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Abstract  

The main goal of statistical process control (SPC) is to improve the capacity of the process. One 

of quality tools is the control chart and it is usually designed under the assumption that the 

observations are independent and identically distributed. However, some characteristics of the 

production process especially processes that are continuously produced such as chemical processes, 

the process is autocorrelated in various time series models. In this paper, we will focus on an 

autoregressive integrated moving average, ARIMA(p,d,q) model. The performance of control chart 

is evaluated in terms of the average run length. This paper aims to solve explicit formulas and develop 

numerical integration for the average run length of the exponentially weighted moving average 

(EWMA) control chart. The accuracy of the proposed formulas is established by comparing them to 

the numerical integration method. A comparison of the results from explicit formula and numerical 

integration shows that the absolute percentage difference is less than 0.1% In terms of computational 

time, the explicit formula can reduce the computational time better than the numerical integration.  

______________________________ 
Keywords: Autoregressive integrated moving average, exponentially weighted moving average, Fredholm 

integral equation, explicit formula. 

 

1. Introduction 

In current, production process control usually uses statistical process control (SPC) to monitor 

and control a process. Control charts are one of the efficient tools of SPC that make the process to 

have more production capabilities. Therefore, the main function of control charts is to detect changes 

in processes. The application of control chart is not only limited to manufacturing industry, but it 

covers a wide range of disciplines such as engineering, health care, medicine, economics, finance, 

education and analytical laboratories. The control chart was first developed by Shewhart (1931). 

Shewhart control chart, which is an effective control chart to detect large changes in the production 

process. Recently, the cumulative sum (CUSUM) control chart presented by Page in 1954 and later 

Robert (1959) introduced the exponentially weighted moving average (EWMA) control chart, in 

which both control charts are effective in detecting small shifts in the process.  
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In general, the criteria used in the comparison of efficiency of the control chart are considered 

from the average run length (ARL). The ARL is divided into 2 states: when the process is in-control, 

the ARL0 is determined and when the process is out-of-control, the ARL1 is determined. The ARL 

can be calculated using the Monte Carlo Simulation method, which provides accurate results, but it 

takes a lot of processing time. There are many researchers presented the methods for evaluating the 

ARL of control charts. Lucas and Saccucci (1990) proposes the Markov chain method for estimating 

the ARL for EWMA control charts when the observations are normal distribution. After that, Borror 

et al (1999) studied the robustness of the EWMA control chart in cases of non-normal distribution 

and comparing with the Shewhart control chart. Areepong and Novikov (2009) presented the formula 

for the ARL of the EWMA control chart when the data were exponential distribution by Martingale 

Approach and comparing the efficiency of the formula for the ARL of the EWMA control chart with 

the CUSUM control chart. Later, Areepong and Sukparungsee (2010) proposed the ARL using the 

integral equation approach of the EWMA control chart and compared the results with the Monte 

Carlo Simulation methods. In addition, Mititelu et al. (2010) used a Fredholm’s integral equation to 

find the explicit formula for the ARL of the CUSUM control chart when the observations have 

hyperexponential distribution and the one-sided EWMA control chart with Laplace distribution.  

Generally, the principle of control chart is under the assumptions that the data are independent 

and it is effective in detecting changes in processes when the data has a normal distribution. However, 

there are many situations the data are autocorrelated such as daily flows of a river, wind speeds, the 

amount of dissolved oxygen in a river, etc. For this reason, some authors evaluate the ARL when the 

process is serially correlation, such as Busaba et al. (2012) presented the exact solution of ARL for 

the CUSUM control chart for the autoregressive of order 1 (AR(1)) process and compared the results 

from the exact solution with the results from the numerical integral equation method. Later, Petcharat 

et al (2013) proved the analytical expression for the ARL of EWMA control chart and the CUSUM 

control chart for the moving average of order q (MA(q)) process. Recently, Phanyaem et al. (2014) 

proposed the explicit formula for the ARL of the CUSUM control chart for an autoregressive and 

moving average (ARMA(1,1)) process. After that, Phanyaem (2017) derived the analytical formula 

for the ARL of CUSUM control chart for SARMA(1,1)L process and used the Gauss-Legendre 

quadrature rule to approximate the numerical integration for the ARL. 

