intervals depending on empirical posterior distribution. The 

aforementioned may not frequently be feasible in ML estimation. Indeed, the MCMC samples may 

be used to completely summarize the posterior uncertainty about the parameters ( , )k k    and 

1,2,k   through a kernel estimate of the posterior distribution. This is also true of any function of 

the parameters. 

The joint posterior density functions of ( , )k k   and 1,2k   can be written as 

1 1 1

11

( ) exp ,
k k

k k k k k k

m m
m v m c

i i k k k kik k

ii

x x x d w          



   
     

  
  
  

, , , , , 0, 1, 2k k k k k kv b c d k     (14) 

where 
3

1 1 1

( ) .
k km m D

ki ki k k ki ki i ki km

i i i

w w b u u R u R u




  

         

The conditional posterior densities of ( , )k k    and 1,2k   have the following forms: 

 1 1 2 1 2( , , , )x     ∼  1 1 1, ,iGamma m v w              (15) 

 2 2 1 1 2( , , , )x     ∼  2 2 2, ,iGamma m v w              (16) 

 
1 1

1 1 1 11 1
3 1 1 2 2 1 1 1 11

11

( , , , ) exp ,

m m
m c

i i i

ii

x x x d w          



   
     

  
  
             (17) 

and 

 
2 2

2 2 2 21 1
4 2 1 2 1 2 2 2 22

11

, , , exp .

m m
m c

i i i

ii

x x x d w          



   
     

  
  
                  (18) 

It is rather obvious that both (15) and (16) are gamma distributed, consequently, samples of 1  

and 2  may be created without difficulty by employing any of the gamma generating procedures. 

The posterior of 1  and 2  in (17) and (18) are not known. Thus, to derive from this distributions, 

one may employ the Metropolis-Hastings method (Metropolis et al. (1953) with normal proposal 

distribution). For more information concerning the application of Metropolis-Hasting algorithm, 

readers may refer to Robert and Casella (2004). 

To run the Gibbs sampler algorithm, we started with the MLEs. We then drew samples from 

various full conditionals, in turn, using the most recent values of all other conditioning variables 

unless some systematic pattern of convergence was achieved. 

 

5.2. The algorithm Gibbs sampling 

The algorithm Gibbs sampling can be described as follows. 

Step 1: Start with an  
1 2 1 2

(0) (0) (0) (0)
1 2 1 2, , ,            and set 1.I   

Step 2: Generate 1
I  from 1 1 2 1 2( , , , ).x      
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Step 3: Generate 2
I  from 2 2 1 1 2( , , , ).x      

Step 4: Generate 1
I  from 3 1 1 2 2( , , , ).x      

Step 5: Generate 
2
I  from 4 2 1 2 1( , , , ).x       

Step 6: Compute 1 2 1, ,I I I    and 2 .I  

Step 7: Set 1.I I   

Step 8: Repeat Steps 2-6 N  times. 

Step 9: We get the Bayes MCMC point estimate of  1 1 2 2 3 1 4 2, , , ,I             

1, 2,3,4q   as 

 

1

( data) ( ) ,
N

i
q q

i M

E N M 
 

 
  

 
 
  

where M  is the burn-in period (that is, some iterations beforehand the stationary distribution 

perform) and the posterior variance of   becomes 

  
2

1

ˆ ˆ( data) ( data) ( ).
N

i
q q q

i M

V E N M  
 

 
   

  
  

 

6.    Simulation Study 

Here, the researcher will carry out a simulation study to assess the performance of the 

estimations using R package. The estimates of parameters of the extended Weibull distribution under 

AT-II PHCS are evaluated in terms of their Bias, mean squared errors (MSE) and length of CIs. The 

numerical procedure is designed as below: 

For different sample size n  50, 100 and 200. Choosing different effective sample sizes by using 

ratio of effective sample size / 0.3.m n   

According Balakrishnan and Sandhu (1995), we generate m  random sample of size under AT-

II PHCS with different schemes and in existence of competing risks data researchers may obtain the 

reflection to follow 

         1: : 1 1 : : 1: : 1 1: : 1 : :, , ,..., , , , , ,0 ,..., , ,0 , , , ,m n D m n D D D m n D m m n m m m n m mX R X R X X X R         

where : :max{ : },D m nD D X T   then    : : 1 2 1 2, .i m n EX W          

For different time selecting of trail 0.5T   and 1.5. 

