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Abstract

In this paper, the authors have introduced a new generalized rank mapped transmuted distribution
and the proposed distribution has been found to generalize some existing transmuted distributions in
literature. The proposed map is applied to the exponential distribution so as to obtain the generalized
rank mapped transmuted exponential distribution and its various properties such as nature of the
probability curve, mean, variance, skewness, kurtosis with respect to variation in the parameters and
the rank of the transmutation map is studied. The hazard rate function and distributional
characteristics of the largest order statistics of the generalized rank mapped transmuted exponential
distribution is also studied. The generalized rank mapped transmuted exponential distribution is
found to model data with higher degree of skewness and kurtosis better than the traditional
exponential distribution, which is also one of the utilities of the proposed distribution. If someone is
interested to locate more flexible and higher degree of skewed distribution can explore this
generalized transmuted distribution for future use.

Keywords: Transmuted map, order statistics, largest order statistics, exponential distribution, beta
distribution, hazard function, family of distributions.

1. Introduction

The ideas of developing new distributions are important issues in recent literatures and increased
attention over the last few years. Numerous families of distributions have been proposed by several
authors for modelling data in several areas such as engineering, economics, finance and actuarial
science, medical and life sciences. However, in many applied areas like life time analysis, insurance
analysis need extended distributions, i.e., need new distributions which are more flexible to model
real life data where the parent distribution does not provide a good fit, since the data can present a
high degree of skewness and kurtosis.

Lee et al. (2013) provided an overview of most of the methods used to generate family of
continuous distributions earlier in 1980. For more details about these methods, refer to Pearson and
Henrici (1895), Johnson (1949) and Tukey (1960). In the last few years, there has been a growing a
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number of literatures were discussed generalized method to generate generalized family of
distributions. Details about the recent developments one may refer to Johnson et al. (1994), Eugene
et al. (2002), Jones (2009), Alzaatreh et al. (2013), Bourguignon et al. (2016), Afify et al. (2016), Al-
Kadim and Mohammed (2017), Granzotto et al. (2017), Jayakumar and Babu (2017), Mahdavi and
Kundu (2017), Alizadeh et al. (2017), Al-Kadim (2018), Pobocikova et al. (2018), Elgarhy et al.
(2018), Afify et al. (2018) and the references therein. Apart from the above, a more extended
generalized n" degree transmuted method suggested in this study to generate transmuted
distributions. An application of the generated transmuted map is extended to apply to the Exponential
distribution. Distributional characteristics of the generated transmuted distributions are also
simulated to compare with ordinary exponential distribution.

This paper is organized in the following way: In Section 2, n" ranked map generalized
transmutation based on continuous family of distribution has been developed. Particular cases are
also discussed. Some other members of generalized transmutation map are identified. In Section 3,
the survival function, hazard rate function and reserved hazard rate function of newly generated
generalized transmuted distribution are discussed. In Section 4, developed n" degree generalized
transmutation map based on exponential distribution as well as graphs for the probability density
functions (pdf) are also simulated and presented in figure to compare each other. In Section 5, some
distributional characteristics such as mean, variance, skewness and kurtosis are simulated and
presented in tabular form to compare each other for different parametric values. In Section 6,
discussion and proofs of some theorems related to order statistics of generalized transmuted
exponential distribution. Simulated distributional characteristics of largest order statistics of
quadratic transmuted exponential distribution are presented. Section 7 states conclusions and then the
references are inserted.

2. Generalized n"™ Rank Transmutation Map
The construction of the generalized n™ rank transmutation map considered here is simple and
intuitive. Let X, X,,...,X, be arandom sample from an absolutely continuous population with pdf

g(x), x € (a,b) corresponding to cumulative distribution function (cdf) G(x), x € (a,b). Further,
let X,, <X, <..<X,  isthe corresponding order statistics obtained by arranging the preceding

random sample in increasing order of magnitude.
The cdf of X, (1<r<n) isgivenby

2 (n ‘
G,,(x)=P(X,, <x)= Z[l j[G(x)]’ (-G =14, (r,n—r+1), (1)
where I (p,q) isthe incomplete beta function. The corresponding pdfis given by

g, (x) = [G, )] === [6W] " [1-6W)]" g

(")

=g(x)b[G(x);r,n—r+1]; —o<x <o, 1<7r<n, )

1 51, H()T(B)
B(a,,B) “'1-1)’";0<t<1 and B(a,p)= Tatf)

