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Abstract

This paper discussed the unknown parameters of extended Weibull distribution under adaptive
type II progressive hybrid censoring scheme (AT-II PHCS) in the existence of the competing risks
model. Depending on this scheme the maximum likelihood and Bayesian estimators of the
distribution parameters are obtained. Bayes estimators have been developed using the standard
Bayes method under square error, using gamma prior for the parameter. Also, the asymptotic
confidence intervals and two bootstrap conference intervals are offered. As a final point, the
maximum likelihood, bootstrap and Bayes estimates are set in a comparison via a Monte Carlo
simulation study. Finally, a set of real data is used to test the hypothesis that the causes of failure
follow extended Weibull distribution.

Keywords: Maximum likelihood estimation, Bayesian estimation, bootstrap confidence intervals, extended
Weibull model, Markov chain Monte Carlo.

1. Introduction
The combination of type I and type II censoring schemes is known as the hybrid censoring
scheme and was initially proposed by Epstein (1954) in the setting of life testing experimentations.

In such a scheme, the experiment is halted at time 7° =min{X ,T} where T €(0,00) and

m:n?>
1<m<n are fixed in advance, and X, is indicated the m™ failure time in which n items are

employed in a life test. Several authors, for example Gupta and Kundu (1998), Childs et al. (2003),
Kundu (2007), Banerjee and Kundu (2008), Dube et al. (2011) and Almetwally et al. (2018), have
considered this sampling scheme.

Absence of elasticity to remove the units from the experiment at any point excluding the
terminal point is the foremost disadvantage of the conventional type I, type II or hybrid censoring
schemes. Thus, we are driven straightforward to the range of progressive hybrid censoring. Kundu
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and Joarder (2006a) and Childs et al. (2008) set a general rule for the above-mentioned hybrid
censoring scheme to the case in which the observed sample is progressively censored. They thought
that the progressive type II hybrid censoring scheme in which » units undergo a test with censoring

T}, where X,,,., < X5, <. X

m:m:n

scheme (R, R,,...,R, ) and stopping time 7" = min{X,

be the observed ordered failure times driven from the progressively censored experiment and 7 is

fixed ahead. Briefly, if X <T, the experiment terminates at time x, ~ and , failures occur.

m:m:n n

As an alternative, the experiment stops at time 7" and only J failure happens before time 7, where

Xyomn <T <X 1mn» and 0<J <m. The detailed description of the progressive type II hybrid

censoring scheme is presented in Kundu and Joarder (2006a) and Childs et al. (2008) (see Kundu et
al. (2009)). Although, in order to control the total on test, the experiment time is fixed by the
experiment, so less than , failures (or even equal to zero) might be observed which delivers an
advance effect on the efficiency of the inferential producer based on the progressive type II hybrid
censoring scheme. Consequently, it is appropriate to have a model that takes into account an
adaption process.

For the purpose of increasing the efficiency of statistical analysis as well as saving the total test
time, Ng et al. (2009) presented a modification of progressive type Il hybrid censoring scheme, so
called adaptive type II progressive hybrid censoring scheme (AT-II PHCS), and investigated the
statistics under the assumptions of experiment lifetime distribution of the experimental units.
Covered by this scheme, the number of observed failures m is fixed beforehand but the experiment
time is permitted to run over the (pre-fixed) threshold time 7 >0. If X

m:m:n

<T, the experiment

stops at time X and we will have a usual progressive type Il censoring scheme with the pre-

m:m:n?

fixed progressive censoring scheme (R,R,,..,R,). If X, <T<X where J+1<m, we

m:n J+lim:n>

adapt the number of items progressively removed from the experiment upon failure by setting

J
0 and R, =”"”‘ZR,-' Accordingly, the effectively involved scheme

i=1

Ry=R;n=.=R

m-1 =

<T}, that is, the first

m:n

J
has to be [RI,RZ,...,RJ,O,...,O,n—m—ZR,.], where J=max{j:X,
i=1

observed failure time surpassing the perfect total time 7. To put in another way, as long as the
failure happens ahead of time 7', the initially organized progressive scheme is applied. After passing
time 7', we do not withdraw any items at all expect for the time of the m™ failure where all residual
surviving items are eliminated. This resolution generates cessation of the experiment once the
J +1)—m™ failure is higher than 7', and the total test time will not be too far away from time 7.
If T =0, the scheme will lead us to the case of the conventional type II censoring scheme, and if
T — oo, we will have a usual progressive type II censoring scheme. This approach illustrates how
an experiment can control the experiment. The experiment can decide to change the value of 7 as a
compromise between a shorter experiment time and a higher chance to observe extreme failures.
Recently Lin et al. (2009), and Hemmati and Khorram (2013) discussed inference regarding the
above two progressively censoring schemes for the Weibull and log-normal distributions,
respectively. Also, extending the model of progressive type Il censoring, Cramer and Iliopoulos
(2010) presented an alteration procedure. It permits us to choose the following censoring number
paying attention to both the preceding censoring numbers and previous failure times. In the
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meantime, Balakrishnan and Cramer (2014) comprehensively discuss the progressive censoring.
Ashour and Abu El Azm (2016a) obtained the maximum likelihood estimates and the corresponding
Fisher information matrix of the generalized Weibull distribution based on Type-I hybrid
progressive censoring scheme (Type-I PHCS) in the presence of competing risks when the cause of
failure of each item is known. Ashour and Abu El Azm (2016b) introduced a new scheme called
progressive hybrid Type-II censoring scheme in the presence of competing risks (Type-II PHCS).
Based on this scheme and assumed that the lifetimes of the failure times have an exponential
distribution, the maximum likelihood and Bayes estimators of the distribution parameters are
obtained, and the asymptotic confidence intervals and Bayes credible intervals are also proposed.
Nassar et al. (2017) used the maximum likelihood estimation to estimate the unknown parameters and
acceleration factor based on Type I progressive hybrid censoring scheme (T-I PHCS) and adaptive
Type-II progressive hybrid censoring scheme (AT-II PHCS) under step-stress partially accelerated
life test model. Almetwally et al. (2019) estimated the unknown parameters of the generalized
Rayleigh distribution under AT-II PHCS based on maximum product spacing, MLE and Bayesian
method.