Selecting 1 1 2 21.1, 0.4 , 1.5, 0.8        in every cases and consider five different sampling 

schemes: 

Scheme 1: 1 1... 0mR R     and ,mR n m   

Scheme 2: 1R n m   and 2 ... 0,mR R    

Scheme 3: 1 1... 0mR R     and 2 1,mR n m    

Scheme 4: 1 2 1R n m    and 2 ... 0,mR R    and 

Scheme 5: 1 3... 3mR R    and ( 3) 1 ... 2.m mR R      
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Thus the random variables 1 1
1

( 1),
m

i
i

m I 


   2 2
1

( 2)
m

i
i

m I 


   and describe the number of 

failures due to the first and the second cause of failures, respectively and 3 3
1

( )
m

i
i

m I 


    is the 

number of failures having failure times but corresponding causes of failure are unknown where 

1

1, 1,
( 1)

0, elsewhere,

i
iI





  


 2

1, 2,
( 2)

0, elsewhere,

i
iI





  


 and 3

1, ,
( )

0, elsewhere.

i
iI




 
   


 

As for specific selections of unknown parameters and accelerated factor, we restricted the 

number of repeated-samples to 1,000. 

The simulation methods for MLE and Bayes are set in comparison using the measures of 

parameters estimation, the comparison is performed by calculate the average values of Bias, MSE 

and the length of confidence intervals (LCIs) for each methods of estimation. 

Numerical outcomes are listed in Tables 1-5 of the estimated parameters from the extended 

Weibull distribution under AT-II PHCS. The following observations can be detected as described 

below: 

1. For MLE and Bayes estimations, it is clear that MSE and biases decrease as sample size 

increases. (see Table 1). 

2. For MLE and Bayes estimations, it is clear that MSE decrease as sample removal ( )m  

increase (see Tables 1 and 3). 

3. The MSE of Bayesian estimation is better than MSE of MLE always (see Tables 1 and 

3). 

4. For the shape parameter 1 2( , ),   the MSE are decreasing as T  increases based on 

maximum likelihood and Bayesian methods (see Table 3). 

5. Five different samples schemes were applied on AT-II PHCS and that to get to the most 

effective scheme, the efficiency is the best for Scheme 2 followed by Scheme 4. 

6. Schemes 1 and 2 not affected by the changes in time ,t  whatever the changes in time t, 

there is a stability in the numerical and practical results of Schemes 1 and 2. (see Tables 1 and 3), 

where scheme 1 is 1 2 1... 0 ,mR R R      and ,mR n m   it is type-II scheme and Scheme 2 is 

1R n m   and 2 3 1... 0mR R R      so not affected by the time. 

7. In most cases, the Boot-t are smaller than the anther method as ACI, Boot-P (see Tables 

2 and 4). 

 

7. Numerical Results 

To illustrate the practical benefit of the procedures proposed in this paper, the worth of the 

parameters through two various competing risks from the extended Weibull distribution is 

scrutinized under adaptive type II progressive hybrid censoring.  

Lawless (2011) introduced data of life testing and Sarhan (2007) explained this data that 

contents of times failure or censoring times for 36 small electrical appliances submit to an automatic 

life test. Failures were categorized into 18 several proceeds, although between the 33 observed 

failures only 7 procedures were exemplified; and only procedures 6, and 9 showed more than twice. 

We are fundamentally centering on failure procedure 9. Therefore, the data contents of two reasons 

of failure: (failure procedure 9), (all other failure procedure), and (failure time is censored). The 

following offers the ordered failure times, and reason of failure, if available. Data Set: (11, 2), (35, 

2), (49, 2), (170, 2), (329, 2), (381, 2), (708, 2), (958, 2), (1062, 2), (1167, 1), (1594, 2), (1925, 1), 
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(1990, 1), (2223, 1), (2327, 2), (2400, 1), (2451, 2), (2471, 1), (2551, 1), (2565, 0), (2568, 1), (2694, 

1), (2702, 2), (2761, 2), (2831, 2), (3034, 1), (3059, 2), (3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329, 

1), (6367, 0), (6976, 1), (7846, 1), (13403, 0). 

This data is type-II censored competing risks data and it's a special case of AT-II PHCS model. 

The MLE and Bayes for the unknown parameters based on type-II censored competing risks scheme 

are obtained and reported in (6). Also, we calculated the Kolmogorov-Smirnov (K-S) distance 

between the empirical and the fitted distributions for EW distribution is 0.15939 and p-value is 

0.3353 where ˆˆ 0.00305, 0.22308,    and the estimations of relative risk rates 1  and 2  are 

0.45935 and 0.54065, respectively. 

