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Abstract
This paper discusses the empirical Bayes deconvolution (EBD) method in estimating gamma’s

prior density for count data when the true or unobserved random variable is subject to measurement
error. The observed random variable W is related to the unobserved random variable X by an
additive measurement error model. The count data W,W,,...,W, are assumed to follow a Poisson

distribution as realizations from an unknown prior density g(x). Then the EBD method is applied to
estimate g(x) for every discretization point in the discrete support set of X. The effect of selecting

discrete support set for estimating gamma’s prior density based on the EBD method is illustrated by
using simulation. It is shown that by selecting discretization set for Poisson data and gamma density
as a prior distribution, the larger domain, and more points in discrete support set, the smaller value of
bias, and standard deviation for gamma prior density estimate. Finally, assuming that the number of
high school student dropout follows Poisson distribution, the EBD method is applied to estimate the
prior probability distribution for high school student dropout data in 9 cities and 18 districts in West
Java province.

Keywords: Bias, conjugate, hyperparameter, loglikelihood, Poisson.

1. Introduction

In social-economic, behavioral, and environmental studies, the data frequently collected from
surveys, registration systems, clinical trials, and other observational or experimental studies, which
often contaminated with measurement errors. Measurement error occurs when some variables in a
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statistical model of interest cannot be observed precisely, usually due to instrument or sampling error.
To obtain more reliable inference, one needs to consider the measurement errors when developing
statistical methods to analyze this type of data. One of the most fundamental problems in empirical
studies is measurement errors. Ignoring measurement errors can produce biased estimators and lead
to incorrect conclusions in data analysis (Meister 2009). Many statistical procedures have developed
for statistical inference in measurement error models (Buonaccorsi 2010). The measurement error
model is a combination of measurement errors and unobserved random variables where the observed
value is known. Since the true random variables unobserved, it is essential to estimate the nature of
the distribution of populations through the distribution of prior random variables that contain
measurement errors. However, the estimation of distribution parameters from sample observation can
be a problem because of the unobserved random variable measured by error. The main problem is
how to estimate the density function of an unobserved random variable that contaminated with
measurement error. The problem of estimating this density function is called deconvolution.

There are many parametric and nonparametric methods proposed to estimate the density function
of the unobserved random variables due to measurement errors. In this paper, we develop the effect
of selecting a finite discrete set for parameter space of prior distribution from unobserved random
variables under the framework of measurement error models. We use the empirical Bayes
deconvolution method proposed by Efron (2016) for estimating prior density distribution by combined
the concept of deconvolution and empirical Bayes. The basic idea of the empirical Bayes
deconvolution method is modeling prior density as a member of exponential family density. Empirical
Bayes inference assumes an unknown prior density of the unobserved random variable X, g(x),

produces an independent observation W, from the probability distribution of W, given X,. The EBD
method attempts to estimate g(x) using the observed sample and the distribution of W, given W, is

specified.
Furthermore, by discretizing support set 7' of X, the parameter space of unobserved random

variable X, the likelihood function is constructed to get the maximum likelihood estimation for the
parameter of the prior distribution. We assume that the observed sample W, is distributed according

to Poisson distribution, and based on sample observation W,, we estimate the density of true or

unobserved random variables as prior density. We use gamma distribution as conjugate prior for
Poisson distribution, and this is quite similar to the concept of the mixture distribution. If a random
variable has a Poisson distribution with hyperparameter has gamma distribution, the posterior
distribution will be a negative binomial distribution. Efron (2016) simplified support set 7 as finite
discrete support, but there are no rules or guidelines for choosing support set 7 and the number of
discretization points in 7. We illustrate the performance of the discretization set for empirical Bayes
deconvolution by simulation studies. Furthermore, we establish the asymptotic properties of the
proposed estimators. The performance of the prior density estimation assessed from the standard
deviation and estimation bias using various simulations.

This paper organized as follows. In Section 2, we discuss the measurement error model and the
concept of empirical Bayes deconvolution. In Section 3, we establish simulation studies for the
empirical Bayes deconvolution procedure and give some statistical results for density estimation of
the prior distribution. We distinguish four cases according to the finite discrete set of the underlying
parameter space from the prior distribution. As a real application, we applied the EBD method for
high school student’s dropout data in West Java during 2018 are discussed in Section 4. We offer some
concluding remarks in Section 5.
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2. Methods
2.1. Measurement error model

The measurement error model is a combination of measurement errors and the true random
variable, which gives the observed value. Laird (1978), Fan (1991), Hall and Meister (2007) and
Butucea and Comte (2009) use an additive measurement error model as follows

W =X +e,i=1,..,n,

where W, is the observed variable X, is an unobserved random variable, and e, is measurement
error. We assume unobserved random variable X, and measurement errors e, uncorrelated, and e, is
independent and identically distributed. The problem of density estimation based on contaminated
data is called deconvolution.