Therefore, the objective of paper is to prove the explicit formula of the average run length (ARL) 

of EWMA control chart for an autoregressive integrated moving average, ARIMA(p,d,q) process and 

compare the results of the explicit formula with the results of the numerical integration method. The 

performance evaluation criteria of the proposed explicit formula are based on absolute percentage 

difference and the computational time. The paper is organized as follows: in Section 1, we start with 

the theoretical background of control charts. The EWMA control chart based on ARIMA(p,d,q) process 

is described in Section 2. The proposed explicit formula and the numerical integral equation for ARL 

of EWMA control chart are presented in Section 3 and Section 4 respectively. In Section 5, we compared 

the results from the explicit formula with the results from the numerical solution of an integral equation. 

Finally, we provided the conclusion in Section 6.  

 

2. The Exponentially Weighted Moving Average Control Chart for ARIMA(p,d,q) 

In this section, we present the characteristics of the EWMA control chart for ARIMA(p,d,q) 

process. The EWMA control chart is a powerful tool in detecting a mean shift. Let tX  be the 

sequence of an autoregressive integrated moving average process, ARIMA(p,d,q) with exponential 

white noise.  

The recursive equation of ARIMA(p,d,q) process with exponential white noise is defined as: 
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 1 1 2 2 1 1 2 2... ... ,d t d t d t p d t p t t t q t qX X X X                                (1) 

where t  is assumed to be a white noise process with exponential distribution. The initial value 1 t  

is usually to be the process mean, an autoregressive coefficient 0 1,   a moving average coefficient 

0 1   and an initial value of ARIMA(p,d,q)  process is equal to 1. 

The recursive equation of EWMA statistics based on ARIMA(p,d,q) process is defined by 

 1 =  (1 ) + ; t t tZ Z X   =  1,2,....t    (2) 

where tX  is a sequence of ARIMA(p,d,q) process, and   is an exponential smoothing parameter 

with of EWMA control chart with 0 1   and the initial value 0 .Z u  

The stopping time of EWMA control chart is defined as follows 

   inf 0; ,b tt Z b     ,b u    (3) 

where b  is a constant parameter known as the upper control limit. 

Let ( )   denoted the expectation under density function ( , )f x   that the change-point occurs 

at point ,  where .    Thus by definition, the ARL for ARIMA(p,d,q) process with an initial value 

0Z u  is as follow 

 ( ) ( ) .bARL H u        (4) 

 

3. Explicit Formulas for Average Run Length of EWMA Control Chart for ARIMA(p,d,q) 

This section is solved the explicit formulas of average run length of EWMA control chart for an 

autoregressive integrated moving average, ARIMA(p,d,q) process. We derive analytical explicit 

formulas of ARL by using the Fredhom integral equation of the second kind. Firstly, we define the 

function ( )H u  is the ARL of EWMA chart for ARIMA(p,d,q) process. To assume that the lower 

and the upper control limits are zero and ,b  respectively. Let Z  denote the probability measure and 

Z  denote the expectation corresponding to initial value 0 .Z u  After that, we extend the function 

into the Fredholm integral equations of the second kind, 

  1 1 1( ) 1 {0 } ( ) + { = 0} (0).z zH u I Z b L Z Z L        (5) 

 The EWMA statistics 1Z  is an in-control state, we obtain  

 0 1 1 1 10  (1 ) + ... ... .d t p d t p t t q t qZ X X b                          (6) 

If 1X  gives an out-of-control state for 1,Z  thus 

 0 1 1 1 1(1 ) + ... ... ,d t p d t p t t q t qZ X X b                         (7) 

or  

0 1 1 1 1(1 ) + ... ... 0.d t p d t p t t q t qZ X X                       

For an initial value 0 ,Z u  then the Equation (6) can be rewrite as follows 

 1 1 1 10  (1 ) + ... ... .d t p d t p t t q t qu X X b                        

 According to the method of Champ and Rigdon (1991), we let an initial value of the EWMA 

statistics 0Z u  and ( )t Exp   are white noise error terms, then the function ( )H u  can be 

rewritten as follows 

 
1 1

1
( ) 1 ( ) ( )H u H Z f d     
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 1 1 1 11 ((1 ... ... ) ( ) .d t p d t p t t q t qH u X X f y dy                       ) +     (8) 

 Changing the integration variable, so the function ( )H u  is given by 

1 1 1 1

0

1 (1 )
( ) 1 ( ) ... ...


      

 
   

  
          

 


b

d t p d t p t q t q
y u

H u H y f X X dy     (9) 

1 1 1 1

1 (1 )
... ...

