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Abstract 

This research aims to analyze the extreme values of the air pollutants, in particular, PM10 

concentration in Thailand. Due to the limitation of data, we restrict our attention to 23 air quality 

monitoring stations in Thailand. The daily PM10 concentration data from 2008 to 2019 are used to 

analyze and are divided into two types; 24-hour averages and daily maxima. The Peak Over 

Threshold (POT) approach is used to assess the risk of air pollutants; hence the Generalized Pareto 

Distribution (GPD) is used to fit the data. One of the challenging issues in POT is the choice of 

threshold. In this work, we combine the mean residual life plot and the goodness of fit test methods 

to determine the threshold. The maximum likelihood estimation and the bootstrap method are used 

to deal with parameter estimation in GPD and uncertainty quantification. We then estimate the return 

levels, which present extreme predictive events in terms of the values expected to exceed average 

once every return period. The results show that daily PM10 concentration at station 24t in Saraburi, 

73t in Chiang Rai, and 36t in Chiang Mai have very high predictive extreme values. Many stations 

located in the north of Thailand also have relatively high levels. Consequently, the northern region is 

most likely to encounter high exposures to PM10. 

______________________________ 
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1.  Introduction 

In the past several years, atmospheric particulate matter (PM) has been in the spotlight and 

considered to be a global environmental issue because it can contribute to health problems, 

predominantly to the respiratory and cardiovascular systems such as lung cancer and 

cardiopulmonary diseases (Pope et al. 2002, Brook et al. 2010). PM is often divided based on size; 

PM10 refers to the fine particles with a diameter of less than 10 micrometers and smaller fine particles 

with a diameter of less than 2.5 micrometers commonly known as PM2.5. These two fine particles can 

come from various sources such as power plants, motor vehicles, forest fires, agricultural burning. In 

Thailand, according to the report by the Pollution Control Department Ministry of Natural Resources 

and Environment in Pollution Control Department (2019), it has been revealed that the major causes 

of particulate matter are different in a different part of Thailand. In the northern region of Thailand, 

the major causes are open burning and forest fires. In contrast, the major cause of Thailand’s central 
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region is the diffusion of particulate matter from cement plants, lime plants, stone crushing plants, 

quarries in the area, and nearby, as well as traffic congestion, transportation, and logistics activity in 

the area where roads are damaged. The primary causes in the largest urban area, Bangkok and 

vicinity, are vehicles in addition to meteorological conditions of not-circulating and no wind speed. 

According to the WHO air quality guidelines (World Health Organization 2006), the 24-hour average 

should not exceed 25 micrograms per cubic meter (µg/m3) for PM2.5 and 50 micrograms per cubic 

meter for PM10. Nevertheless, it has been reported in Pollution Control Department (2019) that the 

24-hour average of PM2.5 was in the range of 3-133 micrograms per cubic meter and 2-303 

micrograms per cubic meter for PM10. These maximum concentrations are considered very unhealthy. 

The data analysis of air pollution is usually focused on a few extreme situations. It substantially 

impacts human health and well-being. Over the past years, a study of PM in Thailand has mainly 

focused on the health effect (Vichit-Vadakan et al. 2001, Viroj 2008, Pothirat et al. 2019). The results 

have shown a significant association between exposure to PM and health effects. Nevertheless, few 

studies have paid attention to giving an important piece of information of PM10 in terms of extreme 

values awareness in Thailand using extreme value analysis. Extreme value analysis has been widely 

used to assess the risk of rare events, especially in an environmental disaster such as flood frequency 

analysis, extreme temperature, finance, and insurance (Ragulina and Reitan 2017, Osman et al. 2015, 

Gilli and Këllezi 2006). There are two conventional approaches for extreme value analysis, the block 

maxima method, where the model is the Generalized Extreme Value (GEV) distribution. Another is 

the Peak Over Threshold (POT), where the model is Generalized Pareto Distribution (GPD). The 

