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Abstract

The concept of a class of equi-covariable composites (EC class) is introduced when the multi-
variate data are the outcomes of a repeated-measurement experiment as appears frequently in psy-
chometric, biometric or social studies. Along with interesting properties of such class, the distinction
between the generator (generating the EC class) and the best linear unbiased estimator (BLUE), in-
troduced by C.R. Rao, is pointed out. Surprisingly, when the average of the variables belongs to all
EC class the covariance matrix (33) of the associated variables should maintain equal row (or column)
sums (ERS). Possibility of an extended EC class by sequential augmentation of new variables could
arise when 32 would have “stair-case” ERS structure which maintains ERS property right from first
variable through the last variable.

Keywords: Linear composite, equi-covariability, equal-row-sum matrix, bipolar covariance matrix

1. Introduction

Sometimes the measuring variables in a set refer to the responses collected on the same ex-
perimental unit at successive times or under a variety of experimental conditions (experimentations)
recorded at the same scale of measurement. This strategy is called repeated-measurement experi-
ment. A popular repeated-measure is the crossover study in which subjects receive a sequence of
different treatments (or exposures). Repeated measurement experiments are pretty common in many
scientific disciplines, for example psychology, pharmaceutical science, and health-care science. Good
sources of theoretical details are Crowder & Hand (1990); Laird et al. (1992); Lindsey (1993); Everitt
(1995). In order to analyse repeated measures data, most of the time the bundle of measuring vari-
ables are combined or pooled to suitably construct what is termed composite for subsequent uses.
Using composite variables controls type I error rate (e.g., when a sample size is not sufficient for
testing multiple comparisons), addresses multicollinearity for regression analysis, or organizing mul-
tiple highly correlated variables into more digestible interpretation. The composite, constructed as a
linear combination of variables, is named as linear composite. The resulting linear composite vari-
able corresponds to the latent dimension in the data that best summarize the overall structure of the
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original variables (Song et al. 2013). Carey (1998) defines linear composites as an inevitable out-
come of linear transformation. He studies some important properties of linear composites. Further,
a more general formulation is constructed on matrix linear component as well. Still by far statistical
literature lacks decent amount of discussions in this issue.

The variability of the composite variable depends on the individual variances and the covariances
of the original variables. On the basis of the variance pattern of the variables, this linear composite
exhibits interesting algebraic results. If the variables are such that they have equal variances and
equal covariances creating an intraclass structure in their covariance matrix, the sum (or average)
of those variables, as a (linear) composite, would satisfy the special criterion of equal covariability
of the composite with all the variables. However, on the converse, there exist situations where an
equi-covariable composite may be the sum (or average) for non-intraclass covariance matrix of the
variables.

The present paper attributes in searching a class of equi-covariable composites (EC) and the
characterization of covariance matrix under equi-covariable concept. Depending upon the covariance
matrix, there exists a member belonging to such class, which could generate all other co-members
and hence is termed generator of the class. It possesses the largest equal covariability with all other
measuring variables. This paper is organized as follows. Section 2 discusses the construction of equi-
covariable class followed by some propositions enabling the sum(or average) of the variables as the
generator of equi-covariable composite class when the row totals (or column totals) of the covariance
matrix are all equal (ERS). An exact statistical test for the tenability of ERS structure of a covariance
matrix is formulated in Section 3.

The possibility of pooling two EC classes to create a new EC class (Pooled EC class) is explored
in Section 4 while Section 5 delves into the possibility of equi-covariable pooling on ERS covariance
structure. Creation of extended EC class through the subsequent inclusion (augmentation) of extra
variables (being measured on the same measuring scale) is studied in Section 6. Section 7 docu-
ments the evolution of “staircase” ERS covariance structure maintaining certain interesting features
followed by an illustrative example in Section 8. Finally some concluding remarks are placed in
Section 9.

2. Equi-covariable Composite

Definition 1 For a vector of constants -y, a linear composite Y = ~4’X is said to have the prop-
erty of equi-covariability with respect to a random vector X = (X1, Xo, ..., X,,)" if cov(Y, X;) =
cov(Y, Xz) = ... =cov(Y, Xp).

