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Abstract

This research aims to analyze the extreme values of the air pollutants, in particular, PMo
concentration in Thailand. Due to the limitation of data, we restrict our attention to 23 air quality
monitoring stations in Thailand. The daily PM; concentration data from 2008 to 2019 are used to
analyze and are divided into two types; 24-hour averages and daily maxima. The Peak Over
Threshold (POT) approach is used to assess the risk of air pollutants; hence the Generalized Pareto
Distribution (GPD) is used to fit the data. One of the challenging issues in POT is the choice of
threshold. In this work, we combine the mean residual life plot and the goodness of fit test methods
to determine the threshold. The maximum likelihood estimation and the bootstrap method are used
to deal with parameter estimation in GPD and uncertainty quantification. We then estimate the return
levels, which present extreme predictive events in terms of the values expected to exceed average
once every return period. The results show that daily PMo concentration at station 24t in Saraburi,
73t in Chiang Rai, and 36t in Chiang Mai have very high predictive extreme values. Many stations
located in the north of Thailand also have relatively high levels. Consequently, the northern region is
most likely to encounter high exposures to PMjj.

Keywords: Extreme values, air pollution, PM1o, GPD, POT, return levels.

1. Introduction

In the past several years, atmospheric particulate matter (PM) has been in the spotlight and
considered to be a global environmental issue because it can contribute to health problems,
predominantly to the respiratory and cardiovascular systems such as lung cancer and
cardiopulmonary diseases (Pope et al. 2002, Brook et al. 2010). PM is often divided based on size;
PM, refers to the fine particles with a diameter of less than 10 micrometers and smaller fine particles
with a diameter of less than 2.5 micrometers commonly known as PM; 5. These two fine particles can
come from various sources such as power plants, motor vehicles, forest fires, agricultural burning. In
Thailand, according to the report by the Pollution Control Department Ministry of Natural Resources
and Environment in Pollution Control Department (2019), it has been revealed that the major causes
of particulate matter are different in a different part of Thailand. In the northern region of Thailand,
the major causes are open burning and forest fires. In contrast, the major cause of Thailand’s central
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region is the diffusion of particulate matter from cement plants, lime plants, stone crushing plants,
quarries in the area, and nearby, as well as traffic congestion, transportation, and logistics activity in
the area where roads are damaged. The primary causes in the largest urban area, Bangkok and
vicinity, are vehicles in addition to meteorological conditions of not-circulating and no wind speed.
According to the WHO air quality guidelines (World Health Organization 2006), the 24-hour average
should not exceed 25 micrograms per cubic meter (ug/m?®) for PM,s and 50 micrograms per cubic
meter for PMjo. Nevertheless, it has been reported in Pollution Control Department (2019) that the
24-hour average of PM>s was in the range of 3-133 micrograms per cubic meter and 2-303
micrograms per cubic meter for PMo. These maximum concentrations are considered very unhealthy.
The data analysis of air pollution is usually focused on a few extreme situations. It substantially
impacts human health and well-being. Over the past years, a study of PM in Thailand has mainly
focused on the health effect (Vichit-Vadakan et al. 2001, Viroj 2008, Pothirat et al. 2019). The results
have shown a significant association between exposure to PM and health effects. Nevertheless, few
studies have paid attention to giving an important piece of information of PMj in terms of extreme
values awareness in Thailand using extreme value analysis. Extreme value analysis has been widely
used to assess the risk of rare events, especially in an environmental disaster such as flood frequency
analysis, extreme temperature, finance, and insurance (Ragulina and Reitan 2017, Osman et al. 2015,
Gilli and Kéllezi 2006). There are two conventional approaches for extreme value analysis, the block
maxima method, where the model is the Generalized Extreme Value (GEV) distribution. Another is
the Peak Over Threshold (POT), where the model is Generalized Pareto Distribution (GPD). The
GEV for modeling extremes of a (time) series of observations is based on the maximum or minimum
values of these observations within a certain period size or a time block. The GPD, on the other hand,
uses the observations over a high threshold to model the extremes. Both methods have some
difficulties; modeling using GEV requires a suitable time block, using too long periods gives only a
few values. At the same time, too short periods lead to biases. GPD needs a good choice of threshold
to get an optimal balance between bias and variance (Coles 2001). They are often used in
environmental data such as wind gusts, precipitation, and air pollution (Brabson and Palutikof 2000,
Engeland et al. 2004, Martins et al. 2017). Nonetheless, the GPD is more attainable than the GEV for
extreme values of the air pollution data (Masseran et al. 2016, Gyarmati-Szabo et al. 2017, AL-
Dhurafi et al. 2018). This research focuses on assessing the risk of extreme values of PM;o daily
concentrations in Thailand using the POT method. The future estimates of extreme values are
manifested in terms of return levels obtained from estimated parameters in the GPD with selected
thresholds.