Now, consider the random variable, Y is distributed as

where b(w;a, f) =

Y —%>g,,(x) withprobability p,.,
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Y—%>g, (x) with probability p,.,
Y—%>g,. (x) with probability p,, A3)

Y—%>g (x) with probability p

n:n

where 0<p <1 with Z p n=2,3,... Hence, generalized transmuted cdf of n"™ rank

r=1

Vn_’

mapped n=2,3,... distribution is given by

FY(x) = Zpr:n IG(x) (r’n_r+1) :Zmr:n > (4)
r=1 r=1

where m,, =p, I, (r,n—r+1). The corresponding generalized transmuted pdf of n" rank

mapped distribution is given from (4)

fY(x)— F ()] z— —Zp,n [ Ly (rin— r+l)] g(x)Zp,nb[G(x) ron—r+l],
(5)
where b(.;.,.) is same as before. Now,
. _ 1 a-lc1_ B -1 — 1 _ A-1r1_(1_ a-1
b(W,a,ﬂ)—B(a’ﬂ)W (1-w) B@.p) (I=-w)y" " [I-1-w]"",
R 2 R I a2
B( /),)Z( 1) ( . )W (1-w) . (6)
Using (6) in (5), we get
( I)V - _1 _ n—-1-1i
[y = g(x);;m pa— [ ; ][1 G ()

Equations (3), (4) and (7) will also be helpful for simulation study for the cdf and pdf of transmuted
distribution, respectively.

2.1. Specifications

Several specifications are available from our new transmuted distribution and some of them are
illustrated herewith as a particular case of our generalized transmuted distribution.

npPut n=2,p,=r,p,,=1-7 and 27 =21 in(4)and (7) to get the cdf and pdf, respectively
of quadratic transmutation map due to Shaw and Buckley (2007) as

F(x)=AG(x)+(1-2)G*(x) and f(x)=g(x)[G(x)+A{1-G(x)}].

ii)Put n=3,p,,=1-p.—p,; and 4, =3p,;, 4, =3p,, in(4)and(7) to get cdf of the cubic

ranked transmutation map of Granzotto et al. (2017, Equation (3), p.2761)
F(x)=4G(x)+(4 -4)G (x)+(1-1,)G (%),
and the corresponding pdf is
()= g4 +2(4, = 4)G(x) +3(1-4,)G* ()]
iii)Put p =1 and p,, =0, 2<i<n in(4)and (7) to develop the simple transmutation map
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of Eugene et al. (2002) on using beta distribution as a generator. The cdf of simple transmutation map
due to Eugene et al. (2002) is given as

F(x) =14, (a,p),
and the corresponding pdf is
S (%) = g(x)b[G(x);a, B].
iv) Put n=3,1=4,=3p,;=-4,, 4, =3p,; in (4) and (7) to develop the cubic ranked
transmutation map as given by Al-Kadim and Mohammed (2017). Thus, the cdf is given as
F(x)=(1+A)G(x)-2AG* (x) - G (x),
and the corresponding pdf is
f(x) = g@)[(1+2)-4AG(x)-31G*(x)].
v)Put n=4, 4, =2p,,;1<i<4 in (3) and (7) to develop newly proposed distribution, called
the generalized quartic ranking transmutation with cdf
F(x)=24G(x)+3(4, — )G (x)+2(4 =22, + )G (x)+ (1= 4, + 4, —22,)G*(x), )
and the corresponding pdf'is
[(x)=g(N)[24 +6(2, = A)G(x) +6(4 =24, + )G’ () +4(1- 4 + 4, —24)G’ ()] (9)
vi) Putn=5,4 =5p,;1<i<5 in (4) and (7) to develop the generalized quintic ranked
transmutation map with new cdf as suggested is
F(x)=A4G(x)+2(A, = 4)G* (x) +2(4 =24, + 1,)G’ (x) + (34, — 4, =34, + 4,)G*(x)
+1=4 =4 = 4)G (%) (10)
and the corresponding generalized quintic ranked transmutation map which has a new pdf as
suggested is
F(x) = g(N)[A +4(4, = )G(x)+6(4 =22, + 1,)G* () +4(34, = 4 =34, + 4,)G’ (%)
+5(1-4, -4, = 2,)G* ()] (11)
vii) Similarly, put A, =np, ;1<i<n and n=46,7,8,... in (4) and (7) to develop the cdf of

suggested generalized desired n™ (n>6) ranked transmutation map as well as the corresponding

pdf of generalized desired n"™ ranked transmutation map.
viii) If one put, p,., =%; 1<i<n, then

