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Abstract

The Holt-Winters method is one of the most popular forecasting techniques for time series,
particularly with trend and seasonal components. There are two variations of the Holt-Winters method
depending on the nature or type of the seasonal component: additive and multiplicative, and the type
of seasonality is required to select the appropriate one. Unfortunately, time-series data are sometimes
ambiguous, which can lead to incorrect identification of the model resulting in erroneous predicted
values. In this study, the effect on forecasting accuracy when using the incorrect seasonal model in
the Holt-Winters method was considered. Ten simulated datasets, five of which contained additive
seasonality and the other five multiplicative seasonality, were used to study the effect of using the
incorrect model on the forecasting accuracy. Five real datasets, in which it was difficult to distinguish
the type of seasonal component, were used in the experimental study. Each dataset was examined
using both additive and multiplicative models while varying the three smoothing parameters of the
Holt-Winters method from 0.1 to 1 in increments of 0.1. The forecasting accuracy was evaluated in
terms of the mean-absolute-percentage error and the root-mean-squared error. The results confirm the
significance of the correct identification of the type of seasonality. For the ambiguous time-series data
in which identifying whether to apply the additive or multiplicative model is not simple, the results
show that utilizing the multiplicative model achieved significantly higher accuracy than utilizing the
additive model.

Keywords: Forecasting method, seasonality, additive model, multiplicative model.

1. Introduction

Time series forecasting can be applied to a wide range of disciplines, such as in the business,
economic, social science, biomedical, and engineering fields. When analyzing a time series, one
searches for structures and patterns to describe and explain the underlying process and based on fitting
adequate models, to forecast future values or to predict results from alternative scenarios (Chatfield
and Yar 1988). Thus, there have been many attempts at obtaining the most accurate forecast for a
given time-series model. The Holt-Winters method (Holt 1957, and Winters 1960) is one of the most
popular and effective approaches for forecasting a time series, particularly when trends and
seasonality exist (Brockwell et al. 1991, and Chatfield 1978). This method belongs to a class of
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exponential smoothing methods that aims to capture the behavior of a time series by identifying
trends, seasonality, and error terms. There are two variations of the Holt-Winters method depending
on the nature or type of the seasonal component: additive and multiplicative (Montgomery et al.
2008), and many empirical studies have previously been undertaken to show forecasting
performances of these two methods. Goodwin (2010) confirmed the Holt-Winters approach to
exponential smoothing, with it then being 50 years old and still going strong. Many older studies have
reported that the Holt-Winters method often performs well in actual applications (Groff 1973, Huss
1985, Makridakis and Hibon 1979, and Makridakis et al. 1984). Likewise, it has been applied more
recently to create forecasting models in various study areas, such as clinical, finance, economics,
energy industry, tourism, and climate (Cuicui and Jun 2012, Dantas et al. 2017, Jere et al. 2019,
Linden 2018, Rahman et al. 2016, Tirkes et al. 2017, Valakevicius and Brazenas 2015, and Wu et al.
2017).

For time-series data with a trend and exhibiting an explicit type of seasonality, accurate forecasts
can be obtained by using the additive or multiplicative Holt-Winters methods accordingly. However,
in a situation where the seasonality of the time-series data is ambiguous, both the additive and
multiplicative forms can be used to build the forecasting model. For example, Heydari et al. (2020)
built models using both the additive and multiplicative procedures and discovered that the
multiplicative form of the Holt-Winters time-series method resulted in 4% less mean-absolute-
percentage error (MAPE) overall compared to the additive one. Similarly, Wei and Song (2013)
showed that volatility is best predicted by a simplified version of the multiplicative Holt-Winters
model. Furthermore, Da Fonseca et al. (2016) used the methodology of Holt-Winters without a trend,
or with linear or exponential trends, and without seasonality, or with additive or multiplicative
seasonality. After applying all of the Holt-Winters model variations, they found that the best model
was the one with a linear trend series and multiplicative seasonality. Likewise, Bermudez et al.
(2006), and Kuznets (1932), concluded that for most economic time series, the seasonal variation
appears to be proportional to the level of the time series and that the multiplicative version usually
works better than the additive one.

