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Abstract

A new distribution namely the Gompertz-Weibull Fréchet (Go-WFr) distribution is proposed. It
is a class of Gompertz-G family of distributions. Some statistical properties of the proposed distribu-
tion including the reliability function, hazard function, quantile function, moments, and Lorenz and
Bonferroni curves are discussed. The proposed distribution has five sub-models, that is, Gompertz-
exponential Fréchet, Gompertz-Weibull inverse exponential, Gompertz-Weibull inverse Rayleigh,
Gompertz-exponential inverse exponential, and Gompertz-exponential inverse Rayleigh distributions.
The parameters of the Go-WFr are estimated by using the maximum likelihood estimation. Simula-
tion studies and the application of the proposed distribution are illustrated.

Keywords: Weibull Fréchet distribution, Gompertz-G family of distributions, maximum likelihood
estimation, hazard function, stochastic ordering

1. Introduction

Statistical applications play an important role in our life, especially in medicine and engineer-
ing which have lifetime distribution such as Rayleigh, Fréchet, exponential, and Weibull distribution.
The Weibull distribution is one of the popular standard distributions in statistics, engineering, and
medicine, which invented by Waloddi Weibull in 1937. It is widely used to describe the lifetime
distributions, which is suitable for modeling real-life phenomena such as the dielectric failure of mul-
tilayer ceramic capacitors (Wang et al. 1997), the strength data (Basu et al. 2009), the monotonic
failure rates (Ahmad and Igbal 2017), etc. The Weibull distribution has the Rayleigh and exponential
distributions as sub-models. Moreover, the Fréchet distribution, also known as inverse Weibull dis-
tribution is a special case of the generalized extreme value distribution (Khan et al. 2008; Gusmao et
al. 2011).

Various modifications of the Weibull distribution, of interest in this research, is the flexible
Weibull distribution because it has many applications in applied statistics, life testing experiments,
clinical studies, and reliability analysis (Bebbington et al. 2009; El-Desouky et al. 2017). The Weibull
Fréchet (WFr) distribution was proposed by Afify et al. (2016), which is the Weibull family of the
Fréchet distribution. The WFr distribution is applied to two real data sets such as the breaking stress
of carbon fibres and the strengths of glass fibres, prove empirically its flexibility. The results show
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that the WFr distribution is the best model when it compares the Kumaraswamy Fréchet, exponenti-
ated Fréchet, beta Fréchet, gamma extended Fréchet, transmuted MarshallOlkin Fréchet, transmuted
Fréchet, MarshallOlkin Fréchet and Fréchet distributions (Afify et al. 2016).

Numerous existing continuous probability distributions have been extensively used for statistical
data modeling in several areas, such as engineering, actuarial, environmental, and medical sciences,
biological studies, demography, economics, finance, and insurance. However, in many applied areas
such as lifetime analysis, finance, and insurance, there is a clear need for extended forms of these
distributions Some attempts have been made to define new classes of distributions to extend well-
known families and at the same time provide great flexibility in data modeling in practice. Several
families are employed one or more parameters to generate new distributions have been proposed
in the literature. The quests for more flexible models to model complex data has led to several
new distributions that are obtained by generalizing the baseline distributions (Oguntunde et al. 2015;
Alizadeh et al. 2017).

