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Abstract
In this paper, a weighted distribution has been suggested based on inverse Nakagami distribution.

A detailed study of various statistical properties, as well as ordered statistics, have been discussed.
The parameters of the suggested distribution have been estimated using maximum likelihood and
method of moment estimation. Comparison of the performance of the estimators has been studied.
Finally, the proposed distribution has been fitted to a couple of real-life data sets.
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1. Introduction
With the growing dependency of human civilization on telecommunication, developing and de-

signing a robust system of communication and understanding the uncertainty related to network signal
is always a field of interest for network engineers as well as to statisticians. Nakagami after a series
of experiments provided a general formula to describe how the intensity of rapid fading is distributed,
see Nakagami (1960). However, the application of Nakagami-m distribution is not only limited to
describing multipath signal fading in a network system (Karagiannidis et al. 2007) it is also proved
to be useful in the field of image processing (Tsui et al. 2006), hydrology engineering (Sarkar et al.
2010), reliability studies (Kumar et al. 2017) and various other fields of human life. The distribution
is a special case to many standard distributions in the literature such as gamma, Rayleigh, Weibull,
chi-square and exponential, see Huang (2016).

Corresponding to a non-negative random variable X , the probability density function (pdf) of
Nakagami-m distribution (NKG) is given by

f(x) =
2

Γ(m)

(m
w

)m
x2m−1e−

m

w
x2

, (1)

where m > 0.5 is the shape parameter and w > 0 is the spread parameter.
Extending the application of a standard distribution which is already defined in the literature

through various algebraic operations is a common practice. One such operation is taking the inverse
of a distribution which provides better flexibility and wider applicability to the base distribution, see
Johnson et al. (1994). For example, the inverse of a standard normal or a uniform distribution
becomes bimodal, see Berk et al. (1996). Inverse chi-square (Bernardo and Smith 2008), inverse
gamma (Abid and Al-Hassany 2016; Revfeim 1991), inverse Weibull (Almalki and Nadarajah 2014)
and inverse Rayleigh (Malik and Ahmad 2018) are some other examples of an inverse distribution
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defined in the literature which are proved to be more flexible in terms of application than their parent
distribution.

Louzada et al. (2018) defined the inverse Nakagami (INK) distribution taking the algebraic
inverse of a Nakagami-m variate. The INK distribution proved to be a better fit in a system with high
failure rate. Corresponding to a non-negative random variable Y = 1/X where X is distributed as
(1), the pdf of INK can be written as

f(y) =
2

Γ(m)

(m
w

)m
y−2m−1e−

m

wy2 , (2)

which is a special case of inverse Rayleigh, inverse chi-square and inverse half-normal distribution,
see Louzada et al. (2018).

When observations are collected from naturally occurring phenomena, it may not always follow
the original distribution unless every observation is given an equal preference for being recorded. Rao
(1965) introduced weighted distribution with an arbitrary non-negative weight function Ω(y) which
may exceed unity to tackle such situation. If f(y) is the pdf of a non-negative random variable Y and
we consider a weight function Ω(y), then the weighted density function corresponding to f(y) can
be written as

g(y) =
Ω(y)f(y)

E[Ω(y)]
, (3)

where E[Ω(y)] =
∫
Ω(y)f(y)dy is the normalizing factor use to make the total probability unity.

Rao in his paper have given practical examples where Ω(y) = y and Ω(y) = yc are appropriate. A
weighted distribution withΩ(y) = yc is also known as size biased distribution of which length biased
(when Ω(y) = y) and area biased (when Ω(y) = y2) are special cases, see Patil and Rao (1978).
The study of Weighted distribution can provide a better understanding of a standard distribution by
expanding further flexibility to fit data better.

In this paper, a weighted distribution has been proposed based on inverse Nakagami distribution
taking the weight function as xa. The proposed distribution is named Weighted Inverse Nakagami
(WINK) distribution. The various statistical properties of the proposed WINK distribution have been
discussed such as rth order raw moments, corresponding central moments, mean, variance, skewness,
kurtosis, mode and Shannon entropy. Various reliability properties such as hazard rate, survival
functions and reverse hazard rate function are also discussed in detail. The expression for density and
distribution function of the kth ordered statistics are also provided.

Parameter estimation of the proposed WINK distribution has been discussed using maximum
likelihood and method of moment estimation. The maximum likelihood estimator of the spread
parameterw is found out to be an unbiased estimator. However, the maximum likelihood estimator for
the shape parameterm is found to be positively biased and hence a bias correction has been suggested.
The performance of both maximum likelihood and method of moment estimator are compared based
on simulated data. Finally,we fitted the proposed WINK distribution to two real-life data sets related
to the failure time of equipment. Our proposed WINK distribution performed well in describing a
system with a high failure rate within a short interval with a few extreme observations.