Despite the use of the Holt-Winters method is widespread, the effect of using the incorrect model
has not yet been clarified. Hence, there is a strong need for further study in this area. In this study,
the effect of forecasting accuracy when using the incorrect model by the Holt-Winters method is
concentrated on. Both a simulation study and real datasets were used to investigate the effect of using
the incorrect model on forecasting accuracy.

The remaining parts of this paper are as follows. The theoretical framework is covered in
Section 2. The datasets of this study are presented in Section 3. The experimental study is reported
in Section 4. The results and discussion are provided in Section 5. Finally, conclusions is presented
in Section 6.

2. Theoretical Framework

In the Holt-Winters method, three exponential smoothing formulas, collectively called triple
exponential smoothing (Holt 1957; Winters 1960), are applied to the series. First, the mean is
smoothed to give a local average value for the series; second, the trend is smoothed; and last, each
seasonal sub-series is smoothed separately to give a seasonal estimate for each season. The
exponential smoothing formula can be applied to a series with a trend and constant seasonal
component using the additive and multiplicative methods (Box et al. 1994). The additive method is
used when the seasonal variations are roughly constant throughout the series, while the multiplicative
method is used when the seasonal variation changes proportionally to the level of the series and the
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pattern of the magnitude of the seasonal variation in the data depends on the magnitude of the data
used. The pattern of the magnitude of the seasonal in data does not depend on the magnitude of data
used, the additive model.

2.1. The multiplicative Holt-Winters method

This method can be used to handle many complex seasonal patterns by simply finding the central
value, then adding in the effects of slope and seasonality. It is based on three updating equations for
level, trend, and seasonality, respectively:

Y
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where L is the seasonality length, L, is the overall smoothing, 7, is trend smoothing, S, is seasonal

smoothing, and Y refers to the real data at the time period ¢. The smoothing parameters «, f and
yare set from 0 to 1. These parameters are estimated in such a way that the mean-squared error
(MSE) is minimized. Meanwhile, the forecast can be obtained from

Y., =L +Tm)S,

where Y, isthe forecast for the period ahead (7). The multiplicative Holt-Winters method requires
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The initial level is the average of the first year of data. The initial trend is set as the average of the
slopes for each period in the first two years. The initial seasonality is computed by dividing each data
item in the first year by the initial level.

2.2. The additive Holt-Winters method
This method is identical to the multiplicative model except that the seasonality is considered to
be additive. This means that the forecasted value for each data element is the sum of the baseline,
trend, and seasonality components. The sum of the seasonality components for L consecutive time
periods is approximately L (not 1 as in the multiplicative model). The recursive approach to the
additive model is based on three updating equations for level, trend, and seasonality, respectively:
L=al-S_)+1-a)L_+T_),

T =pL-L)+1A=-PT_,

S, =y, =L)+1A=pS_,,
where L is the seasonality length, L, is the overall smoothing, 7 is trend smoothing, S, is seasonal

smoothing, and Y refers to the real data at time period 7. The smoothing parameters ¢, f and y are
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set from O to 1. These parameters are estimated in such a way that the MSE is minimized. Meanwhile,
the forecast can be obtained from
Y, =L +Tm+S

t+m t—=L+m?

where Y, is the forecast for the period ahead (m). The additive Holt-Winters method requires three

t+m
initial values: level (L), trend (7;; similar to multiplicative), and seasonality (S,,,S,,,---»S;; )
respectively obtained from
Sm = Yl _LO’S = Y2 _L07""S(IL = YL _LO'

The initial seasonality is computed by subtracting each data item in the first year from the initial level.

02

2.3. Performance metrics

Evaluating the performance of forecast methods is achieved by comparing the actual and
predicted values. A typical approach is to use specific criteria to measure the error of the predicted
value, the performance of which is assessed based on the closeness of the predicted and actual values.
Two criteria error measurements were used in this study: MAPE and the root-mean-squared error
(RMSE), which are respectively defined as follows:

(-5,
MAPE ==L %100, RMSE =

n

where Y, is the true value, I?, is the predicted value, Y, -Y gives the forecasting error, and n is the

number of forecasting errors.

3. Datasets

Both simulated and real datasets were used in this study. There were five simulated datasets with
additive seasonality (A1-AS) and five with multiplicative seasonality (M1-M5). Details of all 10
simulated datasets are reported in Table 1, and time-series plots for some of them are presented in
Figure 1.