Alizadeh et al. (2017) introduced the family of distributions, which is a generator of continu-
ous distributions with two extra parameters called the Gompertz-G (Go-G) family of distributions.
They also introduced sub-models, such as the Go-normal, Go-gamma, Go-beta, Go-log-logistic, Go-
Weibull, Go-Fréchet, and Go-exponentiated Weibull distributions. They investigated some probabil-
ity functions, such as moments, moment generating function, incomplete moments, quantile function,
etc. The model parameters are estimated by using the maximum likelihood estimation (MLE). Two
real data sets were fitted by the developed distributions. The Go-G family of distributions is an in-
teresting distribution because for many reasons, Alizadeh et al. (2017), for instance, (i) to make the
kurtosis more flexible compared to the baseline model, (ii) to produce a skewness for symmetrical
distributions, (iii) construct heavy-tailed distributions that are not longer tailed for modeling real data,
(iv) to generate distributions with symmetric, left-skewed, right-skewed, and reversed-J shaped, (v)
to define special models with all types of the hazard rate function, and (vi) to provide consistently
better fits than other generated models under the same baseline distribution. Many researchers pro-
posed Go-G distribution. Oguntunde et al. (2017) introduced Go-Lomax distribution with increasing,
decreasing, and constant failure rate, and applied it apply to waiting times data. Next, Koleoso et
al. (2019) proposed the three-parameter Go-Lindley distribution and it was applied to industrial data.
And Oguntunde et al. (2019) introduced the Go-Fréchet distribution and applied it to real data sets
about the strength of carbon fibers and civil engineering data. Recently, the Go-flexible Weibull is
proposed by Khaleel et al. (2020), and it was applied to real-life data sets and it was compared with
some distribution such as the Go-Weibull, Go-Burr type XII, Go-Lomax, etc.

In this study, we proposed a new flexible alternative distribution to apply the lifetime data called
the Gompertz - Weibull Fréchet distribution. The preliminaries to develop a new distribution are in-
troduced in Section 2. A new lifetime distribution development and its sub-models will be introduced
in Section 3. Some properties of the proposed distribution are discussed in Section 4. The model
parameter estimation is estimated by using the MLE will be illustrated in Section 5. Simulation
and application studies of the proposed distribution are illustrated in Sections 6 and 7, respectively.
Finally, the discussion and conclusion are presented.

2. Preliminaries
In this section, we introduced the probability function of the WFr distribution (Afify et al. 2016)
and the Go-G family of distribution (Alizadeh et al. 2017) as follows.

Definition 1 If X is the WFr random variable, then its cumulative distribution function (cdf) is
Gyr(@) = 1—exp{—wlexp((8/2)"] =1} "} 2 >0, (M
where parameters «, 3,7y, w > 0. Its probability density function (pdf) corresponding is

gWFr(x) = a’ywﬁa;y_(a+l) exp [_’Y(B/x)a} [1 — exp [_(B/x)a”*(“H»l)
X €xXp {_‘*’{QXP [(B/x)*] — 1}_W} . 2)
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Definition 2 If X be a Go-G random variable with the cdf
A _
Faval@) =1 exp {5 {111 Gasg) "} } o >0, ®
where G(x;&) is the cdf of the baseline distribution (see Alizadeh et al. (2017)) depending on a

parameter vector £ and two shape parameters A > 0 and # > 0. Consequently, the corresponding pdf
will be

foo (@) = M )1 — Gla: )] " exp {; fi-n- G(x;s>]9}} | @

Recently, a Go-G distribution called the Gompertz-flexible Weibull (Go-FW) distribution, which
was developed recently by Khaleel et al. (2020). Its cdf and pdf are

i — enlifC ) e
fGO»FW (x) = A <a 4 ;2> par—b/x [exp (76(”671)/1,)} -0

cesp {5 1= foww (o)) | ©

where \,0,a,b > 0

3. The Gompertz-Weibull Fréchet Distribution

In this section, a new distribution called Gompertz-Weibull Fréchet (Go-WFr) distribution, which
is a Go-G family of distributions, where the WFr is a baseline distribution will be introduced.

Theorem 1 If X be a Go-WFr random variable with a parameter vector of ® = (\, 0, «, 5,7, w),
denoted by X ~ Go-WFr(®), then its cdf and pdf respectively are

F(;0) = 1—exp{2{1—{exp{—w[exp«ﬁ/x)“)—11"*}}9}}, @

f(:0) = e exp [—y(B/x) ] {1 — exp [~ (/x)]} Y
<o { =5 {1 {em {-wtowiaror1 -1} "}
few {~wtep (827 - 117} ®)

where x > 0, and the parameters \, 0, o, 5,7y, w > 0.