F(x)=G(x).
ix) If we put, p,, = {7}/(2" —1), for all 1<i<n and n=2,3,4,.., then from (4) and (7),
i

another new generalized n" ranked transmuted map of cdf for generating another new families of
distributions are obtained as

Frp,(X) = Z Pro o (rin—r+1)= Z P b, (X) = Z Z Prn [:][G(X)]i[l -G,

r=1 i=r

_DZZ( j[ J[G(x)] 1-G@I =Y m,, ()

r=1 i=r

(12)
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where m , (x)= o ! 1)[ j( j[G(x)] [1-G(x)]"", and the corresponding generalized »"
ranked transmuted map of pdf for generating families of distribution are given by

Fon 0= LF 001 = 2 2, (1= 3 2y 2 U =+ D)

r=1

= g(x)z pr:n b[G(x)’r’n —-r+ 1] = Zpr:n gr:n (x) = Zmr:n 2 (13)
r=1 r=1 r=1
where m,, =p, g . (x) with g _(x)=g(x)b[G(x);r,n—r+1].
2.2. Some specific cases of (12) and (13)

1) Quadratic rank transmuted distribution (TD2)
For n=2 in (12) and (13), the new form quadratic ranked transmuted cdf is given by

1 ) 1
Frpy (x) = 5[4G(x) -G (%)) = EG(x)B +{I-G(x)}], (14)
and the corresponding new form quadratic ranked transmuted pdf is given by
Frn = £ 42601 =2 141~ Gy ). (15)

2) Cubic rank transmuted distribution (TD3)
For n=3 in (12) and (13), the new form cubic ranked transmuted cdf is given by

Fppy(x) = %[7 =3{1-G(x)} - 6{1-G(x)}* +2{1-G(x)}’], (16)

and the corresponding new form cubic ranked transmuted pdf is given by

() =8 (7’” [3+12{1-G(x)} — 6{1-G(0)}?]. (17)

3) Quartic rank transmuted distribution (TD4)
For n=4 in (12) and (13), the new form quartic ranked transmuted cdf is given by

Fp,(x)= %[15 —M1-G(x)} - 18{1-G(x)}* +4{1-G(x)}’ ]+ 3{1-G(x)}*, (18)
and the corresponding new form quartic ranked transmuted pdf is given by
Jrpa(X)= (x) =219+ 36{1- G(x)} - 12{1- G(x)}* ~12{1-G(x)}]. (19)

4) Quintic rank transmuted distribution (TD5)
For n=5 in (12) and (13), the new form of quintic ranked transmuted cdf is given by

Fs(x)= %[3 1-5{1-G(x)} —40{1 - G(x)}* —10{1- G(x)}’ 1+30{1 - G(x)}* - 6{1-G(x)}’, (20)
and the corresponding new form of quintic ranked transmuted pdf is given by
Jrps(X) = %?[36 +80{1—G(x)} +30{1- G(x)}* —=120{1- G(x)}’ ]+ 30{1 - G(x)}". 2n

In a similar manner, one can generate any desired higher order (n >6) rank transmuted map
from (12) and (13).



748 Thailand Statistician, 2021; 19(4): 743-760

3. Hazard Function
The survival function S(x), hazard rate function 4(x) and reserved hazard rate function »(x)

of newly generated generalized transmuted cdf £, (x) (12) corresponding to pdf f, (x) (13)are

respectively given by

Sipn(X) =1=Fp, (X)), (22)
hTDn (x) = fTDn ()C) / STDn ()C) = fTDn ()C) / {1 TDn (x)} (23)
Tipn (X) = Jrp, (X)) Epp, (%), (24)

where fm” (x) and Fy, (x) are as before.

Using (4) in (22) to get survival function for newly derived n" ranked transmuted distribution
as,

r=1 i=r r=1 i=r

ZZZ( "~ ’[ ]( ][ ][1 GI'", (25)
_1); =1 i=r j=0
1 n
where m, ;. - [ ]( ][G(x)] [1-G)].
" nlr
Using (13) and (25) in (23) to get hazard rate function for newly derived n" ranked transmuted
distribution as,

S =1-3 Y m,,, =1 -5 ”ZZ[ j[';][G(x)]f[l—c;(x)]w,

o () {im,;,,(x)Hl—iimm (x)}. 26)

r=1 i=r

Using (3) and (7) in (24) to get reserved hazard rate function for newly derived n" ranked
transmuted distribution as,

%Ax)zi[m,‘,, (x)/_'im,.,-,xx)} @)

For more about the hazard function one can refer to Zubair et al. (2018) and references therein.