Table 1. Details of the 10 simulated datasets used in the study

Seasonality Dataset Simulation Model with &, ~ N(0,1) S1 S2 S3 S4  Size
Al 18,246 +335.3xt+S, +¢, 1,688.8  7,878.73 —5,430.45 —4,137.08 54

. A2 225.29+2.8656xt +S, +¢, 6.4469 —39.7906 —24.5781 579219 72
;‘% A3 161.05+5.56xt+S; +¢, ~17.9547 0.9203 364766  -19.4422 64
< Ad 469,978 +4,179xt+S, +¢, 129,140 —137,739  —105,091 113,690 49
AS 7,596—70.87xt+S; +¢, -80.36 11962 -1426.92 311.08 54

Ml (18,408 +329.4xt)xS; +¢, 1.0738 1.2781 0.7922 0.8560 54

2 M2 (1,519.93+50.011xt) xS, +¢, 0.9811 1.7417 0.7416 0.5356 54
% M3 (573.13+52.677xt) xS, +¢, 1.6154 0.9730 0.4709 0.9407 49
E’ M4 (7,584 -70.48xt) xS, +¢, 0.9855 1.1990 0.7597 1.0558 54
M5 (46,9794 + 4,167 x t) xS, + g, 1.2183 0.7721 0.8160 1.1936 49
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Figure 1 Time-series plots for some of the simulated datasets

Five real datasets (TS1-TS5) with ambiguous seasonality (i.e., it was difficult to determine
whether their models should be additive or multiplicative) were used in this study. Dataset TS1 was
obtained from Data Market (https://datamarket.com), datasets TS2, TS3, and TS5 from Statistics of
New Zealand Information Centre (https://www.stats.govt.nz), and dataset TS4 from RPubs
(https://rpubs.com). A brief description of the datasets is provided in Table 2.

Table 2 Description of the real datasets used in the study

Dataset Description Time Period Size
TS1 Ql.la'rterIy. electricity production in Australia: 1956Q1-19650Q4 40
million kilowatts
TS2 Quarterly total visitor arrivals in New Zealand 2000Q1-2012Q1 49
TS3 Quarterly motel occupancy rates in New Zealand 1996Q3-2012Q3 65
TS4 Quarterly beer sales data in the US 2000Q1-2017Q4 72
TS5 Quarterly number of visitors to the UK 1998Q4-2012Q1 54

Both additive and multiplicative models were applied to all of the datasets used in this study to
determine the forecasting accuracy.

4. Experimental Study
The smoothing parameters applied for each dataset ranged from 0 to 1 in increments of 0.1 (i.e.

a=1{0.1,0.2,...,1}, #={0.1,0.2,...,1} and  ={0.1,0.2,...,1}), thus there were 1,000 settings
in total (Table 3).
The performance with each dataset was determined by computing the MAPE and RMSE values

for each set of parameters. The flow chart in Figure 2 illustrates the steps conducted in the
experimental study using the R program version 3.5.2 (The R Foundation 2020).
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Table 3 Settings for the Holt-Winters model smoothing parameters

Setting a B e
1 0.1 0.1 0.1

2 0.1 0.1 0.2

3 0.1 0.1 0.3
998 1.0 1.0 0.8
999 1.0 1.0 0.9
1,000 1.0 1.0 1.0

5. Results and Discussion
5.1. The simulated datasets
1,000 settings by varying the smoothing parameter (e, f,y) were performed on each dataset

using the additive and multiplicative Holt-Winters methods. Their performances were evaluated by
comparing the average MAPE and RMSE values for each dataset.

Table 4 reports the average MAPE and RMSE values for the additive seasonality datasets (A1—
AS) using both Holt-Winters models. As an example, dataset Al has additive seasonality and
applying the correct (additive) model produced average MAPE and RMSE values of 0.396 and
106.750 compared to 3.992 and 1,382.266, respectively, using the incorrect (multiplicative) model.
The results for the other additive datasets are similar. Bar charts of the average MAPE values obtained
by the additive and multiplicative Holt-Winters methods for datasets A1-AS5 are shown in Figure 3.
The results very clearly show that the additive Holt-Winters method performed much better than the
multiplicative one for all five datasets. Furthermore, the number of times that each method achieved
the lowest of MAPE and RMSE for the same set of conditions (o, [3,y) are summarized in Table 5.

