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Abstract

Cordeiro (2013) introduced and studied the exponentiated generalized class of distributions. The
two classes of Lahman’s (2013) alternatives is considered as special cases of this generalized class. In
this paper a new exponentiated generalized class of distributions is proposed, which is slightly
different from one given by Cardeiro et al. (2013). Moment properties of generalized order statistics
in terms of recurrence relations are studied. Further, examples based on some specific distributions
are discussed. Results for order statistics and record values are deduced from the main result. In the
end, characterization results based on recurrence relations and conditional moment are presented.

Keywords: Order statistics, record values, recurrence relations, exponentiated generalized distributions,
characterization.

1. Introduction

The concept of generalized order statistics (gos) have been introduced and extensively studied by
Kamps (1995). A variety of ordered models of random variables is contained in this concept with
different interpretations. Examples of such models are the order statistics (0s), record values, sequential
order statistics, progressive type II censored order statistics and Pfeifer’s records. These models can
be effectively applied, e.g., in reliability theory. The common approach makes it possible to define
several distributional properties at once.

Let n>2 be a given integer and 7 = (m,,m,,...,m, ) € R"", k >1 be the parameters such that

n—1
v, =k+n—i+Ym >0 for 1<i<n-1.

j=i

The random variables X(1,n,m, k), X(2,n,m,k),..., X(n,n,m,k) are called generalized order
statistics from a continuous population having cumulative distribution function (CDF) F(-) with
probability density function (PDF) f'(-), if their joint PDF has the form
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k[ﬁnj(ﬁ[l—F(x,.)]’"f f (xl.)j[l—F(xn)]"l f(x) (1)

onthe cone F'(0+)<x, <x,<...<x, <F'(l) of R".

The particular cases of model (1) are given below:

-If m;=m=0,i=12,..,n—1 and k=1, then y, =n—r+1,1<r <n-1. In this case the model
(1) reduces to the joint density of order statistics.

- By choosing n=m, m; =R,, i=1,2,....m—1,and k=R, +1, then y, =m—-r+1+> " R,

1<r<m, where R; is a set of prefixed integer that shows R; random removal at ;" failure from
surviving items of an experiment. In this case the model (1) reduces to the joint density based on
progressively type-II censored order statistics.

Aftm=m—>-1, i=1,2,.,n—1 and k=1, then y, =1,1<r<n-—1. In this case the model (1)
reduces to the joint density of upper record values.

A omy=(m-i+)a,—(n-i)a;,, -1 and k=a,, aeR", i=1,2,...n—1, then

7, =(m—-r+1a,, 1<r<n-1. In this case the model (1) reduces to the joint density of sequential

order statistics.
Cordeiro et al. (2013) proposed a new exponentiated class of distributions

F)=[1-{1-H@)}"V, xeR, @)
where a >0 and £ >0 are the shape parameters and H(x) is the CDF of base distribution.

Here in this paper, we define another exponentiated generalized class of distributions, which is
slightly different from (2) and also discussed by Corderio and de Castro (2011) with name
Kumaraswamy G-family. Thus, for the given CDF H(x) of the base distribution, the CDF of new

class is given by
F)=1-[1-H* (Vs &, f>0 3)
and the corresponding PDF is
S =apll-H" )V H (0h(x); @, >0, “
where /(x) is the PDF of base distribution.
It may be noted that, if f =1 in (3), we get the Lehman type I distributions with CDF
F(x)=H%(x),a >0,
and if o =1, then (3) reduces to Lehman type II distributions with CDF
F(x)=1-[1-H(x),B>0.

