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Abstract 

The Holt-Winters method is one of the most popular forecasting techniques for time series, 

particularly with trend and seasonal components. There are two variations of the Holt-Winters method 

depending on the nature or type of the seasonal component: additive and multiplicative, and the type 

of seasonality is required to select the appropriate one. Unfortunately, time-series data are sometimes 

ambiguous, which can lead to incorrect identification of the model resulting in erroneous predicted 

values. In this study, the effect on forecasting accuracy when using the incorrect seasonal model in 

the Holt-Winters method was considered. Ten simulated datasets, five of which contained additive 

seasonality and the other five multiplicative seasonality, were used to study the effect of using the 

incorrect model on the forecasting accuracy. Five real datasets, in which it was difficult to distinguish 

the type of seasonal component, were used in the experimental study. Each dataset was examined 

using both additive and multiplicative models while varying the three smoothing parameters of the 

Holt-Winters method from 0.1 to 1 in increments of 0.1. The forecasting accuracy was evaluated in 

terms of the mean-absolute-percentage error and the root-mean-squared error. The results confirm the 

significance of the correct identification of the type of seasonality. For the ambiguous time-series data 

in which identifying whether to apply the additive or multiplicative model is not simple, the results 

show that utilizing the multiplicative model achieved significantly higher accuracy than utilizing the 

additive model. 

______________________________ 
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1.  Introduction 

Time series forecasting can be applied to a wide range of disciplines, such as in the business, 

economic, social science, biomedical, and engineering fields. When analyzing a time series, one 

searches for structures and patterns to describe and explain the underlying process and based on fitting 

adequate models, to forecast future values or to predict results from alternative scenarios (Chatfield 

and Yar 1988). Thus, there have been many attempts at obtaining the most accurate forecast for a 

given time-series model. The Holt-Winters method (Holt 1957, and Winters 1960) is one of the most 

popular and effective approaches for forecasting a time series, particularly when trends and 

seasonality exist (Brockwell et al. 1991, and Chatfield 1978). This method belongs to a class of 
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exponential smoothing methods that aims to capture the behavior of a time series by identifying 

trends, seasonality, and error terms. There are two variations of the Holt-Winters method depending 

on the nature or type of the seasonal component: additive and multiplicative (Montgomery et al. 

2008), and many empirical studies have previously been undertaken to show forecasting 

performances of these two methods. Goodwin (2010) confirmed the Holt-Winters approach to 

exponential smoothing, with it then being 50 years old and still going strong. Many older studies have 

reported that the Holt-Winters method often performs well in actual applications (Groff 1973, Huss 

1985, Makridakis and Hibon 1979, and Makridakis et al. 1984). Likewise, it has been applied more 

recently to create forecasting models in various study areas, such as clinical, finance, economics, 

energy industry, tourism, and climate (Cuicui and Jun 2012, Dantas et al. 2017, Jere et al. 2019, 

Linden 2018, Rahman et al. 2016, Tirkes et al. 2017, Valakevicius and Brazenas 2015, and Wu et al. 

2017). 

For time-series data with a trend and exhibiting an explicit type of seasonality, accurate forecasts 

can be obtained by using the additive or multiplicative Holt-Winters methods accordingly. However, 

in a situation where the seasonality of the time-series data is ambiguous, both the additive and 

multiplicative forms can be used to build the forecasting model. For example, Heydari et al. (2020) 

built models using both the additive and multiplicative procedures and discovered that the 

multiplicative form of the Holt-Winters time-series method resulted in 4% less mean-absolute-

percentage error (MAPE) overall compared to the additive one. Similarly, Wei and Song (2013) 

showed that volatility is best predicted by a simplified version of the multiplicative Holt-Winters 

model. Furthermore, Da Fonseca et al. (2016) used the methodology of Holt-Winters without a trend, 

or with linear or exponential trends, and without seasonality, or with additive or multiplicative 

seasonality. After applying all of the Holt-Winters model variations, they found that the best model 

was the one with a linear trend series and multiplicative seasonality. Likewise, Bermúdez et al. 

(2006), and Kuznets (1932), concluded that for most economic time series, the seasonal variation 

appears to be proportional to the level of the time series and that the multiplicative version usually 

works better than the additive one. 

Despite the use of the Holt-Winters method is widespread, the effect of using the incorrect model 

has not yet been clarified. Hence, there is a strong need for further study in this area. In this study, 

the effect of forecasting accuracy when using the incorrect model by the Holt-Winters method is 

concentrated on. Both a simulation study and real datasets were used to investigate the effect of using 

the incorrect model on forecasting accuracy. 

