

Thailand Statistician
October 2021; 19(4): 797-811
<http://statassoc.or.th>
Contributed paper

Moment Properties of Generalized Order Statistics from Exponentiated Generalized Class of Distributions

Yousef Fyaz Alharbi [a], Haseeb Athar*[a][b] and Mohamad A. Fawzy [a][c]

[a] Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia.

[b] Department of Statistics and Operation Research, Aligarh Muslim University, Aligarh, India.

[c] Mathematics Department, Faculty of Science, Suez University, Suez, Egypt.

*Corresponding author; e-mail: haseebathar@hotmail.com

Received: 1 March 2020

Revised: 17 April 2020

Accepted: 24 May 2020

Abstract

Cordeiro (2013) introduced and studied the exponentiated generalized class of distributions. The two classes of Lahman's (2013) alternatives is considered as special cases of this generalized class. In this paper a new exponentiated generalized class of distributions is proposed, which is slightly different from one given by Cordeiro et al. (2013). Moment properties of generalized order statistics in terms of recurrence relations are studied. Further, examples based on some specific distributions are discussed. Results for order statistics and record values are deduced from the main result. In the end, characterization results based on recurrence relations and conditional moment are presented.

Keywords: Order statistics, record values, recurrence relations, exponentiated generalized distributions, characterization.

1. Introduction

The concept of generalized order statistics (gos) have been introduced and extensively studied by Kamps (1995). A variety of ordered models of random variables is contained in this concept with different interpretations. Examples of such models are the order statistics (os), record values, sequential order statistics, progressive type II censored order statistics and Pfeifer's records. These models can be effectively applied, e.g., in reliability theory. The common approach makes it possible to define several distributional properties at once.

Let $n \geq 2$ be a given integer and $\tilde{m} = (m_1, m_2, \dots, m_{n-1}) \in \mathbb{R}^{n-1}$, $k \geq 1$ be the parameters such that

$$\gamma_i = k + n - i + \sum_{j=i}^{n-1} m_j > 0 \text{ for } 1 \leq i \leq n-1.$$

The random variables $X(1, n, \tilde{m}, k), X(2, n, \tilde{m}, k), \dots, X(n, n, \tilde{m}, k)$ are called generalized order statistics from a continuous population having cumulative distribution function (CDF) $F(\cdot)$ with probability density function (PDF) $f(\cdot)$, if their joint PDF has the form

$$k \left(\prod_{j=1}^{n-1} \gamma_j \right) \left(\prod_{i=1}^{n-1} [1-F(x_i)]^{m_i} f(x_i) \right) [1-F(x_n)]^{k-1} f(x_n) \quad (1)$$

on the cone $F^{-1}(0+) < x_1 \leq x_2 \leq \dots \leq x_n < F^{-1}(1)$ of \mathbb{R}^n .

The particular cases of model (1) are given below:

- If $m_i = m = 0, i = 1, 2, \dots, n-1$ and $k = 1$, then $\gamma_r = n-r+1, 1 \leq r \leq n-1$. In this case the model (1) reduces to the joint density of order statistics.

- By choosing $n = m, m_i = R_i, i = 1, 2, \dots, m-1$, and $k = R_m + 1$, then $\gamma_r = m-r+1 + \sum_{i=r}^m R_i, 1 \leq r \leq m$, where R_i is a set of prefixed integer that shows R_i random removal at i^{th} failure from surviving items of an experiment. In this case the model (1) reduces to the joint density based on progressively type-II censored order statistics.

- If $m_i = m \rightarrow -1, i = 1, 2, \dots, n-1$ and $k = 1$, then $\gamma_r = 1, 1 \leq r \leq n-1$. In this case the model (1) reduces to the joint density of upper record values.

- If $m_i = (n-i+1)\alpha_i - (n-i)\alpha_{i+1} - 1$ and $k = \alpha_n, \alpha \in R^+, i = 1, 2, \dots, n-1$, then $\gamma_r = (n-r+1)\alpha_r, 1 \leq r \leq n-1$. In this case the model (1) reduces to the joint density of sequential order statistics.

Cordeiro et al. (2013) proposed a new exponentiated class of distributions

$$F(x) = [1 - \{1 - H(x)\}^\alpha]^\beta, x \in \mathbb{R}, \quad (2)$$

where $\alpha > 0$ and $\beta > 0$ are the shape parameters and $H(x)$ is the CDF of base distribution.

Here in this paper, we define another exponentiated generalized class of distributions, which is slightly different from (2) and also discussed by Corderio and de Castro (2011) with name Kumaraswamy G-family. Thus, for the given CDF $H(x)$ of the base distribution, the CDF of new class is given by

$$F(x) = 1 - [1 - H^\alpha(x)]^\beta; \alpha, \beta > 0 \quad (3)$$

and the corresponding PDF is

$$f(x) = \alpha \beta [1 - H^\alpha(x)]^{\beta-1} H^{\alpha-1}(x) h(x); \alpha, \beta > 0, \quad (4)$$

where $h(x)$ is the PDF of base distribution.

It may be noted that, if $\beta = 1$ in (3), we get the Lehman type I distributions with CDF

$$F(x) = H^\alpha(x), \alpha > 0,$$

and if $\alpha = 1$, then (3) reduces to Lehman type II distributions with CDF

$$F(x) = 1 - [1 - H(x)]^\beta, \beta > 0.$$

There is a large volume of works based on the study of recurrence relations between moments of generalized order statistics and characterizations based on these relations. The moments of ordered random schemes assume considerable importance in the statistical literature. Many authors have investigated and derived several recurrence relations and identities satisfied by the single as well as product moments. Khan et al. (1983a,b) studied the recurrence relations and identities for moments of order statistics for some specific distributions. Recurrence relations for the expected values of certain functions of order statistics are considered by Ali and Khan (1997, 1998). Athar and Islam (2004) investigated the relations between expected values of functions of gos. For more detailed survey, one may refer to Malik et al. (1988), Balakrishnan et al. (1988), Arnold et al. (1992), Keseling (1999),

Kamps and Cramer (2001), Anwar et al. (2008), Khan et al. (2010), Athar et al. (2012), Khwaja et al. (2012), Khan and Khan (2016), Nayabuddin and Athar (2017), Singh et al. (2018), Zarrin et al. (2019), Athar et al. (2019a,b) and references therein. The organization of the paper is as follows:

In Section 2, single moment of gos for the distributions considered in (3) is presented and some particular cases and examples are also discussed. Section 3 deals with the product moments of gos for the above said distribution, while Section 4 is related to the characterization theorems. In Section 5 concluding remarks are given.