 

Table 1 Bias and MSEs of the MLE and Bayes estimates based on the AT-II PHCS under various 

censoring schemes in 0.5T   when 1 1 2 21.1, 0.4, 1.5, 0.8        

( , )n m  Scheme Properties 
MLE Bayes Estimate 

1̂  1̂  2̂  2̂  1̂  1̂  2̂  2̂  

(50,15) 

1 
Bias 2.9655 1.1810 −0.6252 0.6745 −0.3965 0.4345 −0.3003 0.3909 

MSE 2.6847 2.3712 2.5461 0.8807 0.2085 0.2071 0.3177 0.1892 

2 
Bias 1.5698 1.0841 −0.4011 0.5435 −0.1984 0.5423 −0.2036 0.4173 

MSE 2.1217 1.9968 1.2624 0.5331 0.1055 0.3104 0.2313 0.2035 

(50,25) 

1 
Bias 1.3486 0.9966 0.1275 0.5260 −0.3069 0.4840 −0.2950 0.4018 

MSE 2.5547 1.2576 2.0981 0.3984 0.1400 0.2493 0.2693 0.1913 

2 
Bias 0.9180 0.9482 −0.2293 0.4812 −0.1773 0.1786 −0.2514 0.2170 

MSE 7.3748 1.1170 0.4258 0.2915 0.0866 0.0426 0.2152 0.0833 

3 
Bias 1.2405 0.9326 −0.2169 0.4562 −0.2646 0.5031 −0.3394 0.3623 

MSE 1.3190 1.0868 0.5417 0.2754 0.1220 0.2681 0.2530 0.1518 

(100,30) 

1 
Bias 1.6083 0.9641 −0.4201 0.5211 −0.3472 0.2677 −0.2334 0.3209 

MSE 2.0396 1.1350 1.6231 0.3742 0.1932 0.0906 0.2781 0.1505 

2 
Bias 0.7076 0.9170 −0.2759 0.4485 −0.1474 0.3263 −0.2641 0.3237 

MSE 1.4168 0.9884 0.3599 0.2489 0.0710 0.1205 0.2227 0.1479 

(100,50) 

1 
Bias 0.8853 0.8813 −0.1883 0.4710 −0.2951 0.2918 -0.2878 0.3341 

MSE 1.9655 0.8856 0.4007 0.2719 0.1264 0.1000 0.2393 0.1564 

2 
Bias 0.5410 0.8537 −0.3155 0.4350 −0.0878 0.3442 −0.3034 0.3240 

MSE 0.5701 0.8067 0.2395 0.2145 0.0465 0.1312 0.2082 0.1427 

3 
Bias 0.5766 0.8262 −0.3546 0.4072 −0.2525 0.3113 −0.2997 0.3181 

MSE 1.0445 0.7619 0.3184 0.1907 0.0993 0.1104 0.2243 0.1363 

(200,60) 

1 
Bias 0.9582 0.8663 −0.2022 0.4461 -0.2265 0.1519 −0.2559 0.2178 

MSE 0.9548 0.8337 0.4621 0.2395 0.1214 0.0368 0.2497 0.0858 

2 
Bias 0.5444 0.8647 −0.3464 0.4255 0.1015 0.1692 −0.2562 0.1906 

MSE 0.4723 0.8062 0.2389 0.2026 0.0582 0.0389 0.1836 0.0757 

(200,100) 

1 
Bias 0.5817 0.8450 −0.3237 0.4287 −0.0756 0.1546 −0.2521 0.2214 

MSE 0.6574 0.7543 0.2138 0.2063 0.0612 0.0352 0.1817 0.0845 

2 
Bias 0.4861 0.8421 −0.3674 0.4217 0.1505 0.5714 −0.3085 0.3997 

MSE 0.3290 0.7433 0.2020 0.1906 0.0571 0.3403 0.1727 0.1790 

3 
Bias 0.3606 0.7729 −0.4674 0.3589 -0.0513 0.1711 −0.3655 0.2177 

MSE 0.3492 0.6370 0.3012 0.1409 0.0470 0.0405 0.1932 0.0686 

 

 



Table 2 The length of the difference intervals for the AT-II PHCS under various censoring schemes at 0.5T   

