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Abstract

The main goal of statistical process control (SPC) is to improve the capacity of the process. One
of quality tools is the control chart and it is usually designed under the assumption that the
observations are independent and identically distributed. However, some characteristics of the
production process especially processes that are continuously produced such as chemical processes,
the process is autocorrelated in various time series models. In this paper, we will focus on an
autoregressive integrated moving average, ARIMA(p,d,q) model. The performance of control chart
is evaluated in terms of the average run length. This paper aims to solve explicit formulas and develop
numerical integration for the average run length of the exponentially weighted moving average
(EWMA) control chart. The accuracy of the proposed formulas is established by comparing them to
the numerical integration method. A comparison of the results from explicit formula and numerical
integration shows that the absolute percentage difference is less than 0.1% In terms of computational
time, the explicit formula can reduce the computational time better than the numerical integration.

Keywords: Autoregressive integrated moving average, exponentially weighted moving average, Fredholm
integral equation, explicit formula.

1. Introduction

In current, production process control usually uses statistical process control (SPC) to monitor
and control a process. Control charts are one of the efficient tools of SPC that make the process to
have more production capabilities. Therefore, the main function of control charts is to detect changes
in processes. The application of control chart is not only limited to manufacturing industry, but it
covers a wide range of disciplines such as engineering, health care, medicine, economics, finance,
education and analytical laboratories. The control chart was first developed by Shewhart (1931).
Shewhart control chart, which is an effective control chart to detect large changes in the production
process. Recently, the cumulative sum (CUSUM) control chart presented by Page in 1954 and later
Robert (1959) introduced the exponentially weighted moving average (EWMA) control chart, in
which both control charts are effective in detecting small shifts in the process.
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In general, the criteria used in the comparison of efficiency of the control chart are considered
from the average run length (ARL). The ARL is divided into 2 states: when the process is in-control,
the ARLy is determined and when the process is out-of-control, the ARL; is determined. The ARL
can be calculated using the Monte Carlo Simulation method, which provides accurate results, but it
takes a lot of processing time. There are many researchers presented the methods for evaluating the
ARL of control charts. Lucas and Saccucci (1990) proposes the Markov chain method for estimating
the ARL for EWMA control charts when the observations are normal distribution. After that, Borror
et al (1999) studied the robustness of the EWMA control chart in cases of non-normal distribution
and comparing with the Shewhart control chart. Areepong and Novikov (2009) presented the formula
for the ARL of the EWMA control chart when the data were exponential distribution by Martingale
Approach and comparing the efficiency of the formula for the ARL of the EWMA control chart with
the CUSUM control chart. Later, Areepong and Sukparungsee (2010) proposed the ARL using the
integral equation approach of the EWMA control chart and compared the results with the Monte
Carlo Simulation methods. In addition, Mititelu et al. (2010) used a Fredholm’s integral equation to
find the explicit formula for the ARL of the CUSUM control chart when the observations have
hyperexponential distribution and the one-sided EWMA control chart with Laplace distribution.

Generally, the principle of control chart is under the assumptions that the data are independent
and it is effective in detecting changes in processes when the data has a normal distribution. However,
there are many situations the data are autocorrelated such as daily flows of a river, wind speeds, the
amount of dissolved oxygen in a river, etc. For this reason, some authors evaluate the ARL when the
process is serially correlation, such as Busaba et al. (2012) presented the exact solution of ARL for
the CUSUM control chart for the autoregressive of order 1 (AR(1)) process and compared the results
from the exact solution with the results from the numerical integral equation method. Later, Petcharat
et al (2013) proved the analytical expression for the ARL of EWMA control chart and the CUSUM
control chart for the moving average of order q (MA(q)) process. Recently, Phanyaem et al. (2014)
proposed the explicit formula for the ARL of the CUSUM control chart for an autoregressive and
moving average (ARMA(1,1)) process. After that, Phanyaem (2017) derived the analytical formula
for the ARL of CUSUM control chart for SARMA(1,1)L process and used the Gauss-Legendre
quadrature rule to approximate the numerical integration for the ARL.