Theorem 1 The quadratic generalized transmuted hazard rate function is given by
_ 2g)+{1-G(x)]
hp, (x) = 3 .
{1=-G(x0)}" =3{1-G(x)}

Proof: From (23) and for n = 2, we get the generalized transmuted hazard rate function as,
hn)z (x)= fTDZ (x)/[1- Frp, ()] (28)
Now using (14) and (15) in (28) and on algebraic simplification gives the proof of the required
theorem.
Simulated hazard function (ED, TED2, TED3, TED4 and TEDS) for some specific parametric
(6) values are presented in Figures 1 to 4 to compare among themselves. It is observed from figures

that the shape of hazard function changes with the change of transmutations degree, i.e., hazard rate
goes too skewed as transmutation degree increases. The hazard function is one of the most important
quantities to character life phenomenon. Compare with many other modified exponential
distributions, the shape of the hazard function is easy to make a decision. It can be derived from (23)
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and it is flexible. As we know, it is very common for a bathtub-shaped hazard function of a system
or component to have a long useful lifetime with low constant rate portion in the middle and sharp
change in the initial and wear-out of phase, so a distribution which can fit this kind of hazard rate

would be very useful in reliability studies.

3 T
6=05
—ED
T 2 —TED2
2 ——TED3
3 —TED4
1 L
0 1 1 1 1 1

Figure 1 Hazard rate curve hTEDn (n=1,2,3,4,5) for 6=0.5

3 T T T T
—D
| —TE2
! =10 | _qep3| |
" —TED4
R
1
0

3 : : : : :
2 L
/l\
2 —ED
= ] —TED2||
—TED4
—TED5

0 1 2 3 4 5 6

Figure 3 Hazard rate curve hTED” (n=1,2,3,4,5) for 6=1.2
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=15

—ED
—TED2
TED3
—TED4
—TED5

0 1 2 3 4 5 6
X -

Figure 4 Hazard rate curve A, (n=1,2,3,4,5) for 6=1.5

4. Transmuted Exponential Distribution (TED)

There are many situations in which one would expect an exponential distribution to give a useful
description of observed variation. One of the most widely quoted is that of events recurring “at
random in time”. In particular, suppose that the future lifetime of an individual has the same
distribution, no matter how old it is at present. There are other situations in which exponential
distributions appear to be the most natural. Many of these do, however, have as an essential feature
the random recurrence (often in time) of an event.

The exponential distribution is proposed in a very important lifetime distribution and is widely
used in many fields. However, the hazard function of the traditional exponential distribution can only
be increasing, decreasing or constant. To meet the need of fitting complex modes and the bathtub-
shaped hazard rate, researchers have proposed many improved flexible models based on the
traditional exponential distribution. To know more about modified or improved models based on the
traditional exponential distribution, one may refer to Johnson et al. (1994), Bebbington et al. (2007),
Xie et al. (2002), Nassar et al. (2018), Afify et al. (2018) and references therein. Still the available
modified exponential models are not enough to represent or fit the data obtained in all cases such as
medical and life sciences, engineering, economics, finance and actuarial science. Our proposed
transmuted model will be more flexible and will cover such limitation for which data present a good
fit for a higher degree of skewness and kurtosis.

A random variable X is said to have traditional exponential distribution (ED) with parameter
0(>0), ifits cdfis given by

Gx)=1-e""; x>0, (29)
and pdf is given by
g(x) =ée*’”9;xzo, (30)

where 6 is the scale parameter.

1) Quadratic map ranked transmuted exponential distribution (TED2)
Using (29) into (14), (29) and (30) into (15) to get the new quadratic ranked map transmuted
exponential distribution cdf as
Frppy(x) =[1=e™"" J[141e7], (31)

and the corresponding new quadratic ranked map transmuted exponential distribution pdf is given by
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Frppa () = (1 +e ")’ (32)

Theorem 2 The quadratic generalized transmuted exponential hazard rate function is given by

_ 2 —x/0 — (x/6)* _ 2 —x/6 1 — (x/6)*
hTEDz(x)—30[e +e J/ 1 3e +3e .

Proof: From (28) and on using (31) and (32) gives the proof of the theorem.