The paper is organized as follows. Section 2 introduces the properties of the proposed distribu-
tion. Section 3 discuss the estimation of the parameters of our suggested distribution. In Section 4
we have compared the performance of the estimators based on simulated data. Section 5 explores the
applicability of our proposed distribution in fitting real life data sets. Section 6 summarizes the study.
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2. Weighted Inverse Nakagami
Consider a random variable X which is distributed as (2) and a weight function Ω(x) = xa,

then from (3) we have the pdf of WINK distribution as

g(x) =
2

Γ
(
m− a

2

) (m
w

)m− a

2

xa−2m−1e−
m

wx2 , (4)

for all x > 0, m > a/2 and w > 0. Some important distributions can be obtained from (4) which
are discussed in Section 2.8.

Putting a = 1 and 2 in (4) we get respectively the density functions for the length biased inverse
Nakagami (LBINK) and area biased inversed Nakagami (ABINK) distributions

g1(x) =
2

Γ
(
m− 1

2

) (m
w

)m− 1

2

x−2me−
m

wx2 ,

g2(x) =
2

Γ(m− 1)

(m
w

)m−1
x1−2me−

m

wx2 .

The corresponding cumulative distribution function (CDF) of WINK distribution with parameter m
and w is obtained as

GX(x) = P [x ≤ X] =

∫ x

0
g(x)dx

=
Γ
(
m− a

2 ,
m
wx2

)
Γ
(
m− a

2

) ;x > 0 ,

(5)

where Γ(m,x) =
∫∞
x e−ttm−1dt is the upper incomplete gamma integral. (See Appendix A for

the complete derivation)
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Figure 1 Density of the WINK distribution for weight a = 1 and 2
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Figure 2 CDF of the WINK distribution for weight a = 1 and 2

2.1. Moments

The rth order raw moment of WINK distribution is given by

µ′r = E [xr] =

∫ ∞

0
xrg(x)dx

=
(m
w

) r

2 Γ
(
m− a+r

2

)
Γ
(
m− a

2

) . (6)

Replacing r = 1, 2, 3 and 4 in (6) we get the first four raw moments of WINK distributions as

Mean = µ′1 = E[x] =
(m
w

) 1

2 κ(1)

κ(0)
,

µ′2 = E
[
x2

]
=

(m
w

) κ(2)
κ(0)

, (7)

µ′3 = E
[
x3

]
=

(m
w

) 3

2 κ(3)

κ(0)
,

µ′4 = E
[
x4

]
=

(m
w

)2 κ(4)

κ(0)
, (8)

where, κ(r) = Γ
(
m− a+r

2

)
; r = 0, 1, 2, 3.
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Corresponding to (6), the central moments of WINK distribution are given by

Variance = µ2 =
(m
w

)[
κ(2)

κ(0)
−
κ2(1)

κ2(0)

]
,

µ3 =
(m
w

) 3

2

[
κ(3)

κ(0)
− 3

κ(1)κ(2)

κ2(0)
+ 2

κ3(1)

κ3(0)

]
,

µ4 =
(m
w

)2
[
κ(4)

κ(0)
− 4

κ(3)κ(1)

κ2(0)
+ 6

κ(2)κ(1)

κ3(0)
− 3

κ4(1)

κ4(0)

]
.

2.2. Skewness and Kurtosis
The skewness and kurtosis of WINK distribution are respectively found to be

β1 =

[
2κ3(1) + κ2(0)κ(3) − 3κ(0)κ(1)κ(2)

]2
[
κ(0)κ(2) − κ

(2)
(1)

]3 ,

β2 =

[
κ3(0)κ(4) − 4κ2(0)κ(1)κ(2) + 6κ(0)κ

2
(1)κ(2) − 3κ4(1)

]
[
κ(0)κ(2) − κ2(1)

]2 .

2.3. Generating functions
2.3.1 Moment generating function

To derive the moment generating function (MGF) of WINK distribution, Taylor’s expansion has
been used as follows

Mx(t) = E[etx] =

∫ ∞

0
etx f(x) dx

=

∫ ∞

0

(
1 + tx+

(tx)2

2!
+

(tx)3

3!

)
f(x) dx

=

∫ ∞

0

∞∑
r=0

trxr

r!
f(x) dx

=

∞∑
r=0

tr

r!

∫ ∞

0
xrf(x)dx

=

∞∑
r=0

tr

r!