2. Single Moments

Here we may consider two cases:

Case I: $\gamma_i \neq \gamma_j, i, j = 1, 2, \dots, n-1, i \neq j$

In view of (1), the pdf of r^{th} gos $X(r, n, \tilde{m}, k)$ is given as (Kamps and Cramer 2001)

$$f_{X(r, n, \tilde{m}, k)}(x) = C_{r-1} f(x) \sum_{i=1}^r a_i(r) [\bar{F}(x)]^{\gamma_i-1}, \quad (5)$$

where $C_{r-1} = \prod_{i=1}^r \gamma_i, \gamma_i = k + n - i + \sum_{j=1}^{n-1} m_j > 0$, and $a_i(r) = \prod_{\substack{j=1 \\ j \neq i}}^r \frac{1}{(\gamma_j - \gamma_i)}, 1 \leq i \leq r \leq n$.

Case II: $m_i = m, i = 1, 2, \dots, n-1$

The pdf of r^{th} gos $X(r, n, m, k)$ is given as (Kamps 1995)

$$f_{X(r, n, m, k)}(x) = \frac{C_{r-1}}{(r-1)!} [\bar{F}(x)]^{\gamma_r-1} f(x) g_m^{r-1}(F(x)), \quad (6)$$

where $C_{r-1} = \prod_{i=1}^r \gamma_i, \gamma_i = k + (n-i)(m+1), h_m(x) = \begin{cases} -\frac{1}{m+1}(1-x)^{m+1}, & m \neq -1 \\ \log\left(\frac{1}{1-x}\right), & m = -1 \end{cases}$

and $g_m(x) = h_m(x) - h_m(0) = \int_0^x (1-t)^m dt, x \in [0, 1]$.

Before establishing the main result, we shall prove the following lemma.

Lemma 1 For the exponentiated generalized class of distribution as given in (3), the relation between survival function and PDF is given as

$$\bar{F}(x) = \left\{ \frac{1}{\alpha \beta \lambda_1(x)} \sum_{l=1}^{\infty} \binom{[\alpha + l - 1]}{l} [\bar{H}(x)]^l \right\} f(x), \quad (7)$$

where $\bar{F}(x) = 1 - F(x)$, $\bar{H}(x)$ is the survival function of base distribution, $\lambda_1(x) = \frac{h(x)}{H(x)}$ is inverse hazard rate function and $[\alpha + l - 1]$ is an integer.

Proof: We have

$$\frac{\bar{F}(x)}{f(x)} = \frac{[1 - H^\alpha(x)]^\beta}{\alpha \beta [1 - H^\alpha(x)]^{\beta-1} H^{\alpha-1}(x) h(x)} = \frac{1}{\alpha \beta} \left\{ \frac{H^{1-\alpha}(x)}{h(x)} - \frac{H(x)}{h(x)} \right\} = \frac{1}{\alpha \beta \lambda_1(x)} \left[\left\{ 1 - \bar{H}(x) \right\}^{-\alpha} - 1 \right]$$

$= \frac{1}{\alpha \beta \lambda_1(x)} \sum_{l=1}^{\infty} \binom{[\alpha+l-1]}{l} [\bar{H}(x)]^l$. Hence the result.

Theorem 1 Suppose Case I be satisfied. For the exponentiated generalized class of distribution as given in (3) and $n \in N, \tilde{m} \in \mathbb{R}, k > 0, 1 \leq r \leq n, j = 1, 2, \dots$

$$E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] = \frac{j}{\gamma_r \alpha \beta} \sum_{l=1}^{\infty} \binom{[\alpha+l-1]}{l} E[A^l \{X(r, n, \tilde{m}, k)\}], \quad (8)$$

where $A^l(x) = \frac{x^{j-1}(\bar{H}(x))^l}{\lambda_1(x)}$ and $\lambda_1(x) = \frac{h(x)}{F(x)}$.

Proof: We have, by Athar and Islam (2004),

$$E[\xi \{X(r, n, \tilde{m}, k)\}] - E[\xi \{X(r-1, n, \tilde{m}, k)\}] = C_{r-2} \int_{-\infty}^{\infty} \xi'(x) \sum_{i=1}^r a_i(r) [\bar{F}(x)]^{\gamma_i} dx.$$

Let $\xi(x) = x^j$, then

$$E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] = j C_{r-2} \int_{-\infty}^{\infty} x^{j-1} \sum_{i=1}^r a_i(r) [\bar{F}(x)]^{\gamma_i} dx.$$

In view of (7), we have

$$\begin{aligned} E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] &= \frac{j}{\gamma_r \alpha \beta} \sum_{l=1}^{\infty} \binom{[\alpha+l-1]}{l} C_{r-1} \int_{-\infty}^{\infty} \frac{x^{j-1}}{\lambda_1(x)} (\bar{H}(x))^l \sum_{i=1}^r a_i(r) [\bar{F}(x)]^{\gamma_i-1} f(x) dx \\ &= \frac{j}{\gamma_r \alpha \beta} \sum_{l=1}^{\infty} \binom{[\alpha+l-1]}{l} C_{r-1} \int_{-\infty}^{\infty} A^l(x) \sum_{i=1}^r a_i(r) [\bar{F}(x)]^{\gamma_i-1} f(x) dx, \end{aligned}$$

which yields (8).

Corollary 1 Under the condition as stated in Theorem 1 with $\beta = 1$, we get the relation between single moments of gos for the Lehman type I distributions as

$$E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] = \frac{j}{\gamma_r \alpha} \sum_{l=1}^{\infty} \binom{[\alpha+l-1]}{l} E[A^l \{X(r, n, \tilde{m}, k)\}]. \quad (9)$$

Corollary 2 Under the condition as stated in Theorem 1 with $\alpha = 1$, we get the relation between single moments of gos for the Lehman type II distributions as

$$E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] = \frac{j}{\gamma_r \beta} E[\phi \{X(r, n, \tilde{m}, k)\}]. \quad (10)$$

Proof: Since $\sum_{l=1}^{\infty} A^l(x) = \frac{x^{j-1}}{\lambda_1(x)} \sum_{l=1}^{\infty} (\bar{H}(x))^l = \frac{\bar{H}(x)}{h(x)} x^{j-1} = \phi(x)$. Thus, the relation (10) can be seen.

Corollary 3 Let $m_i = m$, $i = 1, 2, \dots, n-1$, then the recurrence relation for single moments of gos for Case II is given by

$$E[X^j(r, n, m, k)] - E[X^j(r-1, n, m, k)] = \frac{j}{\gamma_r \alpha \beta} \sum_{l=1}^{\infty} \binom{[\alpha+l-1]}{l} E[A^l\{X(r, n, m, k)\}]. \quad (11)$$

Proof: Khan et al. (2006) have shown that for $\gamma_i \neq \gamma_j$ but at $m_i = m$; $i = 1, 2, \dots, n-1$

$$a_i(r) = \frac{1}{(m+1)^{r-1}} (-1)^{r-i} \frac{1}{(i-1)!(r-i)!}.$$

Therefore, the PDF of $X(r, n, \tilde{m}, k)$ given in (5) reduces to (6). Hence the relation (11) can be established by replacing \tilde{m} with m in (8).