2) Cubic map ranked transmuted exponential distribution (TED3)
Using (29) into (16), (29) and (30) into (17) to get the new cubic ranked map transmuted
exponential distribution cdf as

1 —X 2 —X
FTEm(x):7[9-2(1-e”) }(l—e ), (33)
and the corresponding new cubic ranked map transmuted exponential distribution pdf is given by
Froms() = [9 6(1-e ) }ew. (34)

3) Quartic map ranked transmuted exponential distribution (TED4)
Using (29) into (18), (29) and (30) into (19) to get the new quartic ranked map transmuted
exponential distribution cdf as

Fppp(x) = [16 +12(1-¢)-16(1-¢ ) +3(1-¢") }(1 —e), (35)
and the corresponding new quartlc ranked map transmuted exponential distribution pdf is given by

fTED4(x)— [16—1—24(1 e*"/e) 48(1—67”‘9)2 +12(1_efx/<9)3:|efx/g' (36)

4) Quintic ranked map transmuted exponential distribution (TEDS)
Using (29) into (20), (29) and (30) into (21) to get new the quintic ranked map transmuted
exponential distribution cdf as

1 —x/0 —x/0\? —x/0 —x/0
FTEDS(x)—§[25+SO(1—e )-50(1-¢ ") +6(1-¢")’ }(1 e, (37)
and the corresponding new quartic ranked map transmuted pdf exponential distribution is given by

fn;Ds(x)— |:25+100(l 67X/3) 150(1_61/3)2 +18(1—e7"/9)4:|e”‘/9. (38)

In a similar way one can find any desired rank (n > 6) map new transmuted cdf of exponential
distribution by using (29) into (12); corresponding pdf by using (29) and (30) into (13).

Simulation pdf curves of different ranked map transmuted exponential distribution for some
specific sets of parametric values (¢) were plotted in Figures 5 to 8 to observe and compare the

change of skewness and the pdf curve shapes with the change of transmutation rank map.
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0=0.5
08 —&D
—TED2
:’:; —TED4
04 —TED5
02r
0 1
0

X —

Figure S TED, (n=1,2,3,4,5) curve for §=0.5

0=1.0
087 —€D
—TED2
Tosy ——TED3
5;; —TED4
047 ——TED5
02t
0 1

X =

Figure 6 TED, (n=1,2,3,4,5) curve for =1.0

0=1.2

08 —ED
—TED2
T06 ——TED3
:’:; ——TED4
04 —TED5

0.2

X —

Figure 7 TED, (n =1,2,3,4,5) curve for =1.2
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—ED
—TED2
TED3
—TED4

—TED5

X =

Figure 8 TED, (n=1,2,3,4,5) curve for 6=1.5

It is observed from the above figures (Figures 5-8) that the transmuted exponential distributions
are more skewed compare to ordinary exponential distribution. The degree of skewness of TWDn(n

=1, 2, 3,4, 5) curves increases if the degree of rank of transmutation map increases. So, the newly
generated transmuted exponential distributions have advantages to fit if the data sets are more skewed
in property.

5. Distributional Characteristics of Transmuted Exponential Distribution
The k" (k =1, 2, 3, ...)raw moment corresponding to generalized n" ranked map transmuted

of exponential pdf (30) are given from (13) as

p=E(X")= jx"f(x)dx =>'k, (39)
0 r=1
)7 ()i i
here k, =) k., k,, M and M, = G dx.
Wi /Z(; lj (2,, I)B(l,n—l-‘rl) i J k,n—-1-j k,m '(['x g(x) ('x) X

Now on using (29) and (30), we have

M, = —J * 7”9 e’ ]m dx = %Txk eix/gi(—l)[ [?]emy dx,

0

:lzm:(—l)imixke’(”””‘gd k'ekf( y [ k'H“Z > (9
o5 i)} (’”)k“ ’

m 0k+1 % m r ﬂ,:l
where &, =(-1)'| | [——= and we know Ix" e @ ( +1)’
(i+1) ) mg

m,n > 0. For more it refer

to Jeffrey and Dai (2008, p-272).

5.1. Moments for quadratic transmuted exponential distribution (TED2)
For n=2 in(39),the k" (k=1,2,3,4,...) raw moment of the quadratic transmuted exponential

distribution is given by
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o 13

' : o
(s = ECX) = [ £y = 2y T (£51) | @
0
and fork =1,2,3,4, the first four moments of the quadratic transmuted exponential distribution are
given by
, o
t)reps = 5[21"(2) + F(l)] =6 =Mean,
6 6’
()rspr = [2TG)+T (3)] = (8+ 7).
: & 13
(74 ?[2r(4)+r(2)] = ?93,

, 6 5\1_¢"

and Wy =5 2r(5)+r(§) - (484075 7).