( , )n m  Scheme 1̂  1̂  2̂  2̂  

LCI Boot-P Boot-t LCI Boot-P Boot-t LCI Boot-P Boot-t LCI Boot-P Boot-t 

(50, 15) 
1 4.2656 0.3516 0.3456 3.8756 0.1248 0.1279 4.3647 0.3265 0.3546 2.5592 0.0823 0.0798 

2 4.1570 0.6266 0.6276 3.5548 0.1143 0.1123 4.4038 0.1354 0.1450 1.9122 0.0611 0.0595 

(50, 25) 

1 3.5465 0.4869 0.4863 2.0169 0.0605 0.0667 3.6589 0.1855 0.1819 1.3686 0.0421 0.0429 

2 3.0237 0.3313 0.3201 1.8306 0.0574 0.0575 2.3961 0.0761 0.0763 0.9599 0.0308 0.0305 

3 3.9456 0.5190 0.5254 1.8272 0.0593 0.0567 2.7583 0.0879 0.0869 1.0179 0.0322 0.0303 

(100, 30) 
1 3.9465 0.3156 0.3195 1.7782 0.0580 0.0568 3.8042 0.1951 0.1867 1.2566 0.0396 0.0401 

2 3.7537 0.1198 0.1202 1.5065 0.0457 0.0472 2.0891 0.0647 0.0679 0.8569 0.0266 0.0262 

(100, 50) 

1 3.0557 0.3222 0.3101 1.2944 0.0406 0.0422 2.3703 0.0790 0.0755 0.8777 0.0277 0.0283 

2 2.0657 0.0618 0.0657 1.0939 0.0362 0.0344 1.4671 0.0472 0.0463 0.6236 0.0196 0.0189 

3 3.3093 0.1042 0.1066 1.1048 0.0334 0.0338 1.7213 0.0552 0.0538 0.6187 0.0200 0.0192 

(200, 60) 
1 2.5466 0.2396 0.2388 1.1314 0.0360 0.0365 2.5455 0.0831 0.0805 0.7897 0.0250 0.0247 

2 1.6451 0.0525 0.0539 0.9483 0.0298 0.0303 1.3524 0.0413 0.0422 0.5762 0.0177 0.0175 

(200, 100) 

1 2.2153 0.0724 0.0717 0.7866 0.0252 0.0245 1.2952 0.0412 0.0392 0.5884 0.0182 0.0185 

2 1.1937 0.0368 0.0374 0.7247 0.0224 0.0229 1.0151 0.0326 0.0336 0.4426 0.0145 0.0139 

3 1.8361 0.0599 0.0583 0.7812 0.0239 0.0249 1.1286 0.0356 0.0348 0.4314 0.0143 0.0134 
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Table 3 Bias and MSEs of the MLE and Bayes estimates based on the AT-II PHCS under various 

censoring schemes at 1 1 2 21.1, 0.4, 1.5, 0.8        

T  ( , )n m  Scheme Properties 
MLE Bayes Estimate 

1̂  1̂  2̂  2̂  1̂  1̂  2̂  2̂  

0.5 

(50,15) 

3 
Bias 2.1651 1.2046 −0.5652 0.5821 −0.3869 0.4435 −0.2852 0.3979 

MSE 2.4953 2.6165 1.4596 0.5746 0.1995 0.2151 0.3007 0.1914 

4 
Bias 1.7498 1.0716 0.1598 0.5463 −0.2789 0.4894 −0.2965 0.3918 

MSE 2.4565 1.7996 2.1079 0.4554 0.1494 0.2566 0.2581 0.1827 

5 
Bias 1.8456 1.1012 0.3585 0.5629 −0.3510 0.4801 −0.2994 0.4002 

MSE 2.5495 1.8128 1.8947 0.6562 0.1815 0.2457 0.2742 0.1895 

(100,30) 

3 
Bias 1.1652 0.9456 −0.3101 0.5095 −0.3375 0.2674 −0.2596 0.3262 

MSE 1.8655 1.1465 0.6599 0.3496 0.1743 0.0893 0.2511 0.1525 

4 
Bias 0.8428 0.8766 −0.2311 0.4382 −0.2696 0.3043 −0.2411 0.3290 

MSE 1.4655 0.8942 0.4868 0.2406 0.1212 0.1082 0.2476 0.1538 

5 
Bias 0.9565 0.9099 −0.1772 0.4482 −0.3327 0.2913 −0.2354 0.3159 

MSE 1.2955 0.9752 0.4885 0.2495 0.1635 0.1019 0.2501 0.1432 

(200, 60) 

