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Abstract 

Cordeiro (2013) introduced and studied the exponentiated generalized class of distributions. The 

two classes of Lahman’s (2013) alternatives is considered as special cases of this generalized class. In 

this paper a new exponentiated generalized class of distributions is proposed, which is slightly 

different from one given by Cardeiro et al. (2013). Moment properties of generalized order statistics 

in terms of recurrence relations are studied.  Further, examples based on some specific distributions 

are discussed. Results for order statistics and record values are deduced from the main result. In the 

end, characterization results based on recurrence relations and conditional moment are presented. 

______________________________ 

Keywords:  Order statistics, record values, recurrence relations, exponentiated generalized distributions, 
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1. Introduction 

The concept of generalized order statistics (gos) have been introduced and extensively studied by 

Kamps (1995). A variety of ordered models of random variables is contained in this concept with 

different interpretations. Examples of such models are the order statistics (os), record values, sequential 

order statistics, progressive type II censored order statistics and Pfeifer’s records. These models can 

be effectively applied, e.g., in reliability theory. The common approach makes it possible to define 

several distributional properties at once. 

Let 2n   be a given integer and 1
1 2 1= ( , , , ) , 1n

nm m m m k
      be the parameters such that  

1

=

= > 0
n

i j
j i

k n i m


    for 1 1.i n    

The random variables (1, , , ), (2, , , ), , ( , , , )X n m k X n m k X n n m k    are called generalized order 

statistics from a continuous population having cumulative distribution function (CDF) ( )F   with 

probability density function (PDF) ( ),f   if their joint PDF has the form 
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1 1
1

=1 =1

[1 ( )]  ( ) [1 ( )] ( )
n n

m ki
j i i n n

j i

k F x f x F x f x
 


  

    
  

                                 (1) 

on the cone 1 1
1 2(0 ) < < (1)nF x x x F      of n . 

The particular cases of model (1) are given below: 

- If = 0, 1, 2,..., 1im m i n    and = 1,k  then = 1, 1 1.r n r r n       In this case the model 

(1) reduces to the joint density of order statistics. 

- By choosing = ,n m = ,i im R  = 1, 2, , 1,i m  and = 1,mk R   then 
=

= 1 ,
m

r ii r
m r R     

1 ,r m   where iR  is a set of prefixed integer that shows iR  random removal at thi  failure from 

surviving items of an experiment. In this case the model (1) reduces to the joint density based on 

progressively type-II censored order statistics. 

-If 1,im m    1, 2,..., 1i n   and = 1,k  then = 1, 1 1.r r n     In this case the model (1) 

reduces to the joint density of upper record values. 

-If 1= ( 1) ( ) 1i i im n i n i        and = ,nk   ,R   = 1, 2, 1,i n   then 

= ( 1) ,r rn r    1 1.r n    In this case the model (1) reduces to the joint density of sequential 

order statistics. 

Cordeiro et al. (2013) proposed a new exponentiated class of distributions 

( ) [1 {1 ( )} ] , ,F x H x x                                                     (2) 

where 0   and 0   are the shape parameters and ( )H x is the CDF of base distribution. 

Here in this paper, we define another exponentiated generalized class of distributions, which is 

slightly different from (2) and also discussed by Corderio and de Castro (2011) with name 

Kumaraswamy G-family. Thus, for the given CDF ( )H x  of the base distribution, the CDF of new 

class is given by 

( ) 1 [1 ( )] ; , 0F x H x                                                          (3) 

and the corresponding PDF is 
1 1( ) [1 ( )] ( ) ( ); , 0,f x H x H x h x                                               (4) 

where ( )h x  is the PDF of base distribution. 