Using Al as an example, the additive and multiplicative Holt-Winters methods achieved the lowest
MAPE and RMSE values 1,000 and 0 times, respectively. This trend was the same for the other
datasets. Thus, using the correct (additive) Holt-Winters method on the datasets with additive
seasonality significantly outperformed the multiplicative one.

Table 4 Average MAPE and RMSE values for the simulated datasets
with additive seasonality (A1-AS5)

Correct Model Incorrect Model
Simulated Dataset Additive Holt-Winters Multiplicative Holt-Winters
Average MAPE  Average RMSE  Average MAPE  Average RMSE
Al 0.396 106.750 3.992 1,382.266
A2 0.829 3.461 3.119 17.758
A3 1.650 6.936 4.544 25.223
A4 0.619 5,298.182 3.432 29,623.685

AS 0.956 88.098 4.486 319.347
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Figure 3 Average MAPE values for datasets A1-AS5 with additive seasonality

Table 5 Number of lowest MAPE and RMSE occurrences for datasets A1-AS5 with additive

seasonality
Correct Model Incorrect Model
Simulated Additive Holt-Winters Multiplicative Holt-Winters
Dataset Number of lowest Number of lowest Number of Number of
MAPE RMSE lowest MAPE  lowest RMSE
Al 1,000 1,000 0 0
A2 1,000 1,000 0 0
A3 1,000 1,000 0 0
A4 1,000 1,000 0 0
A5 1,000 1,000 0 0

Table 6 reports the average MAPE and RMSE values for the simulated datasets with
multiplicative seasonality (M1-M5) using both Holt-Winters models. As an example, the correct
(multiplicative) Holt-Winters model for dataset M1 produced average MAPE and RMSE values of
1.308 and 571.685 compared to 4.987 and 1,974.994 using the additive Holt-Winters model,
respectively. Bar charts of the average MAPE values obtained with the additive and multiplicative
Holt-Winters methods for datasets M1-M5 are shown in Figure 4. The results indicate very clearly
that the multiplicative Holt-Winters method performed much better than the additive one for all
datasets. Moreover, 1,000 sets of conditions for M1 to M5, the number of times that each method
achieved the lowest MAPE and RMSE values for the same («,,y) values are shown in Table 7.

As an example using M1, the additive and multiplicative Holt-Winters methods achieved the lowest
MAPE and RMSE values 0 and 1,000 times, respectively, as was found for the other datasets. These
results indicate that using the correct (multiplicative) model when the type of seasonality is
multiplicative significantly outperformed the additive Holt-Winters method.
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Table 6 Average MAPE and RMSE values for datasets M1-M35 with multiplicative seasonality

Incorrect Model Correct Model
Simulated Dataset Additive Holt-Winters Multiplicative Holt-Winters
Average MAPE  Average RMSE = Average MAPE  Average RMSE

M1 4.987 1,974.994 1.308 571.685

M2 16.264 671.553 2.313 111.241

M3 22.712 407.226 7.157 173.141

M4 4.647 361.940 0.755 75.437

M5 2.811 22,373.727 0.697 6,664.612

25 ~

20 -
S
o 15 A
2
s 10

5 -

M2 M3 M4 M5
B Additive HW m Multiplicative HW

Figure 4 Average MAPE values for datasets M1-M5 with multiplicative seasonality

Table 7 Number of lowest MAPE and RMSE occurrences for datasets M1-M5 with multiplicative

seasonality
) Incorrect Model Correct Model
S]I;I:l ltl;::;d Additive Holt-Winters Multiplicative Holt-Winters
Number of lowest Number of lowest Number of lowest Number of lowest
M1 0 0 1,000 1,000
M2 0 0 1,000 1,000
M3 0 0 1,000 1,000
M4 0 0 1,000 1,000
M5 0 0 1,000 1,000