(m
w

) r

2 Γ
(
m− a+r

2

)
Γ
(
m− a

2

) .

(9)

2.3.2 Characteristic function
Extending the concept of (9) we can derive the characteristic function of WINK distribution as

ΦX(t) =

∞∑
r=0

(it)r

r!

(m
w

) r

2 Γ
(
m− a+r

2

)
Γ
(
m− a

2

) .
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Figure 3 Survival function of the WINK distribution

2.4. Survival function
The survival function or reliability function gives the probability that an observation will not fail

until x and is given by

S(x) = 1−
Γ
(
m− a

2 ,
m
wx2

)
Γ
(
m− a

2

) =
γ
(
m− a

2 ,
m
wx2

)
Γ
(
m− a

2

) ,

where γ(m,x) =
∫ x
0 e

−ttm−1dt is the lower incomplete gamma integral.

2.5. Hazard function
The hazard function of WINK distribution is obtained as

h(x) =
2

γ
(
m− a

2 ,
m
wx2

) (m
w

)m− a

2

xa−2m−1e−
m

wx2 ,

and the corresponding reverse hazard rate function of WINK distribution is

φ(x) =
2

Γ
(
m− a

2 ,
m
wx2

) (m
w

)m− a

2

xa−2m−1e−
m

wx2 .

2.6. Mode
Consider the pdf of WINK in (4), taking logarithm we get

log[g(x)] = log(2)+
(
m− a

2

)
{log(m)−log(w)}+(a−2m−1) log(x)−

( m

wx2

)
. (10)

Differentiating (10) w.r.t. x and equating to zero, we get the mode of WINK distribution as
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Figure 4 Hazard function of the Wink distribution

x0 =

√
2m

(2m− a+ 1)w
.

Thus, our proposed distribution is uni-modal.

2.7. Shannon’s entropy
Entropy has an important role to play in the theory of information which gives a measure of

uncertainty associated with a random variable. Shannon’s entropy being the most popular among
them. The Shannon’s entropy of WINK distribution is obtained by solving the equation

H(x) = −E[log{g(x)}]

= − logC − (a− 2m− 1)E[log(x)] +
(m
w

)
E

(
1

X2

)
,

(11)

where C = 2
Γ(m− a

2 )

(
m
w

)m− a

2 .

Also,

E [log(x)] =

∫ ∞

0
log(x)f(x)dx

=
1

2
log

(m
w

)
.

(12)

And,

E

[
1

X2

]
=

(w
m

)(
m− a

2

)
. (13)
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Finally, using (12) and (13) in (11) we get the Shannon’s entropy as

H(x) =
(
m− a

2

)
+ log

[
Γ
(
m− a

2

)
2

(m
w

) 1

2

]
.

2.8. Related distributions
There are many standard distributions that are directly or indirectly related to our proposed

WINK distribution. These relationship with different distributions are useful to generate random
samples from our proposed WINK distribution and to compare efficiency of the distribution.

Theorem 1 If X is distributed as WINK variate with parameters m, w and a=0, then Y = 1
X is

distributed as Nakagami variate with scale parameter m and shape parameter w.

Proof: Let, Y = 1
X then the Jacobian of transformation is |J | = 1

Y 2 . Putting a = 0 in (4) and using
the substitution we get

f(y) =
2

Γ(m)

(m
w

)m

y2m−1e−
m
w y2

,

which is Nakagami distribution with scale parameter m and shape parameter w.

Theorem 2 If X is distributed as WINK variate with parameters m, w and a, then Y = 1
X2 is

distributed as gamma variate with shape parameter k = m− a

2
and rate parameter θ =

m

w
.

Proof: Let Y = 1
X2 then X = 1√

Y
and jacobian of transformation is |J | = 1

2y3/2 . Using the
substitution in (4) we get

f(y) =
1

Γ
(
m− a

2

) (m
w

)m− a
2

ym− a
2−1e

m
w y

=
1

Γ(k)
θk−1e−θy , (where k = m− a

2 and θ = m
w )

which is gamma distribution with shape parameters k = m− a
2 and rate parameter θ = m

w .

Theorem 3 If X is distributed as WINK variate with parameters m, w and a, then Y = X2 is
distributed as inverse gamma variate with shape parameter k = m− a

2
and scale parameter θ =

m

w
.

Proof: Let Y = X2 then X =
√
Y and Jacobian of transformation is |J | = 1

2
√
y . Using the

substitution in (4) we get

f(y) =
1

Γ
(
m− a

2

) (m
w

)m− a
2

y−m+ a
2−1e

m
wy

=
1

Γ(k)
θ−(k+1)e−θ/y , (where k = m− a

2 and θ = m
w )

which is inverse gamma distribution with shape parameters k = m− a
2 and rate parameter θ = m

w .