GEV for modeling extremes of a (time) series of observations is based on the maximum or minimum 

values of these observations within a certain period size or a time block. The GPD, on the other hand, 

uses the observations over a high threshold to model the extremes. Both methods have some 

difficulties; modeling using GEV requires a suitable time block, using too long periods gives only a 

few values. At the same time, too short periods lead to biases. GPD needs a good choice of threshold 

to get an optimal balance between bias and variance (Coles 2001). They are often used in 

environmental data such as wind gusts, precipitation, and air pollution (Brabson and Palutikof 2000, 

Engeland et al. 2004, Martins et al. 2017). Nonetheless, the GPD is more attainable than the GEV for 

extreme values of the air pollution data (Masseran et al. 2016, Gyarmati-Szabó et al. 2017, AL-

Dhurafi et al. 2018). This research focuses on assessing the risk of extreme values of PM10 daily 

concentrations in Thailand using the POT method. The future estimates of extreme values are 

manifested in terms of return levels obtained from estimated parameters in the GPD with selected 

thresholds. 

 

2.  Materials and Methods  

This paper aims to apply the POT to estimate the future extreme values of PM10 concentrations 

expressed in return levels using generalized Pareto distribution (GPD). In this section, we present the 

data used in the analysis and an overview of the methods. We describe the principal concepts of 

modeling extreme values using GPD, selecting threshold, parameter estimation methods in GPD, and 

return level estimation. 

 

2.1. Study area and data 

The data used in this research is PM10 hourly concentration collected by the Pollution Control 

Department, Air Quality and Noise Management Bureau, The Ministry of Natural Resources and 

Environment of Thailand. Currently, there are 70 air monitoring stations located across the country. 

Unfortunately, there are many missing data in many stations. As a result, we restrict our attention to 
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stations where PM10 data are complete or nearly complete from January 2008 - June 2019. The list 

of the stations is shown in Table 1, and the location is shown in Figure 1. In this work, we separate 

the analysis of the data into two directions; the analysis for 24-hour average and the maximum or the 

peak of hourly concentrations. The 24-hour averages are commonly used to report the air quality, 

whereas the maxima of hourly concentration reflect health impacts better (Lin et al. 2017, Zikova et 

al. 2017). 

 

Table 1 List of 23 selected air quality monitoring stations 

Code Region Province Latitude Longitude 

02t Central Bangkok 13.733 100.488 

05t Central Bangkok 13.666 100.606 

10t Central Bangkok 13.780 100.646 

14t Central Samut Sakhon 13.705 100.316 

17t Central Samut Prakan 13.652 100.532 

24t Central Saraburi 14.686 100.872 

26t West Ratchaburi 13.533 99.815 

27t Central Samut Sakhon 13.550 100.264 

30t East Rayong 12.672 101.276 

32t East Chon Buri 13.119 100.919 

35t North Chiang Mai 18.841 98.970 

36t North Chiang Mai 18.791 98.988 

40t North Lampang 18.283 99.660 

43t South Phuket 7.885 98.391 

44t South Songkhla 7.021 100.484 

46t Northeast Khon Kaen 16.445 102.835 

47t Northeast Nakhon Ratchasima 14.980 102.098 

59t Central Bangkok 13.783 100.541 

61t Central Bangkok 13.770 100.615 

63t South Yala 6.546 101.283 

67t North Nan 18.789 100.776 

69t North Phrae 18.129 100.162 

73t North Chiang Rai 20.427 99.884 
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Figure 1 Locations of air quality monitoring stations in Thailand 

 

2.2.  Generalized Pareto distribution 

The use of the Generalized Pareto Distribution (GPD) for modeling excesses over a high 

threshold is justified by arguments on the asymptotic behavior of the data (Coles 2001, Pickands 

1975, Leadbetter 1983). Let 1, , nX X  be identically distributed random variables with distribution 

function .F  For 0, ( | )x P X u x X u     is called the distribution function of exceedances over 

the threshold .u  For ,Y X u   where ,X u  the distribution of the exceedances j iY X u   such 

that i  is the index of the thj  exceedance, 1, , ,uj n   the distribution of 1, ,
un

Y Y  can be 

approximated by the GPD given by 
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where u  is the scale parameter and   is the shape parameter.  