The remaining parts of this paper are as follows. The theoretical framework is covered in   

Section 2. The datasets of this study are presented in Section 3. The experimental study is reported 

in Section 4. The results and discussion are provided in Section 5. Finally, conclusions is presented 

in Section 6. 

 

2.  Theoretical Framework 

In the Holt-Winters method, three exponential smoothing formulas, collectively called triple 

exponential smoothing (Holt 1957; Winters 1960), are applied to the series. First, the mean is 

smoothed to give a local average value for the series; second, the trend is smoothed; and last, each 

seasonal sub-series is smoothed separately to give a seasonal estimate for each season. The 

exponential smoothing formula can be applied to a series with a trend and constant seasonal 

component using the additive and multiplicative methods (Box et al. 1994). The additive method is 

used when the seasonal variations are roughly constant throughout the series, while the multiplicative 

method is used when the seasonal variation changes proportionally to the level of the series and the 
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pattern of the magnitude of the seasonal variation in the data depends on the magnitude of the data 

used. The pattern of the magnitude of the seasonal in data does not depend on the magnitude of data 

used, the additive model. 

 

2.1.  The multiplicative Holt-Winters method 

This method can be used to handle many complex seasonal patterns by simply finding the central 

value, then adding in the effects of slope and seasonality. It is based on three updating equations for 

level, trend, and seasonality, respectively: 
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where L  is the seasonality length, tL  is the overall smoothing, 

t
T  is trend smoothing, tS  is seasonal 

smoothing, and 
t
Y  refers to the real data at the time period .t  The smoothing parameters ,   and 

 are set from 0 to 1. These parameters are estimated in such a way that the mean-squared error 

(MSE) is minimized. Meanwhile, the forecast can be obtained from 
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The initial level is the average of the first year of data. The initial trend is set as the average of the 

slopes for each period in the first two years. The initial seasonality is computed by dividing each data 

item in the first year by the initial level. 

 

2.2.  The additive Holt-Winters method 

This method is identical to the multiplicative model except that the seasonality is considered to 

be additive. This means that the forecasted value for each data element is the sum of the baseline, 

trend, and seasonality components. The sum of the seasonality components for L consecutive time 

periods is approximately L  (not 1 as in the multiplicative model). The recursive approach to the 

additive model is based on three updating equations for level, trend, and seasonality, respectively: 
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where L  is the seasonality length, tL  is the overall smoothing, 
t
T  is trend smoothing, tS  is seasonal 

smoothing, and 
t
Y  refers to the real data at time period .t  The smoothing parameters ,   and  are 
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set from 0 to 1. These parameters are estimated in such a way that the MSE is minimized. Meanwhile, 

the forecast can be obtained from 

,t m t t t L mY L T m S      

where t mY   is the forecast for the period ahead (m). The additive Holt-Winters method requires three 

initial values: level 0( ),L  trend 0( ;T  similar to multiplicative), and seasonality 01 02 0( , ,..., ),LS S S  

respectively obtained from 

01 02 01 0 2 0 0, , ..., .
L LS S SY L Y L Y L      

The initial seasonality is computed by subtracting each data item in the first year from the initial level. 

 

2.3. Performance metrics 

Evaluating the performance of forecast methods is achieved by comparing the actual and 

predicted values. A typical approach is to use specific criteria to measure the error of the predicted 

value, the performance of which is assessed based on the closeness of the predicted and actual values. 

Two criteria error measurements were used in this study: MAPE and the root-mean-squared error 

(RMSE), which are respectively defined as follows: 
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where tY  is the true value, ˆ
tY  is the predicted value, ˆ

tY Y  gives the forecasting error, and n  is the 

number of forecasting errors. 

 

3.  Datasets 

Both simulated and real datasets were used in this study. There were five simulated datasets with 

additive seasonality (A1–A5) and five with multiplicative seasonality (M1–M5). Details of all 10 

simulated datasets are reported in Table 1, and time-series plots for some of them are presented in 

Figure 1. 