Therefore, the objective of paper is to prove the explicit formula of the average run length (ARL)
of EWMA control chart for an autoregressive integrated moving average, ARIMA(p,d,q) process and
compare the results of the explicit formula with the results of the numerical integration method. The
performance evaluation criteria of the proposed explicit formula are based on absolute percentage
difference and the computational time. The paper is organized as follows: in Section 1, we start with
the theoretical background of control charts. The EWMA control chart based on ARIMA(p,d,q) process
is described in Section 2. The proposed explicit formula and the numerical integral equation for ARL
of EWMA control chart are presented in Section 3 and Section 4 respectively. In Section 5, we compared
the results from the explicit formula with the results from the numerical solution of an integral equation.
Finally, we provided the conclusion in Section 6.

2. The Exponentially Weighted Moving Average Control Chart for ARIMA(p,d,q)

In this section, we present the characteristics of the EWMA control chart for ARIMA(p,d,q)
process. The EWMA control chart is a powerful tool in detecting a mean shift. Let X, be the
sequence of an autoregressive integrated moving average process, ARIMA(p,d,q) with exponential
white noise.

The recursive equation of ARIMA(p,d,q) process with exponential white noise is defined as:
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AX, =p+oA, X,  +o,A X, ,+..+0,AX, +&-6¢ ,-6,¢, —...—Hqg‘,fq, )]
where £, is assumed to be a white noise process with exponential distribution. The initial value &,_,
is usually to be the process mean, an autoregressive coefficient 0 < ¢ <1, a moving average coefficient
0< @ <1 and an initial value of ARIMA(p,d,q) process is equal to 1.

The recursive equation of EWMA statistics based on ARIMA(p,d,q) process is defined by
Z,=(1-AZ,_+AX,; t= 12,.. 2)
where X, is a sequence of ARIMA(p,d,q) process, and A is an exponential smoothing parameter
with of EWMA control chart with 0 < A <1 and the initial value Z;, =u.
The stopping time of EWMA control chart is defined as follows
r, =inf{r>0;Z, >b}, b>u, 3)
where b is a constant parameter known as the upper control limit.
Let E_(-) denoted the expectation under density function f(x, ) that the change-point occurs

atpoint &, where € < co. Thus by definition, the ARL for ARIMA(p,d,q) process with an initial value
Z, =u is as follow

ARL=Hu)=E_(r,) < . 4)

3. Explicit Formulas for Average Run Length of EWMA Control Chart for ARIMA(p,d,q)
This section is solved the explicit formulas of average run length of EWMA control chart for an
autoregressive integrated moving average, ARIMA(p,d,q) process. We derive analytical explicit
formulas of ARL by using the Fredhom integral equation of the second kind. Firstly, we define the
function H(u) is the ARL of EWMA chart for ARIMA(p,d,q) process. To assume that the lower

and the upper control limits are zero and b, respectively. Let P, denote the probability measure and

E, denote the expectation corresponding to initial value Z; =u. After that, we extend the function

into the Fredholm integral equations of the second kind,

H(u)=1+E_ [I{0 < Z, < b}L(Z))|+ P{Z,= 0} L(0). 5)
The EWMA statistics Z, is an in-control state, we obtain
0< (AI-DZFAu+ApA X, | +..+ A9, A X,  +A&-A0&,  —...—A0.& <D, (6)
If X, gives an out-of-control state for Z,, thus
(I=DZyHAu+ 20N X, +..+ Ao, A X, + A8, =260, —..—A0,E, > b, @)
or
(I-DZ,+Au+ 29N X, |+ + Ao, A X, + A8 -0, —...—A0,¢,  <O.

For an initial value Z, =u, then the Equation (6) can be rewrite as follows
0< (I-Dutdpu+ApA X, +..+ Ap, Ay X, , + A5, —A6,&,_ —..—A6,&,_, <D.

According to the method of Champ and Rigdon (1991), we let an initial value of the EWMA
statistics Z, =u and &, ~Exp(f) are white noise error terms, then the function H(u) can be

rewritten as follows

H@u) =1+ [H(Z) [(£)d¢,
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=1+ j H((=Du+du+ A9 A, X, |+t A9, A X, +AE =A0E  —..=A0,E ) f()dy.  (8)
Changing the integration variable, so the function H(u) is given by

b

1 —(1-Au

=1+ H(y)f(%—u—wdx,_l A Xy +OE +...+¢9q§t_,,jdy ©)
0

1| y—(1-A)u
_E{%_ﬂ_wlAdXt—l =P A X OG-t 0,85, }

1b
:1+EIH(y) —e dy.