Proof: By replacing the WFr cdf as in Equation (1) into Equation (3), we then obtain the cdf of the
Go-WFr distribution as in Equation (7). The pdf of X as in equation (8) is obtained by differentiating
the cdf of the Go-WFr distribution with respect to z. In fact, f(z; ®) as Equation (8) is defined as

pdf, which is satisfied the properties, f(z;®) > 0 for all x and / f(z;®)dz = 1, that can be
0

shown as following;
= exp(u

Let y = exp{;\ {1 - {exp{—w{exp [(B/z)%] -1}

w = 3 {1 {eo {~eteriemr -1 }}9} 7- gt“’,
t = exp{—wfexn[(8/2)" - 1)},

Q>
H,_/
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dy _dy du db e
de  du dt dzx PR

x exp [=y(B/2)"] {1 — exp [~ (8/2)]} 7t exp(u),

a—1

consequently, we obtain

/wa(x;@)dx = —exp{

= 1.

oo

| >

{1 — {exp {~wlexp [(8/2)°) - 1}_”}}_9}}

0

Some plots of the Go-WFr pdf are shown in Figure 1. The behavior of Go-WFr pdf has various
shapes; (i) The reversed J shape when v < 1, and (ii) the unimodal distribution when v > 1 which
consisting of left-skewed, right-skewed, and approximately symmetric shapes.
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Figure 1 Plots of the Go-WFr pdf with the specified parameters A, 6, a, 3, and w

Some special case of the WFr distribution are presented by Afify et al. (2016) as follows; (i)
for v = 1, the WFr distribution reduce to the exponential Fréchet (EFr) distribution, (ii) the WFr
distribution reduces to the Weibull inverse exponential (WIE) distribution when o« = 1, (iii) when
a = 2 the WFr distribution refers to Weibull inverse Rayleigh (WIR) distribution, (iv) for « = 1 and
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~v = 1, the WFr distribution reduce to the exponential inverse exponential (EIE) distribution, and (v)
the WFr distribution reduces to the exponential inverse Rayleigh (EIR) distribution.

According to Afify et al. (2016), we will have five sub-models of the Go-WFr distribution as
Table 1

Table 1 Sub-models of the Go-WFr distribution

Parameters Sub-models
A a v w
A0 a B 1 w the Gompertz-exponential Fréchet (Go-EF)
A0 1 B v w the Gompertz-Weibull inverse exponential (Go-WIE)
AO 2 B v w the Gompertz-Weibull inverse Rayleigh (Go-WIR)
A6 1 B 1 w the Gompertz-exponential inverse exponential (Go-EIE)
A6 2 B 1 w  the Gompertz-exponential inverse Rayleigh (Go-EIR)

4. Statistical Properties

In this section, we discuss some statistical properties of the proposed distribution including the
reliability function, hazard function, quantile function, moments, skewness, kurtosis, Lorenz curve,
and Bonferroni curve.

4.1. Reliability and hazard functions
If X ~ Go-WFr(®), then its reliability and hazard functions are respectively,

exp {—2 {1 — {exp {~wlexp[(8/2)°] - 1}”}}_9}} , ©

h#:0) = arwa D exp [—y(B/2) ] {1 — exp [~ (/) ]}
X {exp {—w{exp [(B)x)¥] — 1}—7}} . (10)

S(z; ©)

Some plots of Go-WFr hazard function and its sub-model hazard function are shown in Figure 2
(a). The Go-WFr distribution has various forms of hazard function, such as an increasing, decreasing,
and a unimodal hazard functions. In addition, the hazard function plots of sub-model of Go-WFr
distribution are shown in Figure 2 (b)-(f).

4.2. The quantile function

From the Go-WFr cdf as in equation (1), and let F/(z; ®) = U where U is a uniform random
variable on [0, 1], its quantile function is

Qr(v) = F Yu;0)

= fBllog 1+{ilog<{1zlog(1u)}

where A\, 0, «, B, v, w > 0.