Remark 1 Let $m_i = 0$; $i = 1, 2, \dots, n-1$ and $k = 1$, then recurrence relation for the single moments of order statistics is

$$E(X_{r:n}^j) - E(X_{r-1:n}^j) = \frac{j}{(n-r+1)\alpha\beta} \sum_{l=1}^{\infty} \binom{[\alpha+l-1]}{l} E[A^l(X_{r:n})]. \quad (12)$$

Remark 2 Let $m_i \rightarrow -1$; $i = 1, 2, \dots, n-1$, then recurrence relation for the single moments of k^{th} upper record values is

$$E(X_{u(r)}^{(k)})^j - E(X_{u(r-1)}^{(k)})^j = \frac{j}{k\alpha\beta} \sum_{l=1}^{\infty} \binom{[\alpha+l-1]}{l} E[A^l(X_{u(r)}^{(k)})]. \quad (13)$$

2.1. Examples

2.1.1. Exponentiated generalized power function distribution

Let the base distribution is power function distribution with CDF

$$H(x) = \nu^{-p} x^p, \quad 0 \leq x \leq \nu; \quad p, \nu > 0$$

and corresponding PDF

$$h(x) = p\nu^{-p} x^{p-1}, \quad 0 \leq x \leq \nu; \quad p, \nu > 0.$$

Therefore, the CDF of exponentiated generalized power function is given by

$$F(x) = 1 - [1 - \nu^{-\alpha p} x^{\alpha p}]^{\beta}; \quad 0 \leq x \leq \nu; \quad \alpha, \beta > 0. \quad (14)$$

Also we have $\lambda_1(x) = \frac{h(x)}{H(x)} = \frac{p}{x}$ and $A^l(x) = \frac{x^{j-1} (1 - \nu^{-p} x^p)^l}{(p/x)} = \frac{1}{p} \sum_{u=0}^l (-1)^u \binom{l}{u} \nu^{-pu} x^{j+pu}$.

Thus, in view of (8), we get

$$\begin{aligned} E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] \\ = \frac{j}{\gamma_r p \alpha \beta} \sum_{l=1}^{\infty} \sum_{u=0}^l (-1)^u \binom{[\alpha+l-1]}{l} \binom{l}{u} \nu^{-pu} E[X^{j+pu}(r, n, \tilde{m}, k)]. \end{aligned} \quad (15)$$

Now at $\alpha = 1$, we have

$$\sum_{l=1}^{\infty} A^l(x) = \phi(x) = \frac{1 - H(x)}{h(x)} x^{j-1} = \frac{1}{p} [\nu^p x^{j-p} - x^j].$$

Thus, in view of (10), we get the relation for moments of gos from exponentiated power function distribution as

$$E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] = \frac{j}{p\beta\gamma_r} \left[\nu^p E[X^{j-p}(r, n, \tilde{m}, k)] - E[X^j(r, n, \tilde{m}, k)] \right]. \quad (16)$$

Futher, at $\beta = 1$ with $j = p$, we have the relation for moments of gos from power function distribution

$$E[X^p(r, n, \tilde{m}, k)] = \frac{\gamma_r}{\gamma_r + 1} E[X^p(r-1, n, \tilde{m}, k)] + \frac{\nu^p}{\gamma_r + 1} \quad (17)$$

as obtained by Kamps (1995).

2.1.2. Exponentiated generalized Pareto distribution

Let the base distribution is the Pareto distribution with CDF

$$H(x) = 1 - \lambda^p x^{-p}, \quad \lambda \leq x < \infty; \quad \lambda, p > 0$$

and corresponding PDF

$$h(x) = p\lambda^p x^{-(p+1)}, \quad \lambda \leq x < \infty; \quad \lambda, p > 0.$$

Thus, the CDF of exponentiated generalized Pareto distribution can be obtained as

$$F(x) = 1 - [1 - (1 - \lambda^p x^{-p})^\alpha]^\beta; \quad \lambda \leq x < \infty; \quad \alpha, \beta > 0. \quad (18)$$

Now we have $\lambda_l(x) = \frac{h(x)}{H(x)} = \frac{p\lambda^p x^{-(p+1)}}{1 - \lambda^p x^{-p}}$ and

$$A^l(x) = \frac{x^{j-1}(\lambda^p x^{-p})^l(1 - \lambda^p x^{-p})}{p\lambda^p x^{-(p+1)}} = \frac{1}{p} [\lambda^{p(l-1)} x^{j+p(1-l)} - \lambda^{lp} x^{j-lp}].$$

Therefore, in view of (8), we have

$$\begin{aligned} E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] \\ = \frac{j}{\gamma_r p \alpha \beta} \sum_{l=1}^{\infty} \binom{[\alpha + l - 1]}{l} \lambda^{lp} \left[\frac{1}{\lambda^p} E[X^{j+(1-l)p}(r, n, \tilde{m}, k)] - E[X^{j-lp}(r, n, \tilde{m}, k)] \right]. \end{aligned}$$

Further, at $\alpha = 1$,

$$\sum_{l=1}^{\infty} A^l(x) = \phi(x) = \frac{1 - H(x)}{h(x)} x^{j-1} = \frac{x^j}{p}$$

Thus using (10) we get,

$$E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] = \frac{j}{p\beta\gamma_r} E[X^j(r, n, \tilde{m}, k)]$$

or

$$E[X^j(r, n, \tilde{m}, k)] = \frac{p\beta\gamma_r}{p\beta\gamma_r - j} E[X^j(r-1, n, \tilde{m}, k)]. \quad (19)$$

The above relation (19) is the relation for single moments of gos from exponentiated Pareto distribution.

At $\beta = 1$ in (19), we get the relation for single moments of gos from Pareto distribution as

$$E[X^j(r, n, \tilde{m}, k)] = \frac{p\gamma_r}{p\gamma_r - j} E[X^j(r-1, n, \tilde{m}, k)]. \quad (20)$$

The above relation (20) is also obtained by Athar et al. (2012).