In parametric deconvolution, the data are known to be from a specific distribution. In this case,
the parameters of the distribution can be estimated by, e.g., maximum likelihood, a method of moment,
and Bayesian approach like empirical Bayes. Estimation by maximum likelihood is computationally
very expensive since numerical integration needs to perform for each data point for each evaluation
of the likelihood function. Method of moments estimation sometimes fails to give physically
meaningful estimates. The origin of this problem lies in the large sampling variations of the third
moment. Since a convolution integral needed to calculate for each data point and that this must repeat
for each iteration towards the maximum likelihood solution, computing cost is very high. Carroll and
Hall (1988), Stefanski and Carroll (1990) introduced kernel deconvolution estimators, Carroll and Hall
(2004) used the weighted kernel density for the method of density deconvolution, Delaigle and Hall
(2016) proposed non and semiparametric inference on the distribution of unobserved random variable
that do not assume the density of measurement error to be (fully) known. Another method for
estimating the density of an unobserved random variable was proposed by Efron (2016) using the
Bayesian framework, and it called empirical Bayes deconvolution (EBD) method. EBD method
estimates the density of unobserved random variables X, as prior density estimation based on the

observed sample J¥,. Finite supportset 7' for X, is choose based on the range value of #¥;, and prior

density g(x) is assumed to belong to exponential family distribution.

2.2. Empirical Bayes deconvolution
Let unknown prior density g(x) has an observed independent random sample of realizations

XX,
X X, ~ g(x).
Each X, independently produces an observed random variable , with known probability densities

for W, given X,, W, ~ p, (w),i =1,...,n and the marginal density of W,

f(w) = IpW (w| x)g(x)dx.
According to Efron (2016), for estimating the prior density g(x) using sample observation W,,...,W ,
we can use EBD. The EBD method is an estimation procedure g(x) based on sample observations
from f(w). Efron (2016) used the likelihood approach to EBD problems with prior g(x), which is
modeled through exponential family density in space- X, denote by 7. T is assumed to be a finite

discrete support set 7 =(x,,...,x, ) and by discretizing space- X :
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then prior distribution can be denoted as
g =P(X =x,).

Prior density g(x) is an m-vector g = ( giseeos gm) which is specified the probability g, on x; :
g =g(a)=exp(Qa—¢(a))
with
ot =1og 3 exp(0] ).
=
where « = p-dimensional vector and Q= known mx p structure matrix. The- j component of
g(a):
g (a)= exp{QjTa—¢(a)},j =1,..,m.
Define p, = p,(W,| X, =x,) and denote P as m-vector B =(p,....p, ) . then the marginal
probability for W, :

(@)= Z p,g,(@) = P g(a).

The loglikelihood function for the parameter vector a = (al,..., a, )T is

I,(@) = log f;(a) = log B’ g(a),
with p-dimensional first derivative vector and p x p — dimensional second derivative matrix

I(a) = [?j (o) = [ ol ]

a, oa,a,

for the maximum likelihood calculation. For W, with n observation, the total loglikelihood

()= Zl (o) has the first and the second derivative which is
i=1

@)=Y (@)=0"Y B(@)=0"B.a,
where

T yZn
B, =1ib,(),....b,, , b, =g, |
(@) = {b, () (@)}, bj(a)=¢ (a){f,(a) }

and
~l(@)=0" [ B(@)B(a) +B(a)g(a) +g(a)B,(a) —diag{B,(a)}]0.
Efron (2016) proposed the maximum likelihood estimate & which is satisfied
O'"B.a=0.

3. Simulation

We created some Poisson simulation scenarios for the EBD method. Suppose W, ~ Poisson (X, )

and X, ~ Gamma(a, ,B),i =1,...,100. We generated 100 observations by first generating X, and then

i



816 Thailand Statistician, 2021; 19(4): 812-824

creating a dataset (X LW ) We did 1,000 simulations, each with 100 observations independently, and
we got the 100x100 data matrix. By taking the various setting of discrete support set 7 = [0,...,5],
T= [O,...,IO],T = [0,...,20],T = [0,...,30] and we estimated gamma prior density using EBD method

and compute bias for 1,000 simulations. In Figures 1-4, we created a plot of gamma density and its
deconvolution for some discretization set of 7' as follows:
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Figure 1 The plot of gamma prior density (blue line) and its estimation (red dotted line) using EBD
for support set T =[0,...,5]

In this simulation studies, we also computed bias and standard deviation of gamma’s prior density
estimation for various discretization set of 7 which are shown in in Tables 1 and 2.