-1/«

—1/y
>} ;D

M=
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Figure 2 Plots of the hazard rate function of the Go-WFr distribution and its sub-models
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4.3. Moments
From the probability weighted moment (PWM) of 7, 1), (see Alizadeh et al. 2017)

s} 1
T(r,k) :/ er(x)kg(z)dx:/ Qg(u)rukdu, (12)
—00 0

we have the moments of the Go-G distribution can be expressed as an infinite linear combination of
baseline PWM as follows;

= (k+ Dbrr17(p), (13)
k=0

where
1+k+1 . . 7
i —j0 A
e = ZZ (j>(k+1>(9)-
=0 j=0

From the WFr quantile function

—1/77) "V«

1

QG(U) :G_l(u;a56777w) :5{10g 1+ (_wlog(l—u)> ] } R

we have the moments of the Go-WFr as,
=2 (b + Dbeiat ), (14)
k=0

—r/a
where 7', ) = fol ﬂr{log [1 + (—log(1 — u)/w)fl/ﬁy] } u®du. Since it has no closed form but

we can use function in R software to compute all concern integration.

4.4. Skewness and Kurtosis

In this section, we consider the effects of the shape parameters on the skewness and kurtosis. It
can be defined based on quantile measures, the Bowley skewness (Alizadeh et al. 2017; Kenney and
Keeping 1962).

From quantile function in Equation (11), Qr (u; ®), we have the Bowley skewness of the Go-
WFr distriubiton as

Qr (3:©) +Qr (5:©) —2Qr (3;0)
Qr (3:©) —Qr (3:0) '

In addition, the Moors kurtosis (Alizadeh et al. 2017; Moors 1998) is considered as the kurtosis
of the Go-WFr family, i.e.,

B:

as)

Qr (£:0) - Qr (1:0) + Qr (1:0) - Qr (3:0)
Qr (30) — Qr (2:0) | (1o

Figure 3 displays some plots of the measures B and M for the Go-WFr distribution with the
different of the parameters.

7.0
_ 8
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Figure 3 Plots of the measures B and M for the Go-WFr distribution with the different values of the
parameters
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4.5. Lorenz and Bonferroni curves

The Lorenz curve is a way of showing the distribution of income (or wealth) within an economy.
It was developed by Lorenz in 1905 for describing wealth distribution. The Lorenz curve for a
cumulative income distribution of F'(x) with mean ( is defined by Aaberge (1993)

/F H)dt,0 < p <1,

where F~1(t) = Qr(t) is the inverse cdf or the quantile function of ¢. The Lorenz curve of the
Go-WFr distribution is

=2 [uef1s {- e (12 0) NN

where pp = Y 7 (k+ 1)br17(1,%) is the mean of the Go-WFr distribution. The corresponding
Bonferroni curve in (17) is

B =12 o< p<t (18)

Figure 4 shows plots of the Lorenz and Bonferroni curves of X ~ Go-WFr (), 6, «, 8,7, w).
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Figure 4 The Lorenz and Bonferroni curves of the Go-WFr distribution

Since it has no closed form but we can use function in R software to compute all concern inte-
gration.

5. Parameter Estimation

In this section, the proposed model parameters will be estimated by using the MLE. Let X =
(X1,Xs,...,X,) be independent and identically distributed the Go-WFr distribution with a param-
eter vector of ® = (\ 0,a,8,v,w). If & = (21,29,...,2,) is a random sample then its log-
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likelihood function is, £(z|®) = log L, (O; x),

L(z|®) = long(xi;Q):nloga—l—nlog’y—i—nlogw—(a—i—l)login
i=1 i=1

+log Z {exp[—(B/2)*]} = (v +1) logz {1 —exp[=(8/2:)"]}

+nalogf +logy {exp {—2 {1 — {exp {—w {exp [~ (8/21)°]

73} )} - otos 3 e {stespitar - 07}

To estimate the model parameters, we take the partial derivatives of the log-likelihood function
with respect to A, 8, «, 3, v, and w, and equate them to zero, i.e.,

Ol(2|®) _  9(|®) _ 9l(x]O)

Ve 0Ty 7Y
OUz|®) _, 0Uxl®) _ 01le) _
o7 oy 7w

We obtain the MLE of A, 0, «, 8,7, and w from the above equations of the partial derivatives
of log L with respect to each parameter by using the numerical method of Newton - Raphson type
procedure. Since of the difficulty and complexity of a system of nonlinear equations, we therefore
solve the system of equations by using the n/m function in R language R Core Team (2020).