Theorem 4 If X is a WINK variate with parameters m = 2, w = 1 and a = 2, then Y =
λX2

2
is an

inverse exponential variate with parameter λ.
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Proof: Replacing m = 2, w = 1 and a = 2 in (4) we get

g(x) =
4

x3
e−2/x2

.

Let Y =
λX2

2
then X =

√
2y

λ
and Jacobian of transformation is |J | = 1√

2λy
. Using the substitu-

tion in the above expression we get

f(y) =
λ

y2
e−

λ
y ,

which is inverse exponential distribution with parameter λ.

Theorem 5 If X is a WINK variate with parameters m = p, w = 2p and a, then Y = X2 is an
inverse chi-square variate with η = p− a

2
degrees of freedom.

Proof: Replacing m = p, w = 2p in (4) we get

g(x) =
2

Γ
(
p− a

2

) (1

2

)p− a
2

xa−2p−1e−
1

2x2 .

Let Y = X2 then X =
√
Y and Jacobian of transformation is |J | = 1

2
√
y . Using the substitution in

the above expression we get

f(y) =
1

2(p−
a
2 ) Γ(p− a

2 )
y−(p− a

2 )−1e−1/2y

=
1

2η Γ(η)
y−η−1e−1/2y , (where η = p− a

2 )

which is inverse chi-square distribution with η = p− a
2 degrees of freedom.

Theorem 6 If X is a WINK variate with parameters m = 2, a = 2 and w, then Y = X is an inverse

Weibull variate with shape parameters 2 and scale parameter λ =
2

w
.

Proof: Replacing m = 2 and a = 2 in (4) we get

g(x) =
4

w x3
e−

2
wx2 .

Assuming Y = X , we get

f(y) =
4

w y3
e
− 2

wy2 (*)

=
2λ

x3
e−

λ
x2 , (where λ = 2

w )

which is inverse Weibull distribution with shape parameter 2 and scale parameter λ = 2
w .

Theorem 7 If X is a WINK variate with parameters m = 2, a = 2 and w, then Y = X is an inverse

Rayleigh variate with scale parameter θ =
2

w
.

Proof: Equation (*) can be rearranged as

f(y) =
2θ

x3
e−

θ
x2 , (where θ = 2

w )

which is inverse Rayleigh distribution with scale parameter θ = 2
w .
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2.9. Order statistics
Let, X1, X2, . . . , Xn be a random sample from (4). Let X(1) ≤ X(2) . . . ≤ X(k) . . . ≤ X(n) be

the corresponding ordered statistics. Then the probability density function and cumulative distribution
function of the kth order statistic X(k) (say) are given by

f(k)(x) =
n!

(k − 1)!(n− k)!
[F (x)]

k−1
[1− F (x)]

n−k
f(x)

=
n!

(k − 1)!(n− k)!

n−k∑
i=0

(−1)i
(
n− k

i

)
[F (x)]

k+i−1
f(x).

(14)

And

F(k)(x) =

n∑
j=k

(
n

j

)
[F (x)]

k−1
[1− F (x)]

n−k

=

n∑
j=k

n−k∑
i=0

(−1)i
(
n

j

)(
n− k

i

)
[F (x)]

i+j
.

(15)

Respectively, for k = 0, 1, 2, . . . , n. Corresponding to (4) and (5) and using (14) and (15), we
get the density of kth order statistic for WINK distribution as

f(k)(x) =

n−k∑
i=0

(−1)i
n!

i! (k − 1)! (n− k − i)!

2

Γ
(
m− a

2

) (m
w

)m− a
2

xa−2m−1e−
m

wx2

1− e−
m

wx2

∞∑
j=0

(
m

wx2

)m+j− a
2

Γ
(
m+ j − a

2 + 1
)
k+i−1

.

(16)

The corresponding distribution function is

F(k)(x) =

n∑
j=k

n−k∑
i=0

(−1)i
(
n

j

)(
n− k

i

)[
1− e−

m
wx2

∞∑
l=0

(
m

wx2

)m+l− a
2

Γ
(
m+ l − a

2 + 1
) ]i+j

. (17)

3. Inferential Procedures
Our proposed distribution has three parameters, the scale parameter m, the spread parameter w

and the weight parameter a. For simplicity, throughout the estimation of the parameters, we kept
the weight parameter fixed at 1, 2 and 3. The shape parameter and spread parameter have been
estimated using both method of moments (MME) and maximum likelihood estimation (MLE). Their
performance are then compared based on a simulated dataset.