0 B
Consequently, we get the integral equation as follows
v {(1 A (,u+(,o1AdXt Rt A X, +E - l.f:”—._.—aqg,q)}
Hw)= 14— IH(y>e el A Z

dy. (10)

This section w1ll present Banach’s fixed point theorem for existence and uniqueness of the results
of the integral equation. On the metric space of continuous functions on a closed interval (C(J),| ||..)

where [ denotes the compact interval and the norm ||H|| = Sup,_,|H (u)| and the operator T is
named on contraction, if it exists a number of 0 < ¢ <1 such that

|T(H)-T(H,)| < q||H, - H,| forall H,,H, elI.
Now, we define C(I;) as a continuous function over a range [, = [O,b] and define the operator 7'

by

{(1-/1);;*(/:%&1&4 ot @ 0 X, +E =06 0, }

B B

T(H@) =1+ e jH(y)e ’wdy (11)

Therefore, the integral equation can be written as 7T (H (u)) = H(u). According to the Banach’s

fixed point theorem, if the operator T is a contraction, then fixed point equations 7T (H (u)) =H(u)
have a unique solution.

Forany u el and H ,H, € C(I) we have the inequality ||T(H1)—T(H2)|| < q"H1 -H, || where
g <1. According to (11), we get

(1 A )u b

H,(y)-H (y) jL(y)ery

|7 =T ()| = Sup, g0,

(-2 )u ,

|, - H ||ie 5 Capye P -)

< Sup

ue 0 b]

1 (1-)u i b
||H -H || Sup {ﬁe (<) ¥ - ):l

uel0,6]

[0.6]

1 X, b
|, H"Sup{ (1= elﬂ)}
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< q|H, - H,

U-Pu, ¥, b
, where g = Sup {e P (l-e ;‘ﬂ)]<l.
uel0,]

We used the Fredholm integral equation to derive the explicit formula of the ARL of EWMA
control chart for ARIMA(p,d,q) process.
First, to consider

| oy {(]_;u)u*(/H-(MA[[XK,I+..,+(ppAer,p +51-015r,1-...-0q§r,q)}
Hu)= 1+—IH(y)e el ’ dy.
AB %
[in (p+(p]A‘,X[,,+...+¢,,A‘,X[,p+§[—9@,,,—...—9&,,”)
Now, we let C(u)=e' * “ , then we have
b -y
Hu) = l+%JH(y)e ﬂﬂdy, 0<uc<b.
Ap
0
b _r
Let k£ = I H(y)e AP dy, therefore H(u) can write another form as follows
0
((1 A (@A X+ 49, A X+, _9151-1_---_‘9(;6&1_,,)J
- Ap B
H(u)= 1+%e k (12)

To find a constant k£ as following form
b _r
k=[H()e #dy

b _r
I[H cO», ] 2B gy
Ap

0

b _ Y be -y
= Je /wdy-&-j'/l(—;)ke B gy

b Y b .
:I wdy+ IC(y)e  dy
0

bV

b [<1—ﬂ>y+§j v
ije WP ) B g,
0 lﬁo

—/w(l—eibﬂw [ )fe[(l 5 y)
0

|
—_—
Q
o
)
=
+

_b [4] Y
AB(—e ) +%e Plle Pay
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A m( ‘b]
- o By L K\ . B
AB(1—e )+/we pl—e 7)

_b i [&j _b
= Ap(-e ) + e Fli-e Py,

Thus, a constant & can be found as follows
b

;- “%ﬂﬁeiﬂ‘” . (13)

1+ ;e[/;j (e_% -1)

Then, on substituting a constant & into (12); we obtain that

b

(U=Du (@D X+ 40,0 X, 460G —=0,54) —
L% G = cap)e 7 -
Hu)= 1+Te " p
1 [4) _b
1+—e /(e # -1)
A
[(l—i)u ) (/’*(PIAJXH*---*%Adxzf,ﬁé*91514*---*‘94517‘,)] b
3 1 e Ap B (e B _1)
1 [(,LH’%AAXHI+"'+¢pAdX17p+§l761:1717“'791151—4)] b
l+—e ’ (e’ -1
A

