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Abstract 

Comparison of the two modelling approaches; frequentist and Bayesian had been carried out by 

various researchers in the area of estimation of parameters in regression model. Modelers are also 

interested in comparing different models to know the correct one. However, the use of relevant prior 

information about the data in the concept of model comparison for Bayesian can help to select the 

right model. This work facilitates comparison between frequentist and Bayesian methods in a nested 

model  when  all  the parameters  considered  are  evaluated  at  zero  through  a  simulation  study.  The 

results from both simulation and real life data suggest that Bayesian approach with the use of Savage-

Dickey density  ratio  (SDDR) provide a  reasonable decision  for  the nested  model  than  frequentist 

approach. It was also demonstrated that the SDDR is a true representation of Bayes factor. 

______________________________ 
Keywords: Bayes factor, Bayesian, frequentist, prior, Savage-Dickey density ratio. 

 

1.  Introduction 

In  statistical modelling,  apart  from estimation of parameters of models,  some of  the  things a 

model builder would also wish to do are to compare different models. However, choosing the correct 

model  by  model  builders  and  researchers  can be difficult.  Model  comparison  is  a  way  by  which 

models are compared to one another and the best model is chosen. 

There are so many works that had been carried out on model comparison in Classical point of 

views. According to Harvey (1990), some classical model comparisons methods are Akaike’s Information 

Criterion (AIC), Mallows’s  pC  criterion, Amemiyas’s Prediction criterion (APC), Davidson-Mackinon 

test etc. Most of these aforementioned classical methods of model comparison are used purposely for 

non-nested model. 

In Bayesian framework, there are limited applications of model comparison and also Bayesian 

inference is more recent than classical method. Thus, some prominent works on Bayesian method of 

model comparison are; Smith and Spiegelhalter (1980), Griffiths and Wan (1994), O’Hagan (1995), 

Kass and Wasserman (1995), Diciccio et al. (2003), Plummer (2008), Feng and Giles (2009), Wetzels 

et al. (2010), and Li et al. (2017). 
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Smith and Spiegelhalter (1980) looked into forms of model choice criteria and compared alternative 

nested  linear  models  on  the  basis  of  their  asymptotic  properties.  Bayesian  estimation  of  normal 

regression model with an uncertain inequality constraint was considered by Griffiths and Wan (1994). 

They adopted a non-informative prior and uncertainty concerning the inequality restriction that was 

represented by prior odds ratio while O’Hagan (1995) proposed a fractional Bayes factor for Bayesian 

comparison of models. The approach was found to be consistent, simple, robust and coherent. 

    Carlin and Chib (1995) summarizes a range of computational methods for obtaining estimates 

of Bayes factor. They provide a convenient method by using a marginal likelihood for comparing 

models by their fit with less theoretical problems attached to it than encountered when comparing 

non-nested models in a classical framework. 

    A generalized method Savage-Dickey Density Ratio (SDDR) for computing a Bayes factor was 

developed  by  Verdinelli  and  Wasserman  (1995).  It  was  observed  that  their  methods  in  terms  of 

computational complexity can be extended to other models. Kass and Wasserman (1995) computed 

a  Bayes  factor  for  testing  equality  restriction  in  the  presence  of nuisance  parameter  priors. Their 

results  suggested  that  Schwartz  criterion  can  provide  sensible  approximate  solutions  to  Bayesian 

testing problems when the hypotheses are nested.  

    Several  methods  of  estimating  Bayes  factors  for  non-  linear  models  when  it  is  possible  to 

simulate  observations  from  posterior  distributions  through  MCMC  and  other  techniques  was 

examined by Diciccio et al. (1997). The simulated versions of Laplace’s, Bartlett correction, importance 

sampling  and  reciprocal  importance  sampling  techniques  were  considered.  They  found  out  that 

simulated version of Laplace’s method was the most accurate approach among all the techniques.  

    A  deviance-based  loss  function  was  derived  by  Plummer  (2008)  using  a  decision-theoretic 

framework. This approach was developed in order to capture some mixture models. The theoretical 

properties  of  the  loss  functions  were  examined  in  normal  linear  models  and  exponential  family 

models  using  this  penalized  loss  function.  This  approach  was  applied  in  mixture  modelling  and 

disease mapping. 