0

1 1
1 ( ) .


      

 

 

   

  
          

 

 
 

   
 
 


d t p d t p t q t q

y ub X X
H y e dy   

 Consequently, we get the integral equation as follows 

1 1 1 1( ... ... )(1 )

0

1
( ) 1 ( ) .

       

 


            
  

   

d t p d t p t t q t qX Xuyb

H u H y e e dy           (10) 

 This section will present Banach’s fixed point theorem for existence and uniqueness of the results 

of the integral equation. On the metric space of continuous functions on a closed interval ( ( ),|| || )C I   
where I  denotes the compact interval and the norm || || = | ( )|u IH Sup H u   and the operator T  is 

named on contraction, if it exists a number of 0 1q   such that 

1 2 1 2( ) ( )  T H T H q H H
 
for all 1 2, .H H I  

Now, we define 1( )C I  as a continuous function over a range  1 0,I b  and define the operator T  

by 

 

 

1 1 1 1( ... ... )(1 )

0

1
( ( )) 1 ( ) .

d t p d t p t t q t qX Xu yb

T H u e H y e dy

       

  



             
  

               (11) 

Therefore, the integral equation can be written as  ( ) ( ).T H u H u  According to the Banach’s 

fixed point theorem, if the operator T  is a contraction, then fixed point equations  ( ) ( )T H u H u   

have a unique solution.  

For any u I  and 1 2, ( )H H C I  we have the inequality 1 2 1 2( ) ( )T H T H q H H    where 

1.q   According to (11), we get 

 1 2( ) ( )T H T H

 
 

(1 )

1 20,

0

1
( ) ( ) ( )

tXu yb

u b
Sup H y H y e L y e dy



  




 


  

 

 
 

(1 )

1 2
0,

1
( )( 1)

tXu b

u b

Sup H H e e


  



 



     

 
 

(1 )

1 2
0,

1
 ( 1)( 1)

tXu b

u b

H H Sup e e


  




 



 
    

  
 

  
 

(1 )

1 2
0,

 (1 )
tXu b

u b

H H Sup e e


  


 



 
   

  
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 1 2 ,q H H   where  
 

(1 )

0,

(1 ) 1.
tXu b

u b

q Sup e e


  


 



 
   

  

  

We used the Fredholm integral equation to derive the explicit formula of the ARL of EWMA 

control chart for ARIMA(p,d,q) process.  

First, to consider 

1 1 1 1( ... ... )(1 )

0

1
( ) 1 ( ) .

d t p d t p t t q t qX Xuyb

H u H y e e dy

       

 



             
 

      

Now, we let 

1 1 1 1( ... ... )(1 )

( ) ,

d t p d t p t t q t qX Xu

C u e

       

 

            
  

   then we have  

0

( )
( ) 1 ( ) ,




  

yb
C u

H u H y e dy  0 . u b  

Let 

0

 = ( ) ,

yb

k H y e dy


  therefore ( )H u  can write another form as follows 

 

1 1 1 1( ... ... )(1 )

1
( ) 1 .

       

 



            
 

  

d t p d t p t t q t qX Xu

H u e k           (12) 

To find a constant k  as following form 

0

 = ( ) 




yb

k H y e dy  

 
0

( )
=  1 



 
 

 


yb
C y

k e dy  

 

0 0

( )
=   +  



 

 

y yb b
C y

e dy ke dy  

 

0 0

=   + ( ) 



 

 

y yb b
k

e dy C y e dy  

 

(1 )

0 0

=   +



  



 
  

  
tXyy yb b

k
e dy e e dy  

 

(1 )

0

=  (1 ) +



  


   
    

    
tX y yb b

k
e e e dy  

 

0

=  (1 )  


 
  

   
tXb yb

k
e e e dy  
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 =  (1 ) (1 )

tXb b
k

e e e  


 
  

 
 
      

 = (1 ) (1 ).

tXb b
k

e e e 


 
  

     

Thus, a constant k  can be found as follows 

 ( )( 1)
 = .

1
1 ( 1)



 

 





 
 

 

 

 

t

b

X b

e
k

e e

            (13) 

Then, on substituting a constant k  into (12); we obtain that 

 

1 1 1 1( ... ... )(1 )
1 ( )( 1)

( ) 1 .
1

1 ( 1)

d t p d t p t t q t q

t

b
X Xu

X b

e
H u e

e e

        
 

 







   
         

  
 

 
 

 

 
 

   
 
   
 

 

 

1 1 1 1

1 1 1 1

( ... ... )(1 )

( ... ... )

( 1)
1 .