2.1. Construction

Let 3 = Covariance matrix of X. Cov(X;,Y) = e;X~ where e; = (0,0,...,1,...,0) with
1 appearing at the i-th position, i = 1(1)p. Let g be the common covariance between Y and any
component variable [Maiti 2016]. Then e;E'y = g for all ¢ = 1(1)p. Combining them, a system of
non-homogeneous linear equations is obtained as

Yy =gJ,.

Under the assumption of positive definiteness of 3, the solution to the above system is v =
g¥~1J, where J,, is the p-component vector of ones. Consequently,



Saran Ishika Maiti 723

Y =g(27'J,)X =¢J,27'X.

In respect of X, a class of equi-covariable composites (EC) of X may be demarcated with
members being identifiable by the scalar g(> 0).

2.2. Searching of largest equi-covariable composite

As covariance does not numerically exceed the larger variance of the two concerned variables,
the present investigation confines to those composites that would satisfy Cov(v'X, X;) < V(v'X)
forallj =1,2,...,p. Let us term the “largest” equi-covariable composite (LEC) when a composite
is such that Cov(~'X, X ) attains uppermost limit V' (v'X) for all j = 1,2,...,p. In other words,
LEC is the member belonging to EC class when g is chosen as the variance of Y. On fixing ¢ =
Var[(gX~'J,)'X], the “optimum” value of g would be (J;,%~'J,)~" providing the expression of
LEC as

J/ 271
L X (1)

Yo= 27X
T yx-y,

Yo may be otherwise looked upon as the “generator” generating the class as Y = ¢g*Y; where
gt = g(J;E_lJp),O <g* <1

Proposition 1 Based on the covariance matrix X of a random vector X(p x 1), a class of equi-

—1
Z Jo  the

covariable composites(EC) may be generated by the generator Yy = 'yé)X where vy = 7 5-15-»
P P

typical member belonging to the family possessing ¥ = gO*yE)X, 0 < go £ 1. Any member (Y') of
EC class has the variance V(Y) < V(Yp).

Proposition 2 If the equi-covariable loading vector is proportional to certain principal component
loading vector, then 3 would have equal row (or column) sums.

Proof: Let ﬁ/X be a principal component of X such that 33 = A3 (A > 0). According to the
given condition, for any equivariable composite ¥ = ’y/X,

YxB=3X,xB=T,xEB=J,x\=PBx],=32],xJ,

which implies that row totals of X are all equal.

2.3. Average as a generator

If the entries of 3 are such that they maintain equal-row-sums(ERS), then due to Proposition
2,23, < J, as well as £¥71J,, oc J,. Consequently, the generator/LEC Y, [vide Equation (1)]
simplifies to average of the components of X(X). For instance, when 3 possesses an intra-class
structure, Yj is no other than X.

2.4. BLUE and LEC

In the perspective of estimating the same parameter unbiasedly by a number of competent un-
biased estimators, the linear combination( composite) having the least variance is termed best linear
unbiased estimator (BLUE). BLUE relates to unbiased estimator while LEC to equi-covariability.
Eventually, the expression in Equation (1) of LEC would be identical to BLUE when expectations of
the component variables are all equal.
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Noting that V(Yy) = (J,571J,)~" and Var(X) = (J,%J,)/p? by the extended Cauchy-
Schwarz’s inequality (Johnson 1996, Chapter 2)

Var(X) > Var(Yp) . (2)

The equality in Equation (2) holds when 3 is ERS. Thus unless X satisfies ERS condition, Y}
would not be reducible to X. Conversely, unless the expectations of the component variables are all
equal, an LEC X would no longer become BLUE.

Proposition 3 (i) Correlation between any two members belonging to a EC class is unity.

(ii) Correlation between any member of a EC and X (average) is

p
V@232 713,)
Its maximum value will be unity if and only if X is ERS providing X as the generator.

Recalling Proposition 2, Proposition 3(ii) has an implication that for a ERS X, \/ﬁy is not only
a principal component but also a member of the EC class generated by X.