For varying gamma parameter and support discrete set in Figures 1-4, when scale parameter
becomes smaller, the plot of gamma density estimation using EBD method look-alike pdf plot of
gamma distribution. It was not surprising because the scale parameter is controlling the spread out of
the distribution. The more significant value of scale parameter, the more considerable value of gamma
variance, and it will be more difficult for estimating the density function by the EBD method.
However, from Figures 1-4, we also see that in the initial discretization point of 7 still underestimate
or overestimate, even though we choose the broader support set. From Tables 1 and 2, bias and
standard deviation for gamma density estimation become smaller when we enlarge the support discrete
set T.
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Figure 2 The plot of gamma prior density (blue line) and its estimation (red dotted line) using EBD

for support set 7 =[0,...,10]
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Figure 3 The plot of gamma prior density (blue line) and its estimation (red dotted line) using EBD

for support set T =]0,...,20]
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Figure 4 The plot of gamma prior density (blue line) and its estimation (red dotted line) using EBD
for support set T =[0,...,30]

Table 1 Bias for gamma prior density estimation

Gamma parameter Gamma parameter

Support set (@, p) Bias (@, p) Bias

T= [O,...,S] (1,2) —0.00122 (2,1) —0.00046
(1,4) —0.00553 4,1) —0.00519

(1,6) —0.00866 (6,1) —0.01250

T= [0,...,10] (1,2) 0.00017 2,1) 0.00008
(1,4) —0.00071 4,1) —0.00007

(1,6) —0.00181 (6,1) —0.00061

T= [0,...,20] (1,2) 0.00017 (2,1) 0.00011
(1,4) 0.00003 (4,1) 0.00001

(1,6) —0.00014 (6,1) 0.00001

T= [0,...,30] (1,2) 0.00013 (2,1) 0.00010
(1,4) 0.00005 4,1) 0.00001

(1,6) 0.00001 (6,1) 0.00000
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Table 2 Standard deviation of gamma prior density estimation

Gamma parameter  Standard =~ Gamma parameter  Standard

Support set (a, ) deviation (a,) deviation
T =J0....,5] (1,2) 0.00421 2,1) 0.00407
(1,4) 0.00451 (4,1) 0.00581

(1,6) 0.00329 (6,1) 0.00201

T =[0,...,10] (1,2) 0.00207 (2,1) 0.00177
(1,4) 0.00190 (4,1) 0.00215

(1,6) 0.00222 (6,1) 0.00221

T =[o0....,20] (1,2) 0.00072 (2,1) 0.00067
(1,4) 0.00090 (4,1) 0.00065

(1,6) 0.00086 (6,1) 0.00085

T =J0....,30] (1,2) 0.00037 2,1) 0.00034
(1,4) 0.00050 (4,1) 0.00038

(1,6) 0.00055 (6,1) 0.00037

4. Application

In Indonesia, education has become the primary policy to foster growth developed, and
Indonesia's education system has gradually improved, and enrolment rates have significantly increased
over the last 50 years. However, Indonesia still faces some barriers for a student to get a better
education, such as dropping out of school before graduating. Not only in Indonesia, but school dropout
is also considered a global problem (Ajaja 2012, Sang et al. 2013), especially at the high school level.
Some studies on dropout have been conducted in Indonesia to explain factors contributing to dropping
out of high school students (Setyadharma et al. 2018). Setyadharma et al. (2018) had collected primary
data from 439 former high school students, and 878 parents/guardians participated in Central Java
province, Indonesia. In their study, they found that female student and having more family members
indicates increasing the probability of dropout. However, a lower level of dropout happened when
household heads have a university degree, when student academic activities supported by mothers (but
not by fathers), and when poor students receive government cash transfers.

West Java is a province of Indonesia on the western part of the island of Java. West Java is the
most populous province of Indonesia, with a population of 48,683,861 as of 2018. However, the level
of dropout in West Java in 2018 is 37,971 students from primary school until high school. Children
who dropped out of primary school reached 5,627 students, junior high schools reached 9,621 students,
high schools reached 5,403, and the worst were vocational students who totaled 17,320 students
dropping out of school. Based on data from Regional Education Balance 2018 for 9 cities and 18
districts in West Java, we focus on the number of high school student dropout and the statistics
descriptive of the data are shown in Tables 3 and 4.