Consequently, the explicit formulas of the ARL of EWMA control chart for ARIMA(p,d,q)
process for t=1,2, .... is given by

[(1—ﬂ)u¢(/‘+¢1AdXz—l+'"+¢pAdXz—p+§t_91§z—1_'"_€q§z—q)j b

Ap B B _1
Hy=1-S €D s
[(#+¢lAdthl+"'+¢[]AdXt—p+§t_gl§tfl_"'_€q§t—q)j b
I+—e p (e P -1)

Since the process is in-control state with exponential parameter S = f,, we obtain the explicit

formula for ARL, of EWMA control chart for ARIMA(p,d,q) process is as follows

[(l—l)u ) QDG X+ d 9,0 X+ *915171*---*04517{,)] b
Ay ) By
e e -1
ARL, = 1- ( ) (15)
[(F+¢1A51X[71+"'+¢pAtIX[7p *51"915[71’---"9,,5[74)] b
1+ e fo (e " -1

On the other hand, the process is out-of-control state with exponential parameter S = f,, where
B, = p,(1+ ), the explicit formula for ARL, of EWMA control chart for ARIMA(p,d,q) process is

as follows
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[ (1-ADu U+ A g X+, Mg Xy +E—08 1~ 0,8, )J b

B A B
ARL, = 1-£ (e b (16)
[(ﬂ+¢lAdXt71+“‘+¢pAdXt7p +§t_91§t71_“‘_9q§t—q)J b
l+—e A e A -1

where [ is a parameter of exponential white noise, b is upper control limit, X, ,,& , are the initial
values, ¢ is an autoregressive coefficient; 0 <@ <1 and 6 is a moving average coefficient;
0<O<I1.

4. Numerical Integration of Average Run Length of EWMA Chart for ARIMA(p,d,q)

This section presents the method of finding the numerical integration of the ARL of EWMA
control chart for the ARIMA(p,d,q) model when the white noise processes are exponential
distribution. We solve the integral equation of ARL by using Gauss-Legendre quadrature to
approximate integrals.

Consequently, the integral equation in (9) can be rewritten as follows

y=(1-ADu

b
- 1
erﬂ+;£va( ﬂ

/U—golAdXt_l _"‘_gDpAdXt—p +91§t—1 +...+Hq§t_qjdy. (17)

Numerical integration of integral equations based on quadrature rule to estimate the integrals
with finite sums. The approximation for an integral has the following form

b m
[ fydy =Y w,f(a),
0 J=1

where w].:% and aj=%(j—%j;j =12,..,m.

The numerical approximation to integral equation is denoted by H (a,), the solution can be found

using the method of solving systems of linear algebraic equations,

~ 1 m ~ aj—(l_ﬂ)ai
H(ai)zl—i-ZZWjH(aj)f f—y—golAdX,_l—...—(ppAdX,_p+6’1§t_1+...+9q§t_q .
Jj=1
Thus,
. 1o - a —(1-Aa
H(al)—l+;Z}w}.H(aj)f[’Tl—y—¢)lAXm1 —m QA X, 4O+ +OE
=
- 1 -~ a,—(1-A)a
H(az)=1+ZZ:‘W].H(aj)f(%—y—(plAdXt1 —m @ A X, HOE H L +OE
J=
. 1 - a,—(1-Aa,
H(am)=1+szjH(aj)f[Jf—,u—(plAdXt1—...—(ppAdXtp +0& .. +0E |
j=1
or in matrix form as
Hm><l = 1m><l+ Rmmemxl’ (18)
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H(a)) 1
where H = ﬁ(.az) , 1,.,= 1 ,
H(a,) 1
[R]; zlef(w—ﬂ—mdxﬂ A X,y O +...+9q.§,q)
7 A

and I, =diag(L1,...,1). If I, -R,,_,
Hm><1 = (Im _Rmxm )_llmxl' (19)

)" there exist

Here H(u) denotes the numerical integration solution of H (x), then the integral equation in (9)

can be approximated by
a,—(1-Au

~ 1 -~
H(u)zl+ZZW/H(a‘j)f[jT_,u_¢lAdXt—l_"‘_qopAdXt—p—i_elft—l+"'+6q§t—q]’ (20)
j=1

5. Numerical Result

A comparison of the accuracy and precision of the ARL; and ARL, values obtained from the
explicit formulas with the results of numerical integration will consider the absolute percentage
difference between the exact solution and the numerical integration solution. The explicit formula
solution is denoted by H(u) and the numerical integration solution is denoted by H (u).