It may be noted that, if 1   in (3), we get the Lehman type I distributions with CDF 

( ) ( ), 0F x H x   , 

and if 1  , then (3) reduces to Lehman type II distributions with CDF 

( ) 1 [1 ( )] , 0.F x H x       

There is a large volume of works based on the study of recurrence relations between moments of 

generalized order statistics and characterizations based on these relations. The moments of ordered 

random schemes assume considerable importance in the statistical literature. Many authors have 

investigated and derived several recurrence relations and identities satisfied by the single as well as 

product moments. Khan et al. (1983a,b) studied the recurrence relations and identities for moments of 

order statistics for some specific distributions. Recurrence relations for the expected values of certain 

functions of order statistics are considered by Ali and Khan (1997, 1998). Athar and Islam (2004) 

investigated the relations between expected values of functions of .gos  For more detailed survey, one 

may refer to Malik et al. (1988), Balakrishnan et al. (1988), Arnold et al. (1992), Keseling (1999), 
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Kamps and Cramer (2001), Anwar et al. (2008),  Khan et al. (2010), Athar et al. (2012), Khwaja et al. 

(2012), Khan and Khan (2016), Nayabuddin and Athar (2017), Singh et al. (2018), Zarrin et al. (2019), 

Athar et al. (2019a,b) and references therein. The organization of the paper is as follows: 

In Section 2, single moment of gos for the distributions considered in (3) is presented and some 

particular cases and examples are also discussed. Section 3 deals with the product moments of gos for 

the above said distribution, while Section 4 is related to the characterization theorems. In Section 5 

concluding remarks are given. 

 

2. Single Moments 

Here we may consider two cases:  

Case I: , , = 1, 2,..., 1,i j i j n i j     

In view of (1), the pdf of thr gos ( , , , )X r n m k  is given as (Kamps and Cramer 2001) 

1

( , , , ) 1
=1

( ) = ( ) ( )[ ( )] ,
r

i
X r n m k r i

i

f x C f x a r F x
 

                                       (5) 

where 
1

1
=1=1

 = , = > 0,
r n

r i i j
ji

C k n i m 


     and 
=1

1
( ) = , 1 .

( )

r

i
j j i
j i

a r i r n
 



  


  

Case II: = , = 1, 2,..., 1im m i n   

The pdf of thr  gos ( , , , )X r n m k  is given as (Kamps 1995) 

1 11
( , , , ) ( ) = [ ( )] ( ) ( ( )),

( 1)!
rr r

X r n m k m

C
f x F x f x g F x

r

  


                                 (6) 

where 1
=1

 = , = ( )( 1),
r

r i i
i

C k n i m      

11
(1 ) , 1

1
( ) =  

1
log , 1

1

m

m

x m
m

h x

m
x


    


      

 

and 
0

( ) = ( ) (0) = (1 ) ,  [0,1).
x m

m m mg x h x h t dt x     

Before establishing the main result, we shall prove the following lemma. 

 

Lemma 1 For the exponentiated generalized class of distribution as given in (3), the relation between 

survival function and PDF is given as 

11

[ 1]1
( ) [ ( )] ( ),

( )
l

l

l
F x H x f x

lx









    
   
   

                                  (7) 

where ( ) 1 ( ),F x F x   ( )H x  is the survival function of base distribution, 1

( )
( )

( )

h x
x

H x
   is inverse 

hazard rate function and [ 1]l    is an integer. 

 

Proof: We have 

 
1

1 1
1

( ) [1 ( )] 1 ( ) ( ) 1
1 ( ) 1

( ) ( ) ( ) ( )[1 ( )] ( ) ( )

F x H x H x H x
H x

f x h x h x xH x H x h x

   

    




 

                 
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[ 1]1
[ ( )]

( )
l

l

l
H x

lx









  
  

 
 . Hence the result. 

 

Theorem 1 Suppose Case I be satisfied. For the exponentiated generalized class of distribution as 

given in (3) and , , > 0,1 , = 1, 2,...n N m k r n j      

[ ( , , , )] [ ( 1, , , )]j jE X r n m k E X r n m k  
1

[ 1]
= { ( , , , )} ,l

lr

lj
E A X r n m k

l



 





  
    

 
           (8) 

where 
1

1

( ( ))
( )

( )

j l
l x H x

A x
x



  and 1

( )
( ) .