3.1. Maximum likelihood estimation
The maximum likelihood estimation procedure is preferred over all other classical method of

statistical inference because of its asymptotic properties. Let, X1, X2, . . . , Xn be a random sample
from WINK (m,w, a). In such a case, the likelihood function corresponding to (4) is given by

L(x;m,w, a) =

[
2

Γ
(
m− a

2

)]n (m
w

)(m− a
2 )n

n∏
i=1

xa−2m−1
i e

−m
w

∑n
i=1

1

x2
i .
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The corresponding log likelihood function is

logL(x;m,w, a) = n log(2)− n log Γ
(
m− a

2

)
+ n

(
m− a

2

)
log

(m
w

)
+ (a− 2m− 1)

∑
log xi −

(m
w

)∑ 1

x2i
.

(18)

Differentiating (18) with respect to m and w and equating to zero, we get the likelihood equations as

∂

∂m
logL = 0,

log
(
m− a

2

)
− ψ

(
m− a

2

)
= log

[
1

n

∑
x−2
i

]
− 1

n

∑
log x−2

i , (19)

∂

∂w
logL = 0,

ŵ =
2m

n(2m− a)

∑ 1

x2i
, (20)

where ψ(r) = ∂
∂r log Γ(r) =

Γ′(r)
Γ(r) , is the digamma function.

Equation (20) requires knowledge of both m and a. We solve Equation (19) using numerical
method for particular values of a = 1, 2 and 3. The value of m is then replaced in (20) to get an
estimate of w. It can be shown that (20) gives an unbiased estimate of w.

Theorem 8 If X is a continuous random variable distributed as (4) with parametersm, w and a, then
the MLE of w given by (20) is an unbiased estimator of w.

Proof: Taking expectation to both sides of (20) we get

E(ŵ) = E

[
2m

n(2m− a)

n∑
i=0

1

x2i

]

=
2m

n(2m− a)

n∑
i=0

E

[
1

x2i

]

=
2m

n(2m− a)

n∑
i=0

E
[
x−2
i

]
. (21)

Now,

E
[
x−2
i

]
=

(m
w

)−1 Γ(m− a
2 + 1)

Γ(m− a
2 )

=
(w
m

)(
m− a

2

)
. (22)

Using (22) in (21) and simplifying we get the desired outcome.
The MLE estimates are asymptotically normally distributed with a joint bivariate normal distri-

bution (m̂, ŵ) ∼ N2

[
(m,w), 1

I(m,w)

]
for n → ∞ where I(m,w) is the Fisher information matrix

given by

I(m,w) = n

[
ψ1

(
m− a

2

)
− 2m+a

2m2
a

2mw
a

2mw
2m−a
2w2

]
, (23)

where ψ1(r) =
∂
∂rψ(r) is the trigamma function.
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3.2. Bias corrected MLE
Let logL be the log Likelihood function corresponding to a random sample of size n from a dis-

tribution with p-dimensional parameter vector Θ = [θ1, θ2, · · · , θp]. When the sample is independent
but not identically distributed, then the bias in estimating the parameters is given by, see Cox and
Snell (1968).

Bias
(
θ̂s

)
=

p∑
i=1

p∑
j=1

p∑
k=1

tsitjk [tij,k + 0.5tijk] +O
(
n−2

)
; s = 1, 2, . . . , p (24)

where

tij = E

[
∂2

∂θi∂θj
logL

]
,

tijk = E

[
∂3

∂θi∂θj∂θk
logL

]
,

tij,k = E

[
∂2

∂θi∂θj
logL · ∂

∂θk
logL

]
,

tkij =
∂

∂θk
tij ; i, j, k = 1, 2, . . . , p,

where tij is the (i, j)th element of the Fisher Information matrix (23) and tij is the (i, j)th element
of the variance-covariance matrix T .

In case the sample is not independent, than (24) can be rewritten as (Cordeiro and Klein 1994),

Bias
(
θ̂s

)
=

p∑
i=1

tsi
p∑

j=1

p∑
k=1

tjk [tij,k − 0.5tijk] +O
(
n−2

)
; s = 1, 2, . . . , p. (25)

Let a(k)ij = tkij − 0.5tijk and A =
[
A(1)

∣∣A(2)
∣∣ . . . |A(p)

]
where A(k) =

{
akij

}
; i, j, k = 1, 2, . . . , p.

Then (25) can be rewritten as

Bias
(
θ̂
)
= T−1A vec

(
T−1

)
.

And the bias corrected MLE is given by

θc = θ̂ − Bias
(
θ̂
)

= θ̂ − T−1A vec
(
T−1

)
.