    

2.3.  Threshold selection  

Selecting threshold is very crucial in extreme value analysis because a high threshold provides 

the convergence towards the extreme value theory and reduced bias. However, a too high threshold 

leads to high variance of the estimated parameters as there will be fewer data exceeding the threshold. 

Typically, the threshold was chosen before fitting, but there are no best and promising methods. 

Several approaches for threshold selection in extreme value modeling have been established (Dupuis 

1999, Thompson et al. 2009, Scarrott and MacDonald 2012). The standard practice for determining 

threshold is to compromise between bias and variance. One of the common methods is to use the 

Mean Residual Life (MRL) plot, also known as the mean excess plot. It is based on the mean of 

excesses over the threshold given by 
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The mean excess is expecting to change linearly with u  for all 0 .u u  Another method used in 

this paper is the Goodness-of-Fit (GoF) method. It is one of the statistical hypothesis testing methods 
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where ix  are in ascending order (Chen and Balakrishnan 1995, Choulakian and Stephens 2001). To 

determine if the data follows the distribution, we often compare the P-values based on the computed 

statistics to the pre-specified significance level .  In this work, we initially use the MRL plots to 

locate plausible thresholds then use the GoF to test if the data above those thresholds follow the GPD 

distribution with the level of significance of 0.05. 

 

2.4.  Parameter estimation  

Several parameter estimation methods can be applied to estimate the GPD parameters. 

Conventional methods for parameter estimation in GPD are the maximum likelihood method, method 

of moments and probability-weighted moments method, and Bayesian method (Hosking and Wallis 

1987, Grimshaw 1993, Worms and Worms, 2012). In this work, the parameters of the GPD can be 

estimated by the maximum likelihood method. Suppose 1, , ny y  be un  sequence of excesses of a 

threshold .u  For 0,   the log-likelihood can be written as 
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2.5.  Return level estimation 

One of the most common interests of extreme value analysis is the evaluation of return levels. 

The interest is the return level ,Nx  which is exceeded once every N  year. Let u  is the probability 

of the event of exceedance over the threshold .u  The level mx  that is exceeded on average once every 

m  observation is the solution of the following equation 
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mx  is called the m  observation return level. To compute the N -year return level, let yn  be the 

number of observations per year, so /yn m N  and hence the N -year return level is 
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where threshold u  follows the binomial distribution with probability u (Coles 2001). 

 

2.6.  Uncertainty of the return level estimates 

In general, an estimated parameter comes with an uncertainty that is usually measured by a 

standard error or/and a confidence interval. In this work, we then present the estimated return levels 

along with confidence intervals. There are several options to construct confidence intervals for return 

levels, such as the normal and the log-normal methods, the bootstrap method, and the profile 

likelihood method (Glotzer et al. 2017). As a result, we choose the bootstrap method that proceeds 

by resampling the data with replacement from the given samples, relying on computer simulations. 

The interval is determined by the 100( / 2)  and 100(1 / 2), for 0 1,     quantiles of the 

bootstrap distribution of the exceedance probability. 

 

2.7.  Statistical packages 

This study uses the R programming with several packages; “extRemes,” “texmex”, and “gnFit” 

(R Core Team 2019, Gilleland and Katz 2016) to obtain the estimated parameters and return levels, 

to produce the mean residual life plots, and to test the distribution, respectively. 

 

3.  Results 

3.1.  Descriptive statistics 

The PM10 concentrations are recorded hourly, so we divide the data into two types; the 24-

average data and the daily maximum data, the hourly maximum of the day. Figures 2-3 show the 

PM10 data recorded over time (2008-2019). The time series plots reveal missing values in some 

stations. The summary of statistics in Tables 2-3 shows that station 24t located in Saraburi has a 

remarkably high level of PM10. Stations 35t, 36t, 40t, 67t, 69t, and 73t located in the north of Thailand 

also have high concentrations compared to the stations 43t, 44t, and 63t located in the south. It is 

because the southern region of Thailand has a long wet season than the other parts of Thailand. 
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Figure 2 Yearly plots of PM10 concentration: 24-average data 