( )

h x
x

H x
   

 

Proof:  We have, by Athar and Islam (2004), 

   [ ( , , , ) ]  [ ( 1, , , ) ]E X r n m k E X r n m k   
2

=1

= ( ) ( )[ ( )] .
r

i
r i

i

C x a r F x dx





 
   

Let ( ) = ,jx x  then 

[ ( , , , )]  [ ( 1, , , )]j jE X r n m k E X r n m k   1
2

=1

=  ( )[ ( )] .
r

j i
r i

i

j C x a r F x dx



 

  

In view of (7), we have 

[ ( , , , )]  [ ( 1, , , )]j jE X r n m k E X r n m k    

 
1

1

1
1 =11

[ 1] 
= ( ( ))  ( )[ ( )]  ( )

( )

j r
l i

r i
l ir

lj x
C H x a r F x f x dx

l x



  

  

 


  
 
 

   

 
1

1
1 =1

[ 1] 
= ( ) ( )[ ( )]  ( ) ,

r
l i

r i
l ir

lj
C A x a r F x f x dx

l



 

  

 


  
 
 

   

which yields (8).  

 

Corollary 1 Under the condition as stated in Theorem 1 with 1  , we get the relation between single 

moments of gos for the Lehman type I distributions as 

[ ( , , , )] [ ( 1, , , )]j jE X r n m k E X r n m k  
1

[ 1]
= { ( , , , )}l

lr

lj
E A X r n m k

l



 





  
    

 
  .              (9) 

 

Corollary 2 Under the condition as stated in Theorem 1 with 1,   we get the relation between single 

moments of gos for the Lehman type II distributions as 

[ ( , , , )] [ ( 1, , , )]j jE X r n m k E X r n m k   = [ { ( , , , )}].
r

j
E X r n m k

 
                     (10) 

 

Proof:  Since 
1

1 11

( ) ( ( ))
( )

j
l l

l l

x
A x H x

x

 

 

  1( )
( ).

( )
jH x

x x
h x

   Thus, the relation (10) can be seen. 

 

Corollary 3 Let = ,im m  = 1, 2,..., 1,i n   then the recurrence relation for single moments of gos for 

Case II is given by  
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[ ( , , , )] [ ( 1, , , )]j jE X r n m k E X r n m k 
1

[ 1]
= { ( , , , )} .l

lr

lj
E A X r n m k

l



 





  
    

 
        (11) 

 

Proof:  Khan et al. (2006) have shown that for i j   but at = ; 1,2,..., 1im m i n   

1

1 1
( ) ( 1) .

( 1)!( )!( 1)

r i
i r

a r
i r im




 

 
 

Therefore, the PDF of ( , , , )X r n m k  given in (5) reduces to (6). Hence the relation (11) can be 

established by replacing m  with m  in (8). 

 

Remark 1 Let 0; 1,2,..., 1im i n    and 1,k   then recurrence relation for the single moments of 

order statistics is 

: 1:( ) ( )jj
r n r nE X E X  :

1

[ 1]
= ( ) .

( 1)
l

r n
l

lj
E A X

ln r









  
       

                  (12) 

 

Remark 2 Let 1; 1,2,..., 1,im i n     then recurrence relation for the single moments of thk  upper 

record values is 

( ) ( )
( ) ( 1)( ) ( )k kj j

u r u rE X E X  ( )
( )

1

[ 1]
= ( ) .kl

u r
l

lj
E A X

lk









  
    

 
                      (13) 

 

2.1. Examples 

2.1.1. Exponentiated generalized power function distribution 

Let the base distribution is power function distribution with CDF 

( ) , 0 ; , 0p pH x x x p       

and corresponding PDF 
1( ) ,0 ; , 0.p ph x p x x p        

Therefore, the CDF of exponentiated generalized power function is given by 

( ) 1 [1 ] ; 0 ; , 0.p pF x x x                                                (14) 

Also we have 1

( )
( )

( )

h x p
x

H x x
    and 

1

0

(1 ) 1
( ) ( 1) .

( / )

j p p l l
l u pu j pu

u

lx x
A x x

up x p




 
 



 
    

 
  

Thus, in view of (8), we get 

[ ( , , , )] [ ( 1, , , )]j jE X r n m k E X r n m k    

1 0

[ 1]
= ( 1) [ ( , , , )]

l
u pu j pu

l ur

l lj
E X r n m k

l up




 


 

 

   
   

  
  .                    (15) 

Now at 1,   we have 

1

1

1 ( ) 1
( ) ( ) [ ].