Additionally, in reliability analysis, a failure is ordinarily related to one of numerous disastrous
risk factors to which the test unit undergoes. As it is not commonly feasible to examine the test with
a secluded risk factor, it necessitates weighing each risk factor alongside with other risk factors. For
the sake of the analysis of such a competing risks model, every failure observation has to be stated in
a two-way form that consists of a failure time and the root of failure. Over and above numerous
causes of failure, censoring habitually takes place, in reliability experiment, for many reasons such
as time restriction and cost reduction. Breaking down of different censoring schemes under
competing risks gained rather wide popularity a few years ago. Kundu et al. (2004), Pareek et al.
(2009) and Cramer and Schmiedt (2011) have all examined the progressive type II censoring scheme
in the existence of competing risks and regarding some definite parametric lifetime distributions for
every risks factor. In addition, Kundu and Joarder (2006b) made a study over the breaking down of
progressively type II hybrid censored data in the current competing risks. As recognizable of failure
causes is one of the established hypothesis in all the researches mentioned earlier. In definite
situations, (see for example, Dinse 1982, and Miyakawa 1982) it is clear that the determination of
the cause of failure may be very costly or difficult to obtain. In those conditions, one might observe
the failure time, but not the corresponding cause of failure. In recent years, some of authors have
investigated the competing failure models in partially accelerated life testing, see for example, Shi et
al. (2013), Han and Kundu (2015), Haghighi and Bae (2015), Zhang et al. (2016), Shi et al. (2016),
Lone et al. (2017), Wang (2018) and Hassan et al. (2020).

This article could be curated in the following manner. Section 2 presents model description plus
Notations. Maximum likelihood estimation and asymptotic variances and covariance matrix of the
unknown parameters are to be dealt with in Section 3. Section 4 provides the two parametric
bootstrap confidence intervals (CIs) and approximate confidence interval for unknown parameters.
Section 5 considers the Bayesian approach that utilizes the well-known Markov chain Monte Carlo
(MCMC) models. Section 6 provides an explanation of the simulation study and the theoretical
results. Section 7 presents a numerical example to illustrate all methods of inference established in
the article in hand. Finally, conclusions are included in Section 8. Tables are displayed in the
Appendix.
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2. Model Description and Notations

In reliability analysis, the failure of items could be assigned to multiple causes simultaneously.
These causes are competing for the failure of the experiment unit. Let’s inspect a life time
experiment with ne N identical units, where its lifetimes are defined by independent and
identically distributed (i.i.d.) random variables X,,X,,...,X,. Without loss of generality, assume

that there are only two causes of failure. We have X, =min{X,;,X,;} for i=1,..,n, where

X,k =1,2, represents the latent failure time of the i™ unit under the k™ cause of failure. We
assume that the latent failure times X, and X,; are i.i.d. and the failure times follow the two
parameter bathtub-shaped life time (extended Weibull) distribution. The cumulative distribution
(cdf), the probability density function (pdf) and failure rate function are as follows
ﬂ(x;ak,ﬁk):1—exp[ak(1—e‘”‘ )]; x>0,a,,8 >0,k=1,2, (1)

v

fia,p)=a, p xP e exp[ak(l—exﬁk )]; x>0,a,,8, >0,k=1,2, )

o1
and h(x0,B,) = o B xP e x>0,
where B, >0 is the shape parameter and «, >0 is the scale parameter. %, (x;¢,,,) has a bathtub

shape when f, <1 and might be increasing when f, >1. Specifically, when X is from Chen

distribution with parameter £, and ¢, let Z =exp(X ) —~1, the new variable Z is distributed as
exponential distribution with parameter «;.

Chen (2000) discussed exact confidence intervals and exact joint confidence regions for the
parameters depending on a type II censored sample. Wu et al. (2004) explained statistical inference
about the shape parameter of this distribution based on type II right censored data. Wu (2008)
explored the estimation problem of progressively type II censored data from this distribution
utilizing the maximum likelihood technique. Zhang and Shi (2016) introduced the maximum
likelihood method to estimate the unknown parameters and speeded up factors in the general step-
stress accelerated life tests depending on adaptive type II progressively hybrid censoring data.

Under AT-II PHCS competing risks data we have the following observation

(Xl:m:nﬂ5l 9R1)5'"5(XD:m:n7§D ’RD)’(XD+1:n1:n76D+l 70)5"'5(Xm—l:m:n’5m—l 70)5(Xm:m:nﬂ5m 7Rm)7

D
<T}, R, =n—m—ZR,. and J, €(1,2). Here, §; =1,2 means the unit i

i=1

where D =max{D:X

D:m:n

has failed at time X .

iim:n

0, =1,

i

because of the first and the second cause of failures, respectively. Let

1,

0, elsewhere,

1, 6,=2, 1, o=
and 1,(5, = %)=
0, elsewhere, 0, elsewhere.