6. Simulation study

In this section, we carry out simulation study for parameter estimation of the Go-WFr parame-
ters. The simulations are described as below:

(i) The sample sizes are taken as n = 30, 50, 100, 200, 300, 400, and 500 .

(ii) The data are generated from

-1/

1 —1/y
X; = < log 1+{llog<{1210g(1ui)] )} ,
w

where u; is the value of a uniform random variable on interval (0,1). (iii) The parameter values are
set as two cases, i.e., (a) A = 0.10, 0 = 0.55, « = 1.3, 8 = 2.6, v = 2.4, and w = 0.02; and (b)
A=0.06,60 =0.41, « = 1.45, 8 = 2.09, v = 2.18, and w = 0.01.

(iv) Each sample size is replicated 1,000 times.

(v) Formulas used for calculating MSE, mean, and bias of Ais given by

1000 1000
A 1 A 2 1 . o
MSE() = 1o (At _ )\) Amean = o5 > At and Bias = Anean — A
t=1 t=1

(vi). Step (v) is also repeated for the other parameters, i.e., 0, «, 3,7y, w.

The results are provided in Tables 2 and 3. It shows that the estimated value of each maximum
likelihood estimators is close to the true value of the parameters of the Go-WFr distribution. The MSE
values of each maximum likelihood estimators are decreasing when n increasing. The simulation
study that was conducted shows that the parameters of the Go-WFr distribution are stable; though
values for biasedness were generated, these values are small, indicating that the maximum likelihood
estimates of the Go-WFr distribution are not too far from the true parameter values; the absolute bias
and the mean square values also decreases as the sample size increases.
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Table 2 The mean and MSE values of the estimated values of parameters of the Go-WFr distribution;
(aA=0.10,0 =0.55,a=1.3,5=2.6,y=2.4,and w = 0.02

Sample sizes Parameters
(n) A 0 Q@ B8 y w
30 Mean 0.2096 0.8372 1.5670 2.4882 2.2860 0.0227
MSE 0.0964 15602 0.1746 2.7699 0.5383 0.0058
50 Mean 0.1669 1.0885 1.4310 24445 2.0381 0.0529
MSE 0.0634 1.4924 0.1482 2.4807 0.5283 0.0145
100 Mean 0.0905 0.8399 1.4017 2.3651 2.0482 0.0651
MSE 0.0189 0.9049 0.1051 1.8103 0.4378 0.0130
200 Mean 0.0779 0.7060 13876 2.3238 2.1100 0.0517
MSE 0.0070 04782 0.0755 1.1596 0.2970 0.0063
300 Mean 0.0754 0.6308 1.3799 23169 2.1542 0.0442
MSE 0.0047 0.2760 0.0575 0.7536 0.2155 0.0035
400 Mean 0.0729 0.5815 1.3808 2.3138 2.1857 0.0384
MSE 0.0031 0.1869 0.0462 0.4992 0.1583 0.0026
500 Mean 0.0717 0.5659 1.3766 23136 2.1885 0.0345
MSE 0.0027 0.1386 0.0415 0.4254 0.1180 0.0014

Table 3 The mean and MSE values of the estimated values of parameters of the Go-WFr distribution;
(b)A=0.06,0 =041, =145, 5 =2.09,v=2.18, and w = 0.01