( )
l j p j p j

l

H x
A x x x x x

h x p
 


 




     

Thus, in view of (10), we get the relation for moments of gos from exponentiated power function 

distribution as 
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[ ( , , , )] [ ( 1, , , )]j jE X r n m k E X r n m k   [ ( , , , )] [ ( , , , )] .p j p j

r

j
E X r n m k E X r n m k

p



    

    (16) 

Futher, at 1   with ,j p  we have the relation for moments of gos from power function 

distribution 

[ ( , , , )] [ ( 1, , , )]
1 1

p
p pr

r r

E X r n m k E X r n m k
 

 
  

 
                                  (17) 

as obtained by Kamps (1995). 

 

2.1.2. Exponentiated generalized Pareto distribution 

Let the base distribution is the Pareto distribution with CDF 

( ) 1 , ; , 0p pH x x x p         

and corresponding PDF 
( 1)( ) , ; , 0.p ph x p x x p         

Thus, the CDF of exponentiated generalized Pareto distribution can be obtained as 

( ) 1 [1 (1 ) ] ; ; , 0.p pF x x x                                            (18) 

Now we have 
( 1)

1

( )
( )

( ) 1

p p

p p

h x p x
x

H x x






 


 


 and  

1
( 1) (1 )

( 1)

( ) (1 ) 1
( ) [ ].

j p p l p p
l p l j p l lp j lp

p p

x x x
A x x x

pp x

 
 



  
   

 


    

Therefore, in view of (8), we have 

[ ( , , , )] [ ( 1, , , )]j jE X r n m k E X r n m k    

 (1 )

1

[ 1] 1
= [ ( , , , )] [ ( , , , ) .lp j l p j lp

p
lr

lj
E X r n m k E X r n m k

lp




  


  



    
   

  
    

Further, at 1,    

1

1

1 ( )
( ) ( )

( )
l j

l

H x
A x x x

h x








 

jx

p
  

Thus using (10) we get, 

[ ( , , , )] [ ( 1, , , )] [ ( , , , )]j j j

r

j
E X r n m k E X r n m k E X r n m k

p
      

or 

[ ( , , , )] [ ( 1, , , )].j jr

r

p
E X r n m k E X r n m k

p j




 


                               (19) 

The above relation (19) is the relation for single moments of gos from exponentiated Pareto 

distribution. 

At 1   in (19), we get the relation for single moments of gos from Pareto distribution as 

[ ( , , , )] [ ( 1, , , )].j jr

r

p
E X r n m k E X r n m k

p j




 


                                 (20) 

The above relation (20) is also obtained by Athar et al. (2012). 
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2.1.3. Exponentiated generalized inverse Weibull distribution 

Suppose the base distribution is inverse Weibull distribution with CDF 

( ) , 0 ; , 0
pxH x e x p 

      

and corresponding PDF 

( 1)( ) ,0 ; , 0.
pp xh x px e x p 

        

Therefore, the CDF of exponentiated generalized power function is given by 

( ) 1 [1 ] ; 0 ; , 0.
pxF x e x   

                                         (21) 

Now we have ( 1)
1

( )
( )

( )
ph x

x px
H x

       

and 
1

( 1)
0

(1 ) 1
( ) ( 1)

p

p
j x l l

l j p vx

p
v

lx e
A x x e

vppx


 






 

 

 


 
    

 
  

          1 (1 )

0 0 0 0

1 ( ) 1
( 1) ( 1) ( 1)

! !

p t tl l
j p t v t t j p t

v t v t

l lvx v
x x

v vp t p t
 




 
    

   

     
        

     
    

Therefore from (8), we get 

[ ( , , , )] [ ( 1, , , )]j jE X r n m k E X r n m k    

  1 (1 )

1 0 0

[ 1]
( 1) [ ( , , , )].

!

tl
v t t j p t

l v tr

l lj v
E X r n m k

l vp t






 
   

  

   
    

  
   

At 1,   we have 

1
1 (1 ) 1

1 1

1 ( ) 1
( ) ( ) .