 

 
 

Figure 3 Yearly plots of PM10 concentration: daily maximum data 
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Table 2 Summary of statistics of the 24-average of PM10 concentration in Thailand 

Code Min Max Median Mean SD 
Quantiles 

90% 95% 99% 

02t 5.3 193.4 46.1 52.4 26.6 87.5 105.9 140.8 

05t 4.0 172.5 35.2 40.8 20.9 68.6 81.0 111.1 

10t 3.7 169.0 34.0 38.1 19.2 62.7 74.4 104.2 

14t 4.0 210.5 34.8 40.8 23.7 70.4 88.5 129.0 

17t 5.0 180.1 35.3 41.2 21.6 69.7 84.2 117.2 

24t 10.9 357.9 86.4 98.3 49.8 165.4 196.7 246.2 

26t 3.7 167.2 34.9 41.4 24.2 75.6 91.7 120.5 

27t 4.3 216.0 29.6 38.4 27.7 75.2 97.5 144.6 

30t 3.0 125.3 29.0 33.5 16.5 56.4 67.7 88.0 

32t 5.0 155.0 33.1 37.9 18.7 63.8 76.0 99.1 

35t 3.8 274.8 34.0 44.1 32.4 85.1 108.8 169.7 

36t 5.3 296.0 36.9 46.3 31.5 84.2 110.7 168.0 

40t 3.0 265.3 35.0 45.5 33.0 92.7 110.0 154.1 

43t 4.3 209.4 24.0 26.2 12.6 40.9 47.6 66.1 

44t 8.1 322.5 35.8 37.2 14.5 51.5 59.0 77.5 

46t 5.8 171.3 35.2 42.2 25.7 76.6 94.8 129.6 

47t 8.0 264.7 45.2 52.2 26.3 86.8 101.6 135.1 

59t 2.0 159.3 32.2 37.8 19.9 66.6 78.7 102.2 

61t 2.0 149.4 34.1 37.7 19.0 62.9 75.2 101.9 

63t 3.8 178.6 26.5 28.6 12.4 43.8 49.6 64.0 

67t 3.2 263.5 30.4 41.2 32.0 82.3 110.7 160.7 

69t 3.2 249.0 35.4 46.7 33.1 92.5 111.7 163.6 

73t 5.5 479.1 37.3 54.0 52.7 100.0 163.3 288.0 

 

3.2.  Return levels 

The data in each station are quite different, so it is challenging to justify the threshold. We aim 

to use the same threshold in every station as long as it follows the GPD with not too little data over 

the threshold. In this work, we initially use the MRL plots to provide some sensible thresholds for 

each station. Then we justify the thresholds together with the estimated parameters of the GPD model 

fitted to the PM10 data over the selected threshold by using the GoF tests to see if the data above those 

thresholds follow the GPD. The MRL plots for the two data sets are shown in Figures 4-5. For the 

24-average data, the GoF tests suggest that the data above the threshold 90 follow the GPD in most 

stations except 24t and 73t. Due to the very high values of data in these stations, we need to use a 

higher threshold. As a result, 120 is chosen to be the threshold for these two stations. For the daily 

maximum data, we choose 150 to be the optimal threshold for most stations except 24t, 36t, and 73t 

use 180 as the threshold.  

The estimated parameters of GPD over the selected thresholds using maximum likelihood 

estimation, exceedance numbers, and the return levels are shown in Tables 4-7. Nonetheless, the 24-

average data in stations 30t, 43t, 44t, and 63t have not many numbers of exceedances when the 

threshold is 90, so we exclude these stations as the estimated parameters obtained from small data 

are non-informative because of high variance. For daily maximum data, the high values of PM10 are 

more available even though higher thresholds are applied. Therefore, we include stations 30t and 44t 
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in the study. The return levels of the daily maximum data are much higher than the 24-average data. 

We also illustrate the return levels on the locations of the stations shown in Figures 6-7. 