2.1.3. Exponentiated generalized inverse Weibull distribution

Suppose the base distribution is inverse Weibull distribution with CDF

$$H(x) = e^{-\lambda x^{-p}}, 0 \leq x < \infty; \lambda, p > 0$$

and corresponding PDF

$$h(x) = \lambda p x^{-(p+1)} e^{-\lambda x^{-p}}, 0 \leq x < \infty; \lambda, p > 0.$$

Therefore, the CDF of exponentiated generalized power function is given by

$$F(x) = 1 - [1 - e^{-\alpha \lambda x^{-p}}]^{\beta}; 0 \leq x < \infty; \alpha, \beta > 0. \quad (21)$$

Now we have $\lambda_1(x) = \frac{h(x)}{H(x)} = \lambda p x^{-(p+1)}$

$$\begin{aligned} \text{and } A^l(x) &= \frac{x^{j-1}(1 - e^{-\lambda x^{-p}})^l}{\lambda p x^{-(p+1)}} = \frac{1}{\lambda p} x^{j+p} \sum_{v=0}^l (-1)^v \binom{l}{v} e^{-\lambda v x^{-p}} \\ &= \frac{1}{\lambda p} x^{j+p} \sum_{v=0}^l (-1)^v \binom{l}{v} \left\{ \sum_{t=0}^{\infty} (-1)^t \frac{(\lambda v x^{-p})^t}{t!} \right\} = \frac{1}{p} \sum_{v=0}^l \sum_{t=0}^{\infty} (-1)^{v+t} \binom{l}{v} \frac{v^t}{t!} \lambda^{t-1} x^{j+p(1-t)} \end{aligned}$$

Therefore from (8), we get

$$\begin{aligned} E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] \\ = \frac{j}{p \alpha \beta \gamma_r} \sum_{l=1}^{\infty} \sum_{v=0}^l \sum_{t=0}^{\infty} (-1)^{v+t} \binom{[\alpha + l - 1]}{l} \binom{l}{v} \frac{v^t}{t!} \lambda^{t-1} E[X^{j+p(1-t)}(r, n, \tilde{m}, k)]. \end{aligned}$$

At $\alpha = 1$, we have

$$\sum_{l=1}^{\infty} A^l(x) = \phi(x) = \frac{1 - H(x)}{h(x)} x^{j-1} = \frac{1}{p} \sum_{s=1}^{\infty} \frac{\lambda^{s-1}}{s!} x^{p(1-s)+1}.$$

Now using (10), we get

$$E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] = \frac{j}{p \beta \gamma_r} \sum_{s=1}^{\infty} \frac{\lambda^{s-1}}{s!} E[X^{j+p(1-s)+1}(r, n, \tilde{m}, k)], \quad (22)$$

which is the relation between moments of gos for exponentiated inverse Weibull distribution.

Further, at $\beta = 1$ in (22), we get the relation for inverse Weibull distribution.

3. Product Moments

Case I: $\gamma_i \neq \gamma_j$; $i, j = 1, 2, \dots, n-1, i \neq j$

The joint pdf of $X(r, n, \tilde{m}, k) = x$ and $X(s, n, \tilde{m}, k) = y$, $1 \leq r < s \leq n$, is given as (Kamps and Cramer 2001)

$$f_{X(r, n, \tilde{m}, k), X(s, n, \tilde{m}, k)}(x, y) = C_{s-1} \sum_{i=r+1}^s a_i^{(r)}(s) \left(\frac{\bar{F}(y)}{\bar{F}(x)} \right)^{\gamma_i} \left[\sum_{i=1}^r a_i(r) [\bar{F}(x)]^{\gamma_i} \right] \frac{f(x) f(y)}{\bar{F}(x) \bar{F}(y)}, x < y, \quad (23)$$

$$\text{where } a_i^{(r)}(s) = \prod_{\substack{j=r+1 \\ j \neq i}}^s \frac{1}{(\gamma_j - \gamma_i)}, \quad r+1 \leq i \leq s \leq n.$$

Case II: $m_i = m, i = 1, 2, \dots, n-1$

The joint pdf of $X(r, n, m, k) = x$ and $X(s, n, m, k) = y$, $1 \leq r < s \leq n$, is given as (Pawlas and Syznan 2001)

$$f_{X(r,n,m,k),X(s,n,m,k)}(x,y) = \frac{C_{s-1}}{(r-1)!(s-r-1)!} [\bar{F}(x)]^m g_m^{r-1}(F(x)) \\ \times [h_m(F(y)) - h_m(F(x))]^{s-r-1} [\bar{F}(y)]^{\gamma_s-1} f(x)f(y), \quad -\infty \leq x < y \leq \infty. \quad (24)$$

Theorem 2 Let Case I be satisfied. For the exponentiated generalized class of distribution as given in (3) and $n \in N, \tilde{m} \in \mathbb{R}, k > 0, 0 \leq r < s \leq n, i, j = 1, 2, \dots$

$$E[X^i(r,n,\tilde{m},k)X^j(s,n,\tilde{m},k)] - E[X^i(r,n,\tilde{m},k)X^j(s-1,n,\tilde{m},k)] \\ = \frac{j}{\gamma_s \alpha \beta} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} E[B^t \{X(r,n,\tilde{m},k).X(s,n,\tilde{m},k)\}], \quad (25)$$

$$\text{where } B^t(x,y) = \frac{x^i y^{j-1} (\bar{H}(y))^t}{\lambda_2(y)} \text{ and } \lambda_2(y) = \frac{h(y)}{H(y)}.$$

Proof: From Athar and Islam (2004), we have

$$E[\xi \{X(r,s,n,\tilde{m},k)\}] - E[\xi \{X(r,s-1,n,\tilde{m},k)\}] \\ = C_{s-2} \int_{-\infty}^{\infty} \int_x^{\infty} \frac{\partial}{\partial y} \xi'(x,y) \left[\sum_{c=r+1}^s a_i^{(r)}(s) \left(\frac{\bar{F}(y)}{\bar{F}(x)} \right)^{\gamma_i} \right] \left[\sum_{i=1}^r a_i(r) (\bar{F}(x))^{\gamma_i} \right] \frac{f(x)}{\bar{F}(x)} dy dx.$$

Let $\xi(x,y) = x^i y^j$, then

$$E[X^i(r,n,\tilde{m},k)X^j(s,n,\tilde{m},k)] - E[X^i(r,n,\tilde{m},k)X^j(s-1,n,\tilde{m},k)] \\ = j C_{s-2} \int_{-\infty}^{\infty} \int_x^{\infty} x^i y^{j-1} \left[\sum_{c=r+1}^s a_i^{(r)}(s) \left(\frac{\bar{F}(y)}{\bar{F}(x)} \right)^{\gamma_i} \right] \left[\sum_{i=1}^r a_i(r) (\bar{F}(x))^{\gamma_i} \right] \frac{f(x)}{\bar{F}(x)} dy dx.$$

