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Abstract 
This paper discusses the empirical Bayes deconvolution (EBD) method in estimating gamma’s 

prior density for count data when the true or unobserved random variable is subject to measurement 

error. The observed random variable W is related to the unobserved random variable X  by an 

additive measurement error model. The count data 1 2, ,..., nW W W  are assumed to follow a Poisson 

distribution as realizations from an unknown prior density ( ).g x  Then the EBD method is applied to 

estimate ( )g x  for every discretization point in the discrete support set of .X  The effect of selecting 

discrete support set for estimating gamma’s prior density based on the EBD method is illustrated by 

using simulation. It is shown that by selecting discretization set for Poisson data and gamma density 

as a prior distribution, the larger domain, and more points in discrete support set, the smaller value of 

bias, and standard deviation for gamma prior density estimate. Finally, assuming that the number of 

high school student dropout follows Poisson distribution, the EBD method is applied to estimate the 

prior probability distribution for high school student dropout data in 9 cities and 18 districts in West 

Java province. 

______________________________ 

Keywords: Bias, conjugate, hyperparameter, loglikelihood, Poisson. 

 

1. Introduction 

In social-economic, behavioral, and environmental studies, the data frequently collected from 

surveys, registration systems, clinical trials, and other observational or experimental studies, which 

often contaminated with measurement errors. Measurement error occurs when some variables in a 
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statistical model of interest cannot be observed precisely, usually due to instrument or sampling error. 

To obtain more reliable inference, one needs to consider the measurement errors when developing 

statistical methods to analyze this type of data. One of the most fundamental problems in empirical 

studies is measurement errors. Ignoring measurement errors can produce biased estimators and lead 

to incorrect conclusions in data analysis (Meister 2009). Many statistical procedures have developed 

for statistical inference in measurement error models (Buonaccorsi 2010). The measurement error 

model is a combination of measurement errors and unobserved random variables where the observed 

value is known. Since the true random variables unobserved, it is essential to estimate the nature of 

the distribution of populations through the distribution of prior random variables that contain 

measurement errors. However, the estimation of distribution parameters from sample observation can 

be a problem because of the unobserved random variable measured by error. The main problem is 

how to estimate the density function of an unobserved random variable that contaminated with 

measurement error. The problem of estimating this density function is called deconvolution. 

There are many parametric and nonparametric methods proposed to estimate the density function 

of the unobserved random variables due to measurement errors. In this paper, we develop the effect 

of selecting a finite discrete set for parameter space of prior distribution from unobserved random 

variables under the framework of measurement error models. We use the empirical Bayes 

deconvolution method proposed by Efron (2016) for estimating prior density distribution by combined 

the concept of deconvolution and empirical Bayes. The basic idea of the empirical Bayes 

deconvolution method is modeling prior density as a member of exponential family density. Empirical 

Bayes inference assumes an unknown prior density of the unobserved random variable , ( ),X g x  

produces an independent observation iW  from the probability distribution of iW  given .iX  The EBD 

method attempts to estimate ( )g x  using the observed sample and the distribution of iW  given iW  is 

specified. 

Furthermore, by discretizing support set T  of ,iX  the parameter space of unobserved random 

variable ,X the likelihood function is constructed to get the maximum likelihood estimation for the 

parameter of the prior distribution. We assume that the observed sample iW  is distributed according 

to Poisson distribution, and based on sample observation ,iW  we estimate the density of true or 

unobserved random variables as prior density. We use gamma distribution as conjugate prior for 

Poisson distribution, and this is quite similar to the concept of the mixture distribution. If a random 

variable has a Poisson distribution with hyperparameter has gamma distribution, the posterior 

distribution will be a negative binomial distribution. Efron (2016) simplified support set T  as finite 

discrete support, but there are no rules or guidelines for choosing support set T  and the number of 

discretization points in .T  We illustrate the performance of the discretization set for empirical Bayes 

deconvolution by simulation studies. Furthermore, we establish the asymptotic properties of the 

proposed estimators. The performance of the prior density estimation assessed from the standard 

deviation and estimation bias using various simulations. 

This paper organized as follows. In Section 2, we discuss the measurement error model and the 

concept of empirical Bayes deconvolution. In Section 3, we establish simulation studies for the 

empirical Bayes deconvolution procedure and give some statistical results for density estimation of 

the prior distribution. We distinguish four cases according to the finite discrete set of the underlying 

parameter space from the prior distribution. As a real application, we applied the EBD method for 

high school student’s dropout data in West Java during 2018 are discussed in Section 4. We offer some 

concluding remarks in Section 5. 
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2. Methods 

2.1. Measurement error model 

The measurement error model is a combination of measurement errors and the true random 

variable, which gives the observed value. Laird (1978), Fan (1991), Hall and Meister (2007) and 

Butucea and Comte (2009) use an additive measurement error model as follows 

, 1,..., ,i i iW X e i n    

where iW  is the observed variable ,iX  is an unobserved random variable, and ie  is measurement 

error. We assume unobserved random variable iX and measurement errors ie  uncorrelated, and ie  is 

independent and identically distributed. The problem of density estimation based on contaminated 

data is called deconvolution. 