1
1 ( 1)

d t p d t p t t q t q

d t p d t p t t q t q

X Xu b

X X b

e e

e e

       

  

       

 



   

   

         
   

 

         
   
 


 

 
 

Consequently, the explicit formulas of the ARL of EWMA control chart for ARIMA(p,d,q) 

process for t = 1, 2, …. is given by 

 

1 1 1 1

1 1 1 1

( ... ... )(1 )

( ... ... )

( 1)
( ) 1 .

1
1 ( 1)

d t p d t p t t q t q

d t p d t p t t q t q

X Xu b

X X b

e e
H u

e e

       

  

       

 



   

   

         
  

 

         
  
 


 

 

          (14) 

Since the process is in-control state with exponential parameter 0 ,   we obtain the explicit 

formula for 0ARL  of EWMA control chart for ARIMA(p,d,q) process is as follows 

 

1 1 1 1

0 0 0

1 1 1 1

0 0

( ... ... )(1 )

0
( ... ... )

( 1)
ARL  1 .

1
1 ( 1)

d t p d t p t t q t q

d t p d t p t t q t q

X Xu b

X X b

e e

e e

       

  

       

 



   

   

         
   

 

         
   
 


 

 

          (15) 

On the other hand, the process is out-of-control state with exponential parameter 1,   where 

1 0 (1 ),     the explicit formula for 1ARL  of EWMA control chart for ARIMA(p,d,q) process is 

as follows 
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e e
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 


 

 

           (16) 

where   is a parameter of exponential white noise, b  is upper control limit, ,t L t LX    are the initial 

values,   is an autoregressive coefficient; 0 1   and   is a moving average coefficient; 

0 1.    

 

4. Numerical Integration of Average Run Length of EWMA Chart for ARIMA(p,d,q) 

This section presents the method of finding the numerical integration of the ARL of EWMA 

control chart for the ARIMA(p,d,q) model when the white noise processes are exponential 

distribution. We solve the integral equation of ARL by using Gauss-Legendre quadrature to 

approximate integrals.  

 Consequently, the integral equation in (9) can be rewritten as follows 

1 1 1 1

0

1 (1 )
( ) = 1 ( ) ... ... .

b

d t p d t p t q t q
y u

H u H y f X X dy


      
 

   
  

         
 

   (17) 

Numerical integration of integral equations based on quadrature rule to estimate the integrals 

with finite sums. The approximation for an integral has the following form 

    
10

( ) ( ) ( ),
b m

j j
j

W y f y dy w f a


   

where =j

b
w

m
 and 

1
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2
j

b
a j j m

m

 
 

 
 

The numerical approximation to integral equation is denoted by ( ),iH a  the solution can be found 

using the method of solving systems of linear algebraic equations, 

  1 1 1 1
1

(1 )1
1 ( ) ... ... .

m
j i

i j j d t p d t p t q t q
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Thus, 
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or in matrix form as 

 
1 1 1 ,m m m m m    H 1 R H    (18) 
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where 
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 and   = diag 1,1,...,1 .mI  If 1( )m m m


I R  
there exist 

 1
1 1( ) .m m m m m


   H I R 1    (19) 

Here ( )H u  denotes the numerical integration solution of ( ),H u  then the integral equation in (9) 

can be approximated by 

1 1 1 1
1

(1 )1
( ) 1 ( ) ... ... .

m
j

j j d t p d t p t q t q
j

a u
H u w H a f X X


      

     


  
          

 
    (20) 

 

5. Numerical Result 

A comparison of the accuracy and precision of the 0ARL  and 1ARL  values obtained from the 

explicit formulas with the results of numerical integration will consider the absolute percentage 

difference between the exact solution and the numerical integration solution. The explicit formula 

solution is denoted by ( )H u  and the numerical integration solution is denoted by ( ).H u  

The absolute percentage difference of ARL can be calculated by 

  
( ) ( )

Diff % 100.
( )

H u H u

H u


 


   (21) 

In Table 1, we present the results obtained from the explicit formulas of ARL for EWMA control 

chart when observations are ARIMA(p,d,q) process with exponential white noise and compare to the 

ARL from numerical integral equation with m  500 nodes. The criterions for choosing the in-control 

parameter values are the smoothing parameter ( )  and the upper control limit ( )b  for designing the 

EWMA control chart with minimum of 1ARL  for a given 0ARL  370 and the value of exponential 

parameter 0 1   in the case of ARIMA(p,d,q) process with parameter ( , , )d   (0.10,1.0,0.10), 

(0.30,1.0,0.10) and (0.50,1.0,0.30), respectively. 