Sample sizes Parameters
(n) A 0 « B8 y w
30 Mean 0.2000 1.1055 1.5670 2.5404 2.3153 0.0237
MSE 0.0899 1.4914 0.1451 2.3855 0.5806 0.0038
50 Mean 0.1916 09190 14216 24907 2.0566 0.0548
MSE 0.0883 1.1922 0.1414 2.6545 0.4565 0.0134
100 Mean 0.0809 0.8254 1.3526 2.3613 2.0197 0.0825
MSE 0.0143 0.8717 0.1215 1.7071 0.4043 0.0157
200 Mean 0.0758 0.8199 1.3387 2.4278 2.1179 0.0688
MSE 0.0067 0.7708 0.0981 1.1040 0.2965 0.0104
300 Mean 0.0754 0.7685 1.3056 24272 2.1511 0.0682
MSE 0.0063 0.6082 0.1011 1.0050 0.2416 0.0102
400 Mean 0.0721 0.7357 1.2924 24835 22153 0.0642
MSE 0.0035 0.6188 0.0955 0.8055 0.1898 0.0088
500 Mean 0.0787 0.6886 13046 25711 2.2915 0.0537
MSE 0.0036 0.4413 0.0840 0.7443 0.1632 0.0052
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Figure 5 Box plots of the estimated values (1,000 times) of the Go-WFr parameters; (a) A = 0.10,
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7. Applications

In this section, we present the flexibility of the proposed distribution by means of four real data
sets. We compare the fits of its sub-models, such as the Go-EF, Go-WIE, Go-WIR, Go-EIE, and
Go-EIR distributions. In addition, they are compared with the Go-FW distribution, which is a new
recently Go-G distribution.

Data I: This data set consists of the waiting times (in seconds), between 65 successive eruptions
of the Kiama Blowhole. These values were recorded with the aid of digital watch on July 12, 1998
by Jim Irish and recently has been referenced by Aryal et al. (2017). The data are as follows: 83, 51,
87, 60, 28, 95, 8, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 10, 82, 29, 8§, 60, 61, 61, 18, 169,
25,8,26,11,83,11,42,17, 14,9, 12, 15, 10, 18, 16, 29, 54,91, 8, 17, 55, 10, 35, 47, 77, 36, 17, 21,
36, 18, 40, 10, 7, 34, 27.

Data II: This dat set represents the lifetime’s data relating to relief times (in minutes) of 20
patients receiving an analgesic and reported by Gross and Clark (1975), see Shanker et al. (2015).
The data are as follows: 1.1,1.4,1.3,1.7,19,1.8,1.6,2.2,1.7,2.7,4.1,1.8,1.5,1.2, 1.4, 3, 1.7, 2.3,
1.6, 2.

Data I1I: This data set relates to the strength of carbon fibers tested under tension at gauge lengths
of 10 mm. The data has been recently reported and analyzed by Bi and Gui (2017) among others.
The observations are as follows: there are: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396,
2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659,
2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145,
3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501,
3.537,3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

Data IV: The data consists of 100 observations of breaking stress of carbon fibres (inGba) given
by Nichols and Padgett (2006). The data are as follows: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87,
1.47,4.42,3.11,2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96,
2.53,2.93,3.22,2.67,2.38, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 1.57, 3.65, 3.56, 3.15,
2.35,2.55,2.59,2.81,2.77,3.19,2.17,2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 1.25, 3.68,
1.84,1.59,0.81, 5.56, 1.73, 1.59, 2.00, 2.82, 1.89, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 2.05,
3.51,2.17, 1.69, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61,
2.12,2.88.

For the estimating the parameters of each distribution, we compare the Go-WFr model to the
other models, such as the Go-EFr, Go-WIE, Go-WIR, Go-EIE, Go-EIR, and Go-FW distributions by
using the minimum values of the criterion such as the AIC (Akaike information criterion) and the BIC
(Bayesian Information Criterion). A good model is the one that has minimum AIC or BIC among the
competed models. For goodness of fit tests, the Kolmogorov-Smirnov (K-S), Anderson-Darling (AD)
and Cramer-von Mises (CVM) tests are used. The smallest values of these statistics give the best fit
for the data. All analyses in this study were performed using R Software. The results are shown in
Tables 4 and 5 respectively. The histogram of the data set and the estimated pdfs for the competing
models, and the probability plot (P-P) of the best model are presented in Figures 7 to 10 .