( ) !

s
l j p s

l s

H x
A x x x x

h x p s




 
  

 


     

Now using (10), we get 

[ ( , , , )] [ ( 1, , , )]j jE X r n m k E X r n m k  
1

(1 ) 1

1

[ ( , , , )],
!

s
j p s

sr

j
E X r n m k

p s






  



            (22) 

which is the relation between moments of gos for exponentiated inverse Weibull distribution. 

Further, at 1   in (22), we get the relation for inverse Weibull distribution. 

 

3.    Product Moments 

Case I: ;  , = 1, 2,..., 1,i j i j n i j     

The joint pdf of ( , , , )X r n m k x  and ( , , , ) ,X s n m k y  1 < ,r s n   is given as (Kamps and 

Cramer 2001) 

( )
( , , , ), ( , , , ) 1

= 1 =1

( ) ( ) ( )
( , ) = ( ) ( )[ ( )] ,  < ,

( ) ( ) ( )

is r
r i

X r n m k X s n m k s i i
i r i

F y f x f y
f x y C a s a r F x x y

F x F x F y







  
   
   

      (23) 

where ( )

= 1

1
( ) = ,    1 .

( )

s
r

i
j r j i

j i

a s r i s n
 



   


  

Case II: = , = 1, 2,..., 1im m i n   

The joint pdf of ( , , , )X r n m k x  and ( , , , ) ,X s n m k y  1 < ,r s n   is given as (Pawlas and 

Syznal 2001) 
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11
( , , , ), ( , , , ) ( , ) = [ ( )] ( ( ))

( 1)! ( 1)!
m rs

X r n m k X s n m k m

C
f x y F x g F x

r s r


  
 

 
11[ ( ( )) ( ( ))] [ ( )] ( ) ( ),  < .s r s

m mh F y h F x F y f x f y x y
            (24) 

 

Theorem 2 Let Case I be satisfied. For the exponentiated generalized class of distribution as given in 

(3) and , , > 0,1 < , , = 1, 2,...n N m k r s n i j      

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

1

[ 1]
= { ( , , , ). ( , , , )} ,t

ts

tj
E B X r n m k X s n m k

l



 





  
    

 
          (25) 

where 
1

2

( ( ))
( , )

( )

i j t
t x y H y

B x y
y



  and 2

( )
( ) .

( )

h y
y

H y
   

 

Proof: From Athar and Islam (2004), we have 

   [ ( , , , , ) ]  [ ( , 1, , , ) ]E X r s n m k E X r s n m k     

 ( )
2

= 1 =1

( ) ( )
= ( , ) ( ) ( ) ( ) .

( ) ( )

is r
r i

s i ix
c r i

F y f x
C x y a s a r F x dydx

y F x F x





 

 


    
     

      
    

Let ( , ) = ,i jx y x y  then 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

   1 ( )
2

= 1 =1

( ) ( )
= ( ) ( ) ( ) .

( ) ( )

is r
i j r i

s i ix
c r i

F y f x
jC x y a s a r F x dydx

F x F x


  

 


    
    
     
    

Thus, from (7), we have 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

                                              

 1 ( )1

= 1 =1 1 2

[ 1] ( ) ( ) ( ) ( ( ))
= ( ) ( ) ( ) .

( )( ) ( ) ( )

tis r
i j rs i

i ix
c r i ts

tj C F y f x f y H y
x y a s a r F x dydx

t yF x F x F y


 

  

  


 

       
      
       
   

 

1
1

( )

= 1 =1

[ 1] 
= { ( , , , ). ( , , , )}

( ) ( ) ( )
( ) ( ) ( ) .

( ) ( ) ( )

t
s x

ts

is r
ir

i i
c r i

tj
C B X r n m k X s n m k

t

F y f x f y
a s a r F x dydx

F x F x F y






 

  

 




  
 
 

    
     
     

  

 

 

 

This leads to (25).  

 

Corollary 4 When 1,   in Theorem 2, we get the relation between product moments of gos for the 

Lehman type I distributions as 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

1

[ 1]
= { ( , , , ). ( , , , )} .t

ts

tj
E B X r n m k X s n m k

t



 





  
    

 
                 (26) 
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Corollary 5 When 1,   in Theorem 2, we get the relation between product moments of gos for the 

Lehman type II distributions as 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

 = { ( , , , ). ( , , , )} ,
s

j
E X r n m k X s n m k

 
                                          (27) 

where 1( )
( , ) .