We estimate not only the return levels but also its uncertainty using 95% confidence intervals 

using the bootstrap method shown in Figures 8-9. The confidence intervals of the 24-average data 

are relatively narrower than the daily maximum data. Generally speaking, it means that they have 

less uncertainty than the other result. It is understandable as the daily maximum is more likely to 

fluctuate from day-to-day.  

 

Table 3 Summary of statistics of the daily maximum of PM10 concentration in Thailand 

Code Min Max Median Mean SD 
Quantile 

90% 95% 99% 

02t 9.0 489.0 76.0 86.2 43.6 140.0 172.0 233.0 

05t 6.0 336.0 65.0 72.9 34.9 119.0 142.0 184.4 

10t 7.0 263.0 62.0 67.5 30.1 107.0 126.0 169.4 

14t 6.0 408.0 73.0 82.1 40.6 132.0 162.0 224.6 

17t 5.0 316.0 66.0 76.4 39.4 128.0 152.0 214.0 

24t 21.0 705.0 197.0 217.3 103.7 356.0 417.0 544.1 

26t 5.0 410.0 70.0 80.6 44.0 140.0 163.0 220.5 

27t 9.0 576.0 59.0 74.9 51.5 140.0 180.0 264.8 

30t 3.0 370.0 47.0 55.5 30.4 93.0 109.0 154.9 

32t 5.0 542.0 58.0 66.3 34.2 109.0 128.1 176.9 

35t 8.0 557.0 61.5 78.9 55.6 146.0 187.0 293.7 

36t 10.0 590.0 73.0 85.1 49.9 143.0 177.0 275.0 

40t 3.0 505.0 71.0 86.2 60.8 163.3 201.0 310.0 

43t 8.0 270.7 40.0 44.8 21.8 66.0 79.0 133.6 

44t 16.0 423.6 59.0 62.5 25.1 90.0 104.0 144.0 

46t 12.0 353.3 64.0 73.6 40.0 126.0 148.0 214.0 

47t 8.0 569.0 84.0 93.9 44.7 146.0 173.1 258.9 

59t 2.0 349.0 60.0 68.2 33.5 112.0 134.0 179.0 

61t 2.0 275.0 63.0 67.5 32.2 108.0 128.0 173.7 

63t 7.0 306.7 46.0 49.3 20.4 72.0 83.0 117.3 

67t 7.0 388.0 66.0 80.2 49.9 143.0 176.0 255.3 

69t 5.0 479.2 62.0 76.6 51.9 142.0 174.0 274.0 

73t 11.0 605.0 71.0 88.7 67.6 151.0 222.0 391.4 

 

 



Kuntalee Chaisee and Kamonrat Suphawan 651 

 
 

Figure 4 Mean residual life plots of PM10: 24-average data 

 

 
 

Figure 5 Mean residual life plots of PM10: daily maximum data 
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Table 4 Parameter estimates, number of exceedances and return levels of 24-average data         