There is a large volume of works based on the study of recurrence relations between moments of
generalized order statistics and characterizations based on these relations. The moments of ordered
random schemes assume considerable importance in the statistical literature. Many authors have
investigated and derived several recurrence relations and identities satisfied by the single as well as
product moments. Khan et al. (1983a,b) studied the recurrence relations and identities for moments of
order statistics for some specific distributions. Recurrence relations for the expected values of certain
functions of order statistics are considered by Ali and Khan (1997, 1998). Athar and Islam (2004)
investigated the relations between expected values of functions of gos. For more detailed survey, one

may refer to Malik et al. (1988), Balakrishnan et al. (1988), Arnold et al. (1992), Keseling (1999),
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Kamps and Cramer (2001), Anwar et al. (2008), Khan et al. (2010), Athar et al. (2012), Khwaja et al.
(2012), Khan and Khan (2016), Nayabuddin and Athar (2017), Singh et al. (2018), Zarrin et al. (2019),
Athar et al. (2019a,b) and references therein. The organization of the paper is as follows:

In Section 2, single moment of gos for the distributions considered in (3) is presented and some
particular cases and examples are also discussed. Section 3 deals with the product moments of gos for
the above said distribution, while Section 4 is related to the characterization theorems. In Section 5
concluding remarks are given.

2. Single Moments
Here we may consider two cases:
CaseI: y, EY by ] =1,2,.,n=1,i#j

In view of (1), the pdf of i gos X(r,n,m,k) is given as (Kamps and Cramer 2001)

- = —1
Lxeminioy ()= Coa (00 2 (NIF T 5)
i=1
where C,_, H}/,,]/l k+n—z+Zm >0, and a,(r) = H JA<i<r<n
i=1 Jj=1 (7/ 7/1)
Case II: m; =m,i=1,2,...,n—1
The pdf of p0 gos X (r,n,m,k) is given as (Kamps 1995)
Sx(rnmiy(¥) = Cro [FT7™ f(gy (F(), (6)

(r=1)!

——(1 )™ m = -1
+1

m
log( ! j m=-1
1-x

Before establishing the main result, we shall prove the following lemma.

where C,_; = ﬁy,-, v =k+m-i)m+1), h,(x)=
i=1
and g, (x)=h,, (x)—h,(0)= L:(l —-)"dt, x <[0,1).

Lemma 1 For the exponentiated generalized class of distribution as given in (3), the relation between
survival function and PDF is given as

1 a(lari-) =
F(x)—{amq(x);,( / j[H(X)]}f(X), (7

h(x)

where F(x)=1-F(x), H(x) is the survival function of base distribution, A,(x)= 7 is inverse
X

hazard rate function and [ +1—1] is an integer.

Proof: We have
F(x) _ [1-H" () L {H”@)_H(x)}: ! [{1_ ﬁm}*‘”_l}

S afll-H* OV H  (h(x) af | h(x)  h(x) ]| api(x)
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- aﬂ/lll (%) i[[a —; - l]l[ﬁ(x)]l . Hence the result.

Theorem 1 Suppose Case I be satisfied. For the exponentiated generalized class of distribution as
givenin (3)and ne NymeR, k>0,1<r<n,j=1,2,..

— . _ & (la+ -1 i
E[Xf(r,n,m,k)]—E[Xf(r—l,n,m,k)]—%Laﬂ;[ 1 )E[A Xnmbt], ()

XUH =)

where A'(x)=
A (x) H(x)

Proof: We have, by Athar and Islam (2004),
E[E{X (r,n,m, k)1 = E[E{ X (r=1,n,m,k)}] I g (x)za (N[F ()] dx.
Let &(x) = x’, then
E[X (r,n,m, k)] - E[ X’ (r—1,n,m,k)] = j C,_, J'ixf‘l ipi (MF(x)]" dx.

In view of (7), we have
E[X (r,n,m, k)] = ELX7 (r=1,n,m,k)]

—Li[[“”_”jc G )<H<x)) S (FT £ (x)dx

7.0 = ! i=1
-] i[[a” ”] Coul” A(x)Za (MIFTT f(x)dx,
7/raﬂ =1 ) '

which yields (8).