2. Materials and Methods

This paper aims to apply the POT to estimate the future extreme values of PM( concentrations
expressed in return levels using generalized Pareto distribution (GPD). In this section, we present the
data used in the analysis and an overview of the methods. We describe the principal concepts of
modeling extreme values using GPD, selecting threshold, parameter estimation methods in GPD, and
return level estimation.

2.1. Study area and data

The data used in this research is PMo hourly concentration collected by the Pollution Control
Department, Air Quality and Noise Management Bureau, The Ministry of Natural Resources and
Environment of Thailand. Currently, there are 70 air monitoring stations located across the country.
Unfortunately, there are many missing data in many stations. As a result, we restrict our attention to



644 Thailand Statistician, 2021; 19(3): 642-658

stations where PM o data are complete or nearly complete from January 2008 - June 2019. The list
of the stations is shown in Table 1, and the location is shown in Figure 1. In this work, we separate
the analysis of the data into two directions; the analysis for 24-hour average and the maximum or the
peak of hourly concentrations. The 24-hour averages are commonly used to report the air quality,
whereas the maxima of hourly concentration reflect health impacts better (Lin et al. 2017, Zikova et
al. 2017).

Table 1 List of 23 selected air quality monitoring stations

Code Region Province Latitude  Longitude
02t Central Bangkok 13.733 100.488
05t Central Bangkok 13.666 100.606
10t Central Bangkok 13.780 100.646
14t Central Samut Sakhon 13.705 100.316
17t Central Samut Prakan 13.652 100.532
24t Central Saraburi 14.686 100.872
26t West Ratchaburi 13.533 99.815
27t Central Samut Sakhon 13.550 100.264
30t East Rayong 12.672 101.276
32t East Chon Buri 13.119 100.919
35t North Chiang Mai 18.841 98.970
36t North Chiang Mai 18.791 98.988
40t North Lampang 18.283 99.660
43t South Phuket 7.885 98.391
44t South Songkhla 7.021 100.484
46t Northeast Khon Kaen 16.445 102.835
47t Northeast Nakhon Ratchasima 14.980 102.098
59t Central Bangkok 13.783 100.541
61t Central Bangkok 13.770 100.615
63t South Yala 6.546 101.283
67t North Nan 18.789 100.776
69t North Phrae 18.129 100.162

73t North Chiang Rai 20.427 99.884
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Figure 1 Locations of air quality monitoring stations in Thailand

2.2. Generalized Pareto distribution

The use of the Generalized Pareto Distribution (GPD) for modeling excesses over a high
threshold is justified by arguments on the asymptotic behavior of the data (Coles 2001, Pickands
1975, Leadbetter 1983). Let X,,..., X, be identically distributed random variables with distribution

function F. For x>0, P(X —u <x|X >u) is called the distribution function of exceedances over

the threshold u. For Y = X —u, where X >u, the distribution of the exceedances ¥, = X, —u such

that i is the index of the j‘h exceedance, j=1,...,n,, the distribution of Y,...,Y ~can be

—1/&

1—(1+§[1D , £#0
o-u

l—exp[—(l]], £=0,
O-M

where o, is the scale parameter and ¢ is the shape parameter.

approximated by the GPD given by

G(y|u,0'u,§):