The smoothing parameters «, f and ) were varied from 0 to 1 (a:{O.l,O.Z,...,l},

={0.1,02,.,1} and 7=1{0.1,02,.,1}), thus (a,fB,7)=(0.1,0.1,0.1), (0.1,0.1,02),...,
(1,1,1) for both Holt-Winters methods. Figure 5 shows plots of the MAPE values with the additive
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and multiplicative Holt-Winters methods versus the sets of conditions for A1-AS and M1-M5. When
A1-A5 had the same set of («, S, y) conditions, the MAPE values for the additive Holt-Winters

method were lower than those of the multiplicative Holt-Winters method, as evidenced by the MAPE
plots for the additive Holt-Winters method staying under those for the multiplicative Holt-Winters
method for all of the datasets. These results are consistent with the other findings and lead to the same
conclusion that the additive Holt-Winters method performed better than the multiplicative Holt-
Winters method under these conditions. On the other hand, when M1-M5 had the same set of
(e, pB, y) conditions, the MAPE values for the multiplicative Holt-Winters method were lower than

those of the additive Holt-Winters method, as illustrated by the MAPE plots for the multiplicative
Holt-Winters method remaining under those of the additive Holt-Winters method for all of the
datasets. These results lead to the same conclusion that the multiplicative Holt-Winters method
performed better than the additive Holt-Winters method under these conditions.

Two null hypotheses, the difference between the medians of the MAPE (RMSE) values of the
additive and multiplicative Holt-Winters methods on the simulated datasets at the 5% significance
level, were tested by using the Mann-Whitney U test. The results in Table 8 indicated that all of the
datasets (A1-A5 and M1-M5) were the difference between the median MAPE values of the additive
and multiplicative Holt-Winters methods at the 5% significance level. However, the 95% confidence
intervals (Cls) were all positive for A1-AS5 and negative for M1-M5. For A1-AS can be interpreted
as when the lower and upper limits are positive values, the MAPE median in the first group
(multiplicative Holt-Winters) is significantly higher than that of the second group (additive Holt-
Winters). This result leads to the conclusion that the additive Holt-Winters method significantly
outperformed the multiplicative one when the type of seasonality was additive. Likewise, for M1-M5
can be interpreted as when the lower and upper limits are negative values, the MAPE median in the
first group (multiplicative Holt-Winters) is significantly lower than that of the second group (additive
Holt-Winters). This result leads to the conclusion that the multiplicative Holt-Winters method
significantly outperformed the additive one when the type of seasonality was multiplicative. The
results in Table 9 using the average RMSE in the analysis can be interpreted similarly to those in
Table 8. These findings support the conclusion that the additive Holt-Winters method is significantly
more effective than the multiplicative one when the type of seasonality is additive and vice versa
when the type of seasonality is multiplicative.

5.2. The real datasets
Each experiment was performed with 1,000 settings of (e, £, ) on each dataset using the

additive and multiplicative Holt-Winters methods. Their performances were compared as the average
MAPE and RMSE values for each dataset (Table 10). As an illustration, dataset TS1 produced
average MAPE and RMSE values of 2.8107 and 226.4925, and 1.8481 and 142.0190, with the
additive and multiplicative Holt-Winters methods, respectively. The results of TS2 to TS5 were
similar. Bar charts of the average MAPE values obtained by the additive and multiplicative Holt-
Winters methods for datasets TS1 to TS5 are shown in Figure 6. The results show that the
multiplicative Holt-Winters method performed much better than the additive one for all of the
datasets. Furthermore, the number of times that each method achieved the lowest MAPE and RMSE
values for the same set of conditions (a, 5, ) are reported in Table 11. For example, the additive
and multiplicative Holt-Winters methods achieved the lowest MAPE value 14 and 986 times, and the

lowest RMSE value 0, and 1,000 times for TS1, respectively, the other datasets can be explained
similarly. Overall, the additive and multiplicative Holt-Winters methods achieved the lowest MAPE
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value 103.2 and 896.8 times, and the lowest RMSE value 55 and 945 times, respectively. These
results support that when the seasonality pattern is ambiguous, using the multiplicative Holt-Winters
method is the best choice.
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Figure S MAPE plots for datasets A1-A5 (left) and M1-M5 (right); MHW, multiplicative Holt-
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Table 8 The difference between the median MAPE values of the multiplicative and additive Holt-
Winters methods at the 5% significance level for the simulated datasets

Seasonality Simulation Dataset  p-value (Median,,,,, — A;:;/;aiiyfyoi
Al <0.001 [2.6327, 3.0832]