The results from Table 1 present the value of parameters for EWMA control chart and show that 

the 0ARL  from analytical solution is close to the numerical integration with the absolute percentage 

difference less than 0.1%. In addition, the results also show that the computational time for evaluating 

the purposed explicit formula is much less than the computational time required for numerical integral 

equation method. 

In Table 2 to Table 4, we present the results of 0ARL  370 and ARL1 values obtained from the 

analytical formula and the results from the numerical integration method for EWMA control chart 

for ARIMA(p,d,q) model when an autoregressive coefficient ( )  is equal to 0.10, the d  is equal to 

1.00 and a moving average coefficient ( )  is equal to 0.10. In the case in-control state, the value of 

the in-control parameter 0  is equal to 1. And in the case out-of-control state, we specifies that the 
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parameter 1   is equal to (1 )  where   is the magnitude of shifts are equal to 0.01, 0.03, 0.05, 

0.07, 0.09, 0.10, 0.20, 0.30, 0.40 and 0.50, respectively. 

 

Table 1 Comparison of 0ARL  computed using explicit formulas against numerical integration 

for ARMA(1,1,1) process with parameter 0 1   for 0ARL = 370 

  u  b  
ARMA(1,1,1) Process with  = 0.10, d = 1.0 and  = 0.10  

Explicit  Numerical  Diff (%) 

 0.01 0.10 0.001441 370.166 370.166  (0.125)a 0.0000 

0.05 0.40 0.128100 370.964 370.923  (0.125)a 0.0111 

0.10 1.00 0.038500 370.305 370.304  (0.110)a 0.0003 

  u b  ARMA(1,1,1) Process with  = 0.30, d = 1.0 and  = 0.10  

0.01 0.10 0.000604 370.483 370.483   (0.125)a 0.0000 

0.05 0.40 0.032430 370.063 370.061   (0.110)a 0.0005 

0.10 1.00 0.015100 370.668 370.667   (0.125)a 0.0003 

  u b  ARMA(1,1,1) Process with  = 0.50, d = 1.0 and  = 0.30  

0.01 0.10 0.000766 370.388 370.388  (0.125)a 0.0000 

0.05 0.40 0.044500 370.774 370.770  (0.141)a 0.0011 

0.10 1.00 0.019355 370.071 370.071  (0.110)a 0.0000 

          a. The values in parentheses are CPU times in numerical integration methods (seconds) 

 

To determine the exponential smoothing parameter ( )  is equal to 0.01 and the upper control 

limit ( )b  is equal to 0.001441, showing the results as in Table 2. In addition, the exponential 

smoothing parameter ( )  is equal to 0.05 and the upper control limit ( )b  is equal to 0.1281, showing 

the results as in Table 3. And to determine the exponential smoothing parameter ( )  is equal to 0.10 

and the upper control limit ( )b  is equal to 0.0385, showing the results as in Table 4. 

 The results from Table 2 through Table 4 show that the results obtained from the explicit formula 

give the 0ARL  and 1ARL  values that are close to the results obtained by numerical integration 

methods. For the case of division points m = 500 nodes, it is found that the absolute percentage 

difference of ARL is less than 1.0%. In addition, when considering the time required to process the 

data, it is found that the successful ARL calculation of the explicit formula takes less than 0.01 

seconds in comparison to the ARL calculation using the numerical integration method. The result is 

approximately 0.10 to 0.20 seconds. Therefore, finding the ARL value from the analytical formula 

successfully produces more accurate results and takes less time to process than the numerical 

integration method. 