2.3. Threshold selection

Selecting threshold is very crucial in extreme value analysis because a high threshold provides
the convergence towards the extreme value theory and reduced bias. However, a too high threshold
leads to high variance of the estimated parameters as there will be fewer data exceeding the threshold.
Typically, the threshold was chosen before fitting, but there are no best and promising methods.
Several approaches for threshold selection in extreme value modeling have been established (Dupuis
1999, Thompson et al. 2009, Scarrott and MacDonald 2012). The standard practice for determining
threshold is to compromise between bias and variance. One of the common methods is to use the
Mean Residual Life (MRL) plot, also known as the mean excess plot. It is based on the mean of
excesses over the threshold given by
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E(X—-u,| X >u,) :loii;f’
provided the shape parameter & <1 and the scale parameter o, for the exceedances over the
threshold u,. The idea is, if the GPD is valid for excesses of the threshold u,, then it should be valid
for all thresholds u >u, subjected to the suitable scale parameter o,. By the extreme value theory
(Coles 2001),
E(X —u| X >u)= 12& - U‘i‘)_j“

The mean excess is expecting to change linearly with u for all u >u,. Another method used in

this paper is the Goodness-of-Fit (GoF) method. It is one of the statistical hypothesis testing methods
to determine distribution. The null hypothesis of the tests is that the data follows the distribution of
interest. Suppose that we want to test if X,,..., X, is a random sample from a continuous distribution

with cumulative distribution function F(x) with the parameter 0 = (o, ,¢). We estimate parameter

6 by 0 and then compute the test statistics using Cramer-van Mises, W7, and Anderson-Darling,

Ve
W2=L+ (F(xl)_zl_lj’
12n ‘3 2n

A == 32 ol F )]+ logll = Fx,... ),

i=1
where x, are in ascending order (Chen and Balakrishnan 1995, Choulakian and Stephens 2001). To
determine if the data follows the distribution, we often compare the P-values based on the computed
statistics to the pre-specified significance level «. In this work, we initially use the MRL plots to
locate plausible thresholds then use the GoF to test if the data above those thresholds follow the GPD
distribution with the level of significance of 0.05.

2.4. Parameter estimation

Several parameter estimation methods can be applied to estimate the GPD parameters.
Conventional methods for parameter estimation in GPD are the maximum likelihood method, method
of moments and probability-weighted moments method, and Bayesian method (Hosking and Wallis
1987, Grimshaw 1993, Worms and Worms, 2012). In this work, the parameters of the GPD can be

estimated by the maximum likelihood method. Suppose y,....,», be n, sequence of excesses of a

threshold u. For & # 0, the log-likelihood can be written as

n, 1ogo—(1+1/§)ilog(1+§&j, £#0
I0,¢) = L ’
-n, logcr—(l/cr)Zyl., £=0,

i=1

provided (1+¢&y,/0)>0 for i=1,...,n,.
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2.5. Return level estimation
One of the most common interests of extreme value analysis is the evaluation of return levels.
The interest is the return level x,, which is exceeded once every N year. Let &, is the probability

u

of the event of exceedance over the threshold u. The level x,, that is exceeded on average once every

m observation is the solution of the following equation

e
o m

This can be expressed as follows

u +%((m§u)f ~1), foré#0

X =

m

u+olog(mg,), for & = 0.

x,, is called the m observation return level. To compute the N -year return level, let n, be the

m

number of observations per year, so n, =m /N and hence the N -year return level is

u +%((Nny§u)5 ~1), ifE£0

XN=

utolog(Nn (,),  if =0,

where threshold # follows the binomial distribution with probability ¢, (Coles 2001).

2.6. Uncertainty of the return level estimates

In general, an estimated parameter comes with an uncertainty that is usually measured by a
standard error or/and a confidence interval. In this work, we then present the estimated return levels
along with confidence intervals. There are several options to construct confidence intervals for return
levels, such as the normal and the log-normal methods, the bootstrap method, and the profile
likelihood method (Glotzer et al. 2017). As a result, we choose the bootstrap method that proceeds
by resampling the data with replacement from the given samples, relying on computer simulations.
The interval is determined by the 100(«r/2) and 100(1—a/2), for 0 <@ <1, quantiles of the

bootstrap distribution of the exceedance probability.