Thus, from (7), we have

$$E[X^i(r,n,\tilde{m},k)X^j(s,n,\tilde{m},k)] - E[X^i(r,n,\tilde{m},k)X^j(s-1,n,\tilde{m},k)] \\ = \frac{j C_{s-1}}{\gamma_s \alpha \beta} \int_{-\infty}^{\infty} \int_x^{\infty} x^i y^{j-1} \left[\sum_{c=r+1}^s a_i^{(r)}(s) \left(\frac{\bar{F}(y)}{\bar{F}(x)} \right)^{\gamma_i} \right] \left[\sum_{i=1}^r a_i(r) (\bar{F}(x))^{\gamma_i} \right] \times \frac{f(x)}{\bar{F}(x)} \frac{f(y)}{\bar{F}(y)} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} \frac{(\bar{H}(y))^t}{\lambda_2(y)} dy dx. \\ = \frac{j}{\gamma_s \alpha \beta} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} C_{s-1} \int_{-\infty}^{\infty} \int_x^{\infty} B^t \{X(r,n,\tilde{m},k).X(s,n,\tilde{m},k)\} \\ \times \left[\sum_{c=r+1}^s a_i^{(r)}(s) \left(\frac{\bar{F}(y)}{\bar{F}(x)} \right)^{\gamma_i} \right] \left[\sum_{i=1}^r a_i(r) (\bar{F}(x))^{\gamma_i} \right] \frac{f(x)}{\bar{F}(x)} \frac{f(y)}{\bar{F}(y)} dy dx.$$

This leads to (25).

Corollary 4 When $\beta = 1$, in Theorem 2, we get the relation between product moments of gos for the Lehman type I distributions as

$$E[X^i(r,n,\tilde{m},k)X^j(s,n,\tilde{m},k)] - E[X^i(r,n,\tilde{m},k)X^j(s-1,n,\tilde{m},k)] \\ = \frac{j}{\gamma_s \alpha} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} E[B^t \{X(r,n,\tilde{m},k).X(s,n,\tilde{m},k)\}]. \quad (26)$$

Corollary 5 When $\alpha = 1$, in Theorem 2, we get the relation between product moments of gos for the Lehman type II distributions as

$$E[X^i(r, n, \tilde{m}, k)X^j(s, n, \tilde{m}, k)] - E[X^i(r, n, \tilde{m}, k)X^j(s-1, n, \tilde{m}, k)]$$

$$= \frac{j}{\gamma_s \beta} E[\phi\{X(r, n, \tilde{m}, k).X(s, n, \tilde{m}, k)\}], \quad (27)$$

where $\phi(x, y) = \frac{\bar{H}(y)}{h(y)} x^i y^{j-1}$.

Corollary 6 Let $m_i = m$, $i = 1, 2, \dots, n-1$, in (25), then the recurrence relation for product moments of gos for Case II is given by

$$E[X^i(r, n, m, k)X^j(s, n, m, k)] - E[X^i(r, n, m, k)X^j(s-1, n, m, k)]$$

$$= \frac{j}{\gamma_s \alpha \beta} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} E[B^t \{X(r, n, m, k).X(s, n, m, k)\}]. \quad (28)$$

Proof: Khan et al. (2006) have shown that when $\gamma_i \neq \gamma_j$ but $m_i = m; i, j = 1, 2, \dots, n-1$, then

$$a_i^{(r)}(s) = \frac{1}{(m+1)^{s-r-1}} (-1)^{s-i} \frac{1}{(i-r-1)!(s-i)!}.$$

Hence the joint pdf of $X(r, n, \tilde{m}, k)$ and $X(s, n, \tilde{m}, k)$ given in (23) reduces to (24). Therefore, the relation (30) can be obtained by replacing \tilde{m} with m in (25).

Remark 3 Let $m_i = 0; i = 1, 2, \dots, n-1$ and $k = 1$ in (25), then recurrence relation for the product moments of order statistics is

$$E[X_{r,s:n}^{(i,j)}] - E[X_{r,s-1:n}^{(i,j)}] = \frac{j}{(n-s+1)\alpha\beta} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} E[B^t(X_{r,s:n})]. \quad (29)$$

Remark 4 Let $m_i \rightarrow -1; i = 1, 2, \dots, n-1$ in (25), then recurrence relation for the product moments of k^{th} upper record values is

$$E[(X_{u(r)}^{(k)})^i (X_{u(s)}^{(k)})^j] - E[(X_{u(r)}^{(k)})^i (X_{u(s-1)}^{(k)})^j] = \frac{j}{k\alpha\beta} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} E[B^t(X_{u(r,s)}^{(k)})]. \quad (30)$$

3.1. Examples

3.3.1. Exponentiated generalized power function distribution

For the given cdf in (14), we have

$$B^t(x, y) = \frac{x^i y^{j-1} (1 - \nu^{-p} y^p)^t}{(p/y)} = \frac{1}{p} \sum_{u=0}^t (-1)^u \binom{t}{u} \nu^{-pu} x^i y^{j+pu}.$$

Thus, from (25), we get

$$E[X^i(r, n, \tilde{m}, k)X^j(s, n, \tilde{m}, k)] - E[X^i(r, n, \tilde{m}, k)X^j(s-1, n, \tilde{m}, k)]$$

$$= \frac{j}{\gamma_s p \alpha \beta} \sum_{t=1}^{\infty} \sum_{u=0}^t (-1)^u \binom{[\alpha+t-1]}{t} \binom{t}{u} \nu^{-pu} E[X^i(r, n, \tilde{m}, k)X^{j+pu}(s, n, \tilde{m}, k)], \quad (31)$$

Now at $\alpha = 1$, we have

$$\sum_{t=1}^{\infty} B^t(x, y) = \phi(x, y) = \frac{1-H(y)}{h(y)} x^i y^{j-1} = \frac{x^i}{p} [\nu^p y^{j-p} - y^j].$$

Thus, from (27), we get the relation for product moments of gos from exponentiated power function distribution as

$$\begin{aligned} & E[X^i(r, n, \tilde{m}, k) X^j(s, n, \tilde{m}, k)] - E[X^i(r, n, \tilde{m}, k) X^j(s-1, n, \tilde{m}, k)] \\ &= \frac{j}{p \beta \gamma_s} \left[\nu^p E[X^i(r, n, \tilde{m}, k) X^{j-p}(s, n, \tilde{m}, k)] - E[X^i(r, n, \tilde{m}, k) X^j(s, n, \tilde{m}, k)] \right]. \end{aligned} \quad (32)$$