11(5,:1):{ 12(5,:2):{

Thus the random variables m; = ZII (6; =1) and m, = 212 (0; =2) describe the number of
i=1 i=1
failures due to the first and the second cause of failures, respectively and m; = 213 (6; =*) 1is the
i=1
number of failures having failure times but corresponding causes of failure are unknown. Hemmati
and Khorran (2011), wrote the likelihood function in this case as follows
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- CH[(’FI(%’)E(’%))I(@:D (LR (AR )+ f (x,-)E(x,-))"‘s‘:*)}
i=1

D .
- _ R = - R
JIAECHEE] [REIBE)]
i=1
where m =m, +m,, f,(x) is the pdf, F,(x) isthe cdf, k =1,2 and F,(x)=1-F,(x).
We assume that there are only two causes of failure and the case of failure is known, then under
AT-IT PHCS existence competing risks data, we have the following observation

(x(1)551 sRl)s--~s(x(D)a5D aRD)s(x(D+1)a5D+1 ,0),...,(X(m),5m aR*)'

From the above equation we can write the likelihood function in this cause as follows

m B _ _ D .
L= [ (heme) ™ (heofe) 7 [TTE B [Aabe) ] o
i1

i=1
where C is a constant which does not dependent on parameters.

3. Maximum Likelihood Estimation

In the existence of AT-II PHCS under competing risks data (3) and from the life time
distribution (1) and (2), then the likelihood function of the observed data ignoring the constant can
be written as:

ms_;

Loc(akﬂk)"“[ﬁxf“}xp ixﬁ— [Zuk Zu,a ZRukl R'uy, )
i=1 i=1

where u;; =u, (f,)=(1-€" )ukm u, (B)=>1-e" )k—12 L= L(al,az,ﬂl,ﬁz) x; =X

for simplicity of notation m; = ZI (6;=1), and m, = ZI (6; =2) describe the number of failure

i=1 i=1
that are attributable to the first and the second cause of failure, respectively. Taking the natural
logarithm likelihood function /=In L in (4) we obtain

oY
locm(lngy +In B)+m,(Inc, +ln,b’2)+2[(,31 +1)Inx; +xiﬁl +oquy; +a2u2,}
i=1

my D
+Z[(ﬂ2 +)Inx, +x* +o,u,, +oqu, J + ZRI. [au, + ayu,, |+ R [, +ayu,, | 5)

i=1 i=1

The first order derivatives of (5) with respect to ¢, , 5, and k =1,2 are given respectively by

s +Zlnx +Z[ %ilnx, —a, M] akmiiV akiR,VM—akR Vers (6)
aﬂk ﬂk i=1 P
a—:m—+§:um+mj§u,ﬂ+ZRu,ﬂ+R U, @)

where V,, =V, (8,) = e X nx, Vi =Vi(B) = o P nx, and k=1,2.

Based on Equation (7) the maximum likelihood estimator (MLE) of ¢; and «, is expressed by
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—m
~ k
o, =

Jk=1,2. (8)

my_j
Zu,ﬂ +Zu,ﬂ +ZR uy, +R Uy,
Consequently, by substituting &, into Equation (6), the system equation reduced to nonlinear

equation as follows

M3k

[”klnx —a, ] akZV,ﬂ akZRVk, &RV, =0,k=1,2. (9

Since the closed from solution to nonlinear Equation (9) is very hard to achieve the MLE of the
unidentified parameters S and f,. So a numerical method technique is required for competing the

MLE of the parameters S and f,. Therefore «; and «, is calculated easily from Equation (8).
The asymptotic variance covariance matrix for «;,a,,, and f, can be achieved by reversing

the information matrix with the elements that are not positive of the expected values of the second
order derivatives of logarithms of the likelihood functions. Hence, the Fisher information matrix
related to 0 = (¢, ,, B, 3,) can be prescribed as

3% 0 3% |
5512 op 0,
ol 0 ol
op} op,0a
10) = 5 B,0a, ’
ol o’
0 — 0
aalaﬂl (30(1
ol 0 ol
The elements of 4x4 matrix 1(0),1,(0), i,j=1,2,3,4 can be obtained as follows:
o’ _ mA
8a,f al’
my my_ D
V. + +) RV, +RV,, |,
aak a ﬁk 2 ki Z ; km

2 my ms_,
T [1 o e (l+xf")J—akZVkilnxi(l+x;B")
aﬂk ﬂk i=1 i=1

—akZR,. Vilnx,(1+x)—a, R'V,, Inx, (1+x7).
i=l1
Now, we derive the relative risk rates, 7, and 7z, due to case 1 and 2, respectively. The relative

risk due to case 1 is defined as
=P(X,<X,)= jf(x)F (x)dx = alﬂlj At exp[x +oy(1-e” )+ a,(1-e )]dx. (10)

Once 7; is computed, we determine 7, using the relation 7, =1-7,,

7 =1-af P exp[x[ﬂ] ra(-e™yra,-e” )}dx.

0
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As the integral in the right side of (10) is not to be attributed to any methodical clarification, we
have to use a numerical procedure to resolve the integral. As maintained by the invariance property
of the MLE, the MLE of the relative risk rates z; and z,, may be achieved by replacing the MLE

of a,,a,, B and B, in (10).

4. Confidence Interval
Here, we introduced different confidence intervals. The first is established on the asymptotic
distribution of «,, B,, k=1,2 and two different bootstrap confidence intervals.

4.1. Asymptotic confidence interval (ACI)
We may derive the approximate confidence intervals of the parameters on the asymptotic
distribution of the MLEs of the elements of the vector of unknown parameters 6 = (¢, ,) and

k=1,2. It is known that the asymptotic distribution of the MLEs of _0-0_ can be

\lVar(é)

approximated by a standard normal distribution, where Var(é) is estimated as the asymptotic
variance, then, the approximate 100(1—-y)% two sided confidence interval for 6 =(e,,,) and

k =1,2 are achieved, hence;

P[é—zlear(é) <f< 6A’+Zy/2\/Var(9A)} =7,

where Z,, is the 100(1-y/2)% standard normal percentile.