2.7. Statistical packages

This study uses the R programming with several packages; “extRemes,” “texmex”, and “gnFit”
(R Core Team 2019, Gilleland and Katz 2016) to obtain the estimated parameters and return levels,
to produce the mean residual life plots, and to test the distribution, respectively.

9 <

3. Results
3.1. Descriptive statistics

The PMjo concentrations are recorded hourly, so we divide the data into two types; the 24-
average data and the daily maximum data, the hourly maximum of the day. Figures 2-3 show the
PMjo data recorded over time (2008-2019). The time series plots reveal missing values in some
stations. The summary of statistics in Tables 2-3 shows that station 24t located in Saraburi has a
remarkably high level of PM . Stations 35t, 36t, 40t, 67t, 69t, and 73t located in the north of Thailand
also have high concentrations compared to the stations 43t, 44t, and 63t located in the south. It is
because the southern region of Thailand has a long wet season than the other parts of Thailand.
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Figure 2 Yearly plots of PMo concentration: 24-average data
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Figure 3 Yearly plots of PMjo concentration: daily maximum data
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Table 2 Summary of statistics of the 24-average of PM o concentration in Thailand

Quantiles
90% 95% 99%
02t 53 1934 46.1 52.4 26.6 87.5 1059 140.8
05t 40 1725 352 40.8 20.9 68.6 81.0 111.1
10t 37 169.0 34.0 38.1 19.2 62.7 744 104.2
14t 40 2105 34.8 40.8 23.7 70.4 88.5 129.0
17t 5.0 180.1 353 41.2 21.6 69.7 842 1172
24t 10.9 3579 86.4 98.3 49.8 1654 196.7 246.2
26t 3.7 1672 34.9 414 242 75.6 91.7 1205
27t 43 216.0 29.6 38.4 27.7 75.2 97.5 144.6
30t 3.0 1253 29.0 33.5 16.5 56.4 67.7 88.0
32t 50 1550 33.1 37.9 18.7 63.8 76.0 99.1
35t 3.8 2748 34.0 44.1 324 85.1 108.8 169.7
36t 53  296.0 36.9 46.3 31.5 842 110.7 168.0
40t 3.0 2653 35.0 45.5 33.0 927 110.0 154.1
43t 43 2094 24.0 26.2 12.6 40.9 47.6 66.1
44t 8.1 3225 35.8 37.2 14.5 51.5 59.0 77.5
46t 58 1713 352 42.2 25.7 76.6 94.8 129.6
47t 8.0 264.7 45.2 522 26.3 86.8 101.6 135.1
59t 20 1593 322 37.8 19.9 66.6 78.7 102.2
61t 20 1494 34.1 37.7 19.0 62.9 75.2 1019
63t 3.8 178.6 26.5 28.6 12.4 43.8 49.6 64.0
67t 32 2635 30.4 41.2 32.0 823 110.7 160.7
69t 32 2490 354 46.7 33.1 925 111.7 163.6
73t 55 479.1 37.3 54.0 527 100.0 163.3 288.0

Code Min Max Median Mean SD

3.2. Return levels

The data in each station are quite different, so it is challenging to justify the threshold. We aim
to use the same threshold in every station as long as it follows the GPD with not too little data over
the threshold. In this work, we initially use the MRL plots to provide some sensible thresholds for
each station. Then we justify the thresholds together with the estimated parameters of the GPD model
fitted to the PM o data over the selected threshold by using the GoF tests to see if the data above those
thresholds follow the GPD. The MRL plots for the two data sets are shown in Figures 4-5. For the
24-average data, the GoF tests suggest that the data above the threshold 90 follow the GPD in most
stations except 24t and 73t. Due to the very high values of data in these stations, we need to use a
higher threshold. As a result, 120 is chosen to be the threshold for these two stations. For the daily
maximum data, we choose 150 to be the optimal threshold for most stations except 24t, 36t, and 73t
use 180 as the threshold.