    Feng  and  Giles  (2009)  employed  a  posterior  odds  analysis  to  select  the  correct  number  of 

clusters for a Bayesian fuzzy regression analysis. They used a natural conjugate prior for parameters 

and concluded that the Bayesian posterior odds can provide a very powerful tool for choosing the 

number of clusters through their results. 

Wetzels  et  al.  (2010)  in  their  work  proposed  an  Encompassing  Prior  (EP)  approach  to  facilitate 

Bayesian model selection for nested models with inequality constraints. EP approach generalizes the 

Savage-Dickey ratio method and can accommodate both inequality and exact equality constraints. 

Their EP approach was found to be computationally efficient procedure for calculating Bayes factor 

for nested models.  

    The plug-in predictive distribution as an alternative to DIC was also proposed by Li et al. (2017). 

This method was purposely to provide an asymptotically unbiased estimation to the new expected 

Kullback-Leibler (KL) divergence under a general framework. It was found out that this alternative 

DIC is easy for computation from Markov Chain Monte Carlo (MCMC) output and also has a smaller 

penalty term than the original DIC. 

    Most authors had considered the estimation of parameters of regression model by facilitating 

comparison between  classical  and  Bayesian  approaches  (See  Zellner  1976,  Kleibergen  and  Zivot 

2003, Adepoju  and  Ojo 2018  etc.). However,  researchers  are  also  interested  in knowing  the  best 

method for choosing among competing models or hypotheses of a given phenomenon. 
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A model is said to be nested when one model is a special case of another model. Regression in a 

nested  model  for  model  comparison  is  of  two  types.  The  first  entails  comparison  of  1M   which 

imposes R  = r  to  2M  which does not have this restriction while the second involves comparing

1 1 1 : jM y X      to  2 2 2 : ,jM y X      where  1X   and  2X   contain  different  explanatory 

variables,  1, 2j   (See Koop 2003). 

Bayes factor is kind of method that is useful in the incorporating of external information into 

evidence about a model. Thus, Bayes factor  through a SDDR will be derived for Bayesian to aid 

comparison  with  the  frequentist  approach.  Therefore,  this  work  hereby  provides  a  comparative 

analysis on the performance of Bayesian using a Bayes factor and classical way of model comparison 

using a nested model to know the strength of these methods.  

The paper is organized as follows. Section 2 gives the regression model and different Bayesian 

method of model comparison most especially the Bayes factor using Savage-Dickey Density Ratio 

(SDDR). It also gives a simple decision-theoretic justification model comparison. Section 3 provides 

procedures for numerical analysis and how the data will be analyzed. In Section 4, results of both 

classical and Bayesian are presented with decisions. Section 5 concludes the paper. 

 

2. Materials and Methods 

    In this section, regression model and model comparison methods in both Classical and Bayesian 

approaches will be given. 

 

2.1. Regression model 

    Consider the following regression model 

,y u x                  (1) 

where  y  is an  1n  vector of observations,    is a  1k   vector of unknown regression parameters, 

x  is an  n k  observed matrix of the regression, and  u  is an  1n  vector of random errors which is 

normally  distributed  with  mean  zero  and  constant  variance  2 .   And, 
2

,1h    where  h   is  the 

precision. 

In econometrics, two kinds of models can be used for model comparison: (a) Nested model (b) 

Non-nested model. The nested model for model comparison involving equality restrictions using  1M  

which has the form 

1 : ,M Q q   
against  2M  which does not imposes restrictions given as 

2 : ,M Q q   
will be used in this study, where  Q  is  P k  matrix and  q  is P-vector.  

Equation (1) allows for any R linear equality restrictions on the regression coefficient    and it 

is also assume that rank (Q) = R. Hence, the two models as suggested by Raftery and Lewis (1996) 

can be simply defined as 

  0 1  : : 0 iH M    (reduced model),                 (2) 

  1 2  : : 0iH M    (unreduced model),   0,1,... i                (3) 
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2.2. Classical model comparison method 

Assume the regression model given in (1) is used and also follow the two models given in (2) 

and (3). Hence, the decision rule for testing the nested model of classical approach is stated below. 