Since the MLE of w is an unbiased estimate, therefore the correction is applied only on the MLE
of m. After some simplification, the bias corrected MLE (CMLE) for shape parameter m is obtained
as

mc =m̂−
2m̂

(
m̂3ψ2

(
m̂− a

2

)
+ m̂+ a

)
n
(
2m̂ψ1

(
m̂− a

2

)
− 2m̂− a

)2 . (26)
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3.3. Method of moments
Using (7) and (8) and assuming the weight parameter a = 1 , we have

µ
′

2 =
(m
w

) 1(
m− 3

2

) , (27)

µ
′

4 =
(m
w

)2 1(
m− 3

2

) (
m− 5

2

) . (28)

Solving (27) and (28) we get

m̂ =
µ

′

4

µ
′
4 − µ2

2

+
3

2
, (29)

and

ŵ =
1

µ
′
2

+
3

2

µ
′

4 − µ
′2
2

µ
′
2µ

′
4

. (30)

Substituting the population moments µ
′

2 and µ
′

4 by corresponding sample moments m2 and m4

in (29) and (30) we get the moment estimator of m and w for a = 1.
Similarly, for weight parameter a = 2 we have

m̂ =
µ

′

4

µ
′
4 − µ2

2

+ 2,

ŵ =
1

µ
′
2

+ 2
µ

′

4 − µ
′2
2

µ
′
2µ

′
4

.

And for weight parameter a = 3 we have

m̂ =
µ

′

4

µ
′
4 − µ2

2

+
5

2
,

ŵ =
1

µ
′
2

+
5

2

µ
′

4 − µ
′2
2

µ
′
2µ

′
4

.

In general, for any integer value of the weight parameter a = r(r = 1, 2, 3, . . .) we have

m̂ =
µ

′

4

µ
′
4 − µ2

2

+
r + 2

2
, (31)

ŵ =
1

µ
′
2

+
(r + 2)

2

µ
′

4 − µ
′2
2

µ
′
2µ

′
4

. (32)

Substituting the sample moments in (31) and (32) we get

m̂ =
m4

m4 −m2
2

+
r + 2

2
,

ŵ =
1

m2
+

(r + 2)

2

m4 −m2
2

m2m4
,

where m2 = 1
n

∑
x2 and m4 = 1

n

∑
x4 .
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4. Comparison of Estimators
In this section the performance of maximum likelihood estimator (MLE), corrected MLE (CMLE)

for m and moment estimator (MME) have been compared based on randomly generated 10000 sam-
ples of size n = 20, 50, 100 and 1,000 for different values of the parameters.

The performance of the estimators have been studied by computing their mean relative error
(MRE) and mean square error (MSE) as follows

MRE =
1

N

N∑
i=1

θ̂r,i
θ

; MSE =
1

N

N∑
i=1

(
θ̂r,j − θ

)2

,

where r = 1, 2 and N is the number of iterations.
Figures 5 to 16 present the comparison of MLE and MME estimators for particular values of the

parameters. Figures 17 and 18 present the MRE and MSE for MLE, CMLE and MME. MRE value
close to 1 indicates a good estimation whereas in case of MSE, a value close to zero is desirable.
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Figure 5 Comparison of MLE and MME for
sample size 20 and weight = 1
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Figure 6 Comparison of MLE and MME for
sample size 20 and weight = 2
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Figure 7 Comparison of MLE and MME for
sample size 20 and weight = 3
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Figure 8 Comparison of MLE and MME for
sample size 50 and weight = 1

Examining Figure 5 to 16 it can be inferred that the MLE performs consistently better than
MME. For weight a = 1 (LBINK) MME is highly bias compared to weight a = 2 and 3. Fur-
ther, MLE for the spread parameter w approaches normality much faster compare to MLE of shape
parameter m.
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Figure 9 Comparison of MLE and MME for
sample size 50 and weight = 2
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Figure 10 Comparison of MLE and MME for
sample size 50 and weight =3
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Figure 11 Comparison of MLE and MME for
sample size 100 and weight = 1
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Figure 12 Comparison of MLE and MME for
sample size 100 and weight = 2
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Figure 13 Comparison of MLE and MME for
sample size 100 and weight = 3
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Figure 14 Comparison of MLE and MME for
sample size 1000 and weight = 1

From Figures 17 and 18, we can infer that MLE of w is an unbiased estimator. Whereas, MLE
of m is positively biased and approaches the true value for higher sample sizes. In all different
combinations of parameter values, MLE is found out to be performing better than MME. However,
except for LBINK, the MME of w is also found to be unbiased.
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Figure 15 Comparison of MLE and MME for
sample size 1000 and weight = 2
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Figure 16 Comparison of MLE and MME for
sample size 1000 and weight = 3