4.2. Bootstrap confidence interval
In this subsection, we construct two parametric bootstrap confidence intervals for «,,f, and

k=1,2 as:

4.2.1. Percentile bootstrap confidence interval (Boot-P)
1) Compute the MLE of 8 =(¢,,f,) and k=1,2 based on AT-II PHCS under competing

risks data.
2) Generated a bootstrap samples using ¢, , 8, and k =1,2 to obtain the bootstrap estimate

of a; say a,p, say ,5’,? and k =1,2 using the bootstrap sample.
3) Repeat Step 2 B times to get (af(”,af(z),...,af“”) and (ﬂ,f“), AR kb(B)).
4) Arrange (af(”,af(z),...,af“”) and (ﬂk”“),ﬂf(z),...,ﬂf(m) in ascending order as

b1 _b[2] b[B] b1 b[2] b[B]
(ak o0y )and (ﬂk B By )

5) A two-sided 100(1—-y)% percentile bootstrap confidence interval for the unknown

parameters  «,,, and k=1,2 is set by {dfwﬂz],&f[lg“’m”} and

nb[By/2] pb[B(l1-y/2
{ﬁk[ 721 phLBa-r/ )]}_

4.2.2. Bootstrap-t confidence interval (Boot-t)
1) The same steps as (1-2) in Boot-P.
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2) Compute the t-statistic of 6 =(¢,,f,) and k=1,2 as T = (é,f —é,{ )/ «[Var(é,f) where

Var(é{,’ ) is asymptotic variances of éf’ and it can be obtained using the Fisher
information matrix.

3) Repeat Steps 2-3 B times and obtain 7", 7® . T,

4) Arrange TO,T?,...,T® in ascending order as 71, 712! . T18],

5) A two-sided 100(1—-y)% percentile bootstrap-t confidence interval for the unknown

parameters o, B, and k=1,2 is given by

(dk + T,{[By/z], Var(a,), a; + 7}{[3(177/2)]1/Var(0?k ) ) ,
and (B var(B) o oo fyar())

5. Bayesian Estimation

In this section, the Bayes estimate using squared error loss function under the assumption of
gamma prior of the unknown parameters of the extended Weibull distribution is to be achieved
depending on AT-II PHCS in the existence of competing risks data. One may consider the Bayesian
estimation under the assumption that the random variables ¢,,f, and k=1,2 are independently

distributed with gamma prior distribution with defined shape and scale parameters v, ,b;,c,,d;, and
k=1,2, with pdfas
m(ay) < ) exp(—ayby), viby >0,k =1,2
and
7(B) o B exp(=Bydy), cpody >0,k =1,2.
Hence, the joint prior density of unknown parameters «, and S, can be written as
w(o, Be)oc o™ B exp(—ayby = Bidy )y visbgsciody > 0,k =1,2. (11)

Combining (4) and (11) to obtain the posterior density of 8 = (¢, ;) and k =1,2 considering
the next form
L(O| x).7(ay. )

. (12)
[ 16| ). 7. )0
4

7' (0| x)=

Therefore, the Bayes estimates of the unknown parameters 6 = («;, ;) and k =1,2 based on

AT-II PHCS in the existence of competing risks under squared error denoted by é(BESL); can be

calculated through the following equations as follows

OBEsL) :E(9|£)=I9”*(9|£)d9- (13)
0

Normally, the ratio of four integrals given by Equation (13) are not to be obtained in a closed
form. In this case, one may utilize the MCMC technique to generate samples from the posterior
distributions, after that, compute the Bayes estimators of the individual parameters.
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5.1. MCMC approach

A broad diversity of MCMC schemes is accessible, and any researcher may find difficulty in
selecting one of them. A vital sub-class of MCMC methods is Gibbs sampling and more general
Metropolis within Gibbs samplers. The benefit of employing the MCMC method over the MLE
method can be revealed as one may always attain a sound interval estimate of the parameters by
constructing the probability intervals depending on empirical posterior distribution. The
aforementioned may not frequently be feasible in ML estimation. Indeed, the MCMC samples may
be used to completely summarize the posterior uncertainty about the parameters 6 =(«,;, ;) and
k =1,2, through a kernel estimate of the posterior distribution. This is also true of any function of
the parameters.

The joint posterior density functions of 8 = (e, ,) and k=1,2 can be written as

my

w3
. (0| x) o amk+v" mk+q—| [H Bi— Jexp{zxiﬂk - B, _O‘kai]:
i=1

Verbescnd,ap, B >0,k =1,2 (14)
sy

where wy,; =w,(B,)=b, - Zukl Zukl ZR u,; —Ruy,, .

i=l i=1 i=1

The conditional posterior densities of 8 = (a;, 5,) and k =1,2 have the following forms:
7rl*(al|a2,ﬂ1,,[7’2,x)~Gamma(m1+v1,w”), (15)

ﬂ;(a2|a|,,[7’],ﬁ2,x)~Gamma(m2+v2,w2i), (16)

73 (B arsay By x) oc BT [H i Jexp[z ﬂ_ﬂldl_alwli]’ (17)

i=1

and

)
(ﬂz|0‘1’0‘2,ﬂ1, B [H f- ]exp[inﬂz—ﬂzdz—azwz,} (18)
i=1

It is rather obvious that both (15) and (16) are gamma distributed, consequently, samples of ¢
and «, may be created without difficulty by employing any of the gamma generating procedures.
The posterior of f, and £, in (17) and (18) are not known. Thus, to derive from this distributions,

one may employ the Metropolis-Hastings method (Metropolis et al. (1953) with normal proposal
distribution). For more information concerning the application of Metropolis-Hasting algorithm,
readers may refer to Robert and Casella (2004).