 

Table 1. Details of the 10 simulated datasets used in the study 

Seasonality Dataset Simulation Model with (0,1)t N   S1 S2 S3 S4 Size 

A
dd

it
iv

e 

A1 ti18,246 335.3 t S     1,688.8 7,878.73 −5,430.45 −4,137.08 54 

A2 i t225.29 2.8656 t S     6.4469 −39.7906 −24.5781 57.9219 72 

A3 i t161.05 5.56 t S    
 

−17.9547 0.9203 36.4766 -19.4422 64 

A4 i t469,978 4,179 t S   
 

129,140 −137,739 −105,091 113,690 49 

A5 ti7,596 70.87 t S   
 

−80.36 1196.2 -1426.92 311.08 54 

M
ul

ti
pl

ic
at

iv
e 

M1 ti(18, 408 329.4 t) S      1.0738 1.2781 0.7922 0.8560 54 

M2 i t(1,519.93 50.011 t) S     0.9811 1.7417 0.7416 0.5356 54 

M3 i t(573.13 52.677 t) S      1.6154 0.9730 0.4709 0.9407 49 

M4 
i t

(7, 584 70.48 t) S      0.9855 1.1990 0.7597 1.0558 54 

M5 i t(46,9794 4,167 t) S      1.2183 0.7721 0.8160 1.1936 49 
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(a) A1 with additive seasonality 

 
(b) M1 with multiplicative seasonality 

Figure 1 Time-series plots for some of the simulated datasets 

 

Five real datasets (TS1–TS5) with ambiguous seasonality (i.e., it was difficult to determine 

whether their models should be additive or multiplicative) were used in this study. Dataset TS1 was 

obtained from Data Market (https://datamarket.com), datasets TS2, TS3, and TS5 from Statistics of 

New Zealand Information Centre (https://www.stats.govt.nz), and dataset TS4 from RPubs 

(https://rpubs.com). A brief description of the datasets is provided in Table 2. 

 

Table 2 Description of the real datasets used in the study 

Dataset Description Time Period Size 

TS1 
Quarterly electricity production in Australia: 

million kilowatts 
1956Q11965Q4 40 

TS2 Quarterly total visitor arrivals in New Zealand 2000Q12012Q1 49 

TS3 Quarterly motel occupancy rates in New Zealand  1996Q32012Q3 65 

TS4 Quarterly beer sales data in the US 2000Q12017Q4 72 

TS5 Quarterly number of visitors to the UK  1998Q42012Q1 54 

 

Both additive and multiplicative models were applied to all of the datasets used in this study to 

determine the forecasting accuracy. 

 

4.  Experimental Study 

The smoothing parameters applied for each dataset ranged from 0 to 1 in increments of 0.1 (i.e. 

 0.1, 0.2, ...,1 ,   0.1, 0.2, ...,1   and  0.1, 0.2, ...,1 ),  thus there were 1,000 settings 

in total (Table 3). 

The performance with each dataset was determined by computing the MAPE and RMSE values 

for each set of parameters. The flow chart in Figure 2 illustrates the steps conducted in the 

experimental study using the R program version 3.5.2 (The R Foundation 2020).   
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Table 3 Settings for the Holt-Winters model smoothing parameters 

Setting       

1 0.1 0.1 0.1 

2 0.1 0.1 0.2 

3 0.1 0.1 0.3 

        

 998 1.0 1.0 0.8 

999 1.0 1.0 0.9 

 1,000 1.0 1.0 1.0 

 

5.  Results and Discussion 

5.1.  The simulated datasets 

1,000 settings by varying the smoothing parameter ( , , )    were performed on each dataset 

using the additive and multiplicative Holt-Winters methods. Their performances were evaluated by 

comparing the average MAPE and RMSE values for each dataset. 

Table 4 reports the average MAPE and RMSE values for the additive seasonality datasets (A1–

A5) using both Holt-Winters models. As an example, dataset A1 has additive seasonality and 

applying the correct (additive) model produced average MAPE and RMSE values of 0.396 and 

106.750 compared to 3.992 and 1,382.266, respectively, using the incorrect (multiplicative) model. 

The results for the other additive datasets are similar. Bar charts of the average MAPE values obtained 

by the additive and multiplicative Holt-Winters methods for datasets A1–A5 are shown in Figure 3. 

The results very clearly show that the additive Holt-Winters method performed much better than the 

multiplicative one for all five datasets. Furthermore, the number of times that each method achieved 

the lowest of MAPE and RMSE for the same set of conditions ( , , )    are summarized in Table 5. 