( )
i jH y

x y x y
h y

   

 

Corollary 6 Let = ,im m  = 1, 2,..., 1,i n   in (25), then the recurrence relation for product moments 

of gos for Case II is given by 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k    

1

[ 1]
= { ( , , , ). ( , , , )} .t

ts

tj
E B X r n m k X s n m k

t



 





  
    

 
      (28) 

 

Proof:  Khan et al. (2006) have shown that when i j   but ; , 1,2, , 1im m i j n   , then 

( )

1

1 1
( ) ( 1) .

( 1)!( )!( 1)

r s i
i s r

a s
i r s im



 
 

  
 

Hence the joint pdf of ( , , , )X r n m k  and ( , , , )X s n m k  given in (23) reduces to (24). Therefore, the 

relation (30) can be obtained by replacing m  with m  in (25). 

 

Remark 3 Let 0; 1,2,..., 1im i n    and 1k  in (25), then recurrence relation for the product 

moments of order statistics is 

( , )( , )
, : , :, 1:

1

[ 1]
[ ] [ ] ( ) .

( 1)
i ji j t

r s n r s nr s n
t

tj
E X E X E B X

tn s










  
         

                 (29) 

 

Remark 4 Let 1; 1, 2,..., 1im i n     in (25), then recurrence relation for the product moments of 

thk  upper record values is 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( 1) ( , )

1

[ 1]
[( ) ( ) ] [( ) ( ) ] ( ) .k k k k ki j i j t

u r u s u r u s u r s
t

tj
E X X E X X E B X

tk










  
      

 
          (30) 

 

3.1. Examples  

3.3.1. Exponentiated generalized power function distribution 

For the given cdf in (14), we have 
1

0

(1 ) 1
( , ) ( 1) .

( / )

i j p p t t
t u pu i j pu

u

tx y y
B x y x y

up y p




 
 



 
    

 
  

Thus, from (25), we get 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

         
1 0

[ 1]
= ( 1) ( , , , ) ( , , , ) ,

t
t pu i j pu

t us

t tj
E X r n m k X s n m k

t up




 


 

 

   
      

  
       (31) 
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Now at 1,   we have 

1

1

1 ( )
( , ) ( , ) [ ].

( )

i
t i j p j p j

t

H y x
B x y x y x y y y

h y p
 


 




     

Thus, from (27), we get the relation for  product moments of gos from exponentiated power function 

distribution as 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k       

     [ ( , , , ) ( , , , )] [ ( , , , ) ( , , , )] .p i j p i j

s

j
E X r n m k X s n m k E X r n m k X s n m k

p



           (32) 

Futher, at 1   with ,j p  we have the relation for product moments of gos from power function 

distribution as 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )] [ ( , , , )].
1 1

p
i p i p is

s s

E X r n m k X s n m k E X r n m k X s n m k E X r n m k
 

 
  

 
      

                                                               (33) 

 

3.3.2. Exponentiated generalized Pareto distribution 

For the given CDF in (18), we have 
1

( 1) (1 )

( 1)

( ) (1 ) 1
( , ) .

i j p p t p p
t p t i j p t tp i j tp

p p

x y y y
B x y x y x y

pp y

 
 



  
   

 

       

Thus in view of (25), we get 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

  (1 )

1

[ 1] 1
= [ ( , , , ) ( , , , )]tp i j t p

p
ts

tj
E X r n m k X s n m k

tp




  


 



   
  

 
    

[ ( , , , ) ( , , , )] .i j tpE X r n m k X s n m k                    (34) 

Further, at 1    

1

1

1 ( )
( , ) ( , ) .