To run the Gibbs sampler algorithm, we started with the MLEs. We then drew samples from
various full conditionals, in turn, using the most recent values of all other conditioning variables
unless some systematic pattern of convergence was achieved.

5.2. The algorithm Gibbs sampling
The algorithm Gibbs sampling can be described as follows.

Step 1: Start with an (al(o) = al,aio) = 0(2,,31(0) = ﬂl,ﬁgo) = ﬁz) and set / =1.

Step 2: Generate ] from 7} (¢ |(x2, B, B %)
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Step 3: Generate o from 7, (, |a1, B, B x).

Step 4: Generate 3/ from 73 (8 |a1,a2, By X).

Step 5: Generate g from 7;(B,|a. a5, 3, ).

Step 6: Compute ¢, ,a;,/ and ;.

Step 7: Set I =1+1.

Step 8: Repeat Steps 2-6 N times.

Step 9: We get the Bayes MCMC point estimate of 6, (6, = .6, =,,0, = 3,6, = 53,),
q=1,2,3,4 as

N
E(@, |data)oc[ > egf)] /N—M),

i=M+1
where M is the burn-in period (that is, some iterations beforehand the stationary distribution
perform) and the posterior variance of € becomes

N
V(9q|data)o{ > (egf) _E(9q|data))2:| /N—M).

i=M+1

6. Simulation Study

Here, the researcher will carry out a simulation study to assess the performance of the
estimations using R package. The estimates of parameters of the extended Weibull distribution under
AT-II PHCS are evaluated in terms of their Bias, mean squared errors (MSE) and length of CIs. The
numerical procedure is designed as below:

For different sample size n =50, 100 and 200. Choosing different effective sample sizes by using
ratio of effective sample size m/n=0.3.

According Balakrishnan and Sandhu (1995), we generate ,, random sample of size under AT-
II PHCS with different schemes and in existence of competing risks data researchers may obtain the
reflection to follow

(Xrons 8o R )oK s O R )oK pstomens 020 soen( X s 8,1:0) (X o6, R, )

where D=max{D: X,  <T}, then X,, ~EW[(0{1 +a,).(4 +,B2)].

For different time selecting of trail 7 =0.5 and 1.5.
Selecting o, =1.1, 5, =0.4,, =1.5, 8, = 0.8 in every cases and consider five different sampling

schemes:
Scheme 1: Ry=...=R, ;=0 and R, =n—m,
Scheme 2: R =n—-m and R, =..=R,, =0,
Scheme 3: R =..=R,_, =0 and R, =n-2m+1,
Scheme 4: R, =n—-2m+1and R, =...=R,, =0, and

Scheme 5: R =..=R, ;=3 and R =.=R, =2.

(m/3)+1
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Thus the random variables m, = ZII 0. =1, m,= ZIZ (6, =2) and describe the number of

i=1 i=1

failures due to the first and the second cause of failures, respectively and m, = 213 (6, =%*) 1is the

i=1

number of failures having failure times but corresponding causes of failure are unknown where

17 51'=17 17 6‘1227 17 51-2*,
L5 =1= L5, =2)= and I3(6, = %) =

0, elsewhere, 0, elsewhere, 0, elsewhere.

As for specific selections of unknown parameters and accelerated factor, we restricted the
number of repeated-samples to 1,000.

The simulation methods for MLE and Bayes are set in comparison using the measures of
parameters estimation, the comparison is performed by calculate the average values of Bias, MSE
and the length of confidence intervals (LClIs) for each methods of estimation.

Numerical outcomes are listed in Tables 1-5 of the estimated parameters from the extended
Weibull distribution under AT-II PHCS. The following observations can be detected as described
below:

1. For MLE and Bayes estimations, it is clear that MSE and biases decrease as sample size
increases. (see Table 1).
2. For MLE and Bayes estimations, it is clear that MSE decrease as sample removal (m)

increase (see Tables 1 and 3).

3. The MSE of Bayesian estimation is better than MSE of MLE always (see Tables 1 and
3).

4. For the shape parameter (¢,,,), the MSE are decreasing as T increases based on

maximum likelihood and Bayesian methods (see Table 3).

5. Five different samples schemes were applied on AT-II PHCS and that to get to the most
effective scheme, the efficiency is the best for Scheme 2 followed by Scheme 4.

6. Schemes 1 and 2 not affected by the changes in time ¢, whatever the changes in time t,
there is a stability in the numerical and practical results of Schemes 1 and 2. (see Tables 1 and 3),
where scheme 1is R, =R, =...=R,,_; =0, and R, =n—m, itis type-II scheme and Scheme 2 is

R =n—-m and R, =R, =... = R,_, =0 sonot affected by the time.

7. In most cases, the Boot-t are smaller than the anther method as ACI, Boot-P (see Tables
2 and 4).

7. Numerical Results

To illustrate the practical benefit of the procedures proposed in this paper, the worth of the
parameters through two various competing risks from the extended Weibull distribution is
scrutinized under adaptive type II progressive hybrid censoring.

Lawless (2011) introduced data of life testing and Sarhan (2007) explained this data that
contents of times failure or censoring times for 36 small electrical appliances submit to an automatic
life test. Failures were categorized into 18 several proceeds, although between the 33 observed
failures only 7 procedures were exemplified; and only procedures 6, and 9 showed more than twice.
We are fundamentally centering on failure procedure 9. Therefore, the data contents of two reasons
of failure: (failure procedure 9), (all other failure procedure), and (failure time is censored). The
following offers the ordered failure times, and reason of failure, if available. Data Set: (11, 2), (35,
2), (49, 2), (170, 2), (329, 2), (381, 2), (708, 2), (958, 2), (1062, 2), (1167, 1), (1594, 2), (1925, 1),
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(1990, 1), (2223, 1), (2327, 2), (2400, 1), (2451, 2), (2471, 1), (2551, 1), (2565, 0), (2568, 1), (2694,
1), (2702, 2), (2761, 2), (2831, 2), (3034, 1), (3059, 2), (3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329,
1), (6367, 0), (6976, 1), (7846, 1), (13403, 0).