Decision rule: if  0.05,P   reject  0 H  and that means  2M  is supported than  1  M  for data under 

consideration. 

 

2.3. Bayesian model comparison method 

    There are so many methods that can be use for model comparison in Bayesian context, but some 

popular methods are however given below:  

    (i) Deviance Information Criterion (DIC), 

    (ii) Penalized expected deviance, 

    (iii) Bayes factor. 

  Deviance Information Criterion (DIC): It is a hierarchical generalization of AIC for models 

with weak prior information proposed by Spiegelhalter et al. (2002). This method is an approximation 

to penalized  loss  function based on deviance. However,  this method was criticized due  to under-

penalizing  of  complex  models  especially  in  disease  mapping  situation  (See  Plummer  2008). The 

method is simply defined as 

DIC ( ) 2 ,D DD p D p     

where  D  is the measure of fit and  Dp  is the measure of complexity. 

  Penalized expected deviance: It is Bayesian model comparison method proposed by Plummer 

(2008). This method was proposed to overcome the problem of when the number of parameters is 

smaller than number of regressors in a regression model. This estimator is given as 

  ( , ) 2 log{ ( | )} ( | ) ,eL Y Z p Y P Z d      

where  eL  is the loss function for expected deviance. 

  Bayes Factor: This approach of model comparison is known to be formal and widely accepted. 

It involves comparing the Posterior odds (PO) ratio of models. The PO is used for comparing two 

models. 

  Given two models, say 1 and 2, the PO can be simply stated as: 

1 1 1 1
12 12

2 2 2 2

( | ) ( | ) ( ) ( ) ( | )
 PO   ,

( | ) ( | ) ( ) ( ) ( | )

P M y P y M P M P M P Q q y
BF

P M y P y M P M P M P Q q y






    


 

where  1( )P M   and  2( )P M   are  prior  model  probabilities  for  models  1M   and  2 ,M   respectively.

1( | )P y M  and  2( | )P y M  are marginal likelihood for models  1M  and  2 ,M  respectively.  1( | )P M y

and  2( | )P M y  are posterior model probabilities for models  1M  and  2 ,M  respectively. 

The Bayes factor,  12BF  quantifies the weight of evidence in favor of null hypothesis.  

 

2.4. Savage-Dickey Density Ratio (SDDR) 

  Savage-Dickey Density Ratio (SDDR) as proposed by Dickey (1971) is a generalization of Bayes 

factor used to compare nested models. It is potentially applicable in variety of applications. 

If the priors in two models  1M  and  2M  satisfy the condition below: 

0 2 1  ( |  , ) ( | ),P M P M      

then  12 ,BF  the Bayes factor for comparing  1M  to  2 ,M  will has the form: 
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0 2

12

0 2

( | , )
  ,

( | )

P y M
BF

P M

 

 





 

where 0 2  ( |  , )P y M   and  0 2  ( |  )P M   are the unrestricted posterior and prior for   evaluated at 

the point  0   (See Koop 2003). 

One major advantage of Savage-Dickey density ratio is that, it involves only  2M  and there is no 

need to worry about developing methods for posterior inference using  1.M  

Thus, the Savage-Dickey Density Ratio (SDDR) as proposed by Dickey (1971), Verdinelli and 

Wasserman (1995) for this work will take the form 

           
0 2

12

0 2

( , | , )
  .

( , | )

P h y M
BF

P h M

 

 





 

For a Bayes Factor (BF) where  1M  imposes equality restriction that is,  0,i   we have 

          2 2
12

2 2

( , | , ) ( 0, | , )
  ,

( , | ) ( 0, | )
i i

i i

P h y M P h y M
BF

P h M P h M

 

 


 

  

where  

     
2 2

2

2

( , | ) ( , ) ( , | ) ( , )
( , | , ) .

