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Abstract

Comparison of the two modelling approaches; frequentist and Bayesian had been carried out by
various researchers in the area of estimation of parameters in regression model. Modelers are also
interested in comparing different models to know the correct one. However, the use of relevant prior
information about the data in the concept of model comparison for Bayesian can help to select the
right model. This work facilitates comparison between frequentist and Bayesian methods in a nested
model when all the parameters considered are evaluated at zero through a simulation study. The
results from both simulation and real life data suggest that Bayesian approach with the use of Savage-
Dickey density ratio (SDDR) provide a reasonable decision for the nested model than frequentist
approach. It was also demonstrated that the SDDR is a true representation of Bayes factor.
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1. Introduction

In statistical modelling, apart from estimation of parameters of models, some of the things a
model builder would also wish to do are to compare different models. However, choosing the correct
model by model builders and researchers can be difficult. Model comparison is a way by which
models are compared to one another and the best model is chosen.

There are so many works that had been carried out on model comparison in Classical point of
views. According to Harvey (1990), some classical model comparisons methods are Akaike’s Information
Criterion (AIC), Mallows’s C, criterion, Amemiyas’s Prediction criterion (APC), Davidson-Mackinon

test etc. Most of these aforementioned classical methods of model comparison are used purposely for
non-nested model.

In Bayesian framework, there are limited applications of model comparison and also Bayesian
inference is more recent than classical method. Thus, some prominent works on Bayesian method of
model comparison are; Smith and Spiegelhalter (1980), Griffiths and Wan (1994), O’Hagan (1995),
Kass and Wasserman (1995), Diciccio et al. (2003), Plummer (2008), Feng and Giles (2009), Wetzels
et al. (2010), and Li et al. (2017).
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Smith and Spiegelhalter (1980) looked into forms of model choice criteria and compared alternative
nested linear models on the basis of their asymptotic properties. Bayesian estimation of normal
regression model with an uncertain inequality constraint was considered by Griffiths and Wan (1994).
They adopted a non-informative prior and uncertainty concerning the inequality restriction that was
represented by prior odds ratio while O’Hagan (1995) proposed a fractional Bayes factor for Bayesian
comparison of models. The approach was found to be consistent, simple, robust and coherent.

Carlin and Chib (1995) summarizes a range of computational methods for obtaining estimates
of Bayes factor. They provide a convenient method by using a marginal likelihood for comparing
models by their fit with less theoretical problems attached to it than encountered when comparing
non-nested models in a classical framework.

A generalized method Savage-Dickey Density Ratio (SDDR) for computing a Bayes factor was
developed by Verdinelli and Wasserman (1995). It was observed that their methods in terms of
computational complexity can be extended to other models. Kass and Wasserman (1995) computed
a Bayes factor for testing equality restriction in the presence of nuisance parameter priors. Their
results suggested that Schwartz criterion can provide sensible approximate solutions to Bayesian
testing problems when the hypotheses are nested.

Several methods of estimating Bayes factors for non- linear models when it is possible to
simulate observations from posterior distributions through MCMC and other techniques was

examined by Diciccio et al. (1997). The simulated versions of Laplace’s, Bartlett correction, importance
sampling and reciprocal importance sampling techniques were considered. They found out that
simulated version of Laplace’s method was the most accurate approach among all the techniques.

A deviance-based loss function was derived by Plummer (2008) using a decision-theoretic
framework. This approach was developed in order to capture some mixture models. The theoretical
properties of the loss functions were examined in normal linear models and exponential family
models using this penalized loss function. This approach was applied in mixture modelling and
disease mapping.

Feng and Giles (2009) employed a posterior odds analysis to select the correct number of
clusters for a Bayesian fuzzy regression analysis. They used a natural conjugate prior for parameters
and concluded that the Bayesian posterior odds can provide a very powerful tool for choosing the
number of clusters through their results.

Wetzels et al. (2010) in their work proposed an Encompassing Prior (EP) approach to facilitate
Bayesian model selection for nested models with inequality constraints. EP approach generalizes the
Savage-Dickey ratio method and can accommodate both inequality and exact equality constraints.
Their EP approach was found to be computationally efficient procedure for calculating Bayes factor
for nested models.

The plug-in predictive distribution as an alternative to DIC was also proposed by Li et al. (2017).
This method was purposely to provide an asymptotically unbiased estimation to the new expected
Kullback-Leibler (KL) divergence under a general framework. It was found out that this alternative
DIC is easy for computation from Markov Chain Monte Carlo (MCMC) output and also has a smaller
penalty term than the original DIC.