3. A Statistical Test for the Tenability of ERS X

A statistical test procedure may be forwarded to test the tenability of ERS structure of 3 under
the assumption of multinormality of the random vector X (p x 1). Let S be the data covariance matrix
based on the (p x n) data set comprising the measurement vectors of n individuals.

As J/./p is necessarily an eigenvector of any ERS matrix, the tenability of ERS structure of 3
may be assured equivalently by the tenability of J/,/p as an eigenvector of X. Following the testing
procedure as provided by Mallows 1961, an F-statistic is computed using the expression given below.

=

If the computed value of F is less than F,,(p — 1,n — p), the tenability of a ERS X is asserted at

’ " g1
CLACLR AN o

100a% level of significance.

Consequently, the common row total (7p) of ERS 3 may be estimated by noticing that the
variable (J/ \/]3)/ X is distributed as univariate normal with variance 7j. Considering the joint distri-
bution of n such variables in respect of n individuals, the maximum likelihood estimate (MLE) of T
may be obtained as

n
T() = BZ(.’)Z‘—E‘)27
[

where &; is the average score obtained by i*” individual while Z is the overall averaged score (% Yo T).
Noticeably, the least squares estimate of Tj based on p row totals of S would be found as ]% > g > on Sgh
which is algebraically equal to iy

The above-discussed test procedure can be devised as a handy tool in testing of circumplex model
in psychology. In circumplex model, the variables do not clump orthogonally along the two axes.
Rather they group in equal spacings around the circumference of a circle (Guttman 1954; Gurtman
et al. 2003). Notably, a circumplex covariance matrix is ERS. Statistical tests for the circumplex
covariance structure may be available elsewhere (Nagar et al. 1988). But it might be wise to test on
ERS structure before testing on more complex test of circumplex structure.
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4. Equi-covariable Pooling of Equi-covariable Classes

Let Vi = g1(217'J,)' XM g1 > 0and Vs = go(X5,'J,,)' X?), go > 0 be the typical members
belonging to two EC classes based on two random vectors X! (p x 1) and X(?) (¢ x 1) respectively.
3;; =Covariance matrix (X(?),4 = 1,2. Our point of interest is to investigate if it is possible to
construct a new EC class by pooling these two EC classes. To be more precise, is it possible to get
a EC class based on (p + ¢)-component random vector X = (X(l)/ X(z)/)’, whose typical member
Y may be expressed,by definition, as Y = ¢(X7'J,4,)'X,g > 0? To answer let us consider the
partitioned form of X along with two forms of its inverse as follows:

5 _ Y1 X
o1 Xoo )

51 DIPRNED SR HPD MDD SPRES YR P v

= 1 —1 -1

_222.1221211 222‘1

[ Zhk ~SLB1 %,

*22_2122121_11.2 22_21 + 22_2122121_11.221222_21 ,
where £11.0 = 11 — 21285, o1 and Boz 1 = Bop — L1 B77' 1o

Keeping in view the expressions of Y7, Y5 and Y, £71J,,, may be reducible to

DI 5,=0
( 111 p )under Condition A: X1, >
D3P |
22 Jq

=0, N —_—
0 under Condition B: 39;37,°J, = J,
0
and _y under Condition C: X5 E;;J q=Jp-
3o Jg

A class of pooled equi-covariable composites (termed PEC henceforth) may be obtainable by
choosing g1 = g2(= g, say), ie., Y = g(Z71J,4,)X = g(Z'T,) XD 4 g(£55' T, )’ XD, The
generator generating the PEC class is given by

3B XW 4 35X @)

Yo=——F= T~ “
30T, + 3,253,

with variances under conditions A,B and C respectively as

Vara(Yo) = (3,207, +3,55,3,)7"
I 1I3+33 21

Varg(vy) = et et
(J,2dp +J,355J,)

33,5013, + 3,55, 0,
(O 155yt FECH 15 7 MRS

Varc(Yo) =

Remark 1 If both the conditions B and C hold simultaneously, then 211_221_11.] p» =0, Egg_lEgzlJ ¢ =

0and X diag(E;ll, —355 )Jp+q = 0 indicating the singularities of 311 2, 3921 and 2.
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5. Possibility of Equi-covariable Pooling on ERS Covariance Structures

For ERS ¥1; and ERS X5,
EHJp = ClJp, EQQJq = CQJq701 > 0,co > 0.