using threshold 90 

Code 
Parameters p-value Number of  

exceedances 

Return levels 

Scale Shape 2W  2A  2-year 5-year 10-year 20-year 

02t 29.54 −0.20 0.94 0.93 293 173.75 184.42 191.28 197.25 

05t 20.98 0.01 0.46 0.28 91 155.15 174.74 189.57 204.39 

10t 19.46 −0.06 0.66 0.54 88 140.66 155.51 166.25 176.58 

14t 29.04 −0.11 0.34 0.47 171 174.59 191.52 203.20 214.00 

17t 21.09 −0.03 0.84 0.57 131 155.53 172.81 185.57 198.07 

26t 20.57 −0.17 0.54 0.64 212 146.27 155.67 161.87 167.39 

27t 31.92 -0.13 0.70 0.77 243 187.14 203.96 215.43 225.93 

30t - - - - - - - - - 

32t 12.08 0.05 0.44 0.41 78 124.88 137.75 147.88 158.34 

35t 36.53 −0.02 0.53 0.44 356 235.42 267.59 291.92 316.26 

36t 40.73 −0.08 0.98 0.99 346 233.11 259.21 277.75 295.30 

40t 25.61 0.06 0.03 0.04 428 218.57 250.26 275.47 301.78 

43t - - - - - - - - - 

44t - - - - - - - - - 

46t 27.23 −0.23 0.67 0.53 234 158.58 167.79 173.56 178.46 

47t 20.08 0.10 0.68 0.57 264 192.51 221.33 244.90 270.12 

59t 13.29 0.07 0.89 0.90 90 131.59 146.86 159.07 171.86 

61t 15.90 −0.09 0.29 0.34 74 128.62 139.69 147.50 154.85 

63t - - - - - - - - - 

67t 41.06 −0.17 0.79 0.73 295 210.81 227.95 239.23 249.23 

69t 29.70 −0.02 0.53 0.51 347 213.72 238.14 256.28 274.14 

 

Table 5 Parameter estimates, number of exceedances and return levels of 24-average data         

using threshold 120 

Code 
Parameters p-value Number of  

exceedances 

Return levels 

Scale Shape 2W  2A  2-year 5-year 10-year 20-year 

24t 49.28 −0.14 0.12 0.18 1,179 303.91 323.65  336.95 348.99 

73 103.3

0 

−0.20 0.95 0.97 205 403.43 441.28 465.57 468.65 
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Table 6 Parameter estimates, number of exceedances and return levels of daily maximum data 

using threshold 150 

Code 
Parameters p-value Number of  

exceedances 

Return levels 

Scale Shape    2W      2A  2-year 5-year 10-year 20-year 

02t 44.42 0.04 0.25 0.17 250 342.85 390.77 428.09 466.37 

05t 31.88 −0.04 0.29 0.23 116 244.89 271.33 291.33 311.33 

10t 39.04 −0.22 0.74 0.72 65 225.68 244.54 256.52 266.83 

14t 41.54 −0.02 0.60 0.33 241 307.09 341.46 366.84 391.70 

17t 39.95 −0.06 0.40 0.20 196 281.60 310.30 331.00 350.88 

26t 30.81 0.16 0.56 0.27 294 323.91 383.03 434.16 491.59 

27t 57.46 −0.02 0.88 0.68 315 377.90 426.30 462.38 498.00 

30t 46.84 0.15 0.41 0.53 32 267.27 331.14 385.81 446.64 

32t 28.22 0.33 0.97 0.75 91 283.46 360.14 435.45 529.88 

35t 62.15 0.01 0.18 0.12 381 415.23 472.96 516.63 560.30 

40t 55.48 0.04 0.38 0.20 509 427.25 489.78 538.67 588.99 

43t - - - - - - - - - 

44t 39.49 0.31 0.49 0.41 30 240.02 310.78 379.08 463.44 

46t 42.06 −0.11 0.32 0.23 185 275.12 300.3 317.79 334.05 

47t 41.54 0.12 0.33 0.22 268 372.48 437.84 492.16 551.07 

59t 32.74 −0.01 0.39 0.32 103 246.44 275.92 298.13 320.26 

61t 34.78 −0.10 0.76 0.63 71 231.99 255.37 271.72 287.00 

63t - - - - - - - - - 

67t 55.28 −0.09 0.22 0.25 290 340.14 374.25 398.31 420.96 

69t 53.91 −0.01 0.10 0.11 264 366.69 413.94 449.41 484.63 

 

Table 7 Parameter estimates, number of exceedances and return levels of daily maximum data 

using threshold 180 

 

Code 
Parameters p-value Number of  

exceedances 

Return levels 

Scale Shape 2W   2A   2-year 5-year 10-year 20-year 

24t 116.1 −0.14 0.78 0.38 2,393 651.56 693.91 722.49 748.39 

36t 65.06 −0.05 0.93 0.92 195 389.82 438.09 473.09 506.82 

73t 132.7

02 

−0.24 0.39 0.20 185 519.50 562.79 589.87 612.88 
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Figure 6 Return levels of PM10: 24-average data 

 

 
 

Figure 7 Return levels of PM10: daily maximum data 

 

 
 