Using A1 as an example, the additive and multiplicative Holt-Winters methods achieved the lowest 

MAPE and RMSE values 1,000 and 0 times, respectively. This trend was the same for the other 

datasets. Thus, using the correct (additive) Holt-Winters method on the datasets with additive 

seasonality significantly outperformed the multiplicative one. 

 

Table 4 Average MAPE and RMSE values for the simulated datasets  

with additive seasonality (A1–A5) 

Simulated Dataset 

Correct Model Incorrect Model 

Additive Holt-Winters Multiplicative Holt-Winters 

Average MAPE Average RMSE Average MAPE Average RMSE 

A1 0.396 106.750 3.992 1,382.266 

A2 0.829 3.461 3.119 17.758 

A3 1.650 6.936 4.544 25.223 

A4 0.619 5,298.182 3.432 29,623.685 

A5 0.956 88.098 4.486 319.347 
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Figure 2 Flow chart of the experimental study 
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Figure 3 Average MAPE values for datasets A1–A5 with additive seasonality 

 

Table 5 Number of lowest MAPE and RMSE occurrences for datasets A1–A5 with additive 

seasonality 

Simulated 
Dataset 

Correct Model Incorrect Model 

Additive Holt-Winters Multiplicative Holt-Winters 

Number of lowest 
MAPE  

Number of lowest 
RMSE  

Number of 
lowest MAPE  

Number of  
lowest RMSE  

A1 1,000 1,000 0 0 

A2 1,000 1,000 0 0 

A3 1,000 1,000 0 0 

A4 1,000 1,000 0 0 

A5 1,000 1,000 0 0 

 

Table 6 reports the average MAPE and RMSE values for the simulated datasets with 

multiplicative seasonality (M1–M5) using both Holt-Winters models. As an example, the correct 

(multiplicative) Holt-Winters model for dataset M1 produced average MAPE and RMSE values of 

1.308 and 571.685 compared to 4.987 and 1,974.994 using the additive Holt-Winters model, 

respectively. Bar charts of the average MAPE values obtained with the additive and multiplicative 

Holt-Winters methods for datasets M1–M5 are shown in Figure 4. The results indicate very clearly 

that the multiplicative Holt-Winters method performed much better than the additive one for all 

datasets. Moreover, 1,000 sets of conditions for M1 to M5, the number of times that each method 

achieved the lowest MAPE and RMSE values for the same ( , , )    values are shown in Table 7. 

As an example using M1, the additive and multiplicative Holt-Winters methods achieved the lowest 

MAPE and RMSE values 0 and 1,000 times, respectively, as was found for the other datasets. These 

results indicate that using the correct (multiplicative) model when the type of seasonality is 

multiplicative significantly outperformed the additive Holt-Winters method. 
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Table 6 Average MAPE and RMSE values for datasets M1–M5 with multiplicative seasonality 

Simulated Dataset 

Incorrect Model Correct Model 

Additive Holt-Winters Multiplicative Holt-Winters 

Average MAPE Average RMSE Average MAPE Average RMSE 

M1 4.987 1,974.994 1.308 571.685 

M2 16.264 671.553 2.313 111.241 

M3 22.712 407.226 7.157 173.141 

M4 4.647 361.940 0.755 75.437 

M5 2.811 22,373.727 0.697 6,664.612 

 

 
 

Figure 4 Average MAPE values for datasets M1–M5 with multiplicative seasonality 

 

Table 7 Number of lowest MAPE and RMSE occurrences for datasets M1–M5 with multiplicative 

seasonality 

Simulated 

Dataset 

Incorrect Model Correct Model 

Additive Holt-Winters Multiplicative Holt-Winters 

Number of lowest 

MAPE  

Number of lowest 

RMSE  

Number of lowest 

MAPE  

Number of lowest 

RMSE  M1 0 0 1,000 1,000 

M2 0 0 1,000 1,000 

M3 0 0 1,000 1,000 

M4 0 0 1,000 1,000 

M5 0 0 1,000 1,000 

 

The smoothing parameters ,   and   were varied from 0 to 1  ( 0.1,0.2,...,1 , 

 0.1,0.2,...,1   and  ),0.1,0.2,...,1   thus ( , , )    (0.1,0.1,0.1), (0.1,0.1,0.2), …, 

(1,1,1)  for both Holt-Winters methods. Figure 5 shows plots of the MAPE values with the additive 
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and multiplicative Holt-Winters methods versus the sets of conditions for A1–A5 and M1–M5. When 