( )

i j
t i j

t

H y x y
B x y x y x y

h y p








    

Thus using (27) we get, 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

                 [ ( , , , ) ( , , , )]i j

s

j
E X r n m k X s n m k

p
     

or                   [ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )].i j i js

s

p
E X r n m k X s n m k E X r n m k X s n m k

p j




 


                    (35) 

The relation (35) is the relation for product moments of gos from exponentiated Pareto 

distribution. At 1   in (35), we get the relation for product moments of gos from Pareto distribution 

as 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )].i j i js

s

p
E X r n m k X s n m k E X r n m k X s n m k

p j




 


                  (36) 

The above relation (36) is obtained by Athar et al. (2012). 
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3.3.3. Exponentiated generalized inverse Weibull distribution 

For the cdf as given in (21) 

 
1

1 (1 )

( 1)
0 0

(1 ) 1
( , ) ( 1) .

!

pi j y t dt
t v d d j p d

p
v d

tx y e v
B x y x

vp dpy






  
   

 
 

 
    

 
   

Therefore from (25), we get 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

1 (1 )

1 0 0

[ 1]
( 1) [ ( , , , ) ( , , , )].

!

dt
v d d i j p d

t v ds

t tj v
E X r n m k X s n m k

t vp d






 
   

  

   
    

  
        (37) 

At 1  , we have 

1
1 (1 ) 1

1 1

1 ( ) 1
( , ) ( , ) .

( ) !

b
t i j i p b

t b

H y
B x y x y x y x y

h y p b




 
  

 


     

Now by using (27), we get 

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

1
(1 ) 1

1

[ ( , , , ) ( , , , )],
!

b
i j p b

bs

j
E X r n m k X s n m k

p b






  



                    (38) 

which is the relation between moments of gos for exponentiated inverse Weibull distribution. 

Also at 1   in (37), we get the relation for inverse Weibull distribution. 

 

4. Characterization 

In this section characterization of exponentiated generalized class of distributions as considered 

in (3) is presented through recurrence relations for single and product moments of gos as well as 

through conditional expectation.  

 

Theorem 3 Fix a positive integer k  and let j  be a non-negative integer. A necessary and sufficient 

condition for a random variable X  to be distributed with PDF given by (4) is that  

1

[ 1]
[ ( , , , )] [ ( 1, , , )] = { ( , , , )} ,j j l

lr

lj
E X r n m k E X r n m k E A X r n m k

l



 





  
      

 
              (39) 

where 
1

1

( ( ))
( )

( )

j l
l x H x

A x
x



  and 1

( )
( ) .

( )

h x
x

H x
   

 
Proof:  The necessary part follows from (8). On the other hand, suppose the relation in (39) is satisfied, 

then on using Athar and Islam (2004) for ( ) = ,jx x  we have 

1
11 1

2
1 1 11

[ 1]
( )[ ( )] [ ( )] ( )[ ( )] ( ) .

( )
i i

jr r
j lr

r i i
i l ir

ljC x
jC x a r F x dx H x a r F x f x dx

l x
 

  

   
  

  

  
  

 
     

This implies 

11
1

1 1 1

[ 1] [ ( )]
( )[ ( )] ( ) ( ) 0.

( )
i

lr
j

r i
i lr

lj H x
C x a r F x F x f x dx

l x
 


  




 
 

    
   

   
           (40) 

Applying the extension of Müntz-Szász theorem (see, for example, Hwang and Lin (1984)) to (40), 

we get 
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11

[ 1]( ) 1
[ ( )] .

( ) ( )
l

l

lF x
H x

lf x x









  
  

 
  

Thus, ( )f x  has the PDF as given in (4). Hence Theorem 3 holds. 

 

Theorem 4 Suppose ( , , , ), = 1, 2,...X r n m k r n  be the the thr  gos based on CDF and ( )E X  exists. Then 

for two consecutive values r  and 1,r   such that 1 < 1 ,r r n     

1

1

( ) 1
[ { ( 1, , , )} | ( , , , ) = ] = .

1
r

r

H x
E H X r n m k X r n m k x


 










                         (41) 

if and only if 

( ) [1 ( )] , ; , 0.F x H x x                                                  (42) 

 

Proof:  Khan and Alzaid (2004) have shown that for gos  

* *[ ( ( , , , )) | ( , , , ) = ] = ( )E h X s n m k X r n m k x a h x b                                     (43) 

if and only if 

( ) = [ ( ) ] ,cF x ah x b                                                             (44) 

with *

= 1
=

1

s j

j r
j

c
a

c





 
 
  

  and * *= (1 ).
b

b a
a

   

Comparing (42) with (44), we get 

= 1,a   = 1,b  = ,c   ( ) = ( ).h x H x  

Thus, the theorem can be proved in view of (43). 