Figure 8 95% confidence intervals of return levels of PM10: 24-average data 
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Figure 9 95% confidence intervals of return levels of PM10: daily maximum data 

 

 
 

Figure 10 Comparison between 2-year return levels of the maximum of 24-average data in 

January-May 2020 

 

4.  Discussion 

The POT approach and the GPD modeling are applied to provide the extreme events of PM10 in 

the future. We study the extreme events of PM10 concentrations in two representations, 24-average, 

and the daily maximum. It is important to note that the time series plots in Figures 2-3 suggesting 

trends and seasonal variation in the data. However, removing trends and seasonality leads to a small 

number of data and even smaller when considering the data exceeds the selected threshold. It leads 

to a limited number of stations to study. As we aim to investigate the extremes of PM10 across the 

country so that we relax the assumption of independence. 

One of the challenging issues in extreme value analysis is to determine a threshold. There are no 

promising methods to assess an optimal threshold. We apply the graphical method, the MRL plot 
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together with the goodness of fit with Cramer-van Miss and Anderson-Darling statistics, to test 

chosen thresholds based on parameter estimates obtained from MLE. We found that the thresholds 

of 90 and 150 are plausible in most stations for 24-average data and daily maximum data, 

respectively, except stations 24t, 73t, and 36t, where 120 and 180 thresholds are used. Using these 

thresholds, we can still have a good number of exceedances to model without worrying about the bias 

and variance in parameter estimation, which can lead to poor return level estimation. Besides, we 

choose to use the same threshold for as many stations as long as the GoF tests are valid for 

convenience and simplicity. The parameter estimates are then used to estimate return levels of 2, 5, 

10, and 20 years and their 95% confidence intervals to show the predictive extreme values and 

uncertainty in the future. In this work, confidence intervals are determined by the bootstrap 

distribution of the exceedance probability. The profile likelihood (Glotzer et al. 2017), as well as the 

Bayesian approach (Renard et al. 2006), can be alternative methods to govern confidence intervals. 

A return level can be useful in indicating how often extreme events are likely to occur. In other 

words, the return levels in 2, 5, 10, and 20 years shown in Tables 4-7 are expected to be exceeded on 

average once in those years. The return levels of 24-average at station 73t in Chiang Rai are the 

highest, and next is station 24t in Saraburi. For the daily maximum data, the return levels of these 

two stations are the other way around. The 2-year return periods of 24-average can reach over 400 

and can be almost 600 in 20 years. These levels are considered hazardous levels that can cause serious 

health effects.  

We validate our results by comparing the 2-year return levels of 24-average data to the latest real 

data available online in http://air4thai.pcd.go.th/webV2/index.php. The comparison is shown in 

Figure 10. We can see that the estimates of returns are higher than the recent data in most stations. 

Interestingly, the recent data at stations 24t, 26t, and 73t already surpass the estimates. Precisely, the 

current extreme value in February 2020 at station 24t is 345 while our estimated return level 303.91, 

and in March 2020, the recent extreme value at station 73t is 439 while our estimated return is 403.43. 

It is important to note that the 2-year return levels are the expected extreme values in the 2-year 

period, so the 24-average of PM10 might be higher. From this result, we could say that the extreme 

value analysis presented in this work is reliable on account of the recent extreme PM10 concentration 

in Thailand. 

 

5.  Conclusions 

In this work, we present the extreme value analysis of daily PM10 concentration using the POT 

approach modeled by GPD. The daily concentration is expressed in two forms; the 24-average and a 

maximum of 24 hours, called the daily maximum data. Determining a threshold for GPD is essential 

as the estimated parameters from a small threshold can be biased due to the deviation of the 

distribution from the GPD. In contrast, a high threshold leads to a small sample size, hence high 

variance. Therefore, we balance between bias and deviation to obtain an optimal threshold. We use 

different thresholds for different data sets and stations based on MRL plots and GoF tests to obtain 

the feasible estimated return levels. The return levels and their uncertainties are quantified to assess 

the extreme events in the future. Hence, they can be used to indicate the risk of extreme events. The 

stations that have high return levels should be cautiously monitored. 
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