Central moments are given by
Var(X)) ey = (1 ipps = %2(8 wr)-0 = %2(5 +7)=22576",
() res = (45 s = 3G ) s () s + 20183y = 0 (N7 =5/ 3) = 0.1066°,
and ()12 = () 102 = 3G e (1) gy + 6C1) 1y (Vs = 3024 7
= ?4(35 +6.75\/m) =15.6556".

Pearson’s four coefficients, based upon the first four central moments are
2

Skewness = (/) zp, = % =9.727x107, (#)peps = +(B)rep, =3.119x107,
o )rED2
and Kurtosis = (4,),,, = [((ﬂ”‘*))iz]z =3.072, (7))sems = (By)yeps —3 = 7.181x10™2,
2 )1ED2

It may be pointed out that these coefficients are true numbers independent of units of
measurement. The p™ (p €(0,1)) percentile point of quadratic transmuted exponential distribution
(32) is given by

x, = 9[—ln{l—2(l—«/l—3p/4)}:|,

and random observation can be generated from the following inverse function

X = 9[—ln{1—2(1—«/1—3U/4)}], where U ~ U(0,1).

5.2. Moments for cubic transmuted exponential distribution (TED3)
For n=3in (39), the k" (k=1,2,3,4,...) raw moment of the cubic transmuted exponential

distribution TED3 is given by

(4l),,, = E(X’f):%[3r(k+1)+6r(%)—2r(%ﬂ, (42)
(4)),p, = Mean = 2[3 rQ)+ 61“(1)—21“(%)} - 0.8990,
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(), = ‘972[3r(3)+ or(3) —2r(1)} - ‘972[4+3\/E] 133107,

3

()10, = 97[31"(4) + 6r(2)—2r(§ﬂ =3.173¢",

4

()1, =%[3F(5)+6F(%)—2F(%)} =11.1676",

and
2

(Var(X)),,,. = (46),5p, = ‘972[3r(3) +6I'(3/2)]- Z-9[3r(2) +6I()-2I(2/3)] .

6* 6’ 2 2
=7[4+3\/7_z]—5[9—21"(2/3)] =0.5236".

Skewness = (5,)zp; = 4.270 and Kurtosis = (53, )y, = 6.303.

Other central moments and Pearson’s four coefficients can be obtained from the above by simple
algebraic manipulation.

5.3. Moments for quartic transmuted exponential distribution (TED4)
For n=4 in(39), the k™ (k =1,2,3,4,...) raw moment of the TED4 is given by

(1)), = E(X*) = %[M(k 1) +18r(%)—4r(%)—3r(%)} (43)

5.4. Moments for quintic transmuted exponential distribution (TEDS)
For n=5 in(39), the k™ (k =1,2,3,4,...) raw moment of the TEDS is given by
91{

(1), = ECXY) =E[sr(ml)+40r(%)+10r(%)—30r(%)+6r(%ﬂ. (44)

For example, some distributional properties like mean, variance, skewness and kurtosis are
simulated from above and presented below in Table 1. Some specific values of the parameter 6 are
given to observe and compare the differentiation of traditional exponential distribution (30) along
with some other different degree of ranked map transmuted exponential distribution

(TED

 ,n=2,3,4,5), where n indicates n" rank map as seen in (31)-(38). From Table 1, it is
observed that skewness of transmuted distribution is more flexible as degree of rank of transmutation
increases. So, one can use more flexible desired degree rank map transmuted distribution to fit desired

skewed data set. For all simulation work is performed on MATLAB version R2018a.

6. Order Statistics

Order statistics (os) and functions of order statistics play an important role in statistical theory
and methodology. Floods and droughts, longevity, breaking strength, aeronautics, oceanography,
duration of humans, organisms, components and devices of various kinds can be studied by the theory
extreme values. Life tests provide an ideal illustration of the advantage of order statistics in censored
data. Since such an experiment may take a long time to complete, it is often advantageous to stop
after failure of the first » out of n similar items under test. For more detail survey one may refer
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to Cohen (1963, 1966, 1991), Ali (1994), Balakrishnan and Aggarwala (2000), Athar and Akhter
(2016), Akhter et al. (2019) and references therein.