 In Table 5 through Table 7 shows the results of the 0ARL = 370 and 1ARL  values obtained from 

the analytical formula method and the results from the numerical integration method of the EWMA 

control chart for the ARIMA(1,1,1) model when given that an autoregressive coefficient ( )  is equal 

to 0.30,  the d  is equal to 1.0 and a moving average coefficient ( )  is equal to 0.10. In the case in-

control state, the value of the in-control parameter 0  is equal to 1. In the case out-of-control state, 
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we specifies that the parameter 1  is equal to (1 )  where   is the magnitude of shifts are equal 

to 0.01, 0.03, 0.05, 0.07, 0.09, 0.10, 0.20, 0.30, 0.40 and 0.50, respectively. 
 To determine the exponential smoothing parameter ( )  is equal to 0.01 and the upper control 

limit ( )b  is equal to 0.000604, showing the results as in Table 5. In addition, the exponential 

smoothing parameter ( )  is equal to 0.05 and the upper control limit ( )b  is equal to 0.03243, 

showing the results as in Table 6. And to determine the exponential smoothing parameter ( )  is 

equal to 0.10 and the upper control limit ( )b  is equal to 0.0151, showing the results as in Table 7.  

 

Table 2 Comparison of ARL values from the explicit formulas against numerical integration 

for ARIMA(1,1,1) process with parameter u = 0.10,  = 0.01, b = 0.001441 

Shift size ( )  Explicit  

Formulas 

Numerical  

Integration 
Diff (%) 

0.00 370.166 370.166  (0.125)a 0.0000 

0.01 339.313 339.315  (0.125) 0.0006 

0.03 286.494 286.493  (0.125) 0.0003 

0.05 243.394 243.394  (0.140) 0.0000 

0.07 207.990 207.991  (0.125) 0.0005 

0.09 178.723 178.723  (0.141) 0.0000 

0.10 166.001 166.002  (0.156) 0.0006 

0.20 84.7010 84.7000  (0.115) 0.0012 

0.30 47.8277 47.8275  (0.140) 0.0004 

0.40 29.3061 29.3061  (0.125) 0.0000 

0.50 19.2095 19.2095  (0.109) 0.0000 

                     a. The values in parentheses are CPU times in numerical integration methods (seconds) 

 

Table 3 Comparison of ARL values from the explicit formulas against numerical integration 

for ARIMA(1,1,1) process with parameter u = 0.40,  = 0.05, b = 0.1281 

Shift size ( )  Explicit 

Formulas 

Numerical 

Integration 
Diff (%) 

0.00 370.964 370.923  (0.125)a 0.0111 

0.01 352.040 352.003  (0.125) 0.0105 

0.03 317.988 317.955  (0.120) 0.0104 

0.05 288.317 288.288  (0.109) 0.0101 

0.07 262.343 262.318  (0.141) 0.0095 

0.09 239.508 239.486  (0.109) 0.0092 

0.10 229.119 229.099  (0.141) 0.0087 

0.20 152.844 152.833  (0.140) 0.0072 

0.30 108.062 108.055  (0.125) 0.0065 

0.40 79.9112 79.9068  (0.125) 0.0055 

0.50 61.2317 61.2288  (0.109) 0.0047 

                    a. The values in parentheses are CPU times in numerical integration methods (seconds) 
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Table 4 Comparison of ARL values from the explicit formulas against numerical integration 

for ARIMA(1,1,1) process with parameter u = 1.00,  = 0.10, b = 0.0385 

Shift size ( )  Explicit 

Formulas 

Numerical 

Integration 
Diff (%) 

0.00 370.305 370.304  (0.110) a 0.0003 

0.01 342.960 342.959  (0.125) 0.0003 

0.03 295.428 295.427  (0.114) 0.0003 

0.05 255.859 255.858  (0.141) 0.0004 

0.07 222.722 222.722  (0.125) 0.0000 

0.09 194.816 194.816  (0.140) 0.0000 

0.10 182.519 182.519  (0.109) 0.0000 

0.20 100.669 100.669  (0.125) 0.0000 

0.30 60.6216 60.6215  (0.120) 0.0002 

0.40 39.1635 39.1635  (0.111) 0.0000 

0.50 26.7963 26.7963  (0.140) 0.0000 

                    a. The values in parentheses are CPU times in numerical integration methods (seconds) 

  

Table 5 Comparison of ARL values from the explicit formulas against numerical integration 

for ARIMA(1,1,1) process with parameter u = 0.10,  = 0.01, b = 0.000604 

Shift size ( )  Explicit  

Formulas 

Numerical  

Integration 
Diff (%) 