The results of MLE of selected model parameters and some statistics of model fitting to these
real data sets are shown in Tables 4 and 5 respectively. The Go-WFr distribution gives the smallest
value of AIC, BIC, K-S, AD, and CVM among its sub-models and the Go-FWr model for all data
sets, i.e., these results indicate that the Go-WFr distribution an appropriate to fit these data sets(see
Figures 7 to 10). However, the third data set

From the application results, the Go-WFr distribution provides the best model when it compared
among its sub-model and the Go-FW distribution. However, the Go-WFr distribution has maybe
the efficiency that less than the other lifetime distributions. In this study, we show the illustrated to
apply the Go-WFr distribution with some real data set and compares it among five sub-model and the
recently Go-G distribution (Go-FW).
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Table 4 The maximum likelihood estimators of selected model parameters for the real data sets

Maximum likelihood estimators

Data - - - -
A 0 a 15} ¥ w a b
1 Go-WFr 0.1493 0.0206 0.1813 0.1689 5.5020 0.0703 - -
Go-EFr 0.0637 0.0708 0.7486 1.2670 - 0.7556 - -
Go-WIE 0.0437 0.0652 - 1.0541 0.7116 0.9688 - -
Go-WIR 0.0433 0.0929 - 1.0127 0.3310 0.9904 - -
Go-EIE  1.0000 0.0100 - 0.0500 - 0.0012 - -
Go-EIR  2.0000 0.0100 - 1.0000 - 0.0002 - -
Go-FW  0.3002 0.0012 - - - - 0.0209 0.1001
1I Go-WFr 0.5743 3.8527 4.2982 2.5422 0.0880 0.7277 - -
Go-EFr 0.2668 0.0010 1.8000 2.0000 - 6.1000 - -
Go-WIE 30.451 255.25 - 55.674 0.0402 0.0259 - -
Go-WIR 0.1191 0.0044 - 3.5646 0.4612 36.596 - -
Go-EIE  0.8000 0.0023 - 7.4000 - 57.556 - -
Go-EIR  1.0000 0.1000 - 0.0500 - 0.0006 - -
Go-FW  0.1677 0.0108 - - - - 0.8619 0.5933
111 Go-WFr 1.8432 19934 4.0577 3.7965 0.3530 0.7076 - -
Go-EFr 10.000 0.1348 4.9589 0.9237 - 0.0002 - -
Go-WIE 9.9850 0.0443 - 0.7664 4.4826 0.0002 - -
Go-WIR 3.4054 0.0949 - 6.0563 0.6889 3.3104 - -
Go-EIE  8.9999 0.0008 - 0.2053 - 0.0077 - -
Go-EIR  9.0000 0.0009 - 0.5012 - 0.0029 - -
Go-FW  0.0872 0.0605 - - - - 0.7239 0.8558
v Go-WFr 5.6057 0.0572 0.4072 0.2765 5.6135 0.0024 - -
Go-EFr 8.6502 59261 0.5180 39.538 - 4.0628 - -
Go-WIE 1.9995 0.3414 - 0.3676 2.3366 0.0041 - -
Go-WIR 14.092 0.7958 - 0.4571 1.3192 0.0005 - -
Go-EIE  2.0040 3.1430 - 3.2505 - 0.6026 - -
Go-EIR  0.5274 0.2373 - 0.7682 - 0.1093 - -
Go-FW  0.1546 0.0277 - - - - 0.6227 0.4557
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Figure 7 Plots of estimated pdf of the distributions, and the Go-WFr P-P plot of the real data sets
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Table 5 Some statistics of model fitting to the real data sets.