Consequently, EC classes formed by X() and X(?) would have the generators as their com-
ponent averages Y(l) and y(z). Clearly, using Equation (4) the corresponding PEC class may be
generated by the generator as below

) )

pxM axC
Yo="—F—7
ot

Subsequently, the variances of Y{, under condition A, B and C turn to be the following.

Condition A: Under X5 = 0 with corresponding variance of the generator Yy,
-1
Vara(Yo) = (L + i) .

C1 C2

Condition B: Under 33;J,, = c;J, with corresponding variance of the generator Yy,

e
Va/rB (YO) = W
Condition C: Under ¥1>J,; = c2J,, with corresponding variance of the generator Yy,
3L +1L
Varc(}/o) = ﬁ .
o T o
It may be noted that 3 would have ERS property if ¢; = ¢, in which case corresponding Y
<~ @
would be equal to %

5.1. A demonstration on bi-polar covariance matrix

A (p + ¢)- component random vector X is said to be bipolar if both the 1st p-component sub-
vector X1 and 2nd q-component subvector X (?) have intraclass covariance structures and any com-
ponent of X(1) has with any component of X(?) the same covariance (Roy 1954). The dispersion
matrix is thus expressed in the following partitioned form.

S RG] " f)JpJp’ | 3,3, ,
praxpta JJ, | (d— ), +ed J,
Its (p + q) eigenvalues are given by,
1 J— —
A, Ay = 5[(a+p—1b+d+q7 le) + \/(aerf 1b—d —q—1e)? + 4pgqc?],
)\3:)\4 = ...:)\p+1:afbandAp+2:/\p+3:...:>\p+q:d76.

To ensure positive definiteness of 3311, 399 and 32, all the above eigenvalues are to be positive
provided that five parameters a,b,c,d and e would maintain the following inequalities.

a>0,d>0, b<a,e<d, at+(p—1)b> 0, d+(¢—1)e > 0 and (a+p — 1b)(d+q — 1e) > pqc?.

Assuming positive definiteness of 317 and X99, the constructable EC classes by X® and X@
would have typical members respectively as follows:
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J »oix® _
YI =01 p, 11,1 ng(1)7
x0T,
1,35, X® 2)
Y = gog——= =92 ,
3,35,

where g1 > 0, g5 > 0. It is to be pointed out that due to intraclass structures of 3317 and 3,9, both of
them have ERS property.

For possible creation of a new EC formable by pooling the members of the above-mentioned
EC classes, let us first choose g1 = g2 = g. Next, let us pay attention to the conditions A ,B and
C. For condition A to hold, X*) and X( should be uncorrelated so as to 1m§)1y ¢ = 0 in which
case the desired PEC class would have the typical member Y = g(X W X% with Vara(Y) =

g2 [aﬂ;) 16 % ,g > 0. Or, equivalently, Y = ¢g*Yy, g* € (0,1), the generator being

(1) +(2)
X X
Y, = Wi + w2 and Vara(Yy) = (wy +w2) ™t
w1 + w2

q
+71b and wy = T

In the case of uncorrelated X1 and X(Q), ¢ # 0, condition B or C is to be checked for the
d+qg—1le at+p—1b
q p :

where wy =

construction of PEC class. Condition B requires ¢ = while condition C requires ¢ =

Varg(Yp) and Varc(Yp) may be derived easily.

Remark 2 If both the conditions B and C hold together, a, b and ¢ would become restricted by the
equations - -
a+p—1b d+q—1le
P g
leading to a singular matrix 3 with rank p + ¢ — 1 due to Ao = 0. However, PEC class may be

(
obtained by Y; = X)i having Vargc(Yy) = ¢(> 0). Under such set-up, canonical correlation

between X1 and X(Q) would be unity with corresponding canonical composite pairs (Y(l) , Y(Q)).