A1-A5 had the same set of ( , , )    conditions, the MAPE values for the additive Holt-Winters 

method were lower than those of the multiplicative Holt-Winters method, as evidenced by the MAPE 

plots for the additive Holt-Winters method staying under those for the multiplicative Holt-Winters 

method for all of the datasets. These results are consistent with the other findings and lead to the same 

conclusion that the additive Holt-Winters method performed better than the multiplicative Holt-

Winters method under these conditions. On the other hand, when M1–M5 had the same set of 

( , , )    conditions, the MAPE values for the multiplicative Holt-Winters method were lower than 

those of the additive Holt-Winters method, as illustrated by the MAPE plots for the multiplicative 

Holt-Winters method remaining under those of the additive Holt-Winters method for all of the 

datasets. These results lead to the same conclusion that the multiplicative Holt-Winters method 

performed better than the additive Holt-Winters method under these conditions. 

Two null hypotheses, the difference between the medians of the MAPE (RMSE) values of the 

additive and multiplicative Holt-Winters methods on the simulated datasets at the 5% significance 

level, were tested by using the Mann-Whitney U test. The results in Table 8 indicated that all of the 

datasets (A1–A5 and M1–M5) were the difference between the median MAPE values of the additive 

and multiplicative Holt-Winters methods at the 5% significance level. However, the 95% confidence 

intervals (CIs) were all positive for A1–A5 and negative for M1–M5. For A1–A5 can be interpreted 

as when the lower and upper limits are positive values, the MAPE median in the first group 

(multiplicative Holt-Winters) is significantly higher than that of the second group (additive Holt-

Winters). This result leads to the conclusion that the additive Holt-Winters method significantly 

outperformed the multiplicative one when the type of seasonality was additive. Likewise, for M1-M5 

can be interpreted as when the lower and upper limits are negative values, the MAPE median in the 

first group (multiplicative Holt-Winters) is significantly lower than that of the second group (additive 

Holt-Winters). This result leads to the conclusion that the multiplicative Holt-Winters method 

significantly outperformed the additive one when the type of seasonality was multiplicative. The 

results in Table 9 using the average RMSE in the analysis can be interpreted similarly to those in 

Table 8. These findings support the conclusion that the additive Holt-Winters method is significantly 

more effective than the multiplicative one when the type of seasonality is additive and vice versa 

when the type of seasonality is multiplicative. 

 

5.2.  The real datasets 

Each experiment was performed with 1,000 settings of ( , , )    on each dataset using the 

additive and multiplicative Holt-Winters methods. Their performances were compared as the average 

MAPE and RMSE values for each dataset (Table 10). As an illustration, dataset TS1 produced 

average MAPE and RMSE values of 2.8107 and 226.4925, and 1.8481 and 142.0190, with the 

additive and multiplicative Holt-Winters methods, respectively. The results of TS2 to TS5 were 

similar. Bar charts of the average MAPE values obtained by the additive and multiplicative Holt-

Winters methods for datasets TS1 to TS5 are shown in Figure 6. The results show that the 

multiplicative Holt-Winters method performed much better than the additive one for all of the 

datasets. Furthermore, the number of times that each method achieved the lowest MAPE and RMSE 

values for the same set of conditions ( , , )    are reported in Table 11. For example, the additive 

and multiplicative Holt-Winters methods achieved the lowest MAPE value 14 and 986 times, and the 

lowest RMSE value 0, and 1,000 times for TS1, respectively, the other datasets can be explained 

similarly. Overall, the additive and multiplicative Holt-Winters methods achieved the lowest MAPE 
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value 103.2 and 896.8 times, and the lowest RMSE value 55 and 945 times, respectively. These 

results support that when the seasonality pattern is ambiguous, using the multiplicative Holt-Winters 

method is the best choice. 

 

  

  

  

  

  
 

Figure 5 MAPE plots for datasets A1–A5 (left) and M1–M5 (right); MHW, multiplicative Holt-

Winters; AHW, additive Holt-Winters 
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Table 8 The difference between the median MAPE values of the multiplicative and additive Holt-

Winters methods at the 5% significance level for the simulated datasets 

Seasonality Simulation Dataset p-value  
95% CIs for 

(
MHW AHWMedian Median ) 

 
A

d
d

it
iv

e 

A1 0.001  [2.6327, 3.0832] 

A2 0.001  [1.2163, 1.4982] 

A3 0.001  [1.1959, 1.5669] 

A4 0.001  [2.2191, 2.5424] 