Most authors had considered the estimation of parameters of regression model by facilitating
comparison between classical and Bayesian approaches (See Zellner 1976, Kleibergen and Zivot

2003, Adepoju and Ojo 2018 etc.). However, researchers are also interested in knowing the best
method for choosing among competing models or hypotheses of a given phenomenon.
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A model is said to be nested when one model is a special case of another model. Regression in a
nested model for model comparison is of two types. The first entails comparison of M, which

imposes R # =r to M, which does not have this restriction while the second involves comparing
M, y=X p,+¢ to M,:y=X, B,+¢&,, where X, and X, contain different explanatory
variables, j=1,2 (See Koop 2003).

Bayes factor is kind of method that is useful in the incorporating of external information into
evidence about a model. Thus, Bayes factor through a SDDR will be derived for Bayesian to aid
comparison with the frequentist approach. Therefore, this work hereby provides a comparative
analysis on the performance of Bayesian using a Bayes factor and classical way of model comparison
using a nested model to know the strength of these methods.

The paper is organized as follows. Section 2 gives the regression model and different Bayesian
method of model comparison most especially the Bayes factor using Savage-Dickey Density Ratio
(SDDR). It also gives a simple decision-theoretic justification model comparison. Section 3 provides
procedures for numerical analysis and how the data will be analyzed. In Section 4, results of both
classical and Bayesian are presented with decisions. Section 5 concludes the paper.

2. Materials and Methods
In this section, regression model and model comparison methods in both Classical and Bayesian
approaches will be given.

2.1. Regression model
Consider the following regression model

y=xp+u, )
where y isan nx1 vector of observations, £ isa kx1 vector of unknown regression parameters,
x isan nxk observed matrix of the regression, and u is an nx1 vector of random errors which is
normally distributed with mean zero and constant variance o’ And, h= 1/ 02, where % 1is the

precision.
In econometrics, two kinds of models can be used for model comparison: (a) Nested model (b)
Non-nested model. The nested model for model comparison involving equality restrictions using M,

which has the form
M, :0B=q,
against M, which does not imposes restrictions given as
M,:0p+q,
will be used in this study, where Q is Pxk matrix and ¢ is P-vector.
Equation (1) allows for any R linear equality restrictions on the regression coefficient £ and it

is also assume that rank (Q) = R. Hence, the two models as suggested by Raftery and Lewis (1996)
can be simply defined as
H,:M, :pB =0 (reduced model), 2)
H :M,: B #0 (unreduced model), i =0,1,... 3)
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2.2. Classical model comparison method
Assume the regression model given in (1) is used and also follow the two models given in (2)
and (3). Hence, the decision rule for testing the nested model of classical approach is stated below.
Decision rule: if P <0.05, reject /4, and that means M, is supported than M, for data under

consideration.

2.3. Bayesian model comparison method

There are so many methods that can be use for model comparison in Bayesian context, but some
popular methods are however given below:

(i) Deviance Information Criterion (DIC),

(i1) Penalized expected deviance,

(ii1) Bayes factor.

Deviance Information Criterion (DIC): It is a hierarchical generalization of AIC for models
with weak prior information proposed by Spiegelhalter et al. (2002). This method is an approximation
to penalized loss function based on deviance. However, this method was criticized due to under-
penalizing of complex models especially in disease mapping situation (See Plummer 2008). The
method is simply defined as

DIC=D+p, =D(0)+2p,,
where D is the measure of fit and D, is the measure of complexity.

Penalized expected deviance: It is Bayesian model comparison method proposed by Plummer
(2008). This method was proposed to overcome the problem of when the number of parameters is
smaller than number of regressors in a regression model. This estimator is given as

(v, 2) =2 log{p(Y | )} P(8| Z2)d6).

where L° is the loss function for expected deviance.
Bayes Factor: This approach of model comparison is known to be formal and widely accepted.
It involves comparing the Posterior odds (PO) ratio of models. The PO is used for comparing two
models.
Given two models, say 1 and 2, the PO can be simply stated as:
_ P4 |Y)_ PGIM)P(M,) _ o P(M) _POB=q|)
©OP(M,|y) P(y|M)P(My) " P(M,) PQB#q|y)
where P(M,) and P(M,) are prior model probabilities for models M, and M,, respectively.
P(y|M,) and P(y|M,) are marginal likelihood for models M, and M,, respectively. P(M, | y)

and P(M, | y) are posterior model probabilities for models M, and M,, respectively.
The Bayes factor, BF,, quantifies the weight of evidence in favor of null hypothesis.