The estimated parameters of GPD over the selected thresholds using maximum likelihood
estimation, exceedance numbers, and the return levels are shown in Tables 4-7. Nonetheless, the 24-
average data in stations 30t, 43t, 44t, and 63t have not many numbers of exceedances when the
threshold is 90, so we exclude these stations as the estimated parameters obtained from small data
are non-informative because of high variance. For daily maximum data, the high values of PM; are
more available even though higher thresholds are applied. Therefore, we include stations 30t and 44t
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in the study. The return levels of the daily maximum data are much higher than the 24-average data.
We also illustrate the return levels on the locations of the stations shown in Figures 6-7.

We estimate not only the return levels but also its uncertainty using 95% confidence intervals
using the bootstrap method shown in Figures 8-9. The confidence intervals of the 24-average data
are relatively narrower than the daily maximum data. Generally speaking, it means that they have
less uncertainty than the other result. It is understandable as the daily maximum is more likely to
fluctuate from day-to-day.

Table 3 Summary of statistics of the daily maximum of PMo concentration in Thailand

Quantile
90% 95% 99%
02t 9.0 489.0 76.0 86.2 43.6 140.0 172.0 233.0
05t 6.0 336.0 65.0 72.9 349 119.0 142.0 184.4
10t 7.0 263.0 62.0 67.5 30.1  107.0 126.0 169.4
14t 6.0 408.0 73.0 82.1 40.6 132.0 162.0 2246
17t 5.0 316.0 66.0 76.4 394 1280 152.0 214.0
24t 21.0 705.0 197.0 2173 103.7 356.0 417.0 544.1
26t 5.0 410.0 70.0 80.6 44.0 140.0 163.0 220.5
27t 9.0 576.0 59.0 74.9 51.5 140.0 180.0 264.8
30t 3.0 370.0 47.0 55.5 304 93.0 109.0 1549
32t 50 542.0 58.0 66.3 342 1090 128.1 176.9
35t 8.0 557.0 61.5 78.9 55.6  146.0 187.0 293.7
36t 10.0  590.0 73.0 85.1 499 1430 177.0 275.0
40t 3.0 505.0 71.0 86.2 60.8 1633 201.0 310.0
43t 8.0 270.7 40.0 44.8 21.8 66.0 79.0 133.6
44t 16.0 423.6 59.0 62.5 25.1 90.0 104.0 144.0
46t 12.0 3533 64.0 73.6 40.0 1260 148.0 214.0
47t 8.0 569.0 84.0 93.9 447 146.0 173.1 2589
59t 2.0 349.0 60.0 68.2 335 112.0 1340 179.0
61t 20 275.0 63.0 67.5 322 108.0 128.0 173.7
63t 7.0 306.7 46.0 49.3 20.4 72.0 83.0 1173
67t 7.0 388.0 66.0 80.2 499 1430 176.0 2553
69t 50 479.2 62.0 76.6 519 1420 1740 274.0
73t 11.0  605.0 71.0 88.7 67.6 151.0 2220 3914

Code Min Max Median Mean SD
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Figure 4 Mean residual life plots of PM¢: 24-average data
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Figure 5 Mean residual life plots of PMo: daily maximum data
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Table 4 Parameter estimates, number of exceedances and return levels of 24-average data