( | ) ( , ) ( , )

i i i i
i

i i i

P h M L h P h M L h
P h y M

P y M h L h d dh

   


   
 


                             (4) 

Integrating (4) with respect to  h  gives: 

2 2

( | ) ( ) ( , ) ( | ) ( ) ( , )
( | , ) ( , | , ) ,

( , ) ( , ) ( , ) ( , )

i i i i i i
i i

i i i i i i

h L h h L h
P y M P h y M dh dh

h L h d dh h L h d dh

         
 

     

 
  
 
 

 
 

 

                                   (5) 

Divide (5) by  2( | )iP M  and evaluate both at  0i   implies: 

  2 1

2

( 0 | , ) π( | 0)π( 0) ( , 0) P( | ) ( , 0)
,

( 0 | ) π( 0) π( , ) ( , )d d π( , ) ( , )d d

i i i i i

i i i i i i i i

P y M h L h h M L h
dh dh

P M h L h h h L h h

    

       

       
    

    
   
 

 
 

        1
12

2

( | )
.

( | )

P y M
BF K

P y M
    

Decision rule: According to Jeffreys (1946) and Kass and Raftery (1995), if  1,K   reject  0H  and 

that means  2M  is supported by the data under consideration than  1.M   

 

3. Numerical Analysis  

3.1. Simulation study 

The model for this study is given as: 

  1 2 30.1 0.4 2 4.5 .y x x x u        (6) 

The following will be used for simulation of data in the study:  

  (i) The explanatory variables will be generated as:  ~ (0,1), 1,2,3.ix N i   

  (ii) The error components is obtained as:  1~ (0, ),u N h where    1.h  

(iii) The explanatory variables, error term and regression coefficients specified in (6) will be used 

to generate the dependent variable. 
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(iv) The sample sizes are N =10, 30, 100, 500, 700 and 1,000. 

(v) The sample sizes will be replicated 100,000. 

 

3.2.  Real data analysis 

Here,  the  frequentist  and  Bayesian  approaches  for  model  comparison  in  a  nested  regression 

model are applied to a real data. Data on US defence budget outlays for 20 years from1962 to 1981 

are  used  to  know  the  effects  on Gross National Product  (GNP), US  military  sales/assistance  and 

aerospace industry sales on it. The defence budget-outlay, GNP, US military sales/assistance, and 

aerospace  industry sales are measured  in $ billions. The data  is sourced from Gujarati and Porter 

(2005) through various government publications of United States. 

Hence, we consider the regression model given as 

  0 1 1 2 2 3 3 ,y x x x u       
 
   

where  y  is the defence budget-outlay,  1x  is the GNP,  2x  is the US military sales/assistance and  3x  

is the aerospace industry sales. For the simulation study and real life data, the model to be considered 

for comparison is given as 

          1 : 0iM    (reduced model), 

          2 : 0iM    (unreduced model),  1, 2,3.i   

 

4. Results and Discussion 

The  objective  of  this  study  is  to  compare  frequentist  and  Bayesian  approaches  for  model 

comparison in a nested regression model. This section gives the results obtained from Bayesian and 

classical approaches with various decisions  for parameters. Here,  2M   is an unreduced model and 

represents a good model. The Bayes factor, (K) gives the result for Bayesian using Savage Dickey 

Density  Ratio  (SDDR)  while  the  p-value  for  the  t-distribution  is  also  presented  for  frequentist 

approach. 

 

Table 1 Model comparison of nested model for Bayesian and classical methods 

with sample size of 10 

Parameter  Estimators 
Estimates 

( Pr( | |))K t  
Decision 

0   Bayesian  0.000859  2M  
  Classical  0.151000  1M  

1   Bayesian  0.001174  2M  
  Classical  0.067300  1M  

2   Bayesian  0.000801  2M  
  Classical  1.12E-05  2M  

3   Bayesian  0.000123  2M  
  Classical  1.12E-05  2M  
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Table 2 Model comparison of nested model for Bayesian and Classical methods 

with sample size of 30 

Parameter  Estimators 
Estimates 

( Pr( | |))K t  
Decision 

0   Bayesian  2.4E-14  2M  
  Classical  0.429700  1M  

1   Bayesian  3.31E-14  2M  
  Classical  0.574500  1M  

2   Bayesian  2.18E-14  2M  
  Classical  0.043400  2M  

3   Bayesian  1.12E-14  2M  
  Classical  1.67E-07  2M  

 

Results obtained from both Tables 1 and 2 show that Bayesian method of model comparison 

picked a good model for all the parameters while the classical method only picked a good model for 

parameters  2  and  3  for sample size of 10 and 30.
 