0 A2 <0.001 [1.2163, 1.4982]
% A3 <0.001 [1.1959, 1.5669]
< A4 <0.001 [2.2191, 2.5424]
A5 <0.001 [2.3301,2.6543]

. Ml <0.001 [-3.1887, —2.7263]
£ M2 <0.001 [-11.906, —10.231]
2 M3 <0.001 [~15.013, —13.285)
3 M4  <0.001 [-2.7564, —2.3624]
= M5  <0.001 [~1.9079, —1.6557]

ClIs: confidence intervals

Table 9 The difference between the median RMSE values of the multiplicative and additive Holt-
Winters methods at the 5% significance level for the simulated datasets

95% Cls for

Seasonality ~Simulation Dataset  p-value (Median,,,,, — Median,,,, )
Al <0.001 [880.1, 1015.6]

o A2 <0.001 [5.145, 6.424]
5 A3 <0.001 [4.758, 6.460]
2 A4 <0.001 [13937, 16604]
A5 <0.001 [110.72, 129.06]

° M1 <0.001 [-878.9, =722.7]
'«?, M2 <0.001 [-373.00, —318.90]
% M3  <0.001 [206.93, —176.24]
% M4 <0.001 [-148.94, -125.22)
= M5  <0.001 [-10170, —8415]

ClIs: confidence intervals

Table 10 Average MAPE and RMSE values with the real datasets

Additive Holt-Winters

Multiplicative Holt-Winters

Real Dataset
Average MAPE Average RMSE Average MAPE Average RMSE
TS1 2.8107 226.4925 1.8481 142.0190
TS2 5.1462 36,658.1575 4.3980 33,036.7666
TS3 2.4809 4.8766 2.2260 4.4889
TS4 3.9616 16.6119 3.8421 15.9475
TS5 15.3466 3,440.7040 8.6536 2,219.0715
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Figure 6 Average MAPE values for the real datasets using the additive and multiplicative Holt-
Winters methods

Table 11 Number of lowest MAPE and RMSE occurrences with the real datasets

MAPE RMSE

Real Dataset  Additive Holt- Multiplicative ~ Additive Holt- Multiplicative
Winters Holt-Winters Winters Holt-Winters

TS1 14 986 0 1000
TS2 36 964 98 902
TS3 12 988 197 803
TS4 204 796 221 779
TS5 9 991 0 1000
Average 55 945 103.2 896.8

Figures 7-11 show plots of the MAPE values with the additive and multiplicative Holt-Winters
methods versus the sets of conditions for TS1-TS5 with the same set of («, £, y) conditions. Each

dataset setting had smoothing parameters «,f and y ranging from 0 to 1 (a :{0.1,0.2,...,1},
p= {0.1,0.2,...,1}, and y = {0.1,0.2,...,1}), thus (e, £, y) = (0.1,0.1,0.1), (0.1,0.1,0.2), ..., (1,1,1)

were used to generate the 1,000 unique sets. The graphs visually compare the performance of the
additive and multiplicative Holt-Winters methods according to the MAPE values. It can be seen that
for the datasets except for TS4, the MAPE plots for the multiplicative Holt-Winters method usually
stayed under those of the additive Holt-Winters method. When examining the time-series plot for
TS4 in Figure 10, it is evident that the type of seasonality tends toward additive rather than
multiplicative. From the results in Table 10 using the additive Holt-Winters model on TS4, the
average MAPE and RMSE values are 3.9616 and 16.6119, respectively, while those using the
multiplicative Holt-Winters are 3.8421 and 15.9475, respectively, which signify almost the same
performance. Moreover, the performance in terms of the lowest MAPE and RMSE show that the
additive and multiplicative Holt-Winters methods achieved the lowest MAPE value 204 and 796
times, and the lowest RMSE value 221 and 779 times, respectively. These results support the earlier
finding that when the type of seasonality is not clear, using the multiplicative Holt-Winters method
is the preferable.
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Figure 7 Time-series (left) and the MAPE (right) plots for the additive (AHW) and
multiplicative Holt-Winters (MHW) method with TS1
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Figure 8 Time-series (left) and MAPE (right) plots for the additive (AHW) and multiplicative Holt-
Winters (MHW) methods with TS2
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Figure 9 Time-series (left) and MAPE (right) plots for the additive (AHW) and multiplicative Holt-
Winters (MHW) methods with TS3
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Figure 10 Time-series (left) and MAPE (right) plots for the additive (AHW) and multiplicative
Holt-Winters (MHW) methods with TS4
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Figure 11 Time-series (left) and MAPE (right) plots for the additive (AHW) and
multiplicative Holt-Winters (MHW) methods with TS5