Table 1 Distributional characteristics of transmuted exponential distribution (TED,,n =2,3,4,5)

Distributional Different combination of parameter 6 values

Characteristics 6=0.2 6=06 6=1.0 0=14 6=1.38
ED 0.2000 0.600 1.000 1.400 1.800

2 TED2 0.2000 0.600 1.000 1.400 1.800
§ TED3 0.1798 0.539 0.899 1.258 1.618
=  TED4 0.1502 0.451 0.751 1.052 1.352
TED5S 0.1205 0.362 0.603 0.844 1.084

ED 0.0400 0.360 1.000 1.960 3.240

§ TED2 0.0251 0.226 0.629 1.232 2.037
& TED3 0.0209 0.188 0.523 1.025 1.695
§ TEDA4 0.0208 0.188 0.521 1.021 1.688
TEDS 0.0131 0.118 0.327 0.641 1.059

ED 0.0022 1.633  35.000 263.534 1,190.428

%2 TED2 0.0012 0.865 18.529  139.517 630.220
£ TED3 0.0006 0.463 9.928 74.749 337.656
% TED4 0.0003 0.254 5.437 40.939 184.927
TED5 0.0002 0.150 3.219 24.234 109.467

ED 24.000 24.000 24.000 24.000 24.000

.2 TED2 41.595 41595 41.595 41.595 41.595
£ TED3 40.800  40.800  40.800 40.800 40.800
Z TED4 27.907 27.907  27.907 27.907 27.907
TEDS 48.601  48.601  48.601 48.601 48.601

The pdf of #™ order statistic for the TED2 in (15) is given by

(fm )7"132 = B(I’, n—r+ 1)[FTD2 (X)]’.71[1 - sz (x)]nir fTDz (X) (45)

The pdf of extreme os follows from (45) at » =1 and r =n, respectively,
(Sr)ra =nll _FTDZ(x)]n 71fTD2 (), (46)
(f,;;n )TDZ =n [anz (X)] " fTDz (x) (47)

Theorem 3 For n=2,3,..., the recurrence relation between pdf of largest os of quadratic rank
transmuted distribution as given in (47) and pdf of largest os of any arbitrary distribution is given by

n O i gn +itn+i gn +it+lin +i+
(f”i” )TDZ (x)=n(4/3) Z(_1/4) |: ) 1 1:|’ (48)
i=0

n+i 2n+i+l)

where g, =mG" ' (x)g(x). G(x) and g(x) are cdf and pdf of any continuous arbitrary

distribution respectively.

Proof: From (47) and on using (14) and (15) we have
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U@%J@=%H—xmﬂgﬁaw—@uﬂlgux
—n(4/3) G"" (x)[l—%G(x)T [1—%(}@)} g(x).

n—1
Expanding the term [1 —%G(x)} binomially, we get

n = i _1 i—1 n+i
(£.) @ =n(4/3) Y (~1/4) ["i ][G (x)—%(; (x)}g(x).

i=0

Now on using g, (x)=mG" " g(x), we get the required result.

Theorem 4 For n=2,3,..., the recurrence relation between k™ order moment of largest os for the

pdf (47) of quadratic rank transmuted distribution and k™ order moment of largest os for the pdf of
arbitrary continuous distribution is given by

N A% A
mmmu)mwwi(ua[.ﬂ””' “”’} (49)

n+i  2(n+i+1)

Proof: Multiplying both sides of (48) by X* and then take expectation to get the result of the
theorem.

Theorem 5 For n=2,3,..., the recurrence relation between pdf of largest os of quadratic rank
transmuted distribution as given in (47) and pdf of largest os of exponential distribution (30) is given

by
o 1n+i—1(_1)[+/ n—1 n+i—1 _l n+i (/)7
(f’“")TEDz( )= (4/3) |:ZOZ = 4 ( i ]{[ J ] 2( J ]}e
]

Proof: We have g, (x)=m G"'(x) g(x). Now using (29), (30) in the above expression, we get

gnz:nz(x):%67X/g I:l 7X/(9:|m ! Z( 1)/ [m ) 1j *(x/g)(/*l)'

Now using above expression in (48) and on algebra1c manipulation gives the proof of the
required theorem.

Theorem 6 For n=2,3,..., the k™ order moment of largest os for the pdf (32) of quadratic rank

transmuted exponential distribution is given by

) (4Y N "& (-1 (n+i-1) 1% (-1 (n+i
® kla( ] 1/4 [" j[ —( j—— ( H
('u )TEDZ Z( . jzz(; (j+D*! J ,zo(]"‘l)k+1
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Proof: For exponential distribution defined in (29) and (30), we have

gmuhmqumuF%e”Dw“ﬂ“=%Zew[
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m—1

J

m—

' 1]6 (/0

Thus, the k™ order moment of largest os of exponential distribution (30) is given by

Since

©

J-x”e”” dx =

0

k) _
Hoom =

q

TC(n+1)

©

'[xkgm a(X)dx =

0

n+l :

m -1
i, =mkt o'y,

Jj=0

G

(j+D*"

0

")

o0
jxke—(j+1)x/€ dx.

m ; m—1)°
Eg“n[jj

Therefore,

(51

(52)

Now using (52) in (49) for m=n+i and m=n+i+1, the k™ order moment of largest os for

the pdf (32) of quadratic rank transmuted exponential distribution is obtained. This completes the

proof.