Further, at $\beta = 1$ with $j = p$, we have the relation for product moments of gos from power function distribution as

$$E[X^i(r, n, \tilde{m}, k) X^p(s, n, \tilde{m}, k)] = \frac{\gamma_s}{\gamma_s + 1} E[X^i(r, n, \tilde{m}, k) X^p(s-1, n, \tilde{m}, k)] + \frac{\nu^p}{\gamma_s + 1} E[X^i(r, n, \tilde{m}, k)]. \quad (33)$$

3.3.2. Exponentiated generalized Pareto distribution

For the given CDF in (18), we have

$$B^t(x, y) = \frac{x^i y^{j-1} (\lambda^p y^{-p})^t (1 - \lambda^p y^{-p})}{p \lambda^p y^{-(p+1)}} = \frac{1}{p} \left[\lambda^{p(t-1)} x^i y^{j+p(1-t)} - \lambda^{tp} x^i y^{j-tp} \right].$$

Thus in view of (25), we get

$$\begin{aligned} & E[X^i(r, n, \tilde{m}, k) X^j(s, n, \tilde{m}, k)] - E[X^i(r, n, \tilde{m}, k) X^j(s-1, n, \tilde{m}, k)] \\ &= \frac{j}{\gamma_s p \alpha \beta} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} \lambda^{tp} \left[\frac{1}{\lambda^p} E[X^i(r, n, \tilde{m}, k) X^{j+(1-t)p}(s, n, \tilde{m}, k)] \right. \\ & \quad \left. - E[X^i(r, n, \tilde{m}, k) X^{j-tp}(s, n, \tilde{m}, k)] \right]. \end{aligned} \quad (34)$$

Further, at $\alpha = 1$

$$\sum_{t=1}^{\infty} B^t(x, y) = \phi(x, y) = \frac{1-H(y)}{h(y)} x^i y^{j-1} = \frac{x^i y^j}{p}.$$

Thus using (27) we get,

$$\begin{aligned} & E[X^i(r, n, \tilde{m}, k) X^j(s, n, \tilde{m}, k)] - E[X^i(r, n, \tilde{m}, k) X^j(s-1, n, \tilde{m}, k)] \\ &= \frac{j}{p \beta \gamma_s} E[X^i(r, n, \tilde{m}, k) X^j(s, n, \tilde{m}, k)] \end{aligned}$$

$$\text{or} \quad E[X^i(r, n, \tilde{m}, k) X^j(s, n, \tilde{m}, k)] = \frac{p \beta \gamma_s}{p \beta \gamma_s - j} E[X^i(r, n, \tilde{m}, k) X^j(s-1, n, \tilde{m}, k)]. \quad (35)$$

The relation (35) is the relation for product moments of gos from exponentiated Pareto distribution. At $\beta = 1$ in (35), we get the relation for product moments of gos from Pareto distribution as

$$E[X^i(r, n, \tilde{m}, k) X^j(s, n, \tilde{m}, k)] = \frac{p \gamma_s}{p \gamma_s - j} E[X^i(r, n, \tilde{m}, k) X^j(s-1, n, \tilde{m}, k)]. \quad (36)$$

The above relation (36) is obtained by Athar et al. (2012).

3.3.3. Exponentiated generalized inverse Weibull distribution

For the cdf as given in (21)

$$B^t(x, y) = \frac{x^i y^{j-1} (1 - e^{-\lambda y^{-p}})^t}{\lambda p y^{-(p+1)}} = \frac{1}{p} \sum_{v=0}^t \sum_{d=0}^{\infty} (-1)^{v+d} \binom{t}{v} \frac{v^d}{d!} \lambda^{d-1} x^{j+p(1-d)}.$$

Therefore from (25), we get

$$\begin{aligned} & E[X^i(r, n, \tilde{m}, k) X^j(s, n, \tilde{m}, k)] - E[X^i(r, n, \tilde{m}, k) X^j(s-1, n, \tilde{m}, k)] \\ &= \frac{j}{p \alpha \beta \gamma_s} \sum_{t=1}^{\infty} \sum_{v=0}^t \sum_{d=0}^{\infty} (-1)^{v+d} \binom{[\alpha + t - 1]}{t} \binom{t}{v} \frac{v^d}{d!} \lambda^{d-1} E[X^i(r, n, \tilde{m}, k) X^{j+p(1-d)}(s, n, \tilde{m}, k)]. \end{aligned} \quad (37)$$

At $\alpha = 1$, we have

$$\sum_{t=1}^{\infty} B^t(x, y) = \phi(x, y) = \frac{1 - H(y)}{h(y)} x^i y^{j-1} = \frac{1}{p} \sum_{b=1}^{\infty} \frac{\lambda^{b-1}}{b!} x^i y^{p(1-b)+1}.$$

Now by using (27), we get

$$\begin{aligned} & E[X^i(r, n, \tilde{m}, k) X^j(s, n, \tilde{m}, k)] - E[X^i(r, n, \tilde{m}, k) X^j(s-1, n, \tilde{m}, k)] \\ &= \frac{j}{p \beta \gamma_s} \sum_{b=1}^{\infty} \frac{\lambda^{b-1}}{b!} E[X^i(r, n, \tilde{m}, k) X^{j+p(1-b)+1}(s, n, \tilde{m}, k)], \end{aligned} \quad (38)$$

which is the relation between moments of gos for exponentiated inverse Weibull distribution.

Also at $\beta = 1$ in (37), we get the relation for inverse Weibull distribution.

4. Characterization

In this section characterization of exponentiated generalized class of distributions as considered in (3) is presented through recurrence relations for single and product moments of gos as well as through conditional expectation.

Theorem 3 Fix a positive integer k and let j be a non-negative integer. A necessary and sufficient condition for a random variable X to be distributed with PDF given by (4) is that

$$E[X^j(r, n, \tilde{m}, k)] - E[X^j(r-1, n, \tilde{m}, k)] = \frac{j}{\gamma_r \alpha \beta} \sum_{l=1}^{\infty} \binom{[\alpha + l - 1]}{l} E[A^l \{X(r, n, \tilde{m}, k)\}], \quad (39)$$

where $A^l(x) = \frac{x^{j-1} (\bar{H}(x))^l}{\lambda_1(x)}$ and $\lambda_1(x) = \frac{h(x)}{H(x)}$.