This data is type-II censored competing risks data and it's a special case of AT-II PHCS model.
The MLE and Bayes for the unknown parameters based on type-II censored competing risks scheme
are obtained and reported in (6). Also, we calculated the Kolmogorov-Smirnov (K-S) distance
between the empirical and the fitted distributions for EW distribution is 0.15939 and p-value is

A

0.3353 where « =0.00305, B =0.22308, and the estimations of relative risk rates 7, and 7, are
0.45935 and 0.54065, respectively.

Table 1 Bias and MSEs of the MLE and Bayes estimates based on the AT-II PHCS under various
censoring schemes in 7 =0.5 when o, =1.1, 8, =04,a, =1.5,8, =0.8

. MLE Bayes Estimate
(n,m) Scheme Properties . - . -
2, A , B, a, A 2, B,

1 Bias 29655  1.1810 —-0.6252  0.6745 —0.3965  0.4345 —0.3003  0.3909
(50.15) MSE 2.6847 23712 2.5461  0.8807 0.2085  0.2071 03177  0.1892
’ 5 Bias 1.5698  1.0841 —0.4011  0.5435 —0.1984  0.5423 —0.2036  0.4173
MSE 21217 1.9968 1.2624  0.5331 0.1055  0.3104 0.2313  0.2035
! Bias 1.3486  0.9966 0.1275  0.5260 —0.3069  0.4840 —0.2950  0.4018
MSE 2.5547 12576 2.0981  0.3984 0.1400  0.2493 0.2693  0.1913
(50.25) 5 Bias 09180 09482 -0.2293 04812 —0.1773  0.1786 —0.2514  0.2170
’ MSE 7.3748  1.1170 0.4258  0.2915 0.0866  0.0426 0.2152  0.0833
3 Bias 1.2405 09326 —0.2169 0.4562 —0.2646  0.5031 —0.3394  0.3623
MSE 1.3190  1.0868 0.5417 02754 0.1220  0.2681 0.2530  0.1518
1 Bias 1.6083  0.9641 —0.4201  0.5211 —0.3472  0.2677 —0.2334  0.3209
(100.30) MSE 2.0396  1.1350 1.6231 03742 0.1932  0.0906 0.2781  0.1505
’ 5 Bias 0.7076 09170 —0.2759  0.4485 —0.1474 03263 —0.2641  0.3237
MSE 1.4168  0.9884 0.3599  0.2489 0.0710  0.1205 0.2227  0.1479
! Bias 0.8853  0.8813 —0.1883  0.4710 —0.2951  0.2918  -0.2878  0.3341
MSE 1.9655  0.8856 0.4007  0.2719 0.1264  0.1000 0.2393  0.1564
(100.50) 5 Bias 0.5410  0.8537 -0.3155 0.4350 —0.0878  0.3442 —0.3034  0.3240
’ MSE 0.5701  0.8067 0.2395  0.2145 0.0465  0.1312 0.2082  0.1427
3 Bias 0.5766  0.8262 —0.3546  0.4072 —0.2525  0.3113 —0.2997  0.3181
MSE 1.0445  0.7619 0.3184  0.1907 0.0993  0.1104 0.2243  0.1363
! Bias 09582  0.8663 —0.2022  0.4461  -0.2265 0.1519 —0.2559  0.2178
(200.60) MSE 0.9548  0.8337 0.4621  0.2395 0.1214  0.0368 0.2497  0.0858
’ 5 Bias 0.5444  0.8647 —0.3464  0.4255 0.1015  0.1692 —0.2562  0.1906
MSE 0.4723  0.8062 0.2389  0.2026 0.0582  0.0389 0.1836  0.0757
1 Bias 0.5817  0.8450 -0.3237  0.4287 —0.0756  0.1546 —0.2521  0.2214
MSE 0.6574  0.7543 0.2138  0.2063 0.0612  0.0352 0.1817  0.0845
(200,100) 5 Bias 0.4861  0.8421 03674  0.4217 0.1505  0.5714 -0.3085  0.3997
’ MSE 0.3290  0.7433 0.2020  0.1906 0.0571  0.3403 0.1727  0.1790
3 Bias 03606  0.7729 —-0.4674  0.3589  -0.0513  0.1711 —0.3655  0.2177

MSE 0.3492  0.6370 0.3012  0.1409 0.0470  0.0405 0.1932  0.0686




Table 2 The length of the difference intervals for the AT-II PHCS under various censoring schemes at 7 = 0.5