using threshold 90
Code Parameters p-value Number of Return levels

Scale  Shape w? 4> exceedances 2-year 5-year 10-year 20-year
02t 29.54 -020 094 0.93 293 173.75 18442 191.28 197.25
05t 20.98 0.01 0.46 0.28 91 155.15 17474 189.57 204.39
10t 1946 —0.06 0.66 0.54 88 140.66 15551 16625 176.58
14t 29.04 —0.11 0.34 0.47 171 174.59 191.52 203.20 214.00
17t 21.09 -0.03 0.84 0.57 131 155.53 172.81 18557 198.07
26t 20.57 -0.17 0.54 0.64 212 146.27 155.67 161.87 167.39
27t 3192 -0.13 0.70 0.77 243 187.14 203.96 21543 22593
30t - - - - - - - - -
32t 12.08 0.05 0.44 0.41 78 124.88 137.75 147.88 158.34
35t 36.53 -0.02 0.53 0.44 356 23542 267.59 291.92 316.26
36t 40.73 —0.08 0.98 0.99 346 233.11 259.21 277.75 295.30
40t 25.601 0.06 0.03 0.04 428 218.57 250.26 27547 301.78
43t - - - - - - - - -
44t - - - - - - - - -
46t 2723 -0.23 0.67 0.53 234 158.58 167.79 173.56 178.46
47t 20.08 0.10  0.68 0.57 264 192.51 221.33 24490 270.12
59t 13.29 0.07 0.89 0.90 90 131.59 146.86 159.07 171.86
61t 1590 —0.09 0.29 0.34 74 128.62 139.69 147.50 154.85
63t - - - - - - - - -
67t 41.06 -0.17 0.79 0.73 295 210.81 227.95 239.23 249.23
69t  29.70 -0.02 0.53 0.51 347 213.72 238.14 256.28 274.14

Table 5 Parameter estimates, number of exceedances and return levels of 24-average data
using threshold 120

Code Parameters p-value Number of Return levels
Scale  Shape w? 4> exceedances 2-year S-year 10-year 20-year
24t 4928 —0.14 0.12 0.18 1,179 30391 323.65 336.95 348.99

73 1033  -0.20 0.95 0.97 205 403.43 441.28 465.57 468.65
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Table 6 Parameter estimates, number of exceedances and return levels of daily maximum data

using threshold 150

Code Parameters p-value Number of Return levels

Scale  Shape w? 4> exceedances  2-year S5-year 10-year 20-year
02t 44.42 0.04 0.25 0.17 250 342.85 390.77 428.09 466.37
05t 31.88 —0.04 0.29 0.23 116 244.89 271.33 291.33 311.33
10t 39.04 —0.22 0.74 0.72 65 225.68 244.54 256.52 266.83
14t 4154 —0.02 0.60 0.33 241 307.09 34146 366.84 391.70
17t 3995 -0.06 0.40 0.20 196 281.60 310.30 331.00 350.88
26t 30.81 0.16 0.56 0.27 294 32391 383.03 434.16 491.59
27t 5746 —0.02 0.88 0.68 315 37790 42630 462.38 498.00
30t 46.84 0.15 0.41 0.53 32 267.27 331.14 385.81 446.64
32t 2822 0.33 0.97 0.75 91 28346 360.14 43545 529.88
35t 62.15 0.01 0.18 0.12 381 41523 47296 516.63 560.30
40t 5548 0.04 0.38 0.20 509 427.25 489.78 538.67 588.99
43t - - - - - - - - -
44t 39.49 0.31 0.49 0.41 30 240.02 310.78 379.08 463.44
46t  42.06 —0.11 0.32 0.23 185 275.12  300.3 317.79 334.05
47t 41.54 0.12 0.33 0.22 268 37248 437.84 492.16 551.07
59t 3274 —0.01 0.39 0.32 103 246.44 27592 298.13 320.26
61t 3478 —0.10 0.76 0.63 71 23199 25537 271.72 287.00
63t - - - - - - - - -
67t 5528 —0.09 0.22 0.25 290 340.14 37425 39831 420.96
69t 5391 —0.01 0.10 0.11 264 366.69 413.94 449.41 484.63

Table 7 Parameter estimates, number of exceedances and return levels of daily maximum data

using threshold 180

Code Parameters p-value Number of Return levels
Scale Shape w? A2 exceedances 2-year S-year 10-year 20-year
24t 116.1 —0.14 0.78 0.38 2,393 651.56 69391 72249 748.39
36t 65.06 —0.05 0.93 0.92 195 389.82 438.09 473.09 506.82
73t 132.7 -0.24 0.39 0.20 185 519.50 562.79 589.87 612.88
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Figure 6 Return levels of PMo: 24-average data