Proof: The necessary part follows from (8). On the other hand, suppose the relation in (39) is satisfied, then on using Athar and Islam (2004) for $\xi(x) = x^j$, we have

$$j C_{r-2} \int_{-\infty}^{\infty} x^{j-1} \sum_{i=1}^r a_i(r) [\bar{F}(x)]^{\gamma_i} dx = \frac{j C_{r-1}}{\gamma_r \alpha \beta} \sum_{l=1}^{\infty} \binom{[\alpha + l - 1]}{l} \int_{-\infty}^{\infty} \frac{x^{j-1}}{\lambda_1(x)} [\bar{H}(x)]^l \sum_{i=1}^r a_i(r) [\bar{F}(x)]^{\gamma_i-1} f(x) dx.$$

This implies

$$\frac{j}{\gamma_r \alpha \beta} C_{r-1} \int_{-\infty}^{\infty} x^{j-1} \sum_{i=1}^r a_i(r) [\bar{F}(x)]^{\gamma_i-1} \left\{ \alpha \beta \bar{F}(x) - \sum_{l=1}^{\infty} \binom{[\alpha + l - 1]}{l} \frac{[\bar{H}(x)]^l}{\lambda_1(x)} f(x) \right\} dx = 0. \quad (40)$$

Applying the extension of Müntz-Szász theorem (see, for example, Hwang and Lin (1984)) to (40), we get

$$\frac{\bar{F}(x)}{f(x)} = \frac{1}{\alpha \beta \lambda_1(x)} \sum_{l=1}^{\infty} \binom{[\alpha + l - 1]}{l} [\bar{H}(x)]^l.$$

Thus, $f(x)$ has the PDF as given in (4). Hence Theorem 3 holds.

Theorem 4 Suppose $X(r, n, m, k), r = 1, 2, \dots, n$ be the r^{th} gos based on CDF and $E(X)$ exists. Then for two consecutive values r and $r+1$, such that $1 \leq r < r+1 \leq n$,

$$E[H^\alpha \{X(r+1, n, m, k)\} | X(r, n, m, k) = x] = \frac{\beta \gamma_{r+1} H^\alpha(x) + 1}{\beta \gamma_{r+1} + 1}. \quad (41)$$

if and only if

$$\bar{F}(x) = [1 - H^\alpha(x)]^\beta, -\infty < x < \infty; \alpha, \beta > 0. \quad (42)$$

Proof: Khan and Alzaid (2004) have shown that for gos

$$E[h(X(s, n, m, k)) | X(r, n, m, k) = x] = a^* h(x) + b^* \quad (43)$$

if and only if

$$\bar{F}(x) = [ah(x) + b]^c, \quad (44)$$

$$\text{with } a^* = \prod_{j=r+1}^s \left(\frac{c\gamma_j}{1 + c\gamma_j} \right) \text{ and } b^* = -\frac{b}{a}(1 - a^*).$$

Comparing (42) with (44), we get

$$a = -1, \quad b = 1, \quad c = \beta, \quad h(x) = H^\alpha(x).$$

Thus, the theorem can be proved in view of (43).

Corollary 7 For the r^{th} order statistics $X_{r:n}, r = 1, 2, \dots, n$ and under the condition as stated under Theorem 4

$$E[H^\alpha(X_{r+1:n}) | X_{r:n} = x] = \frac{\beta(n-r)H^\alpha(x) + 1}{\beta(n-r) + 1}, \quad (45)$$

and consequently

$$E[H^\alpha(X_{n:n}) | X_{n-1:n} = x] = E[H^\alpha(X) | X \geq x] = \frac{\beta}{\beta + 1} H^\alpha(x) + \frac{1}{\beta + 1} \quad (46)$$

if and only if

$$\bar{F}(x) = [1 - H^\alpha(x)]^\beta; -\infty < x < \infty, \alpha, \beta > 0. \quad (47)$$

Remark 5 The characterization result for adjacent upper records is given as

$$E[H^\alpha(X_{u(n)}) | X_{u(n-1)} = x] = E[H^\alpha(X) | X \geq x] = \frac{\beta}{\beta + 1} H^\alpha(x) + \frac{1}{\beta + 1}. \quad (48)$$

Theorem 5 Fix a positive integer k and let i, j be non-negative integers. A necessary and sufficient condition for a random variables X, Y to be distributed with pdf given by (4) is that

$$\begin{aligned}
& E[X^i(r, n, \tilde{m}, k)X^j(s, n, \tilde{m}, k)] - E[X^i(r, n, \tilde{m}, k)X^j(s-1, n, \tilde{m}, k)] \\
& = \frac{j}{\gamma_s \alpha \beta} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} E[B^t \{X(r, n, \tilde{m}, k).X(s, n, \tilde{m}, k)\}], \tag{49}
\end{aligned}$$

$$\text{where } B^t(x, y) = \frac{x^i y^{j-1} (\bar{H}(y))^t}{\lambda_2(y)} \text{ and } \lambda_2(y) = \frac{h(y)}{H(y)}.$$

Proof: The necessary part follows from (25). On the other hand, suppose the relation in (49) is satisfied, then on using Athar and Islam (2004) for $\xi(x, y) = x^i y^j$, we have

$$\begin{aligned}
& j C_{s-2} \int_{-\infty}^{\infty} \int_x^{\infty} x^i y^{j-1} \left[\sum_{c=r+1}^s a_i^{(r)}(s) \left(\frac{\bar{F}(y)}{\bar{F}(x)} \right)^{\gamma_i} \right] \left[\sum_{i=1}^r a_i(r) (\bar{F}(x))^{\gamma_i} \right] \frac{f(x)}{\bar{F}(x)} dy dx \\
& = \frac{j}{\gamma_s \alpha \beta} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} C_{s-1} \int_{-\infty}^{\infty} \int_x^{\infty} x^i y^{j-1} \frac{(\bar{H}(y))^t}{\lambda(y)} \left[\sum_{c=r+1}^s a_i^{(r)}(s) \left(\frac{\bar{F}(y)}{\bar{F}(x)} \right)^{\gamma_i} \right] \\
& \quad \times \left[\sum_{i=1}^r a_i(r) (\bar{F}(x))^{\gamma_i} \right] \frac{f(x)}{\bar{F}(x)} \frac{f(y)}{\bar{F}(y)} dy dx.
\end{aligned}$$

This implies

$$\begin{aligned}
& \frac{j}{\gamma_s \alpha \beta} C_{s-1} \int_{-\infty}^{\infty} \int_x^{\infty} x^i y^{j-1} \left[\sum_{i=1}^r a_i(r) (\bar{F}(x))^{\gamma_i} \right] \left[\sum_{c=r+1}^s a_i^{(r)}(s) \left(\frac{\bar{F}(y)}{\bar{F}(x)} \right)^{\gamma_i} \right] \frac{f(x)}{\bar{F}(x)} \\
& \times \left\{ \alpha \beta - \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} \frac{(\bar{H}(y))^t}{\lambda(y)} \frac{f(y)}{\bar{F}(y)} \right\} dy dx = 0. \tag{50}
\end{aligned}$$

Applying the extension of Müntz-Szász theorem (see, for example, Hwang and Lin (1984)) to (50), we get

$$\frac{\bar{F}(y)}{f(y)} = \frac{1}{\alpha \beta \lambda(y)} \sum_{t=1}^{\infty} \binom{[\alpha+t-1]}{t} [\bar{H}(y)]^t.$$

Thus $f(y)$ has the PDF as given in (4). Hence Theorem 5 holds.