Corollary 1 Under the condition as stated in Theorem 1 with [ =1, we get the relation between single

moments of gos for the Lehman type I distributions as

ELX (7,1, 0)] = BLX (=1, )] = z[[‘”’ ”j (A Xemmi]. O

7@ =1

Corollary 2 Under the condition as stated in Theorem 1 with « =1, we get the relation between single
moments of gos for the Lehman type Il distributions as

E[X*’(r,n,nﬁ,k)]—E[X"(r—l,n,ﬁ,k)] = LﬂEW{X(r,n,nﬁ,k)}]. (10)
Proof: Since ZAI (x)= Z( (x) = H(x) x/™" = @(x). Thus, the relation (10) can be seen.
=1 /11( x) i h(x)

Corollary 3 Let m, =m, i=1,2,..,n—1, then the recurrence relation for single moments of gos for

Case Il is given by
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. ‘ e (Ta+I-1]) r
E[X (r,n,m, k)]~ E[X? (r —1,n,m, k)] = [ }E[A X(ronm i)} (D)

ap o [
Proof: Khan et al. (2006) have shown that for y; # y; butat m; =m;i=12,...,n—1

r—i 1
1)”( D =Dl =i

Therefore, the PDF of X (r,n,m,k) given in (5) reduces to (6). Hence the relation (11) can be

ai(r)_

established by replacing m with m in (8).

Remark 1 Let m; =0;i =1,2,...,n—1 and k =1, then recurrence relation for the single moments of
order statistics is

o [a+I-11\ .
E(X],)~E(X],) = —Hl)aﬂ;[ jEA(XM) (12)

Remark 2 Let m, - —1;i =1,2,...,n—1, then recurrence relation for the single moments of k' upper

record values is

(X,,({]({,)))j _E(Xl,(tl({;) 1))j :Li([a +ll_1])E|: (XL({]({I) ):| (13)

2.1. Examples
2.1.1. Exponentiated generalized power function distribution
Let the base distribution is power function distribution with CDF

H(x)=v?x?,0<x<v; p,v>0
and corresponding PDF
h(x)=pv PxP10<x<v; p,v>0.
Therefore, the CDF of exponentiated generalized power function is given by
F(x)=1-[1-v " x??P;0<x<v;a, B> 0. (14)

_hx) _p oo X A=y ~pu g J+pu
Also we have 4 (x) = e x and A4'(x)= o Z( )" ( ] X/t

Thus, in view of (8), we get
E[Xj(r,n,lﬁ,k)]—E[Xj(r—l n, i, k)]

- paﬂ Z Z (-1)" [[“ +ll _1]j[:]v”“E[Xj“’“ (r,n,mm,k)]. (15)
r I=1u=0
Now at a =1, we have

ZAu)mJ—lH“% _ ey,

h(x) p

Thus, in view of (10), we get the relation for moments of gos from exponentiated power function
distribution as
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E[Xj(l’,l’l,ﬁ’l,k)]—E[Xj(l"—l,}’l,ﬁ’l,k)] = [VPE[XJ;” (r,n,ih,k)]—E[Xj(r,n,/ﬁ,k)]] . (16)

r

Futher, at f =1 with j= p, we have the relation for moments of gos from power function

distribution

E[X? (r,n,m, k)] = L

ELX (=L )]+ (17)

v, +1

r

as obtained by Kamps (1995).

2.1.2. Exponentiated generalized Pareto distribution
Let the base distribution is the Pareto distribution with CDF

Hx)=1-Ax7?, A<x<w; 4, p>0
and corresponding PDF
h(x)=pAPx "™ A<x<o0; A, p>0.
Thus, the CDF of exponentiated generalized Pareto distribution can be obtained as
F(x)=1-[1-(1-A"x")*V; A<x<oc;a, > 0. (18)
h(x)  pAPx 7D
H(x) 1-A"x7"
XN APXTY (1= A7) _1
pA? e - p

and

Now we have 4;(x) =

AI (x) — [lp(lfl)xiﬂl(l*l) lp lp]

Therefore, in view of (8), we have
E[X (r,n, i, k)]~ ELX' (r =1,n,1, k)]