 

Table 3 Model Comparison of nested model for Bayesian and classical methods 

with sample size of 100 

Parameter  Estimators 
Estimates 

( Pr( | |))K t  
Decision 

0   Bayesian  0.00E+00  2M  
  Classical  0.783300  1M  

1   Bayesian  0.00E+00  2M  
  Classical  0.001900  2M  

2   Bayesian  0.00E+00  2M  
  Classical  2.00E-16  2M  

3   Bayesian  0.00E+00  2M  
  Classical  0.00E+00  2M  

 

In Tables 3-6, Bayesian method of model comparison give more evidence against the reduced 

model  1M  for all the parameters considered. The classical approach gives evidence of support for 

most especially parameter  2  and  3  in Tables 3-6. It was observed that parameter  0  does not 

give support for the unreduced model for classical method of model comparison for all the sample 

sizes as shown in Tables 1-6.
 

 

 

 

 

 

 



590  Thailand Statistician, 2021; 19(3): 583-592 

Table 4 Model Comparison of nested model for Bayesian and classical methods 

with sample size of 500 

Parameter  Estimators 
Estimates 

( Pr( | |))K t  
Decision 

0   Bayesian  4.04E-67  2M  
  Classical  0.866080  1M  

1   Bayesian  5.76E-68  2M  
  Classical  0.003390  2M  

2   Bayesian  3.31E-67  2M  
  Classical  4.34E-05  2M  

3   Bayesian  8.01E-68  2M  
  Classical  <2.05  2M  

 

Table 5 Model Comparison of nested model for Bayesian and classical methods 

with sample size of 700 

Parameter  Estimators 
Estimates 

( Pr( | |))K t  
Decision 

0   Bayesian  0  2M  
  Classical  0.301000  1M  

1   Bayesian  0  2M  
  Classical  0.247000  1M  

2   Bayesian  0  2M  
  Classical  2.00E-16  2M  

3   Bayesian  0  2M  
  Classical  2.00E-16  2M  

 

Table 6 Model Comparison of nested model for Bayesian and classical methods 

with sample size of 1,000 

Parameter  Estimators 
Estimates 

( Pr( | |))K t  
Decision 

0   Bayesian  0  2M  
  Classical  0.453120  1M  

1   Bayesian  0  2M  
  Classical  0.005230  1M  

2   Bayesian  0  2M  
  Classical  2.00E-16  2M  

3   Bayesian  0  2M  
  Classical  2.00E-16  2M  
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Table 7 Model Comparison of nested model for Bayesian and classical methods in 

real life data application 

Parameter  Estimators 
Estimates 

( Pr( | |))K t  
Decision 

0   Bayesian  0.0000  2M  
  Classical  0.0000  2M  

1   Bayesian  0.0008  2M  
  Classical  0.0300  1M  

2   Bayesian  0.0000  2M  
  Classical  0.1450  1M  

3   Bayesian  0.0000  2M  
  Classical  0.0000  2M  

 

In results obtained from the real  life data application, Bayesian method of model comparison 

give more evidence against the reduced model  1M  for all the parameters considered. This also agreed 

with the results obtained in simulation. 

 
5. Conclusion 

Overtime,  different  work  had  been  carried  out  by  facilitating  comparison  between  the  two 

modelling approaches, that is, frequentist and Bayesian methods in the area of parameter estimation. 

It  is of  interest  for model builders  to know  the  strength of  the  two  methods  in  the area of model 

comparison.  

In this paper, comparison between the Bayesian and frequentist approaches using a nested model 

was carried out  to know  the  strength of  the  two  methods. Bayes  factor  through a  Savage-Dickey 

density ratio when parameters are evaluated at zero was provided for Bayesian method in order to 

facilitate comparison. 

Data were simulated for different sample sizes and each of the sample sizes was replicated while 

a real data set was also applied. For all the sample sizes considered, Bayesian performs well than the 

frequentist  approach  by  giving  an  overwhelming  evidence  support  for  model  2M   for  all  the 

parameters. 

Therefore, the Bayesian method of model comparison outperformed the frequentist method for 

nested model. Thus, Bayesian method using a Savage-Dickey density ratio is preferred to frequentist 

approach where a researcher has choice between the two approaches.
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