A5 0.001  [2.3301,2.6543] 

 
M

u
lt

ip
li

ca
ti

v
e M1 0.001  [−3.1887, −2.7263] 

M2 0.001  [−11.906, −10.231] 

M3 0.001  [−15.013, −13.285) 

M4 0.001  [−2.7564, −2.3624] 

M5 0.001  [−1.9079, −1.6557] 

 CIs: confidence intervals 

 

Table 9 The difference between the median RMSE values of the multiplicative and additive Holt-

Winters methods at the 5% significance level for the simulated datasets 

Seasonality Simulation Dataset p-value  
95% CIs for 

(
MHW AHWMedian Median ) 

 
A

d
d

it
iv

e 

A1 0.001  [880.1, 1015.6] 

A2 0.001  [5.145, 6.424] 

A3 0.001  [4.758, 6.460] 

A4 0.001  [13937, 16604] 

A5 0.001  [110.72, 129.06] 

 
M

u
lt

ip
li

ca
ti

ve
 M1 0.001  [−878.9, −722.7] 

M2 0.001  [−373.00, −318.90] 

M3 0.001  [−206.93, −176.24] 

M4 0.001  [−148.94, −125.22) 

M5 0.001  [−10170, −8415] 

   CIs: confidence intervals 

 

Table 10 Average MAPE and RMSE values with the real datasets 

Real Dataset 
Additive Holt-Winters Multiplicative Holt-Winters 

Average MAPE Average RMSE Average MAPE Average RMSE 

TS1 2.8107 226.4925 1.8481 142.0190 

TS2 5.1462 36,658.1575 4.3980 33,036.7666 

TS3 2.4809 4.8766 2.2260 4.4889 

TS4 3.9616 16.6119 3.8421 15.9475 

TS5 15.3466 3,440.7040 8.6536 2,219.0715 
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Figure 6 Average MAPE values for the real datasets using the additive and multiplicative Holt-

Winters methods 

 

Table 11 Number of lowest MAPE and RMSE occurrences with the real datasets 

Real Dataset 

MAPE  RMSE 

 Additive Holt-
Winters  

Multiplicative 
Holt-Winters  

 Additive Holt-
Winters  

Multiplicative 
Holt-Winters  

TS1 14 986 0 1000 

TS2 36 964 98 902 

TS3 12 988 197 803 

TS4 204 796 221 779 

TS5 9 991 0 1000 

Average 55 945 103.2 896.8 

 

Figures 7-11 show plots of the MAPE values with the additive and multiplicative Holt-Winters 

methods versus the sets of conditions for TS1–TS5 with the same set of ( , , )    conditions. Each 

dataset setting had smoothing parameters ,   and   ranging from 0 to 1  ( 0.1,0.2,...,1 ,   

 0.1,0.2,...,1 ,   and  0.1,0.2,...,1 ),   thus ( , , )    (0.1,0.1,0.1), (0.1,0.1,0.2),  …, (1,1,1)

were used to generate the 1,000 unique sets. The graphs visually compare the performance of the 

additive and multiplicative Holt-Winters methods according to the MAPE values. It can be seen that 

for the datasets except for TS4, the MAPE plots for the multiplicative Holt-Winters method usually 

stayed under those of the additive Holt-Winters method. When examining the time-series plot for 

TS4 in Figure 10, it is evident that the type of seasonality tends toward additive rather than 

multiplicative. From the results in Table 10 using the additive Holt-Winters model on TS4, the 

average MAPE and RMSE values are 3.9616 and 16.6119, respectively, while those using the 

multiplicative Holt-Winters are 3.8421 and 15.9475, respectively, which signify almost the same 

performance. Moreover, the performance in terms of the lowest MAPE and RMSE show that the 

additive and multiplicative Holt-Winters methods achieved the lowest MAPE value 204 and 796 

times, and the lowest RMSE value 221 and 779 times, respectively. These results support the earlier 

finding that when the type of seasonality is not clear, using the multiplicative Holt-Winters method 

is the preferable. 
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Figure 7 Time-series (left) and the MAPE (right) plots for the additive (AHW) and 

multiplicative Holt-Winters (MHW) method with TS1 
 

  
 

Figure 8 Time-series (left) and MAPE (right) plots for the additive (AHW) and multiplicative Holt-

Winters (MHW) methods with TS2 

 

  
Figure 9 Time-series (left) and MAPE (right) plots for the additive (AHW) and multiplicative Holt-