P& +1-1 j j
- ;a_ﬂz[[“ ! ]jw [%E[X”(l”"(r,n,nﬁ,k)]—E[X//p(r,n,ﬁi,k)}-
, 1=1

Further, at @ =1,
1-H(x) x/

ZA(x) P(x) =——— 7o) X/ =,

Thus using (10) we get,

E[X/(r,n,m,k)]—E[ X’ (r—1,n,m,k)] :%E[Xj(r,n,rh,k)]
Py,

or

E[X (r,n, i, k)] = ”ﬂ” PPV X (r—1,m,m,k)]. (19)
phy,
The above relation (19) is the relation for single moments of gos from exponentiated Pareto
distribution.
At =1 1in(19), we get the relation for single moments of gos from Pareto distribution as

pj/}“

E[X7 (r,n,m, k)] = E[X (r—1,n,m,k)]. (20)

r

The above relation (20) is also obtained by Athar et al. (2012).
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2.1.3. Exponentiated generalized inverse Weibull distribution
Suppose the base distribution is inverse Weibull distribution with CDF

H(x)=e’”7p, 0<x<o; A, p>0
and corresponding PDF
h(x)=Apx P 0<x<oqg A,p>0.

Therefore, the CDF of exponentiated generalized power function is given by

F(x)=l—[1_e*wa”],3;OSx<oo;a,IB>(). @1)
Now we have 4 (x) = ). = Apx "
H(x)
J-1 1— —Ax "\l 1 .
and A4’ (x)= % - /+p2( 1) o
ipx (p+1) ﬂvp ot

p j+p2( 1) [ ]{z( l)t (lvx )} 122( 1)v+t[ ] ltl Jj+p(-t)

P yv=0t=0
Therefore from (8), we get
E[X (r,n,m, k)= ELX' (r=1,n,7,k)]

; w [ © l t )
_ J Zzz(_l)vﬂ [ Z j[vj%ﬂ’llE[Xﬁp(“) (r,n,n?,k)].

At o =1, we have

1-H(x) j_1_l°°£p(1—s)+1
ZA(x) Px)=———— o le NE :

Now using (10), we get

E[X (r,n,m, k)] - E[ X' (r—1,n,/m,k)] =

J A +p(1-5)+1
E Z_E[X/** (r,n,m,k)], (22)
pBr, = s!

which is the relation between moments of gos for exponentiated inverse Weibull distribution.
Further, at # =1 in (22), we get the relation for inverse Weibull distribution.

3. Product Moments

Casel: y,#y,;;06,j=12,..,n=-1i#j

The joint pdf of X (r,n,m,k)=x and X(s,n,m,k)=y, 1<r<s<n, is given as (Kamps and
Cramer 2001)

7 F X
Sttt (63 =C,_ ll%a”()[F((y;J {;a(m) m;ﬁy; X<y, (23)

S
where ;" (s)= [] , r+l<i<s<n

Jj= r+l(7j 71)

i
CaseIl: m; =m,i=1,2,..,n-1
The joint pdf of X (r,n,m,k)=x and X(s,n,m,k)=y, 1<r<s<n, is given as (Pawlas and
Syznal 2001)
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Cv—l Il m _r-l1
Sxmmpy xmmp (X ¥) = m[F(X)] g, (F(x)
(b, (F(y)=h, (FC)I " [FOI ™ f(x) f(»), —0<x<y<on, (24)

Theorem 2 Let Case I be satisfied. For the exponentiated generalized class of distribution as given in
(B)and ne NNmeR,k>0,1<r<s<n,i,j=1,2,..

ELX' (r,n, i, )X (5,m,1,00] = ELX (r,m, i k)X (5 =1,m, 1,0
- 7/?{1/;’ ;([a - H}E [Bt {X(r,n,r?z,k).X(s,n,rﬁ,k)}} , (25)

Xy (H)) d 1) =10

where B (x,y) = 50 HO)'

Proof: From Athar and Islam (2004), we have
E[E{X (r,s,n,m,k){] = E[£{ X (r,s =1,n,7,k)}]

0 d o FO) [ 4
=C - , (r) F
] ] 550 y)[ﬁ;1 ()( ()] ]{Za()( F(x) } o ”

Let &(x,y)=x'y/, then
E[X'(r,n,m, k)X’ (s,n,m, k)| - E[X'(r,n,m, k)X’ (s —1,n,m,k)]