6. Extension of EC Class by Augmentation

It was noted that the PEC class, while pooling two EC classes, requires the fulfillment of any
one of the three conditions A, B and C which are too restrictive. It is rather possible to exercise less
restrictive condition when one EC class of (p — 1) variables (X1, X5, ..., Xp_1) could be extended
to a new EC class by appending a new random variable X,.

Let 3,,_1(> 0) and X,(> 0) be the covariance matrices of (X7, Xs,...,X,_1) and
(X1, X2, ..., Xp—1,Xp) respectively. If both of them are ERS with row totals g,,—1 and g,, then

5, = apdp-1 (5)
P ap‘]p—l gp — (p—1)ay

where a, = g, — gp—1. To ensure non-singularity (positive definiteness) of X, g, # % Ip—1-
The generators of EC classes corresponding to X, _; and X, are just the averages (Y(pfl) and Y(p)

respectively) of the variables on which they are based.
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7. Staircase ERS Structure

An interesting extension of ERS structure can be presented through sequential augmentation
of variables and thus obtaining stepwise ERS structure. Let us consider a sequence of random
variables by augmentation as X1, (X1, X2), (X1, X2, X3),..., (X1, Xo,..., X,_1) all maintaining
ERS property in their covariance matrices. Then, in effect, the covariance matrix of

(X1,X2,...,Xp) may have a structure formable by a maximum p number of functionally indepen-
dent parameters, say a1, as, ..., a, as follows:
aq a9 as . ap—1 ap
a9 go — Qs as . ap—1 ap
as as gs — 2as ... ap_1 ap
Y= ;. (0
Ap—1  QAp—1 ap—1 . Gp—1—(P—2)ap_1 ap
ap ap ap e ap gp — (p—D)a,

where g; = a1 +as+...4+a;,j =2,...,pand g1 = a1 (> 0). Subscriptized by p, 3, (= 3) would
have the partitioned form as furnished in Equation (5). Notationally, j variables (X1, X», ..., X;)
would have ERS covariance matrix X; which is identifiable by j basic parameters (a1, as, ..., a;)
with row totals g; = a1 + ...+ a;j,j7 = 2(1)pand g1 = a1(> 0).

The structure of 32 as shown in Equation (6) is named as staircase ERS structure.

7.1. Features of Staircase ERS Structure
i) If the diagonal entries in X, [vide Equation (6)] be equal, then off-diagonal are also equal and
thus the resulting 3, would have an intraclass covariance structure.

ii) X, belongs to the spectrally decomposable class in the sense that there exists an orthogonal
matrix (P) such that P’ 3,P = D,, a diagonal matrix with eigenvalues as its diagonal elements
where the elements of P are free from the elements of 3, (Mukherjee, 1981). For Equation (6),
required P is the famous Helmert’s matrix given by

P =PoDg (N
where

1 -1 0 0 0
1 1 -2 0 0

, 1 1 1 -3 0

Po = .

1 1 1 —(p—-1)
1 1 1 1 ... 1

1 1

and Dy = diag(%, %, T D \%) The eigenvalues, i.e. the diagonal entries of

=

D, are given by
A=A, 0) = Poa.

Conversely, a = (ay,as,. .., ap)/ = POD%A. Thus there is one-to-one and unique correspon-
dence between A and a.
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In explicit form, the eigenvalues are given by

A o= @9 —ajn), j=1,2,...,p—1
)\p — pa(l’),
where @/) denotes the average of a1, as, . . ., a;, j = 2(1)pand @) = a; (> 0).
iii) If the eigenvalues of 33, are denoted by AT, A3, ..., A;_5 and Aj_, then those of 3, would

be given by

=N =1,2,...,p—2
Ap—1 =1 —(p—1)ay
Ap = A1 +ap.

Thus the parameter a,, is involved in the last two eigenvalues only.

iv) For a positive definite 3, A;’s are all positive due to which the parameters
ai,as, ..., a, must maintain the following inequalities.

as <E(1),a3 <a?, ay <E(3),...,ap <aP=b,

And thus a1 = mazi1<;<pa;.