820 Thailand Statistician, 2021; 19(4): 812-824

Table 3 High school students dropout data in West Java province 2018

City/District Number of high Proportion of high

school students DO school students DO
Kota Banjar 15 0.0043
Kota Cimahi 19 0.0021
Kab Pangandaran 24 0.0057
Kota Sukabumi 25 0.0031
Kab Sumedang 34 0.0021
Kota Tasikmalaya 39 0.0026
Kota Depok 52 0.0021
Kota Cirebon 54 0.0044
Kab Ciamis 60 0.0040
Kab Majalengka 62 0.0037
Kota Bekasi 124 0.0030
Kab Kuningan 134 0.0074
Kota Bogor 148 0.0075
Kab Indramayu 174 0.0095
Kab Subang 177 0.0077
Kab Cirebon 200 0.0092
Kab Bekasi 236 0.0048
Kab Bandung Barat 237 0.0090
Kab Purwakarta 245 0.0161
Kab Tasikmalaya 265 0.0127
Kota Bandung 326 0.0054
Kab Bandung 327 0.0062
Kab Karawang 346 0.0111
Kab Sukabumi 411 0.0118
Kab Cianjur 471 0.0145
Kab Bogor 573 0.0083
Kab Garut 625 0.0140

Table 4 Statistics descriptive for high school students dropout data in West Java province 2018

Summary statistics

Mean 200.11
St. Dev 172.97
Variance 29,920.03
n 27
Minimum 15
1st Quartile 52
Median 174
3rd Quartile 326

Maximum 625
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Figure 5 Frequency of dropout high school students in 27 City/District in West Java 2018
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Figure 6 Number of high school students dropout and percentage proportion of high school students
DO in West Java 2018

From Figures 5 and 6, Kab Garut has the highest number of high school student dropouts, i.e.,
625 students from a total of 44,609 high school students, but the highest proportion of the number of
high school students dropout is 0.0161 in Kab Purwakarta. Based on the percentage proportion of high
school students drop out in Figure 8, we can see that the number of high school dropout students ()
has Poisson characteristics. Because of the data taken from a survey, we believe that the true number
of high school students dropout data (.X;) measured with error and W, as the realization of the exact
number of high school students dropout. We assumed the number of high school students dropout has
a Poisson distribution with the Poisson parameter has prior distribution. We estimated the probability
of the true number of high school students drop out g(x,) = P(X = x,) using the EBD method for the

various number of high school students drop out in a support set. We choose three finite discrete
support sets based on range value of W, by EBD method in DeconvolveR package as in Figure 7.
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Figure 7 (a)-(c) Probability estimation of high school students dropout in West Java and its bias
using EBD method for 3 types of discrete support set

Based on prior probability estimation for every city and district in support set
T =[15,l9,24,...,625], we fitted that prior probability estimation into pdf of gamma distribution
because gamma distribution is a conjugate prior for Poisson distribution. We also estimated the
parameter of gamma distribution, and we got shape parameter estimation = 0.352 and scale parameter

estimation = 8.715. We compared the plot of prior density estimation g(x) from the EBD method and
fitted pdf plot of gamma distribution based on W, in Figure 8(a). In Figure 8(b), we estimated the
number of high school student dropouts for 27 cities/districts in West Java 2018 with prior parameter
distribution of Poisson was fitted gamma distribution, and it was very close to W, implying the

suitability of the obtained prior.
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—— Prior Density Estimation by EBD Method
—— Fitted to Gamma Distribution: a=0.352, b=8.715
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Figure 8 (a)-(b) Number of high school students dropout in West Java and its estimation using
gamma prior probability estimation based on EBD method

5. Conclusions

In this paper, we presented the effect of selecting the discrete support set for estimating prior
gamma density function based on the empirical Bayes deconvolution method (Efron 2016). From
some simulation scenario, if we choose a broader discrete set for the domain of gamma density, the
estimation of gamma’s prior density will look like the specific gamma density function, but still,
underestimate or overestimate in initial discretization points. However, after generated 1,000 datasets
and did the same scenario, we computed standard deviation and bias for gamma’s prior density
estimation in a short and broader discretization set. We conclude that bias will have a smaller value
for a larger discretization set of domain gamma density. As a real application, we implemented the
EBD method for estimating the prior probability for the number of high school students drop out in
West Java 2018. Then we also compute an estimation of the number of high school student dropouts
in West Java. However, in high school student’s dropout data, we do not consider or include any
covariate that can use as possible predictive or explanatory variable of the number of high school
students dropout. In the next research, we will investigate the underestimate or overestimate problem
for prior density estimation in some initial point in support set based on empirical Bayes
deconvolution, not only for conjugate prior for Poisson distribution.
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