1| < ) F(y) f()
Gl " [ 2, ()(F( )] ]{Z”()(F(X)) } Fo

Thus, from (7), we have
E[X'(r,n, i, k)X (s,n,i,k)]— ELX' (r,n,i,k) X7 (s — 1, n, i, k)]

7/ o 1_.‘_00_.‘ [ Z a(r)(S)[F(y)] ]{Za (r)(F(x)) } f(x)Mi([a +:_l]](H_(—y))tdydx'

c=rl F(x) Fx) F(y) 3 4 (»)

_7/]7,[;’ : ([“ +t’ ‘”Jcﬂ [* [ B X (o o). X (5., )}

0y £ { 7 }f(x) /D) g,
[Za ()(F( )] } 2O [T ®

This leads to (25).
Corollary 4 When [ =1, in Theorem 2, we get the relation between product moments of gos for the

Lehman type I distributions as
E[X' (r,n,m, k) X7 (s,n,1,k)]— ELX (r,n, i, k) X7 (s —1,n,1,k)]

= Li([a +tt - 1]}5 [B’ (X (r,n, i, k).X (s,n, 10, k)}]. (26)
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Corollary 5 When o =1, in Theorem 2, we get the relation between product moments of gos for the
Lehman type Il distributions as
E[X" (r,n,m,k) X7 (s,n,1,k)] = E[X" (r,n, i, k) X (s =1,n, 7, k)]

LﬂE[qﬁ{X(r n i, k). X (s,m,, )}, 27)
["_I(J’) OwES

where ¢(x,y) = )

Corollary 6 Let m; =m, i=1,2,...,n—1, in (25), then the recurrence relation for product moments
of gos for Case Il is given by
E[X'(r,n,m, k)X (s,n,m, k)] = E[X" (r,n,m,k) X" (s =1,n,m,k)]

_Jog(la e N
naﬂ;[ t ]E[B X m, k)X (s, m, k)| (28)

Proof: Khan et al. (2006) have shown that when y; # Vi but m; =m;i,j=1,2,...,n—1, then
1
(r) — s—i
a;’ () =—— T ———
()= (m 1)5 =R i-r-Dl(s-0)!
Hence the joint pdf of X (r,n,m,k) and X(s,n,m,k) given in (23) reduces to (24). Therefore, the
relation (30) can be obtained by replacing m with m in (25).

Remark 3 Let m; =0;i=1,2,...,n—1 and k=1 in (25), then recurrence relation for the product

moments of order statistics is

i\ X i ([a+t-1

X1 B, - — S N ek 29)
- o (n=s+Dapiq t

Remark 4 Let m; - —1;i =1,2,...,n—1 in (25), then recurrence relation for the product moments of

k™ upper record values is

j [a+1—1]
E[CXA) Y (x ) 1— B[ y () v = k’ﬂ”( t ][B(X&M))] (30)

3.1. Examples
3.3.1. Exponentiated generalized power function distribution
For the given cdf in (14), we have

Pl - ‘
Bt(x,y):xy/ ((;/;)Pyp) 12( 1) [ J —pu i ]+pu.

Thus, from (25), we get
E[ X (r,n,m, k)X (s,n,m,k)]— E[ X' (r,n,m,k) X’ (s —1,n,m,k)]
(la+t-1]
v popf S t

u
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Now at a =1, we have

B () = b y) = D i i X ey,
P h(y) p

Thus, from (27), we get the relation for product moments of gos from exponentiated power function
distribution as

E[X'(r,n,m, k)X’ (s,n,10,k)] = ELX" (r,n, i, k) X (s =1, n, 1, k)]

- 2 [V ELX (rym, i, k) X777 (5,m, i, )] = ELX (i, ) X (5,0, K00] | (32)
pBy,

Futher, at #=1 with j = p, we have the relation for product moments of gos from power function
distribution as

vP ;
E[X'(r,n,m,k)].
+1

E[X'(r,n,m, k) X7P (s,n,m, k)] = LIE[XI' (r,n, i, k)X P (s —1,n,m, k)] +
+

N N

(33)