7.2. Step-average vector in Staircase ERS Structure

Let us assume that p random variables are subscriptized in accordance with the sequence of p

experimentations on the same experimental unit. If the vector X = (X1, Xo,..., X p)/ maintains the
staircase ERS covariance structure 3,,, the following results may be forwarded.
EC class in respect of a j-component subvector (X1, Xs,..., X j)/ may be generated by j-step
average
XY (X Xed X)) G=1,2 . p
1% (Y(”) = (J;.Z:J-Jj)/j2 =a), j=1,2,....p
) 5+ 1 ' ,
Cov (X, XV™) = - 2,0, + (e G2t ta
. JG+t) I e+ ajez+ ..o+ aj)
— a(jJFt)
-V (Y(ﬁt))
N =(+t)
Correlation (X(J),X(ﬁ—t)) = CCT’ j=11)p, t=1(1)(p — j),
a

Clearly, @) is a decreasing function in respect of j. Thus the step-average vector
(Y(l) X 2), X p))/ would have covariance matrix
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a® g® g g
a?® g & . g
A — a® g® g . g

a® g g g O

7.3. A Statistical Test for the Tenability of Staircase ERS 3
Applying a nonsingular transformation on the step-average vector as

/ — (1) —(2 [— ’
Y =M%, Y =@V x?, L 3, 8)

where U, = ((6i5))pxp Withu;; = land u;; = —1forj =i+1,i=1,2,...,p—1, corresponding
covariance matrix reduces to a diagonal matrix, i.e.

UpAU;, = diag[@® —a®), (@?® —a®),..., @?H —a®),a®

assuring that Y7, Y, ..., Y}, are uncorrelated variables.

Under multi-normal set-up on X, 1, the testing of null hypothesis of Staircase ERS 33 , pre-
sented in Equation (6) is equivalent to testing the stochastic independence of the components of Y
(vide Equation (8)). It may be shown that

Y = D2P,X,

where Py and D are as defined in (7).
The test procedure is based on likelihood ratio criterion on defining

A ( ID2P,SP,D| )
I7_, (D§P,SPoD});;

_( [PLSPy| ) )
I_, (PoSPy);;

where S is the sample covariance matrix based on a random sample of size n and where (P,SP) i

denotes the jth diagonal element of PE)SPO. —2log.A is asymptotically distributed as Xf)(p_l) /2
Instead of —2log. A, Bartlett’s modified expression —2[1 — (2p + 11)/6nl]log.A may be used for
further accuracy. The following remark lights on the number of possibilities of staircase ERS.

Remark 3 If all the variables are allowed to be shuffled, any permutation
(Xiy, Xigy ooy X4y ), (1,02, ..y ig) € (1,2,...,p),k = 2,3,...,p may have a candidature for a
staircase ERS structure, leaving the situation awesome.

8. An Illustrative Example

A fascinating example on Wechsler Preschool data which is commonly used as a study material
in undergrad psychology curriculum is furnished here to check the viability of ERS covariance struc-
ture and staircase ERS covariance structure. The data describes the age related trends in the pattern



Saran Ishika Maiti 731

of mental ability of the children between 4 and 6 years of age in respect of Wechsler Preschool and
Primary Scales (WPPSI), as processed and recorded in the WPPSI Manual (Wechsler 1967). For each
age level, 100 boys and 100 girls were administered as many as 11 tests amongst which 8 tests were
finally directed to Wechsler Intelligence Scale for Children (WISC). Here, We consider the sample
covariance matrix based on the scores of those 8 tests only for 4-year age level (reproduced from
Mukherjee (1981, Table 3, p. 221)).