The absolute percentage difference of ARL can be calculated by

|H(u) - H(u)|

Diff (%) = x100. @1)

In Table 1, we present the results obtained from the explicit formulas of ARL for EWMA control
chart when observations are ARIMA(p,d,q) process with exponential white noise and compare to the
ARL from numerical integral equation with m = 500 nodes. The criterions for choosing the in-control
parameter values are the smoothing parameter (4) and the upper control limit (b) for designing the

EWMA control chart with minimum of ARL, for a given ARL, =370 and the value of exponential
parameter S, =1 in the case of ARIMA(p,d,q) process with parameter (¢,d,8)=(0.10,1.0,0.10),

(0.30,1.0,0.10) and (0.50,1.0,0.30), respectively.

The results from Table 1 present the value of parameters for EWMA control chart and show that
the ARL, from analytical solution is close to the numerical integration with the absolute percentage
difference less than 0.1%. In addition, the results also show that the computational time for evaluating
the purposed explicit formula is much less than the computational time required for numerical integral
equation method.

In Table 2 to Table 4, we present the results of ARL; =370 and ARL; values obtained from the
analytical formula and the results from the numerical integration method for EWMA control chart
for ARIMA(p,d,q) model when an autoregressive coefficient (¢) is equal to 0.10, the d is equal to

1.00 and a moving average coefficient (€) is equal to 0.10. In the case in-control state, the value of

the in-control parameter /3 is equal to 1. And in the case out-of-control state, we specifies that the
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parameter S, is equal to (1+J) where ¢ is the magnitude of shifts are equal to 0.01, 0.03, 0.05,
0.07, 0.09, 0.10, 0.20, 0.30, 0.40 and 0.50, respectively.

Table 1 Comparison of ARL, computed using explicit formulas against numerical integration
for ARMA(1,1,1) process with parameter S, =1 for ARL, =370

2 " b ARMA(1,1,1) Process with ¢=0.10, d =1.0and 6=10.10

Explicit Numerical Diff (%)

0.01 0.10 0.001441 370.166 370.166 (0.125)* 0.0000
0.05 0.40 0.128100 370.964 370.923 (0.125)* 0.0111
0.10 1.00 0.038500 370.305 370.304 (0.110)* 0.0003
A u b ARMA(1,1,1) Process with ¢=10.30, d =1.0and €=0.10
0.01 0.10 0.000604 370.483 370.483 (0.125)* 0.0000
0.05 0.40 0.032430 370.063 370.061 (0.110)* 0.0005
0.10 1.00 0.015100 370.668 370.667 (0.125)* 0.0003
A u b ARMAC(1,1,1) Process with ¢=0.50, d = 1.0 and &= 0.30
0.01 0.10 0.000766 370.388 370.388 (0.125)* 0.0000
0.05 0.40 0.044500 370.774 370.770 (0.141)* 0.0011
0.10 1.00 0.019355 370.071 370.071 (0.110)* 0.0000

2 The values in parentheses are CPU times in numerical integration methods (seconds)

To determine the exponential smoothing parameter (A1) is equal to 0.01 and the upper control
limit (b) is equal to 0.001441, showing the results as in Table 2. In addition, the exponential
smoothing parameter (4) is equal to 0.05 and the upper control limit (b) is equal to 0.1281, showing
the results as in Table 3. And to determine the exponential smoothing parameter (1) is equal to 0.10
and the upper control limit (b) is equal to 0.0385, showing the results as in Table 4.

The results from Table 2 through Table 4 show that the results obtained from the explicit formula
give the ARL, and ARL, values that are close to the results obtained by numerical integration

methods. For the case of division points m = 500 nodes, it is found that the absolute percentage
difference of ARL is less than 1.0%. In addition, when considering the time required to process the
data, it is found that the successful ARL calculation of the explicit formula takes less than 0.01
seconds in comparison to the ARL calculation using the numerical integration method. The result is
approximately 0.10 to 0.20 seconds. Therefore, finding the ARL value from the analytical formula
successfully produces more accurate results and takes less time to process than the numerical
integration method.