50 100 150 200

0.
0

1.
0

2.
0

3.
0

m = 1 , w = 1 , a = 1

M
R

E

50 100 150 200

0.
0

1.
0

2.
0

3.
0

m = 5 , w = 2 , a = 2

M
R

E

50 100 150 200

0.
0

1.
0

2.
0

3.
0

m = 7 , w = 0.5 , a = 3

M
R

E

50 100 150 200

0.
0

1.
0

2.
0

3.
0

m = 10 , w = 0.1 , a = 4

M
R

E

MME of m
MME of w

MLE of m
MLE of w

CMLE of m

Figure 17 MRE related to the estimates of m
and w for different values of a and n.
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Figure 18 MSE related to the estimates of m
and w for different values of a and n.

5. Applications
In this section the proposed distribution has been fitted to two real life data sets taken from

Louzada et al. (2018). The first data set is related to failure of Harvester’s elevator and the second
data set is related to failure rate time of Harvester’s motor.

The outcomes were compared with inverse Nakagami (INK), Nakagami (NKG), weighted Nak-
agami (WNKG), Rayleigh (RAY), weighted gamma (WGAM) and weighted Rayleigh (WRAY)
distribution. To compare the performance of WINK distribution with these distributions, different
goodness-of-fit test such as Kolmogorov-Smirnov statistic (KS), Cramer-von Mises statistic (CVM)
and Anderson-Darling statistic (AD) as well as different discrimination criterion have been con-
structed under the log likelihood function. The discrimination criterion are

Akaike information criterion, AIC = −2l(θ̂, x) + 2k

Bayesian information criterion, BIC = −2l(θ̂, x) + log(n)k

Corrected Akaike information criterion, AICC = AIC +
2k(k + 1)

n− k − 1
Hannan-Quinn information criterion, HQIC = −2l(θ̂, x) + 2k log (log(n))
Consistent Akaike information criterion, CAIC = AIC + k log(n)− k,

where n = sample size, k = number of parameters to be estimated, l(θ̂, x) = maximized log likelihood
function.

Table 1 presents the first data set with high failure after a short interval related to Harvester’s
motor. Table 2 gives the estimated values of the parameters m and w for fixed values of weight
parameter a, their standard deviation and 95% confidence intervals. Tables 3 and 4 respectively give
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the goodness of fit criteria and goodness of fit statistics under different probability distributions for
the data set.

Similarly, Table 5 presents the second data set with high failure related to Harvester’s elevator.
Table 6 gives the estimated values of the parameters m and w for fixed values of weight parameter,
their standard deviation and 95% confidence intervals. Tables 7 and 8 respectively give the goodness
of fit criteria and goodness of fit statistics under different probability distributions for the data set.

Table 1 Harvester’s motor data

1 1 1 1 1 2 3 4 5 5 9 11 13 18 24 33
1 1 1 1 1 2 3 4 5 7 9 11 16 18 29 41
1 1 1 1 1 2 3 4 5 8 11 12 17 19 32 41
1 1 1 1 2 2 4 5 5 8 11 12 17 22 33 121

Table 2 MLE, standard deviation and 95% confidence interval for m and w for a = 1, 2, 3

a θ MLE SD 95% CI

1
mCorrected 0.8454 0.0478 0.7517 0.9392
w 0.8209 0.1892 0.4499 1.1918

2 mCorrected 1.3448 0.0478 1.2510 1.4385
w 1.3094 0.3129 0.6961 1.9228

3
mCorrected 1.8445 0.0478 1.7507 1.9382
w 1.7983 0.4378 0.9402 2.6563

Table 3 Results of AIC, BIC, AICC, HQIC & CAIC for different probability distributions considering
the Harvester’s motor data

Test WINK INK NKG WNKG RAY WGAM WRAY

AIC 414.10 421.92 448.38 450.38 614.51 432.99 448.38
BIC 418.41 426.23 452.70 456.86 616.67 439.46 452.70
AICC 414.29 422.11 448.58 450.78 614.57 433.39 448.58
HQIC 415.80 423.62 450.08 452.93 615.36 435.54 450.08
CAIC 420.41 428.23 454.70 459.86 617.67 442.46 454.70

Table 4 Goodness of fit statistics for different probability distribution considering Harvester’s motor
data. (Figures inside parentheses represent p-value)