2.4. Savage-Dickey Density Ratio (SDDR)
Savage-Dickey Density Ratio (SDDR) as proposed by Dickey (1971) is a generalization of Bayes
factor used to compare nested models. It is potentially applicable in variety of applications.
If the priors in two models M, and M, satisfy the condition below:

P(7|T:705M2):P(7|M1)9

then BF,,, the Bayes factor for comparing M, to M,, will has the form:

122



Oluwadare Olatunde Ojo 587

BF, - P(r =1, |y,M2)’
P(r=1,|M,)

where P(r =7, |y,M,) and P(r =7,|M,) are the unrestricted posterior and prior for 7 evaluated at
the point 7, (See Koop 2003).

One major advantage of Savage-Dickey density ratio is that, it involves only M, and there is no
need to worry about developing methods for posterior inference using M, .

Thus, the Savage-Dickey Density Ratio (SDDR) as proposed by Dickey (1971), Verdinelli and
Wasserman (1995) for this work will take the form

o PB=Fuhl M)

Y P(B=ph M)
For a Bayes Factor (BF) where M, imposes equality restriction that is, g =0, we have
_P(B.h|y.My) _ P(S,=0.h| y.M,)
Y OP(B.hIMy) P(B=0.h| M)

where
PB.h I ML) _ PG hIMHLB,H)
P(y| M,) [[ (8. m)L(B,, h)d B.dh 4)

Integrating (4) with respect to /# gives:

7(h| F)RBILBH) 7 (k] BITBILB,H) ] dh

P(B,h|y, M) =

PUB 13 M) = [ PUB . M) :I[ﬂ(/i,h)L(ﬂ,-,h)d/idh [[8.mL( md

®)
Divide (5) by P(f, | M,) and evaluate both at £, =0 implies:

P(B=0] .M, :J[n(m = 0)n(8, = O)L(h B :O)]dh =j[ P(h| M)L(h, = 0) }h

P(f,=0|M,) (B, = 0)[[=(B,, WL(B,, h)dB.dh [[=(8., LB, W dh
_POIM) e
P(y|My) "

Decision rule: According to Jeffreys (1946) and Kass and Raftery (1995), if K <1, reject H, and

that means M, is supported by the data under consideration than M.

3. Numerical Analysis
3.1. Simulation study
The model for this study is given as:

y=0.1+0.4x, +2x, +4.5x, +u. (6)
The following will be used for simulation of data in the study:
(1) The explanatory variables will be generated as: x, ~ N(0,1), i =1,2,3.
(i) The error components is obtained as: u ~ N(0,4™"), where h=1.

(iii) The explanatory variables, error term and regression coefficients specified in (6) will be used
to generate the dependent variable.
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(iv) The sample sizes are N =10, 30, 100, 500, 700 and 1,000.
(v) The sample sizes will be replicated 100,000.

3.2. Real data analysis

Here, the frequentist and Bayesian approaches for model comparison in a nested regression
model are applied to a real data. Data on US defence budget outlays for 20 years from1962 to 1981
are used to know the effects on Gross National Product (GNP), US military sales/assistance and
aerospace industry sales on it. The defence budget-outlay, GNP, US military sales/assistance, and
aerospace industry sales are measured in $ billions. The data is sourced from Gujarati and Porter
(2005) through various government publications of United States.

Hence, we consider the regression model given as

Y =P+ Bx + fox, + fixs +u,
where y is the defence budget-outlay, x, is the GNP, x, is the US military sales/assistance and x,
is the aerospace industry sales. For the simulation study and real life data, the model to be considered

for comparison is given as
M, : B =0 (reduced model),

M, : B #0 (unreduced model), i =1,2,3.

4. Results and Discussion

The objective of this study is to compare frequentist and Bayesian approaches for model
comparison in a nested regression model. This section gives the results obtained from Bayesian and
classical approaches with various decisions for parameters. Here, M, is an unreduced model and
represents a good model. The Bayes factor, (K) gives the result for Bayesian using Savage Dickey
Density Ratio (SDDR) while the p-value for the t-distribution is also presented for frequentist
approach.