In Table 5 through Table 7 shows the results of the ARL,=370and ARL, values obtained from

the analytical formula method and the results from the numerical integration method of the EWMA
control chart for the ARIMA(1,1,1) model when given that an autoregressive coefficient (¢) is equal

to 0.30, the d is equal to 1.0 and a moving average coefficient (8) is equal to 0.10. In the case in-

control state, the value of the in-control parameter /S, is equal to 1. In the case out-of-control state,
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we specifies that the parameter S, is equal to (1+0) where ¢ is the magnitude of shifts are equal
to 0.01, 0.03, 0.05, 0.07, 0.09, 0.10, 0.20, 0.30, 0.40 and 0.50, respectively.

To determine the exponential smoothing parameter (A1) is equal to 0.01 and the upper control
limit (b) is equal to 0.000604, showing the results as in Table 5. In addition, the exponential
smoothing parameter (1) is equal to 0.05 and the upper control limit (b) is equal to 0.03243,
showing the results as in Table 6. And to determine the exponential smoothing parameter (1) is

equal to 0.10 and the upper control limit () is equal to 0.0151, showing the results as in Table 7.

Table 2 Comparison of ARL values from the explicit formulas against numerical integration
for ARIMA(1,1,1) process with parameter u =0.10, 1 =0.01, 5=0.001441
Shift size (§)  Explicit Numerical  Diff (%)
0.00  370.166 370.166 (0.125)*  0.0000
0.01 339313 339.315 (0.125)  0.0006
0.03  286.494 286.493 (0.125)  0.0003
0.05 243.394 243.394 (0.140)  0.0000
0.07  207.990 207.991 (0.125)  0.0005
0.09 178.723 178.723 (0.141)  0.0000
0.10  166.001 166.002 (0.156)  0.0006
0.20  84.7010 84.7000 (0.115)  0.0012
030  47.8277 47.8275 (0.140)  0.0004
0.40  29.3061 29.3061 (0.125)  0.0000
0.50  19.2095 19.2095 (0.109)  0.0000

2 The values in parentheses are CPU times in numerical integration methods (seconds)

Table 3 Comparison of ARL values from the explicit formulas against numerical integration
for ARIMA(1,1,1) process with parameter u = 0.40, A=0.05, »=10.1281
Shift size (6)  Explicit Numerical Diff (%)

0.00 370.964 370.923 (0.125)* 0.0111
0.01 352.040  352.003 (0.125) 0.0105
0.03 317.988  317.955 (0.120)  0.0104
0.05 288.317  288.288 (0.109)  0.0101
0.07 262.343  262.318 (0.141)  0.0095
0.09 239.508  239.486 (0.109)  0.0092
0.10 229.119  229.099 (0.141)  0.0087
0.20 152.844  152.833 (0.140)  0.0072
0.30 108.062  108.055 (0.125)  0.0065
0.40 79.9112  79.9068 (0.125)  0.0055
0.50 61.2317  61.2288 (0.109)  0.0047

3 The values in parentheses are CPU times in numerical integration methods (seconds)
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Table 4 Comparison of ARL values from the explicit formulas against numerical integration
for ARIMA(1,1,1) process with parameter u = 1.00, 41 =0.10, 5 =0.0385

Shift size (5)  Explicit Numerical Diff (%)
0.00 370.305 370.304 (0.110)*  0.0003
0.01 342,960  342.959 (0.125)  0.0003
0.03 295.428  295.427 (0.114)  0.0003
0.05 255.859  255.858 (0.141)  0.0004
0.07 222,722 222.722 (0.125)  0.0000
0.09 194.816  194.816 (0.140)  0.0000
0.10 182.519  182.519 (0.109)  0.0000
0.20 100.669  100.669 (0.125)  0.0000
0.30 60.6216  60.6215 (0.120)  0.0002
0.40 39.1635  39.1635 (0.111)  0.0000
0.50 26.7963  26.7963 (0.140)  0.0000

2 The values in parentheses are CPU times in numerical integration methods (seconds)

Table 5 Comparison of ARL values from the explicit formulas against numerical integration
for ARIMA(1,1,1) process with parameter u =0.10, 4= 0.01, b= 0.000604
Shift size (5) Explicit Numerical  Diff (%)