0.00 370.482 370.483  (0.031)a 0.0003 

0.01 336.642 336.642  (0.047) 0.0000 

0.03 279.448 279.447  (0.031) 0.0004 

0.05 233.562 233.561  (0.031) 0.0004 

0.07 196.479 196.478  (0.109) 0.0005 

0.09 166.301 166.301  (0.047) 0.0000 

0.10 153.336 153.336  (0.031) 0.0000 

0.20 73.241 73.241  (0.110) 0.0000 

0.30 39.175 39.174  (0.062) 0.0026 

0.40 22.974 22.974  (0.062) 0.0000 

0.50 14.549 14.549  (0.046) 0.0000 

                    a. The values in parentheses are CPU times in numerical integration methods (seconds) 

 

 In Table 8 through Table 10 shows the results of the 0ARL = 370 and 1ARL  values obtained 

from the analytical formula method and the results from the numerical integration method of the 

EWMA control chart for the ARIMA(1,1,1) model when given that an autoregressive coefficient ( )  

is equal to 0.50, the d  is equal to 1.0 and a moving average coefficient ( )  is equal to 0.30. In the 

case in-control state, the value of the in-control parameter 0  is equal to 1. In the case out-of-control 

state, we specifies that the parameter 1  is equal to (1 )  where   is the magnitude of shifts are 

equal to 0.01, 0.03, 0.05, 0.07, 0.09, 0.10, 0.20, 0.30, 0.40 and 0.50, respectively. 
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Table 6 Comparison of ARL values from the explicit formulas against numerical integration 

for ARIMA(1,1,1) process with parameter u = 0.40,  = 0.05, b = 0.03243 

Shift size ( )  Explicit 

Formulas 

Numerical 

Integration 
Diff (%) 

0.00 370.063  370.061  (0.016)a 0.0005 

0.01 345.008 345.006  (0.062) 0.0006 

0.03 301.008 301.006  (0.032) 0.0007 

0.05 263.886 263.884  (0.031) 0.0008 

0.07 232.398 232.396  (0.031) 0.0009 

0.09 205.551 205.550  (0.062) 0.0005 

0.10 193.614 193.612  (0.031) 0.0010 

0.20 112.001 112.000  (0.047) 0.0009 

0.30 70.082  70.083  (0.015) 0.0014 

0.40 46.699  46.698  (0.031) 0.0021 

0.50 32.757  32.757  (0.063) 0.0000 

                    a. The values in parentheses are CPU times in numerical integration methods (seconds) 

 

Table 7 Comparison of ARL values from the explicit formulas against numerical integration 

for ARIMA(1,1,1) process with parameter u = 1.00,  = 0.10, b = 0.0151 

Shift size ( )  Explicit 

Formulas 

Numerical 

Integration 
Diff (%) 

0.00 370.668  370.667  (0.031)a 0.0003 

0.01 339.980 339.979  (0.031) 0.0003 

0.03 287.393 287.392  (0.047) 0.0003 

0.05 244.428 244.428  (0.032) 0.0000 

0.07 209.092 209.092  (0.016) 0.0000 

0.09 179.848 179.848  (0.046) 0.0000 

0.10 167.127 167.127  (0.031) 0.0000 

0.20 85.628  85.628  (0.031) 0.0000 

0.30 48.504  48.504  (0.015) 0.0000 

0.40 29.792  29.792  (0.031) 0.0000 

0.50 19.563  19.563  (0.140) 0.0000 

                    a. The values in parentheses are CPU times in numerical integration methods (seconds) 

 

 To determine the exponential smoothing parameter ( )  is equal to 0.01 and the upper control 

limit ( )b  is equal to 0.000766, showing the results as in Table 8. In addition, the exponential 

smoothing parameter ( )  is equal to 0.05 and the upper control limit ( )b  is equal to 0.0445, showing 

the results as in Table 9. And to determine the exponential smoothing parameter ( )  is equal to 0.10 

and the upper control limit ( )b  is equal to 0.019355, showing the results as in Table 10.  
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Table 8 Comparison of ARL values from the explicit formulas against numerical integration 

for ARIMA(1,1,1)L process with parameter u = 0.10,  = 0.01, b = 0.000766 

Shift size ( )  Explicit 

Formulas 

Numerical 

Integration 
Diff (%) 