(n,m) Scheme g A ik A
LCI Boot-P Boot-t LCI Boot-P Boot-t LCI  Boot-P Boot-t LCI  Boot-P Boot-t
(50, 15) 1 4.2656 0.3516  0.3456 3.8756 0.1248  0.1279 43647 03265 0.3546 25592 0.0823  0.0798
2 4.1570 0.6266  0.6276 3.5548 0.1143  0.1123 44038  0.1354  0.1450 19122  0.0611 0.0595
1 3.5465 0.4869  0.4863 2.0169 0.0605  0.0667 3.6589  0.1855  0.1819 13686  0.0421 0.0429
(50, 25) 2 3.0237 0.3313  0.3201 1.8306 0.0574  0.0575 23961  0.0761  0.0763  0.9599  0.0308  0.0305
3 3.9456 0.5190  0.5254 1.8272 0.0593  0.0567 27583  0.0879  0.0869 1.0179  0.0322  0.0303
1 3.9465 0.3156  0.3195 1.7782 0.0580  0.0568 3.8042  0.1951  0.1867 12566  0.0396  0.0401
(100.30) 2 3.7537 0.1198  0.1202 1.5065 0.0457  0.0472 2.0891  0.0647 0.0679 0.8569  0.0266  0.0262
1 3.0557 03222 03101 1.2944 0.0406  0.0422 23703  0.0790  0.0755 0.8777  0.0277  0.0283
(100, 50) 2 2.0657 0.0618  0.0657 1.0939 0.0362  0.0344 14671  0.0472  0.0463  0.6236  0.0196  0.0189
3 3.3093 0.1042  0.1066 1.1048 0.0334  0.0338 1.7213  0.0552  0.0538 0.6187  0.0200  0.0192
1 2.5466 0.2396  0.2388 1.1314 0.0360  0.0365 2.5455  0.0831  0.0805 0.7897  0.0250  0.0247
(200, 60) 2 1.6451 0.0525  0.0539 0.9483 0.0298  0.0303 1.3524  0.0413  0.0422 05762  0.0177  0.0175
1 2.2153 0.0724  0.0717 0.7866 0.0252  0.0245 12952  0.0412  0.0392 0.5884  0.0182  0.0185
(200, 100) 2 1.1937 0.0368  0.0374 0.7247 0.0224  0.0229 1.0151  0.0326  0.0336 0.4426  0.0145  0.0139
3 1.8361 0.0599  0.0583 0.7812 0.0239  0.0249 1.1286  0.0356  0.0348 0.4314  0.0143  0.0134
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Table 3 Bias and MSEs of the MLE and Bayes estimates based on the AT-II PHCS under various

censoring schemes at ; =1.1, 5 =0.4,a, =1.5,8, =0.8

T (n,m) Scheme  Properties - ~ - MEP ~ - ~ Bayes EAStlmate ~
a, A a, 8, a, i a, A,
Bias 2.1651 1.2046  —-0.5652  0.5821 —0.3869  0.4435 -0.2852  0.3979
: MSE 24953  2.6165 1.4596  0.5746 0.1995  0.2151 0.3007  0.1914
Bias 1.7498 1.0716 0.1598  0.5463  —0.2789  0.4894 —0.2965  0.3918
G019 ! MSE 2.4565 1.7996 2.1079  0.4554 0.1494  0.2566 0.2581  0.1827
Bias 1.8456 1.1012 03585  0.5629  —0.3510  0.4801 —0.2994  0.4002
: MSE 2.5495 1.8128 1.8947  0.6562 0.1815  0.2457 0.2742  0.1895
Bias 1.1652 09456  —0.3101 0.5095  —-0.3375 02674 -0.2596  0.3262
} MSE 1.8655 1.1465 0.6599  0.3496 0.1743  0.0893 0.2511  0.1525
Bias 0.8428  0.8766  —0.2311 0.4382  —0.2696  0.3043 —0.2411  0.3290
05  (100,30) 4
MSE 1.4655  0.8942 0.4868  0.2406 0.1212  0.1082 0.2476  0.1538
Bias 0.9565  0.9099 —-0.1772  0.4482  —0.3327 0.2913 —-0.2354  0.3159
: MSE 1.2955  0.9752 0.4885  0.2495 0.1635  0.1019 0.2501  0.1432
Bias 0.9456  0.8585 —0.1792  0.4496  —0.2108  0.1553 —0.2183  0.2131
: MSE 0.8905  0.8179 03995  0.2389 0.1111  0.0365 0.2327  0.0822
Bias 0.5197  0.8205 —0.3748  0.3932  —0.0678  0.1568 —0.2805  0.2121
(200, 60) 4
MSE 0.7709  0.7353 0.3019  0.1760 0.0631  0.0359 0.2255  0.0812
Bias 0.6189  0.8332 —-0.3039 04277 —0.1281  0.1583 —0.2412  0.2094
: MSE 0.9692  0.7457 02715  0.2036 0.0749  0.0370 0.2250  0.0799
Bias 1.6946 1.2299 1.7466  0.5912  —0.3806  0.4595  -0.2957  0.3901
’ MSE 22456  2.6282 22315 0.5808 0.1892  0.2296 03117 0.1900
Bias 1.7346 1.0701 0.1153  0.5390 —0.2662  0.4973 —0.2796  0.4059
G013 ! MSE 2.3546 1.7408 1.7782  0.4333 0.1397  0.2626 0.2586  0.1987
Bias 1.7095 1.0872 0.2547  0.5658  —0.3113  0.4747 —0.2948 0.4018
: MSE 2.2565 1.7612 1.8850  0.6690 0.1627  0.2417 0.2799  0.1910
Bias 0.8546  0.9584 0.1005  0.5119  —0.3492  0.2800 —0.2615  0.3187
3 MSE 1.5056 1.1252 1.5472 03518 0.1781  0.0905 0.2537  0.1487
Bias 0.8997 09079 -0.1934  0.4616  —0.2675 03014 -0.2452  0.3271
1.5 (100,30) 4
MSE 1.5288  0.9720 0.4249  0.2598 0.1228  0.1066 0.2390  0.1495
Bias 0.8516  0.9035 —0.1574  0.4564 —0.3375 0.2869 —0.2354 0.3179
> MSE 1.4236  0.9636 0.4652  0.2565 0.1465  0.0989 0.2487  0.1448
Bias 0.7938  0.8610  —0.1828  0.4593  —0.2195 0.1602 —0.2206  0.2286
3 MSE 0.6959  0.8202 0.4065  0.2477 0.1294  0.0419 0.2264  0.0837
Bias 0.6069  0.8509 —0.2988  0.4295  —0.0463  0.1605 —0.2217 0.2148
(200, 60) 4
MSE 0.7864  0.7794 0.2353  0.2076 0.0613  0.0377 0.2281  0.0857
Bias 0.6390  0.8392  —-0.2708  0.4345  —0.1345  0.1589 —0.2225  0.2110
: MSE 1.0597  0.7585 0.2736  0.2120 0.0831  0.0372 0.2392  0.0830
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Table 4 The length of the difference intervals for the AT-II PHCS under various censoring schemes