0.00 370.482 370.483 (0.031)*>  0.0003
0.01  336.642 336.642 (0.047)  0.0000
0.03  279.448 279.447 (0.031)  0.0004
0.05  233.562 233.561 (0.031)  0.0004
0.07  196.479 196.478 (0.109)  0.0005
0.09 166.301 166.301 (0.047)  0.0000
0.10  153.336  153.336 (0.031)  0.0000
0.20 73.241 73.241 (0.110)  0.0000
0.30 39.175 39.174 (0.062)  0.0026
0.40 22.974 22.974 (0.062)  0.0000
0.50 14.549 14.549 (0.046)  0.0000

2 The values in parentheses are CPU times in numerical integration methods (seconds)

In Table 8 through Table 10 shows the results of the ARL ;= 370 and ARL, values obtained

from the analytical formula method and the results from the numerical integration method of the
EWMA control chart for the ARIMA(1,1,1) model when given that an autoregressive coefficient (¢)

is equal to 0.50, the d is equal to 1.0 and a moving average coefficient (6) is equal to 0.30. In the
case in-control state, the value of the in-control parameter [, is equal to 1. In the case out-of-control
state, we specifies that the parameter S, is equal to (1+0) where 0 is the magnitude of shifts are

equal to 0.01, 0.03, 0.05, 0.07, 0.09, 0.10, 0.20, 0.30, 0.40 and 0.50, respectively.



638 Thailand Statistician, 2021; 19(3): 627-641

Table 6 Comparison of ARL values from the explicit formulas against numerical integration
for ARIMA(1,1,1) process with parameter u = 0.40, A =0.05, b =0.03243

Shift size (5)  Explicit Numerical Diff (%)
0.00 370.063  370.061 (0.016)* 0.0005
0.01 345.008  345.006 (0.062)  0.0006
0.03 301.008  301.006 (0.032)  0.0007
0.05 263.886  263.884 (0.031)  0.0008
0.07 232.398  232.396 (0.031)  0.0009
0.09 205.551  205.550 (0.062)  0.0005
0.10 193.614 193.612 (0.031)  0.0010
0.20 112.001 112.000 (0.047)  0.0009
0.30 70.082 70.083 (0.015)  0.0014
0.40 46.699 46.698 (0.031)  0.0021
0.50 32.757 32.757 (0.063)  0.0000

2 The values in parentheses are CPU times in numerical integration methods (seconds)

Table 7 Comparison of ARL values from the explicit formulas against numerical integration
for ARIMA(1,1,1) process with parameter u = 1.00, A=0.10, »=0.0151

Shift size (0)  Explicit Numerical Diff (%)
0.00 370.668  370.667 (0.031)* 0.0003
0.01 339.980  339.979 (0.031)  0.0003
0.03 287.393  287.392 (0.047)  0.0003
0.05 244.428  244.428 (0.032)  0.0000
0.07 209.092  209.092 (0.016)  0.0000
0.09 179.848  179.848 (0.046)  0.0000
0.10 167.127  167.127 (0.031)  0.0000
0.20 85.628 85.628 (0.031)  0.0000
0.30 48.504 48.504 (0.015)  0.0000
0.40 29.792 29.792 (0.031)  0.0000
0.50 19.563 19.563 (0.140)  0.0000

3 The values in parentheses are CPU times in numerical integration methods (seconds)

To determine the exponential smoothing parameter (A1) is equal to 0.01 and the upper control
limit (b) is equal to 0.000766, showing the results as in Table 8. In addition, the exponential
smoothing parameter (A1) is equal to 0.05 and the upper control limit (b) is equal to 0.0445, showing
the results as in Table 9. And to determine the exponential smoothing parameter (4) is equal to 0.10

and the upper control limit (b) is equal to 0.019355, showing the results as in Table 10.
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Table 8 Comparison of ARL values from the explicit formulas against numerical integration

for ARIMA(1,1,1)r, process with parameter u =0.10, A=0.01, »=0.000766

Shift size (5)  Explicit Numerical Diff (%)
0.00 370.388  370.388 (0.094)* 0.00000
0.01 337.363  337.363 (0.109)  0.00000
0.03 281.349  281.349 (0.110)  0.00000
0.05 236.202  236.202 (0.125) 0.00000
0.07 199.553  199.553 (0.109)  0.00000
0.09 169.601  169.601 (0.109) 0.00000
0.10 156.692  156.692 (0.109)  0.00000
0.20 76.202  76.2020 (0.110) 0.00000
0.30 41.3621  41.3621 (0.110)  0.00000
0.40 24.5445  24.5445 (0.125)  0.00000
0.50 15.6861  15.6861 (0.125) 0.00000