Data Distributions —loglL  AIC BIC AD CVM K-S

I Go-WFr 297.09 606.18 619.13 0.9212 0.1213 0.1073
Go-EFr 300.37 610.74 621.53 1.3646 0.1581 0.1532
Go-WIE 302.71 61542 62621 1.5175 0.1813 0.1612
Go-WIR 302.89 61578 626.57 1.6269 0.1983 0.1675
Go-EIE 302.68 61336 622.00 1.4343 0.1602 0.1587
Go-EIR 311.69 631.38 640.02 9.2274 1.3377 0.2692
Go-FW 33376 67552 684.16 5.4890 0.9233 0.2902

II Go-WFr 15.13 4226 4823 0.1394 0.0224 0.0941
Go-EFr 19.76 4952 5450 0.5531 0.0923 0.1498
Go-WIE 19.86 49.72 54770 09151 0.1479 0.1548
Go-WIR 19.64 49.28 5426 0.2410 0.0460 0.1317
Go-EIE 19.28 46.56  50.54 0.2381 0.0431 0.1139
Go-EIR 22.30 52.60  56.58 1.7489 0.3131 0.2550
Go-FW 25.1 59.02 63.00 2.0876 0.3854 0.2393

III Go-WFr 5594  123.88 136.74 0.2540 0.0457 0.0711
Go-EFr 62.12 13424 14496 1.0064 0.1030 0.1059
Go-WIE 62.33  134.66 145.38 2.2074 0.4213 0.1424
Go-WIR 58.38  126.76 137.48 0.3166 0.0563 0.0821
Go-EIE 1314 270.80 279.37 18519 3.9199 0.4808
Go-EIR 92.71 193.42 201.99 10.829 2.1481 0.3568
Go-FW 78.04  164.08 172.65 4.6276 0.7689 0.2442

v Go-WFr 14142 29484 31047 04257 0.0676 0.0642
Go-EFr 143.98 297.96 31099 0.5181 0.0715 0.0672
Go-WIE 144.08 298.16 311.19 0.5298 0.0779 0.0673
Go-WIR 144.69 299.38 312.41 0.5500 0.0759 0.0713
Go-EIE 147.15 302.30 31272 0.6645 0.1049 0.0734
Go-EIR 14795 303.90 31432 0.9686 0.1480 0.0783
Go-FW 156.56  321.12 331.54 3.9990 0.6141 0.1431

(a) Plots of the estimated pdf (b) Go-WFr P-P Plot
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Figure 8 Plots of estimated pdf of the distributions, and the Go-WFr P-P plot of Data II
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(a) Plots of the estimated pdf (b) Go-WFr P-P Plot
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Figure 9 Plots of estimated pdf of the distributions, and the Go-WFr P-P plot of Data III
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Figure 10 Plots of estimated pdf of the distributions, and the Go-WFr P-P plot of Data IV

8. Discussion and conclusions

The new distributions for modeling lifetimes data, the Gompertz-Weibull Fréchet (Go-WFr) dis-
tribution, is proposed. It has five sub-models, i.e., the Gompertz-exponential Fréchet, the Gompertz-
Weibull inverse exponential, the Gompertz-Weibull inverse Rayleigh, the Gompertz-exponential in-
verse exponential and the Gompertz-exponential inverse Rayleigh. Some statistical properties of the
proposed distribution are introduced including the reliability function, hazard function, Lorenz and
Bonferroni curves, quantile function, moments, skewness, and kurtosis. We estimate the model pa-
rameters by maximum likelihood. We present a simulation study to illustrate the performance of the
estimates. The simulation results indicate that the estimates are quite stable and, more important, are
close to the true values for the these sample sizes. Furthermore, as the sample size increases, the MSE
decreases as expected. The new distribution applied to four real data sets.

From the application results, the Go-WFr distribution provides the best model when it compared
among its sub-model and the Go-FW distribution. However, in other situations (any real lifetime
data), the Go-WFr distribution has maybe the efficiency that less than the other lifetime distributions.
Thus, in practice, we will analyze the goodness of fit test of data by using the distribution that more
than one model to compare the efficiency of the model or distribution. We hope that the proposed
model will attract wider applications in areas such as engineering, survival and lifetime data, meteo-
rology, hydrology, economics (income inequality) and others.
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