Return levels of data daily maximum
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Figure 7 Return levels of PMjo: daily maximum data
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Figure 8 95% confidence intervals of return levels of PMo: 24-average data
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Figure 9 95% confidence intervals of return levels of PMo: daily maximum data
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Figure 10 Comparison between 2-year return levels of the maximum of 24-average data in
January-May 2020

4. Discussion

The POT approach and the GPD modeling are applied to provide the extreme events of PM;g in
the future. We study the extreme events of PMjo concentrations in two representations, 24-average,
and the daily maximum. It is important to note that the time series plots in Figures 2-3 suggesting
trends and seasonal variation in the data. However, removing trends and seasonality leads to a small
number of data and even smaller when considering the data exceeds the selected threshold. It leads
to a limited number of stations to study. As we aim to investigate the extremes of PMo across the
country so that we relax the assumption of independence.

One of the challenging issues in extreme value analysis is to determine a threshold. There are no
promising methods to assess an optimal threshold. We apply the graphical method, the MRL plot
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together with the goodness of fit with Cramer-van Miss and Anderson-Darling statistics, to test
chosen thresholds based on parameter estimates obtained from MLE. We found that the thresholds
of 90 and 150 are plausible in most stations for 24-average data and daily maximum data,
respectively, except stations 24t, 73t, and 36t, where 120 and 180 thresholds are used. Using these
thresholds, we can still have a good number of exceedances to model without worrying about the bias
and variance in parameter estimation, which can lead to poor return level estimation. Besides, we
choose to use the same threshold for as many stations as long as the GoF tests are valid for
convenience and simplicity. The parameter estimates are then used to estimate return levels of 2, 5,
10, and 20 years and their 95% confidence intervals to show the predictive extreme values and
uncertainty in the future. In this work, confidence intervals are determined by the bootstrap
distribution of the exceedance probability. The profile likelihood (Glotzer et al. 2017), as well as the
Bayesian approach (Renard et al. 2006), can be alternative methods to govern confidence intervals.

A return level can be useful in indicating how often extreme events are likely to occur. In other
words, the return levels in 2, 5, 10, and 20 years shown in Tables 4-7 are expected to be exceeded on
average once in those years. The return levels of 24-average at station 73t in Chiang Rai are the
highest, and next is station 24t in Saraburi. For the daily maximum data, the return levels of these
two stations are the other way around. The 2-year return periods of 24-average can reach over 400
and can be almost 600 in 20 years. These levels are considered hazardous levels that can cause serious
health effects.

We validate our results by comparing the 2-year return levels of 24-average data to the latest real
data available online in http://air4thai.pcd.go.th/webV2/index.php. The comparison is shown in
Figure 10. We can see that the estimates of returns are higher than the recent data in most stations.
Interestingly, the recent data at stations 24t, 26t, and 73t already surpass the estimates. Precisely, the
current extreme value in February 2020 at station 24t is 345 while our estimated return level 303.91,
and in March 2020, the recent extreme value at station 73t is 439 while our estimated return is 403.43.
It is important to note that the 2-year return levels are the expected extreme values in the 2-year
period, so the 24-average of PM;o might be higher. From this result, we could say that the extreme
value analysis presented in this work is reliable on account of the recent extreme PM o concentration
in Thailand.

5. Conclusions

In this work, we present the extreme value analysis of daily PMo concentration using the POT
approach modeled by GPD. The daily concentration is expressed in two forms; the 24-average and a
maximum of 24 hours, called the daily maximum data. Determining a threshold for GPD is essential
as the estimated parameters from a small threshold can be biased due to the deviation of the
distribution from the GPD. In contrast, a high threshold leads to a small sample size, hence high
variance. Therefore, we balance between bias and deviation to obtain an optimal threshold. We use
different thresholds for different data sets and stations based on MRL plots and GoF tests to obtain
the feasible estimated return levels. The return levels and their uncertainties are quantified to assess
the extreme events in the future. Hence, they can be used to indicate the risk of extreme events. The
stations that have high return levels should be cautiously monitored.
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