Table 2 Simulated distributional characteristics of largest order statistic of TED2 (48) for different
parametric values and sample sizes n = 2,4,...,20

6=

0.2

6=0.5

0=1.0

Mean

Var

Skew

Kurt

Mean

Var

Skew

Kurt

Mean

Var

Skew

Kurt

0.085
0.148
0.167
0.172
0.171
0.166
0.158
0.148
0.136
0.123

0.096
0.236
0.384
0.552
0.738
0.941
1.161
1.395
1.644
1.906

3.975
1.295
0.850
0.669
0.571
0.516
0.481
0.458
0.445
0.437

4.547
1.655
1.062
0.797
0.648
0.556
0.495
0.452
0.423
0.401

0.213
0.371
0.418
0.430
0.427
0.414
0.394
0.369
0.340
0.308

0.602
1.476
2.402
3.447
4.620
5.882
7.254
8.720
10.273
11.909

3.975
1.295
0.850
0.669
0.573
0.516
0.481
0.458
0.445
0.437

4.547
1.655
1.062
0.797
0.648
0.556
0.495
0.452
0.423
0.401

0.427
0.741
0.835
0.860
0.854
0.828
0.789
0.739
0.680
0.615

2.408
5.904
9.610
13.788
18.439
23.526
29.016
34.879
41.093
47.637

3.975
1.295
0.850
0.669
0.573
0.516
0.481
0.458
0.445
0.437

4.547
1.655
1.062
0.797
0.648
0.556
0.495
0.452
0.423
0.401

Table 3 Simulated distributional characteristics of largest os of TED2 (48) for different parametric
values and sample size n=3,5,...,19.

0=

0.2

0=0.5

0=1.0

Mean

Var

Skew

Kurt

Mean

Var

Skew

Kurt

Mean

Var

Skew

Kurt

ST aIN-JEN I RV ) B

17
19

0.128
0.190
0.253
0.316
0.377
0.436
0.494
0.552
0.608

0.152
0.263
0.391
0.532
0.684
0.846
1.017
1.197
1.386

2.678
1.198
0.515
0.193
0.050
0.002
0.010
0.053
0.116

3.062
1.504
0.800
0.457
0.286
0.206
0.179
0.183
0.207

0.321
0.475
0.634
0.789
0.941
1.090
1.236
1.379
1.520

0.952
1.642
2.444
3.325
4.275
5.288
6.359
7.484
8.660

2.678
1.198
0.515
0.193
0.050
0.002
0.010
0.053
0.116

3.062
1.504
0.800
0.457
0.286
0.206
0.179
0.183
0.207

0.642
0.950
1.267
1.578
1.882
2.180
2.472
2.758
3.040

3.807
6.569
9.775
13.299
17.099
21.150
25.434
29.935
34.640

2.678
1.198
0.515
0.193
0.050
0.002
0.010
0.053
0.116

3.062
1.504
0.800
0.457
0.286
0.206
0.179
0.183
0.207

7. Conclusions
In this paper, new generalized transmuted family of distributions (TDn) has been generated.
Some generalized transmuted distributions available in literature are found as particular cases from
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our transmuted family of distributions. These new generalized transmuted families of distributions
are applied to exponential distribution to find generalized rank map transmuted exponential
distributions (TEDn). Simulated hazard function, pdf curves and some other distributional
characteristics such as mean, variance, skewness and kurtosis for some specific parametric values of
generalized transmuted families of exponential distribution are presented in Figures 1-4, Figures 5-8
and in Table 1, respectively to make a comparative study among changes of degree of rank maps.
Also simulated quadratic ranked transmuted largest os distributional characteristics are studied and
presented in Tables 2 and 3. These new distributions are more flexible and skewed compared to
ordinary exponential distribution as well as degree of ranked transmuted distributions. Flexibility
prominently increases as degree of rank of transmutation map increases. These are observed in pdf
curves plotting (Figures 5-8) as well as in distributional characteristics presented in Table 1. It is
observed that the transmuted distributions are more flexible to model real data, since the data can
present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and
higher degree of skewed distribution, can explore this generalized transmuted family of distributions
for future use.
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