Hypothesis testing of two null hypotheses, there is no difference between the medians of MAPE
(RMSE) of the two methods at the 5% significance level, was conducted using the Mann-Whitney U
test. The results in Tables 12 and 13 indicate that there are significant differences between them in
terms of MAPE and RMSE for all of the real datasets. Besides, the 95% ClIs for the difference in the
median values show that both the lower and the upper limits are negative for all of the datasets.
However, it is again clear that the multiplicative Holt-Winters method significantly outperformed the
additive Holt-Winters method for all of the datasets. Furthermore, the improvement in terms of
MAPE and RMSE by the multiplicative Holt-Winters method was calculated in relation to the
additive Holt-Winters method (Table 14); these were 21.14% and 18.93%, respectively. These results
exhibit the same trend as is evident in Tables 12 and 13, i.e. the multiplicative Holt-Winters method
outperformed the additive one on all occasions. These results support that when the type of
seasonality is ambiguous, the multiplicative Holt-Winters method is the preferred choice.
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Table 12 The difference between the median MAPE values of the multiplicative and additive
Holt-Winters methods at the 5% significance level for the real datasets

Real Dataset  p-value

95% Cls for

(Median,,,, — Median ,,,, )

TSI
TS2
TS3
TS4
TS5

<0.001
<0.001
<0.001
0.005
<0.001

[-0.9799, —0.9191]
[-0.7116, —0.6057]
[-0.2652, —0.2181]
[-0.1355, —0.0236]
[6.1220, —5.6890]

ClIs: confidence intervals

Table 13 The difference between the median RMSE values of the multiplicative and additive
Holt-Winters methods at the 5% significance level for the real datasets

Real Dataset p-value

95% Cls for

(Median,,,, — Median ,,, )

TSI
TS2
TS3
TS4
TS5

<0.001
<0.001
<0.001

0.004
<0.001

[-80.57, —74.83]
[-3144, —2345]
[-0.4337, —0.3353]
[-0.556, —0.104]
[~1050.7, —950.3]

ClIs: confidence intervals

Table 14 Forecasting accuracy improvement when using the multiplicative over the additive
Holt-Winters methods for the real datasets

Real Dataset

Improvement (multiplicative/additive Holt-Winters)

MAPE (%) RMSE (%)
TS1 34.25 37.30
TS2 14.54 9.88
TS3 10.27 7.95
TS4 3.02 4.00
TS5 43.61 35.51

Average 21.14 18.93

6. Conclusions

In this study, the effect on forecasting accuracy when using the incorrect model for seasonality
(additive or multiplicative) in the Holt-Winters method was investigated. Ten simulated and five real
datasets were used to compare the performances of the multiplicative and additive Holt-Winters
methods. The seasonality of the simulated datasets (five datasets of each type) was set to test the
theory, after which the investigation was shifted to apply the methods to the real datasets. The additive
and multiplicative Holt-Winters methods were tested by using three smoothing parameters ranging
from O to 1 with increments of 0.1, thus there were 1,000 different settings applied to each dataset.



Chantha Wongoutong 581

The results obtained with the simulated datasets are expressed as the MAPE and RMSE of the
predictions calculated as accuracy indicators to compare the methods. With the additive simulation
datasets when using the incorrect (multiplicative) and correct (additive) Holt-Winters models with
1,000 different settings, the latter achieved the lowest MAPE and RMSE values for all of the cases.
Likewise, the reverse was true for the simulated multiplicative datasets. On the other hand, the real
datasets had ambiguous seasonality, and the results show that using the multiplicative Holt-Winters
method significantly outperformed using the additive one. Furthermore, the improvements in MAPE
and RMSE by applying the multiplicative Holt-Winters method were 21% and 19%, on average
respectively. Hence, applying the multiplicative Holt-Winters method when the seasonality of the
dataset is ambiguous is a plausible forecasting approach.
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