 

Corollary 7 For the thr  order statistics : , = 1, 2,...r nX r n  and under the condition as stated under 

Theorem 4 

1: :

( ) ( ) 1
[ ( ) | = ] = ,

( ) 1
r n r n

n r H x
E H X X x

n r


 



 

 
                        (45) 

and consequently 

: 1:

1
[ ( ) | = ] = [ ( ) | ] = ( )

1 1
n n n nE H X X x E H X X x H x  

   
 

           (46) 

if and only if 

( ) [1 ( )] ; , , 0.F x H x x                                           (47) 

 

Remark 5 The characterization result for adjacent upper records is given as 

( ) ( 1)

1
[ ( ) | = ] = [ ( ) | ] = ( ) .

1 1
u n u nE H X X x E H X X x H x  

   
 

         (48) 

 

Theorem 5 Fix a positive integer k  and let ,i j  be non-negative integers. A necessary and sufficient 

condition for a random variables ,X Y  to be distributed with pdf given by (4) is that  
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[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]i j i jE X r n m k X s n m k E X r n m k X s n m k      

                   
1

[ 1]
= { ( , , , ). ( , , , )} ,t

ts

tj
E B X r n m k X s n m k

t



 





  
    

 
          (49) 

where 
1

2

( ( ))
( , )

( )

i j t
t x y H y

B x y
y



  and 2

( )
( ) .

( )

h y
y

H y
   

 

Proof: The necessary part follows from (25). On the other hand, suppose the relation in (49) is 

satisfied, then on using Athar and Islam (2004) for ( , ) = ,i jx y x y  we have 

 1 ( )
2

= 1 =1

( ) ( )
 ( ) ( ) ( )

( ) ( )

is r
ii j r

s i ix
c r i

F y f x
jC x y a s a r F x dydx

F x F x


 


 



    
    
     
    

1 ( )
1

1 = 1

[ 1] ( ( )) ( )
= ( )

( ) ( )

it s
i j r

s ix
t c rs

tj H y F y
C x y a s

t y F x




  

  


 
 

     
   
     

    

     
=1

( ) ( )
( ) ( ) .

( ) ( )

r
i

i
i

f x f y
a r F x dydx

F x F y

 
 
 
  

This implies 

 1 ( )
1

=1 = 1

 ( ) ( )
 ( ) ( ) ( )

( ) ( )

ir s
ii j r

s i ix
i c rs

j F y f x
C x y a r F x a s

F x F x




 

 


 


   
   
     

    

1

[ 1] ( ( )) ( )
0.

( ) ( )

t

t

t H y f y
dydx

t y F y










    
    
   

                        (50) 

Applying the extension of Müntz-Szász theorem (see, for example, Hwang and Lin (1984)) to (50), 

we get 

1

[ 1]( ) 1
[ ( )]

( ) ( )
t

t

tF y
H y

tf y y









  
  

 
 . 

Thus ( )f y  has the PDF as given in (4). Hence Theorem 5 holds. 

 

5.    Conclusions 

The moments of ordered random variables and recurrence relations between them have received 

great attention in the past few years in statistical literature. Recurrence relations reduce the amount of 

direct computations. The characterization results play an important role in the determination of 

probability distributions. The several well- known exponentiated distributions can be driven from the 

considered exponentiated generalized class. The moment properties of some known exponentiated 

distributions are studied by some authors in literature (See, for example, Khan et al. (2008), Khan and 

Kumar (2010) , Kulshrestha and Kumar (2012) , Kumar (2013) , Aziz et al. (2013) , among several 

others. The main purpose of this study to unify results based on moments of generalized order statistics 

for several exponentiated distributions. Since, generalized order statistics is unified approach for 

several ordered random variables, thus results obtained can be easily deduced for order statistics, 

record values, sequential order statistics etc. 
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