Statistic WINK INK NKG WNKG RAY WGAM WRAY

KS 0.2011 (0.02) 0.2328 (0.02) 0.1854 (<0.01) 0.1851 (0.02) 0.5195 (<0.01) 0.1500 (0.10) 0.1853 (0.02)
CVM 0.4525 (0.05) 0.9505 (0.04) 0.6774 (<0.01) 0.6762 (0.01) 6.5123 (<0.01) 0.3182 (0.10) 0.6777 (0.01)
AD 3.1474 (0.02) 5.3098 (0.02) 3.9200 (<0.01) 3.9155 (0.01) 65.0167 (<0.01) 2.1162 (0.07) 3.9220 (0.01)
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Table 5 Harvester’s elevator data

1 1 1 1 1 2 3 4 7 9 12 21 25 61
1 1 1 1 2 2 3 5 7 11 17 23 31 122
1 1 1 1 2 2 4 6 7 11 17 23 56
1 1 1 1 2 3 4 7 9 11 17 24 61

Table 6 MLE, standard deviation and 95% confidence interval for m and w for a = 1, 2, 3

a θ MLE SD 95% CI

1 mCorrected 0.8471 0.0521 0.7449 0.9493
w 0.8811 0.2209 0.4481 1.3142

2 mCorrected 1.3575 0.0521 1.2553 1.4597
w 1.4060 0.3658 0.6891 2.1230

3 mCorrected 1.8563 0.0521 1.7541 1.9586
w 1.9317 0.5121 0.9279 2.9355

Table 7 Results of AIC, BIC, AICC, HQIC & CAIC for different probability distributions considering
the Harvester’s elevator data

Test WINK INK NKG WNKG RAY WGAM WRAY

AIC 345.86 352.46 384.90 386.90 558.21 373.31 384.90
BIC 349.84 354.45 388.88 392.87 560.20 379.28 388.88
AICC 346.10 352.54 385.14 387.38 558.29 373.79 385.14
HQIC 347.39 353.23 386.44 389.20 558.98 375.61 386.44
CAIC 351.84 355.45 390.88 395.87 561.20 382.28 390.88

Table 8 Goodness of fit statistics for different probability distribution considering Harvester’s elevator
data. (Figures inside parentheses represent p-value)

Statistic WINK INK NKG WNKG RAY WGAM WRAY

KS 0.2100 (0.03) 0.2338 (0.02) 0.1966 (<0.01) 0.1968 (0.02) 0.5664 (<0.01) 0.1710 (0.03) 0.1970 (0.03)
CVM 0.3233 (0.11) 0.6116 (0.10) 0.7770 (<0.01) 0.7758 (0.01) 6.7331 (<0.01) 0.4244 (0.06) 0.7765 (0.01)
AD 2.3741 (0.05) 3.6324 (0.05) 4.2266 (<0.01) 4.2216 (0.01) 72.7564 (<0.01) 2.5943 (0.03) 4.2244 (0.01)

6. Conclusion

In this article, the weighted inverse Nakagami (WINK) distribution has been proposed as a
generalization of inverse Nakagami distribution. The suggested distribution is positively skewed with
a reverse bathtub shape hazard function. The distribution can be used to explore data with a high
amount of recurrent observations within a small interval of duration with some observations far left
from the mode of the distribution. The various statistical properties of the proposed distribution such
as moments, mode, entropy and reliability properties have been discussed. Expressions for the density
and distribution function of the kth ordered statistic are also provided.

The parameters of the distribution have been estimated using both MLE and MME procedure
and it was found from a simulation study that under different combination of parameter values, the
maximum likelihood estimators performed better than moment estimators. Bias correction has been
applied to the MLE of shape parameter m to reduce the positive bias of the estimator. Finally, the
distribution has been fitted to two real-life data sets with a high failure rate. A system with high initial
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failure is very common in practice therefore the proposed distribution can be extended and applied in
a large number of practical situations.
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Appendix A: CDF of WINK Distribution
The cumulative distribution function (CDF) corresponding to (4) can be obtained as

GX(x) = P [x ≤ X] =

∫ x

0

g(t)dt

=
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wt2 = y, thus the Jacobian of transformation is
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where, Γ(m,x) =
∫∞
x
e−ttm−1dt is the upper incomplete gamma integral.
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Figure 19 PP and QQ plots under different probability distributions for Harvester’s motor data
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Figure 20 CDF and density plots under different probability distributions for Harvester’s motor data
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Figure 21 PP and QQ plots under different probability distributions for Harvester’s elevator data
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Figure 22 CDF and density plots under different probability distributions for Harvester’s elevator
data
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Figure 23 Survival function under different probability distributions
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