5. Conclusions

The moments of ordered random variables and recurrence relations between them have received great attention in the past few years in statistical literature. Recurrence relations reduce the amount of direct computations. The characterization results play an important role in the determination of probability distributions. The several well-known exponentiated distributions can be driven from the considered exponentiated generalized class. The moment properties of some known exponentiated distributions are studied by some authors in literature (See, for example, Khan et al. (2008), Khan and Kumar (2010), Kulshrestha and Kumar (2012), Kumar (2013), Aziz et al. (2013), among several others. The main purpose of this study to unify results based on moments of generalized order statistics for several exponentiated distributions. Since, generalized order statistics is unified approach for several ordered random variables, thus results obtained can be easily deduced for order statistics, record values, sequential order statistics etc.

Acknowledgments

The authors acknowledge with thanks to both the referees and the editor for their fruitful suggestions and comments, which led to the overall improvement in the manuscript.

References

Ali MA, Khan AH. Recurrence relations for the expectations of a function of single order statistic from general class of distributions. *J Indian Stat Assoc.* 1997; 35: 1-9.

Ali MA, Khan AH. Recurrence relations for expected values of certain functions of two order statistics. *Metron.* 1998; 56(1-2): 107-119.

Anwar Z, Athar H, Khan RU. Expectation identities based on recurrence relations of functions of generalized order statistics. *J Stat Res.* 2008; 41:93-102.

Arnold BC, Balakrishnan N, Nagaraja HN. A first course in order statistics. New York: John Wiley & Sons; 1992.

Athar H, Islam HM. Recurrence relations between single and product moments of generalized order statistics from a general class of distributions. *Metron.* 2004; LXII(3): 327-337.

Athar H, Nayabuddin, Khwaja SK. Expectation identities of pareto distribution based on generalized order statistics and its characterization. *Am J Appl Math Sci.* 2012; 1(1): 23-29.

Athar H, Nayabuddin, Zarrin S. Generalized order statistics from Marshall-Olkin extended exponential distribution. *J Stat Theory Appl.* 2019a; 18(2): 129-135.

Athar H, Zarrin S, Noor Z. Moment properties of generalized order statistics from Weibull-geometric distribution. *Appl Math E-Notes.* 2019b; 19: 199-209.

Aziz S, Roohi A, Fatima A. Distributional properties of generalized order statistics from exponentiated Pareto I distribution. *Int J Appl Res.* 2013; 2: 62-75.

Balakrishnan N, Malik HJ, Ahmed SE. Recurrence relations and identities for moments of order statistics, II; Specific continuous distributions. *Comm Stat Theory Methods.* 1988; 17(8): 2657-2694.

Cordeiro GM, de Castro M. A new family of generalized distributions. *J Stat Comput Simul.* 2011; 81: 883-898.

Cordeiro GM, Ortega EMM, Cunha DCC. The exponentiated generalized class of distributions. *J Data Sci.* 2013; 11: 1-27.

Hwang JS, Lin GD. Extensions of Müntz-Szász theorems and application. *Analysis.* 1984; 4: 143-160.

Kamps U. A concept of generalized order statistics. Germany: B.G. Teubner Stuttgart; 1995.

Kamps U, Cramer E. On distributions of generalized order statistics. *Statistics.* 2001; 35(3): 269-280.

Keseling C. Conditional distributions of generalized order statistics and some characterizations. *Metrika.* 1999; 49(1): 27-40.

Khan AH, Khan RU, Yaqub M. Characterization of continuous distributions through conditional expectation of generalized order statistics. *J Appl Prob Stat.* 2006; 1: 115-131.

Khan AH, Alzaid AA. Characterization of distributions through linear regression of non-adjacent generalized order statistics. *J Appl Stat Sci.* 2004; 13: 123-136.

Khan AH, Yaqub M, Parvez S. Recurrence relations between moments of order statistics. *Nav Res Logist Q.* 1983a; 30(3): 419-441.

Khan AH, Parvez S, Yaqub M. Recurrence relations between product moments of order statistics. *J Stat Plann Inf.* 1983b; 8:175-183.

Khan RU, Khan MA. Moment properties of generalized order statistics from exponential-Weibull lifetime distribution. *J Adv Stat.* 2016; 1(3): 146-155.

Khan RU, Kumar D. On moments of lower generalized order statistics from exponentiated Pareto distribution and its characterization. *Appl Math Sci.* 2010; 4(55): 2711-2722.

Khan RU, Anwar Z, Athar H. Recurrence relations for single and product moments of generalized order statistics from exponentiated Weibull distribution. *Aligarh J Stat.* 2008; 28: 37-45.

Khan RU, Kumar D, Athar H. Moments of generalized order statistics from Erlang-truncated exponential distribution and its characterization. *Int J Stat Syst.* 2010; 5(4):455-464.

Khwaja SK, Athar H, Nayabuddin. Lower generalized order statistics from extended type I generalized logistic distribution. *J Appl Stat Sci.* 2012; 20(1): 21-28.

Kulshrestha A, Kumar D. Exact moments of lower generalized order statistics from exponentiated Weibull distribution and its characterization. *Int J Statistika Mathematika.* 2012; 4(3): 81-89.

Kumar D. On moments of lower generalized order statistics from exponentiated Lomax distribution. *Am J Math Manage Sci.* 2013; 32(4): 238-256.

Malik HJ, Balakrishnan N, Ahmed SE. Recurrence relations and identities for moments of order statistics, I: Arbitrary continuous distributions. *Comm Stat Theory Methods.* 1988; 17: 2623-2655.

Nayabuddin, Athar H. Recurrence relations for single and product moments of generalized order statistics from Marshall-Olkin extended Pareto distributions. *Comm Stat Theory Methods.* 2017; 46(16): 7820-7826.

Pawlas P, Szymal, D. Recurrence relations for single and product moments of generalized order statistics from Pareto, generalized Pareto, and Burr distributions. *Comm Stat Theory Methods.* 2001; 30(4): 739-746.

Singh B, Khan RU, Khan MAR. Generalized order statistics from Kumaraswamy-Burr III distribution and related inference. *J Stat : Adv Theory Appl.* 2018; 19(1): 1-16.

Zarrin S, Athar H, Abdel-Aty Y. Relations for moments of generalized order statistics from power Lomax distribution. *J Stat Appl Prob Lett.* 2019; 6(1): 29-36.