3.3.2. Exponentiated generalized Pareto distribution
For the given CDF in (18), we have

i j-1 - -
B (x,y) = X'y T (AP y P)l (1-A7y7P) _ ll:lp(t—l)xiyj+p(l—t) _Atpxiyj—tp]
’ pﬁpy—(pﬂ) p ’
Thus in view of (25), we get
E[X (r,n,m,k) X (s,n,m,k)]— E[ X" (r,n,m,k) X’ (s =1, n,m, k)]
i & +t—1 . .
_;L[m %%MWW%MMWMMH
vspap o t AP
—ELX (o, k) X (s,m,,K)] |- (34)
Further, at o =1
z 1-H(y) ; ;1 _x'y/
3 B (x,) = plx, ) = D) i XS
P h(y) P
Thus using (27) we get,
E[X' (r,n 1, k) X7 (s,n,0m,k)] - E[X" (r,n,m, k) X7 (s —1,n,m,k)]

=L ELX (om0, k) X (5., 0, )]

PPy

or E[X'(r,n,m, k) X7 (s,n,m,k)] = E[X'(r,n,m, k)X’ (s —1,n,m,k)]. (35)

s
The relation (35) is the relation for product moments of gos from exponentiated Pareto

distribution. At £ =1 in (35), we get the relation for product moments of gos from Pareto distribution

as

ELX (rom, i, ) X (s, )] = =22 ELX (ot )X (5 =1, i, ). (36)
p

s

The above relation (36) is obtained by Athar et al. (2012).
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3.3.3. Exponentiated generalized inverse Weibull distribution
For the cdf as given in (21)
Xy =Y 1 L& v
Bt(x,y)= y'( — ) :_ZZ( ) +d ﬂdl J+p(=d)
Apy™F Pyv=0d=0
Therefore from (25), we get

E[X'(r,n,m, k) X7 (s,n,m,k)]— E[LX"(r,n, i, k)X (s —1,n,m,k)]

- < vea [l FE=IN )V 4y i+ p(l-d)
paﬂnggdgo( 1) [ t j[jd'z ELX (r,n, i, ) X7 PO (5,0, k)], (37)

At o =1, we have

i _ L © b-1 )
ZBt(x,y):¢(x’y):ﬂxly]*1 :lzﬂ’_xtyp(lfb)ﬂ.
=1 h(y) P b!

Now by using (27), we get
E[X'(r,n,m, k)X’ (s,n,m, k)] - E[ X" (r,n,m, k) X’ (s—1,n,m, k)]

b-1
Zﬂ 2 E[X'(r,n,m, k) X PD (g n i k)], (38)
Pﬁ?’ s b=l
which is the relation between moments of gos for exponentiated inverse Weibull distribution.

Also at =1 in (37), we get the relation for inverse Weibull distribution.

4. Characterization

In this section characterization of exponentiated generalized class of distributions as considered
in (3) is presented through recurrence relations for single and product moments of gos as well as
through conditional expectation.

Theorem 3 Fix a positive integer k and let j be a non-negative integer. A necessary and sufficient

condition for a random variable X to be distributed with PDF given by (4) is that

ELXY (rom, )] = ELX7 (r =1, m, 1, k)] = [[(HZ_l]jE[AI{X(“””;”k)}]’ (39
ﬂ Pl
.
where Al(x):m and 4, (x) = h(x)
A (x) H(x)

Proof: The necessary part follows from (8). On the other hand, suppose the relation in (39) is satisfied,
then on using Athar and Islam (2004) for £(x)=x/, we have

-1
G % Za(r)[F(x)]ﬂdx— ﬁ,l[[mz ]j h® ! f (.
This implies
! yi-1 [a+1-1])[H(x)] _
5L > a(IF@Y {aﬂF() z[ l jﬂl()f(x)}dx—o. (40)

Applying the extension of Miintz-Szasz theorem (see, for example, Hwang and Lin (1984)) to (40),
we get
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F(x) 1 i[[aﬂ—l]
f(x)  afA(x) 5 l
Thus, f(x) has the PDF as given in (4). Hence Theorem 3 holds.