Table 1 Model comparison of nested model for Bayesian and classical methods
with sample size of 10

P ¢ Estimat Estimates Decisi
arameter Estimators ecision
(K/Pr(>|1]))

Bo Bayesian 0.000859 M,
Classical 0.151000 M,
B, Bayesian 0.001174 M,
Classical 0.067300 M,
B, Bayesian 0.000801 M,
Classical 1.12E-05 M,
B Bayesian 0.000123 M,
Classical 1.12E-05 M,
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Table 2 Model comparison of nested model for Bayesian and Classical methods
with sample size of 30

P " Estimat Estimates Decisi
arameter Estimators ecision
(K/Pr(>|1])

B, Bayesian 2.4E-14 M,
Classical 0.429700 M,
B Bayesian 3.31E-14 M,
Classical 0.574500 M,
5, Bayesian 2.18E-14 M,
Classical 0.043400 M,
B, Bayesian 1.12E-14 M,
Classical 1.67E-07 M,

Results obtained from both Tables 1 and 2 show that Bayesian method of model comparison
picked a good model for all the parameters while the classical method only picked a good model for
parameters S, and S, for sample size of 10 and 30.

Table 3 Model Comparison of nested model for Bayesian and classical methods
with sample size of 100

P . Estimat Estimates Decisi
arameter Estimators ecision
(K/Pr(>|1 )

B Bayesian 0.00E+00 M,
Classical 0.783300 M,
B, Bayesian 0.00E+00 M,
Classical 0.001900 M,
B, Bayesian 0.00E+00 M,
Classical 2.00E-16 M,
B, Bayesian 0.00E+00 M,
Classical 0.00E+00 M,

In Tables 3-6, Bayesian method of model comparison give more evidence against the reduced
model M, for all the parameters considered. The classical approach gives evidence of support for

most especially parameter S, and £, in Tables 3-6. It was observed that parameter S, does not

give support for the unreduced model for classical method of model comparison for all the sample
sizes as shown in Tables 1-6.
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Table 4 Model Comparison of nested model for Bayesian and classical methods
with sample size of 500

p . Estimat Estimates Decisi
arameter stimators ecision
(K/Pr(>|1])

B, Bayesian 4.04E-67 M,
Classical 0.866080 M,
B Bayesian 5.76E-68 M,
Classical 0.003390 M,
B, Bayesian 3.31E-67 M,
Classical 4.34E-05 M,
B, Bayesian 8.01E-68 M,
Classical <2.05 M,

Table 5 Model Comparison of nested model for Bayesian and classical methods
with sample size of 700

P ¢ Estimat Estimates Decisi
arameter Estimators ecision
(K/Pr(>|1]))

B, Bayesian 0 M,
Classical 0.301000 M,
B Bayesian 0 M,
Classical 0.247000 M,
B, Bayesian 0 M,
Classical 2.00E-16 M,
B, Bayesian 0 M,
Classical 2.00E-16 M,

Table 6 Model Comparison of nested model for Bayesian and classical methods
with sample size of 1,000

P " Estimat Estimates Decisi
arameter Estimators ecision
(K/Pr(>|1])

B, Bayesian 0 M,
Classical 0.453120 M,
B Bayesian 0 M,
Classical 0.005230 M,
B, Bayesian 0 M,
Classical 2.00E-16 M,
i Bayesian 0 M,
Classical 2.00E-16 M,
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Table 7 Model Comparison of nested model for Bayesian and classical methods in
real life data application

P " Estimat Estimates Decisi
arameter Estimators ecision
(K/Pr(>|1])

B, Bayesian 0.0000 M,
Classical 0.0000 M,
B Bayesian 0.0008 M,
Classical 0.0300 M,
B, Bayesian 0.0000 M,
Classical 0.1450 M,
Bs Bayesian 0.0000 M,
Classical 0.0000 M,

In results obtained from the real life data application, Bayesian method of model comparison
give more evidence against the reduced model M, for all the parameters considered. This also agreed

with the results obtained in simulation.

5. Conclusion

Overtime, different work had been carried out by facilitating comparison between the two
modelling approaches, that is, frequentist and Bayesian methods in the area of parameter estimation.
It is of interest for model builders to know the strength of the two methods in the area of model
comparison.

In this paper, comparison between the Bayesian and frequentist approaches using a nested model
was carried out to know the strength of the two methods. Bayes factor through a Savage-Dickey
density ratio when parameters are evaluated at zero was provided for Bayesian method in order to
facilitate comparison.

Data were simulated for different sample sizes and each of the sample sizes was replicated while
areal data set was also applied. For all the sample sizes considered, Bayesian performs well than the
frequentist approach by giving an overwhelming evidence support for model M, for all the

parameters.

Therefore, the Bayesian method of model comparison outperformed the frequentist method for
nested model. Thus, Bayesian method using a Savage-Dickey density ratio is preferred to frequentist
approach where a researcher has choice between the two approaches.
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