Table 1 Covariances/correlations among eight tests of WPPSI

Test No. 1 2 3 4 5 6 7 8
1. Vocabulary 9.000 0.5100 0.4100 0.3800 0.3800 0.3100 0.4500 0.5700
2. Sentences 4743 9.610 0.5200 0.3600 0.3400 0.3300 0.3500 0.5300
3. Arithmetic 3813 4997 9.610 0.4600 0.4400 0.3900 0.4200 0.5200
4. Block design 3534 3460 4421 9.610 0.3500 0.4300 0.4200 0.3200
5. Geometrical design 3.534 3267 4.096 3363 9.610 0.5300 0.4000 0.3800
6. Mazes 2.883 3.171  3.748 4132 5.093 9.610 0.4700 0.3400
7. Picture completion 3915 3.146 3776  3.776  3.596 4225 8410 0.4700
8. Block Design 5310 5.093 4997 3.075 3.652 3.267 4225 9.610

(Source: Wechsler Pre-school data, N = 200 (100 boys and 100 girls), four-year age level)

It may be observed that row(column) totals of the sample covariance matrix(.S) are
(36.723,37.488, 39.458, 35.370, 36.212, 36.130, 35.070, 39.221) indicating a closeness amongst them-
selves. Such an ERS structure may be hypothesized for the population covariance matrix(32). Once
we conduct principal component analysis on S, it is noted that the first principal component has the
loadings (.352,.361,.381,.334, .344, .341, .332, .379) which are all of same sign (positive) and very
close to themselves with the variance 37.038 so as to explain 49.3% of the total variance which is
equal to 75.070. More or less equal amount of component loadings indicates the possibility of a ERS
structure.

In order to apply Mallow’s test we recall Equation (3). Define sy, as (g, h) element of sample
covariance matrix S and s9" as (g, h) element of inverse of sample covariance matrix,i.e., S~!. Here
N =100,p =38, J,57, Zzsgh = 295.668, J,8'J, = Zzsgh = 0.2188 resulting to

Fopserved = 0.1419. As the tabular value of F(7,92) at 5% level of 51gn1ﬁcance is 2.1107 which is
far greater than the Fipserveq, We are obliged to accept the tenability of ERS covariance structure. The
estimate of the row total (TO) under such ERS structure [vide Equation (3)] is calculated as 36.958.

Keeping the spirit on, we now proceed to testing the tenability of staircase ERS structure. Tak-

ing cue to Equation (9),the computed values of |PE)SP0| and H§:1 (Pé)SP()) ~are computed as
33
5.9059 x 10'% and 7.7048 x 10'° respectively. Correspondingly, computed value of —2log.A is

53.17 which is greater than x%;(28)(= 41.337). So staircase ERS structure is not tenable at 5% level
of significance.

However, adopting the process of discarding the last variables successively could lead to a “re-
duced” staircase. The Table 2 shows the statistical tenability of “reduced” staircase ERS indicated by
(X1, Xa,..., X5) by successively discarding X5, X7 and Xg. As a consequence, the j-step-average
Y(j) may be treated as the generator of the EC class for the variables (X1, Xs, ..., X;),
j=1,...,5.



732 Thailand Statistician, 2021; 19(4): 721-733

Table 2 Tenability of a staircase ERS Structure

p Discarded variables X(Q)bs = —2log.A d.f. P-value Decision
8 - 53.17 28  0.0028 Reject
7 Xsg 41.92 21 0.0043 Reject
6 Xg, X7 25.60 15 0.0425 Reject
5 Xs, X7, X¢ 12.27 10  0.2670  Accept

9. Concluding Remarks

The past several years have marked a considerable upsurge of interest in the conceptualization
and measurement of reliability in the classical test theory, particularly in regard to measures that are
formed as linear composites (weighted or unweighted sums) of individual items. The criterion of
equi-covariability, as introduced in Section 2, helps create a class of linear composites (EC class)
all of whose members could be obtainable by an appropriate generator. When the covariance matrix
possesses equal row (column)-sums (ERS), the generator reduces simply to sum (or equivalently to
average) of the measuring variables, being a composite involving no variance or covariance param-
eters in its expression as such. A staircase ERS covariance matrix of a sequence of measurement
variables could produce a sequence of EC classes whose generators are step-wise averages of the
variables.

In classical test theory, the reliability of a composite draws much attention to the researchers
long since. The “scale score” is defined as the total sum of the scores on a number of items in a test
(or on a number of tests comprising a battery)[Kano & Azuma 2003, section 1,pp.141]. Under ERS
set-up the scale score would be a clear choice for the generator composite to create a EC class.
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