][Fax)]’.

Theorem 4 Suppose X (r,n,m,k),r =1,2,...n be the the i gos based on CDF and E(X) exists. Then

for two consecutive values r and r+1, such that 1<r<r+1<n,

_BraH ()41

E[HY{X(r+1,n,mk)}| X(r,n,m, k) = x] (41)
ﬂerrl +1
if and only if
F(x)=[1-H*(x)P,-o<x<w,a,f>0. (42)
Proof: Khan and Alzaid (2004) have shown that for gos
E[h(X (s,n,m,k))| X (r,n,m,k)=x]=d h(x)+b" (43)
if and only if
F(x) = [ah(x)+b]", (44)
. * s C}/‘ * b *
with a =] | / and b =——({-a).
a Hj_r+1£1+cj/j] a( a )

Comparing (42) with (44), we get
a=-1, b=1, ¢c=p, h(x)=H*(x).

Thus, the theorem can be proved in view of (43).

Corollary 7 For the ™" order statistics X, ,r= 1,2,..n and under the condition as stated under

rn’

Theorem 4
ELH(X,.,,)| X,,, = x)= PO 0] 45)
' ’ pn—-r)+1
and consequently
EH* (X, )| X,,, =x]=E[H*(X)| X 2x]= LHQ(X)-FL (46)
' ' p+1 p+1
if and only if
F(x)=[1-H*(x)); —0 <x<w,a,>0. (47)
Remark S The characterization result for adjacent upper records is given as
a a ﬂ a 1
E[H* (X X =x]=E[H"(X)| X 2x]=—H"(x)+——. 48
[H (X ) | Xy = X1 = ELH* (X) | ] Gl (x) Gl (48)

Theorem 5 Fix a positive integer k and let i, j be non-negative integers. A necessary and sufficient

condition for a random variables X,Y to be distributed with pdf given by (4) is that
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ELX' (ryn, i, k) X (5,0, k)] = ELX" (r,n, i, k) X (s =1, 7, k)]

_J ofla+e-1] ) } i

r.of S [ { jE[B {X(r,n,m,k).X(s,n,m,k)}}, (49)
i 1

where B'(x,y)= % A() = [i;((y))

Proof: The necessary part follows from (25). On the other hand, suppose the relation in (49) is
satisfied, then on using Athar and Islam (2004) for &(x,y) = x'y”/, we have

.[ .[ X'y’ ‘[C >, > a(s ){Fiy;j }{Za( )(F (x)) }fix;d dx

_J [a+t-1] rll(H(y)) @) F(y)
yaﬂ,l( ‘ ]“H A() [Z ()[F( )”

{Za ) (Feo)" }f(x) SO
i=1

F(x) F(y)
This implies
i j-l C NE 7i (r) F(y) f(x)
ysa,B o~ 1J‘_J {;a,-( )(F(x)) }[CZ)L (s )[F( )) }F(x)
y la+t=11\(H() f(»)
{aﬂ Z( ] 20) F(y)} pbe =0 0

Applying the extension of Miintz-Szasz theorem (see, for example, Hwang and Lin (1984)) to (50),

we get
Fy)_ 1 °°[a+t—1]j}_] ,
) aﬂ/l(y);[ o r

Thus f(y) has the PDF as given in (4). Hence Theorem 5 holds.

5. Conclusions

The moments of ordered random variables and recurrence relations between them have received
great attention in the past few years in statistical literature. Recurrence relations reduce the amount of
direct computations. The characterization results play an important role in the determination of
probability distributions. The several well- known exponentiated distributions can be driven from the
considered exponentiated generalized class. The moment properties of some known exponentiated
distributions are studied by some authors in literature (See, for example, Khan et al. (2008), Khan and
Kumar (2010), Kulshrestha and Kumar (2012), Kumar (2013), Aziz et al. (2013), among several
others. The main purpose of this study to unify results based on moments of generalized order statistics
for several exponentiated distributions. Since, generalized order statistics is unified approach for
several ordered random variables, thus results obtained can be easily deduced for order statistics,
record values, sequential order statistics etc.
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