3 
Bias 0.9456 0.8585 −0.1792 0.4496 −0.2108 0.1553 −0.2183 0.2131 

MSE 0.8905 0.8179 0.3995 0.2389 0.1111 0.0365 0.2327 0.0822 

4 
Bias 0.5197 0.8205 −0.3748 0.3932 −0.0678 0.1568 −0.2805 0.2121 

MSE 0.7709 0.7353 0.3019 0.1760 0.0631 0.0359 0.2255 0.0812 

5 
Bias 0.6189 0.8332 −0.3039 0.4277 −0.1281 0.1583 −0.2412 0.2094 

MSE 0.9692 0.7457 0.2715 0.2036 0.0749 0.0370 0.2250 0.0799 

1.5 

(50,15) 

3 
Bias 1.6946 1.2299 1.7466 0.5912 −0.3806 0.4595 -0.2957 0.3901 

MSE 2.2456 2.6282 2.2315 0.5808 0.1892 0.2296 0.3117 0.1900 

4 
Bias 1.7346 1.0701 0.1153 0.5390 −0.2662 0.4973 −0.2796 0.4059 

MSE 2.3546 1.7408 1.7782 0.4333 0.1397 0.2626 0.2586 0.1987 

5 
Bias 1.7095 1.0872 0.2547 0.5658 −0.3113 0.4747 −0.2948 0.4018 

MSE 2.2565 1.7612 1.8850 0.6690 0.1627 0.2417 0.2799 0.1910 

(100,30) 

3 
Bias 0.8546 0.9584 0.1005 0.5119 −0.3492 0.2800 −0.2615 0.3187 

MSE 1.5056 1.1252 1.5472 0.3518 0.1781 0.0905 0.2537 0.1487 

4 
Bias 0.8997 0.9079 −0.1934 0.4616 −0.2675 0.3014 −0.2452 0.3271 

MSE 1.5288 0.9720 0.4249 0.2598 0.1228 0.1066 0.2390 0.1495 

5 
Bias 0.8516 0.9035 −0.1574 0.4564 −0.3375 0.2869 −0.2354 0.3179 

MSE 1.4236 0.9636 0.4652 0.2565 0.1465 0.0989 0.2487 0.1448 

(200, 60) 

3 
Bias 0.7938 0.8610 −0.1828 0.4593 −0.2195 0.1602 −0.2206 0.2286 

MSE 0.6959 0.8202 0.4065 0.2477 0.1294 0.0419 0.2264 0.0837 

4 
Bias 0.6069 0.8509 −0.2988 0.4295 −0.0463 0.1605 −0.2217 0.2148 

MSE 0.7864 0.7794 0.2353 0.2076 0.0613 0.0377 0.2281 0.0857 

5 
Bias 0.6390 0.8392 −0.2708 0.4345 −0.1345 0.1589 −0.2225 0.2110 

MSE 1.0597 0.7585 0.2736 0.2120 0.0831 0.0372 0.2392 0.0830 
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Table 4 The length of the difference intervals for the AT-II PHCS under various censoring schemes 

( , )n m  Scheme Method 
0.5T   1.5T   

1̂  1̂  2̂  2̂  1̂  1̂  2̂  2̂  

(50, 15) 

3 

LCI 4.0946 4.1424 4.1956 1.8860 5.4655 4.4424 5.0465 1.9396 

Boot-P 0.5946 0.1280 0.5165 0.0598 0.6456 0.1459 0.5562 0.0604 

Boot-t 0.5981 0.1321 0.5395 0.0598 0.6456 0.1425 0.5771 0.0604 

4 

LCI 4.1895 3.1650 4.6595 1.5541 4.2365 3.0269 4.2103 1.4819 

Boot-P 0.6189 0.0968 0.1850 0.0517 0.6965 0.0938 0.1652 0.0473 

Boot-t 0.6165 0.0983 0.1737 0.0485 0.6814 0.0975 0.1612 0.0472 

5 

LCI 3.9546 3.0381 3.2565 2.2849 4.3565 2.9849 4.2945 2.3164 

Boot-P 0.4565 0.0994 0.3495 0.0766 0.7002 0.0947 0.2916 0.0790 

Boot-t 0.4345 0.0946 0.3246 0.0718 0.7155 0.0937 0.2985 0.0739 

(100, 30) 