(n,m) Scheme  Method AT =03 - 7: =13 —
a, A a, B, a, A a, B,
LCI  4.0946  4.1424  4.1956 1.8860 5.4655  4.4424 50465  1.9396
3 Boot-P  0.5946  0.1280  0.5165 0.0598 0.6456  0.1459 0.5562  0.0604
Boot-t 05981  0.1321  0.5395 0.0598 0.6456  0.1425 0.5771  0.0604
LCI 41895  3.1650  4.6595 1.5541  4.2365 3.0269 4.2103  1.4819
(50, 15) 4 Boot-P  0.6189  0.0968  0.1850 0.0517 0.6965  0.0938 0.1652  0.0473
Boot-t  0.6165  0.0983  0.1737 0.0485 0.6814  0.0975 0.1612  0.0472
LCI  3.9546  3.0381  3.2565 22849 43565 29849 42945 23164
5 Boot-P 04565  0.0994  0.3495 0.0766  0.7002  0.0947 0.2916  0.0790
Boot-t 04345  0.0946  0.3246 0.0718 0.7155  0.0937 0.2985  0.0739
LCI  3.5470 17832  3.8624 1.1749  4.4565 1.6298 4.6707  1.1674
3 Boot-P 04192  0.0595  0.1574 0.0381 04649  0.0522 0.1544  0.0401
Boot-t 04198  0.0573  0.1567 0.0373 04513  0.0495 0.1486  0.0365
LCI 52806 13904  2.5819 0.8648 3.8155 1.5077 24413  0.8473
(100, 30) 4 Boot-P  0.1721  0.0421  0.0828 0.0281 0.2598  0.0444 0.0785  0.0266
Boot-t  0.1747  0.0424  0.0837 0.0266 0.2624  0.0487 0.0759  0.0262
LCI 35414 15052  2.6515 0.8646 3.3855  1.5049 2.6029  0.8611
5 Boot-P  0.5116  0.0476  0.0798 0.0276  0.5110  0.0473  0.0838  0.0283
Boot-t 04680  0.0483  0.0856 0.0271 04972  0.0477 0.0824  0.0273
LCI 26563  1.1017 23956 0.7516  3.1565  1.0332 22050  0.7346
3 Boot-P 03312  0.0336  0.0785 0.0231 03195  0.0321 0.0688  0.0234
Boot-t 03779  0.0360  0.0781 0.0246 03185  0.0324 0.0678  0.0233
LCI 277756 09778  1.5758 0.5738  2.5362  0.9230 1.4987  0.5968
(200, 60) 4 Boot-P  0.0838  0.0315 0.0529 0.0183  0.0807 0.0307 0.0480  0.0194
Boot-t  0.0883  0.0314  0.0489 0.0176  0.0810  0.0290 0.0455  0.0183
LCI  3.0026  0.8898  1.6602 0.5637 3.1651 09132 1.7554  0.5969
5 Boot-P  0.0965  0.0284  0.0507 0.0173  0.1005  0.0284 0.0556  0.0193
Boot-t  0.0945  0.0283  0.0498 0.0182 0.1002 0.0291 0.0542  0.0188

8. Conclusions

This paper explained a competing risks model under adaptive type II progressive hybrid
censoring scheme when the fixed number of causes of failure in known. Assuming that the lifetime
distributions are extended Weibull distribution. We have derived the MLEs, propose different
confidence intervals using asymptotic distributions and bootstrap confidence intervals for the
parameters of extended Weibull distribution. Also, the Bayes estimates obtained based on squared
error loss function under the assumption of independent gamma priors. A simulation study has been
conducted to examine and compare the performance of the proposed methods for different sample
sizes and different censoring schemes. Finally, a numerical example is provided to illustrate the
inference methods described in the paper.
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Table 5 The MLE and Bayes with different sample based on AT-II PHCS under competing risks

T Scheme Properties - 1\A/ILE - ~ - Bayf EStima&i -
a, A a, B a, A a, B

Mean 0.5670 1.3182 5.1907 3.4798  0.9860 1.5758 0.6955 1.6252

: SE 0.4876 0.6504 7.9401 1.5117  0.5443 0.4219 0.4159 0.6432

03 Mean 0.7348 1.3369 1.2727 2.8163  0.8802 1.4685 0.7520 1.3162
2 SE 0.3887 0.4571 0.6358 0.9884  0.4363 0.3521 0.4805 0.4563

Mean 0.5778 1.3182 3.7272 3.2497  0.9436 1.5228 1.0464 1.9042

; SE 0.4705 0.6225 4.6394 1.3136  0.6788 0.5343 0.6396 0.5108

03 Mean 0.5745 1.2533 1.4104 2.6005  0.6465 1.6995 0.7891 1.5503
! SE 0.3561 0.4983 0.9516 0.9465  0.3626 0.7097 0.3260 0.3816

Mean 0.5501 1.2105 2.3288 29186  0.6218 1.3781 0.6339 1.4727

: SE 0.3590 0.5867 2.7203 1.2520  0.3537 0.5873 0.3415 0.4205

023 Mean 0.3061 0.9284 0.4982 1.8310  0.4090 1.0214 0.7579 1.7208
! SE 0.1610 0.3995 0.2848 0.8056  0.2153 0.3501 0.2412 0.4324
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