Winters (MHW) methods with TS3 
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Figure 10 Time-series (left) and MAPE (right) plots for the additive (AHW) and multiplicative 

Holt-Winters (MHW) methods with TS4 

 

  
 

Figure 11 Time-series (left) and MAPE (right) plots for the additive (AHW) and 

multiplicative Holt-Winters (MHW) methods with TS5 

 

Hypothesis testing of two null hypotheses, there is no difference between the medians of MAPE 

(RMSE) of the two methods at the 5% significance level, was conducted using the Mann-Whitney U 

test. The results in Tables 12 and 13 indicate that there are significant differences between them in 

terms of MAPE and RMSE for all of the real datasets. Besides, the 95% CIs for the difference in the 

median values show that both the lower and the upper limits are negative for all of the datasets. 

However, it is again clear that the multiplicative Holt-Winters method significantly outperformed the 

additive Holt-Winters method for all of the datasets. Furthermore, the improvement in terms of 

MAPE and RMSE by the multiplicative Holt-Winters method was calculated in relation to the 

additive Holt-Winters method (Table 14); these were 21.14% and 18.93%, respectively. These results 

exhibit the same trend as is evident in Tables 12 and 13, i.e. the multiplicative Holt-Winters method 

outperformed the additive one on all occasions. These results support that when the type of 

seasonality is ambiguous, the multiplicative Holt-Winters method is the preferred choice. 
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Table 12 The difference between the median MAPE values of the multiplicative and additive  

Holt-Winters methods at the 5% significance level for the real datasets 

Real Dataset p-value 
95% CIs for 

(
MHW AHWMedian Median ) 

TS1 0.001  [−0.9799, −0.9191] 

TS2 0.001  [−0.7116, −0.6057] 

TS3 0.001  [−0.2652, −0.2181] 

TS4 0.005 [−0.1355, −0.0236] 

TS5 0.001  [−6.1220, −5.6890] 

                         CIs: confidence intervals 

 
Table 13 The difference between the median RMSE values of the multiplicative and additive  

Holt-Winters methods at the 5% significance level for the real datasets 

Real Dataset p-value 
95% CIs for 

(
MHW AHWMedian Median ) 

TS1 <0.001 [−80.57, −74.83] 

TS2 <0.001 [−3144, −2345] 

TS3 <0.001 [−0.4337, −0.3353] 

TS4 0.004 [−0.556, −0.104] 

TS5 <0.001  [−1050.7, −950.3] 

            CIs: confidence intervals 

 

Table 14 Forecasting accuracy improvement when using the multiplicative over the additive  

Holt-Winters methods for the real datasets 

Real Dataset 
Improvement (multiplicative/additive Holt-Winters)  

MAPE (%) RMSE (%) 

TS1 34.25 37.30 

TS2 14.54 9.88 

TS3 10.27 7.95 

TS4 3.02 4.00 

TS5 43.61 35.51 

Average 21.14 18.93 

 

6.  Conclusions 

In this study, the effect on forecasting accuracy when using the incorrect model for seasonality 

(additive or multiplicative) in the Holt-Winters method was investigated. Ten simulated and five real 

datasets were used to compare the performances of the multiplicative and additive Holt-Winters 

methods. The seasonality of the simulated datasets (five datasets of each type) was set to test the 

theory, after which the investigation was shifted to apply the methods to the real datasets. The additive 

and multiplicative Holt-Winters methods were tested by using three smoothing parameters ranging 

from 0 to 1 with increments of 0.1, thus there were 1,000 different settings applied to each dataset. 
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The results obtained with the simulated datasets are expressed as the MAPE and RMSE of the 

predictions calculated as accuracy indicators to compare the methods. With the additive simulation 

datasets when using the incorrect (multiplicative) and correct (additive) Holt-Winters models with 

1,000 different settings, the latter achieved the lowest MAPE and RMSE values for all of the cases. 

Likewise, the reverse was true for the simulated multiplicative datasets. On the other hand, the real 

datasets had ambiguous seasonality, and the results show that using the multiplicative Holt-Winters 

method significantly outperformed using the additive one. Furthermore, the improvements in MAPE 

and RMSE by applying the multiplicative Holt-Winters method were 21% and 19%, on average 

respectively. Hence, applying the multiplicative Holt-Winters method when the seasonality of the 

dataset is ambiguous is a plausible forecasting approach. 
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