3 

LCI 3.5470 1.7832 3.8624 1.1749 4.4565 1.6298 4.6707 1.1674 

Boot-P 0.4192 0.0595 0.1574 0.0381 0.4649 0.0522 0.1544 0.0401 

Boot-t 0.4198 0.0573 0.1567 0.0373 0.4513 0.0495 0.1486 0.0365 

4 

LCI 5.2806 1.3904 2.5819 0.8648 3.8155 1.5077 2.4413 0.8473 

Boot-P 0.1721 0.0421 0.0828 0.0281 0.2598 0.0444 0.0785 0.0266 

Boot-t 0.1747 0.0424 0.0837 0.0266 0.2624 0.0487 0.0759 0.0262 

5 

LCI 3.5414 1.5052 2.6515 0.8646 3.3855 1.5049 2.6029 0.8611 

Boot-P 0.5116 0.0476 0.0798 0.0276 0.5110 0.0473 0.0838 0.0283 

Boot-t 0.4680 0.0483 0.0856 0.0271 0.4972 0.0477 0.0824 0.0273 

(200, 60) 

3 

LCI 2.6563 1.1017 2.3956 0.7516 3.1565 1.0332 2.2050 0.7346 

Boot-P 0.3312 0.0336 0.0785 0.0231 0.3195 0.0321 0.0688 0.0234 

Boot-t 0.3779 0.0360 0.0781 0.0246 0.3185 0.0324 0.0678 0.0233 

4 

LCI 2.7756 0.9778 1.5758 0.5738 2.5362 0.9230 1.4987 0.5968 

Boot-P 0.0838 0.0315 0.0529 0.0183 0.0807 0.0307 0.0480 0.0194 

Boot-t 0.0883 0.0314 0.0489 0.0176 0.0810 0.0290 0.0455 0.0183 

5 

LCI 3.0026 0.8898 1.6602 0.5637 3.1651 0.9132 1.7554 0.5969 

Boot-P 0.0965 0.0284 0.0507 0.0173 0.1005 0.0284 0.0556 0.0193 

Boot-t 0.0945 0.0283 0.0498 0.0182 0.1002 0.0291 0.0542 0.0188 

 

8. Conclusions 

This paper explained a competing risks model under adaptive type II progressive hybrid 

censoring scheme when the fixed number of causes of failure in known. Assuming that the lifetime 

distributions are extended Weibull distribution. We have derived the MLEs, propose different 

confidence intervals using asymptotic distributions and bootstrap confidence intervals for the 

parameters of extended Weibull distribution. Also, the Bayes estimates obtained based on squared 

error loss function under the assumption of independent gamma priors. A simulation study has been 

conducted to examine and compare the performance of the proposed methods for different sample 

sizes and different censoring schemes. Finally, a numerical example is provided to illustrate the 

inference methods described in the paper. 
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Table 5 The MLE and Bayes with different sample based on AT-II PHCS under competing risks 

T  Scheme Properties 
MLE Bays Estimate 

1̂  1̂  2̂  2̂  1̂  1̂  2̂  2̂  

0.5 

1 
Mean 0.5670 1.3182 5.1907 3.4798 0.9860 1.5758 0.6955 1.6252 

SE 0.4876 0.6504 7.9401 1.5117 0.5443 0.4219 0.4159 0.6432 

2 
Mean 0.7348 1.3369 1.2727 2.8163 0.8802 1.4685 0.7520 1.3162 

SE 0.3887 0.4571 0.6358 0.9884 0.4363 0.3521 0.4805 0.4563 

0.5 

3 
Mean 0.5778 1.3182 3.7272 3.2497 0.9436 1.5228 1.0464 1.9042 

SE 0.4705 0.6225 4.6394 1.3136 0.6788 0.5343 0.6396 0.5108 

4 
Mean 0.5745 1.2533 1.4104 2.6005 0.6465 1.6995 0.7891 1.5503 

SE 0.3561 0.4983 0.9516 0.9465 0.3626 0.7097 0.3260 0.3816 

0.25 

3 
Mean 0.5501 1.2105 2.3288 2.9186 0.6218 1.3781 0.6339 1.4727 

SE 0.3590 0.5867 2.7203 1.2520 0.3537 0.5873 0.3415 0.4205 

4 
Mean 0.3061 0.9284 0.4982 1.8310 0.4090 1.0214 0.7579 1.7208 

SE 0.1610 0.3995 0.2848 0.8056 0.2153 0.3501 0.2412 0.4324 
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