2 The values in parentheses are CPU times in numerical integration methods (seconds)

Table 9 Comparison of ARL values from the explicit formulas against numerical integration

for ARIMA(1,1,1)L process with parameter u = 0.40, 1=0.05, » = 0.0445

Shift size (&)  Explicit Numerical Diff (%)
0.00 370.774  370.770 (0.125)* 0.0011
0.01 347.005  347.000 (0.140) 0.0014
0.03 305.025  305.021 (0.125)  0.0013
0.05 269.342  269.339 (0.125)  0.0011
0.07 238.855  238.853 (0.094)  0.0008
0.09 212.681  212.679 (0.109)  0.0009
0.10 200.983  200.981 (0.125)  0.0010
0.20 119.738  119.737 (0.125)  0.0008
0.30 76.7839  76.7833 (0.109)  0.0008
0.40 52.2185  52.2181 (0.125)  0.0008
0.50 37.253  37.2528 (0.125)  0.0005

2 The values in parentheses are CPU times in numerical integration methods (seconds)

The results from Table 8 through Table 10 show that the results obtained from the explicit

formula give the ARL, and ARL, values that are close to the results obtained by numerical

integration methods. For the case of division points m = 500 nodes, it is found that the absolute
percentage difference of ARL is less than 1.0%. In addition, when considering the time required to
process the data, it is found that the successful ARL calculation of the explicit formula takes less than
0.01 seconds in comparison to the ARL calculation using the numerical integration method. The
result is approximately 0.10 to 0.20 seconds. Therefore, finding the ARL value from the analytical
formula successfully produces more accurate results and takes less time to process than the numerical

integration method.
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Table 10 Comparison of ARL values from the explicit formulas against numerical integration
for ARIMA(1,1,1)L process with parameter u = 1.00, A=0.10, »=0.019355

Shift size (5)  Explicit Numerical Diff (%)
0.00 370.071  370.071 (0.109)*  0.0000
0.01 340.311  340.310 (0.109)  0.0003
0.03 289.119  289.118 (0.110)  0.0003
0.05 247.085 247.083 (0.125)  0.0008
0.07 212.347  212.346 (0.110)  0.0005
0.09 183.465 183.464 (0.109)  0.0005
0.10 170.857  170.857 (0.125)  0.0000
0.20 89.2645 89.2645 (0.109)  0.0000
0.30 51.3855 51.3854 (0.110)  0.0002
0.40 319812  31.9812 (0.110)  0.0000
0.50 21.2244  21.2243 (0.140)  0.0005

2 The values in parentheses are CPU times in numerical integration methods (seconds)

6. Conclusions

This research solves the explicit formula for the average run length (ARL) and proposes a method
to approximate the ARL by the numerical integral method of the Exponentially Weighted Moving
Average (EWMA) control chart for autoregressive integrated moving average (ARIMA (p, d, q)) process
with exponential distribution white noise. We proof the analytical formula by using Fredholm’s
second type integral method and numerical approximation by using Gauss-Legendre quadrature rule.
We used the Banach’s Fixed Point theorem to verify that the results obtained from the proposed
formula are existence and uniqueness of solution. In addition, we compare the accuracy of the ARL,

and ARL, obtained from the analytical formula with the results obtained from numerical integration

by considering the absolute percentage difference and the computational time to process the data
(unit: minute).

The results show that the average run length (ARL) calculated from the explicit formula is close
to the results from the numerical integral method with the absolute percentage difference of ARL is
less than 1%. In addition, the computational times for computing the ARL were obtained by the
numerical integral equation method was around 0.10—0.20 seconds, while the explicit formulas
required a computational time of zero seconds. Therefore, the explicit formulas are efficiency high
propriety of the evaluation ARL and it is easy to derive and reduce on computational times.
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