0.00 370.388 370.388  (0.094)a 0.00000 

0.01 337.363 337.363  (0.109) 0.00000 

0.03 281.349 281.349  (0.110) 0.00000 

0.05 236.202 236.202  (0.125) 0.00000 

0.07 199.553 199.553  (0.109) 0.00000 

0.09 169.601 169.601  (0.109) 0.00000 

0.10 156.692 156.692  (0.109) 0.00000 

0.20 76.202 76.2020  (0.110) 0.00000 

0.30 41.3621 41.3621  (0.110) 0.00000 

0.40 24.5445 24.5445  (0.125) 0.00000 

0.50 15.6861 15.6861  (0.125) 0.00000 

                    a. The values in parentheses are CPU times in numerical integration methods (seconds) 

 

Table 9 Comparison of ARL values from the explicit formulas against numerical integration 

for ARIMA(1,1,1)L process with parameter u = 0.40,  = 0.05, b = 0.0445 

Shift size ( )  Explicit 

Formulas 

Numerical 

Integration 
Diff (%) 

0.00 370.774 370.770  (0.125)a 0.0011 

0.01 347.005 347.000  (0.140) 0.0014 

0.03 305.025 305.021 (0.125) 0.0013 

0.05 269.342 269.339  (0.125) 0.0011 

0.07 238.855 238.853  (0.094) 0.0008 

0.09 212.681 212.679  (0.109) 0.0009 

0.10 200.983 200.981  (0.125) 0.0010 

0.20 119.738 119.737  (0.125) 0.0008 

0.30 76.7839 76.7833  (0.109) 0.0008 

0.40 52.2185 52.2181  (0.125) 0.0008 

0.50 37.253 37.2528  (0.125) 0.0005 

                    a. The values in parentheses are CPU times in numerical integration methods (seconds) 

 

 The results from Table 8 through Table 10 show that the results obtained from the explicit 

formula give the 0ARL  and 1ARL  values that are close to the results obtained by numerical 

integration methods. For the case of division points m = 500 nodes, it is found that the absolute 

percentage difference of ARL is less than 1.0%. In addition, when considering the time required to 

process the data, it is found that the successful ARL calculation of the explicit formula takes less than 

0.01 seconds in comparison to the ARL calculation using the numerical integration method. The 

result is approximately 0.10 to 0.20 seconds. Therefore, finding the ARL value from the analytical 

formula successfully produces more accurate results and takes less time to process than the numerical 

integration method. 
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Table 10 Comparison of ARL values from the explicit formulas against numerical integration 

for ARIMA(1,1,1)L process with parameter u = 1.00,  = 0.10, b = 0.019355 

Shift size ( )  Explicit 

Formulas 

Numerical 

Integration 
Diff (%) 

0.00 370.071  370.071  (0.109)a 0.0000 

0.01 340.311 340.310  (0.109) 0.0003 

0.03 289.119 289.118  (0.110) 0.0003 

0.05 247.085 247.083  (0.125) 0.0008 

0.07 212.347 212.346  (0.110) 0.0005 

0.09 183.465 183.464  (0.109) 0.0005 

0.10 170.857 170.857  (0.125) 0.0000 

0.20 89.2645 89.2645  (0.109) 0.0000 

0.30 51.3855 51.3854  (0.110) 0.0002 

0.40 31.9812 31.9812  (0.110) 0.0000 

0.50 21.2244 21.2243  (0.140) 0.0005 

                    a. The values in parentheses are CPU times in numerical integration methods (seconds) 

 

6. Conclusions 

 This research solves the explicit formula for the average run length (ARL) and proposes a method 

to approximate the ARL by the numerical integral method of the Exponentially Weighted Moving 

Average (EWMA) control chart for autoregressive integrated moving average (ARIMA (p, d, q)) process 

with exponential distribution white noise. We proof the analytical formula by using Fredholm’s 

second type integral method and numerical approximation by using Gauss-Legendre quadrature rule. 

We used the Banach’s Fixed Point theorem to verify that the results obtained from the proposed 

formula are existence and uniqueness of solution. In addition, we compare the accuracy of the 0ARL  

and 1ARL  obtained from the analytical formula with the results obtained from numerical integration 

by considering the absolute percentage difference and the computational time to process the data 

(unit: minute). 

The results show that the average run length (ARL) calculated from the explicit formula is close 

to the results from the numerical integral method with the absolute percentage difference of ARL is 

less than 1%. In addition, the computational times for computing the ARL were obtained by the 

numerical integral equation method was around 0.10−0.20 seconds, while the explicit formulas 

required a computational time of zero seconds. Therefore, the explicit formulas are efficiency high 

propriety of the evaluation ARL and it is easy to derive and reduce on computational times. 
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