In parametric deconvolution, the data are known to be from a specific distribution. In this case, 

the parameters of the distribution can be estimated by, e.g., maximum likelihood, a method of moment, 

and Bayesian approach like empirical Bayes. Estimation by maximum likelihood is computationally 

very expensive since numerical integration needs to perform for each data point for each evaluation 

of the likelihood function. Method of moments estimation sometimes fails to give physically 

meaningful estimates. The origin of this problem lies in the large sampling variations of the third 

moment. Since a convolution integral needed to calculate for each data point and that this must repeat 

for each iteration towards the maximum likelihood solution, computing cost is very high.  Carroll and 

Hall (1988), Stefanski and Carroll (1990) introduced kernel deconvolution estimators, Carroll and Hall 

(2004) used the weighted kernel density for the method of density deconvolution, Delaigle and Hall 

(2016) proposed  non and semiparametric inference on the distribution of unobserved random variable 

that do not assume the density of measurement error to be (fully) known. Another method for 

estimating the density of an unobserved random variable was proposed by Efron (2016) using the 

Bayesian framework, and it called empirical Bayes deconvolution (EBD) method. EBD method 

estimates the density of unobserved random variables iX  as prior density estimation based on the 

observed sample .iW  Finite support set T  for iX  is choose based on the range value of ,iW  and prior 

density ( )g x  is assumed to belong to exponential family distribution. 

 

2.2. Empirical Bayes deconvolution 

Let unknown prior density ( )g x  has an observed independent random sample of realizations 

1,..., :nX X  

1,..., ( ).nX X g x  

Each iX  independently produces an observed random variable iW  with known probability densities 

for iW  given ,iX   , 1,...,
ii WW p w i n  and the marginal density of iW  

     |Wf w p w x g x dx  . 

According to Efron (2016), for estimating the prior density ( )g x  using sample observation 1,..., ,nW W

we can use EBD. The EBD method is an estimation procedure ( )g x  based on sample observations 

from ( ).f w  Efron (2016) used the likelihood approach to EBD problems with prior ( ),g x  which is 

modeled through exponential family density in space- X , denote by .T  T  is assumed to be a finite 

discrete support set  1,..., mT x x  and by discretizing space- :X  
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      1 2
, ,...,

m
X T x x x   

then prior distribution can be denoted as 

( )P( ).j jg X x   

Prior density ( )g x  is an m-vector  1,..., mg g g  which is specified the probability jg  on :jx  

 ( ) exp ( )g g Q       

with 

 
1

( ) log exp ,
m

T
j

j

Q  


   

where   p-dimensional vector and Q  known m p  structure matrix. The- j component of 

( ) :g   

    exp , 1,..., .T
j jg Q j m       

Define ( | )ij i i i jp p W X x   and denote iP  as m-vector  1,..., ,
T

i i imP p p then the marginal 

probability for :iW  

1

( ) ( ) ( ).
m

T
i ij j i

j

f p g P g  


   

The loglikelihood function for the parameter vector  1,...,
T

p    is 

( ) log ( ) log ( ),T
i i il f P g     

with p-dimensional first derivative vector and p p  dimensional second derivative matrix 

2. ..( ) ( )
( ) ..., ,... , ( ) ..., ,...

T

i i
i i

h h k

l l
l l

 
 

  

   
    

    
 

for the maximum likelihood calculation. For iW  with n  observation, the total loglikelihood 

.

1

( ) ( )
n

i
i

l l 


   has the first and the second derivative which is 

. .

1 1

( ) ( ) ( ) ,
n n

T T
i i

i i

l l Q B Q B   
 

     

where 

 1( ) ( ),..., ( ) , ( ) ( ) 1
( )

T ij

i i im ij j

i

p
B b b b g

f
    



 
   

 
 

and 

 
..

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .T T T T
i i i i i il Q B B B g g B diag B Q               

Efron (2016) proposed the maximum likelihood estimate   which is satisfied  

0.TQ B    

 

3. Simulation 

We created some Poisson simulation scenarios for the EBD method. Suppose  i iW Poisson X  

and  , , 1,...,100.iX Gamma i    We generated 100 observations by first generating iX  and then 
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creating a dataset  , .i iX W  We did 1,000 simulations, each with 100 observations independently, and 

we got the 100 100  data matrix. By taking the various setting of discrete support set  0,...,5 ,T 

     0,...,10 , 0,..., 20 , 0,...,30T T T    and we estimated gamma prior density using EBD method 

and compute bias for 1,000 simulations. In Figures 1-4, we created a plot of gamma density and its 

deconvolution for some discretization set of T  as follows: 

 

 

Figure 1 The plot of gamma prior density (blue line) and its estimation (red dotted line) using EBD 

for support set  0,...,5T   

 In this simulation studies, we also computed bias and standard deviation of gamma’s prior density 

estimation for various discretization set of T  which are shown in in Tables 1 and 2.  

For varying gamma parameter and support discrete set in Figures 1-4, when scale parameter 

becomes smaller, the plot of gamma density estimation using EBD method look-alike pdf plot of 

gamma distribution. It was not surprising because the scale parameter is controlling the spread out of 

the distribution. The more significant value of scale parameter, the more considerable value of gamma 

variance, and it will be more difficult for estimating the density function by the EBD method. 

However, from Figures 1-4, we also see that in the initial discretization point of T  still underestimate 

or overestimate, even though we choose the broader support set. From Tables 1 and 2, bias and 

standard deviation for gamma density estimation become smaller when we enlarge the support discrete 

set .T  
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Figure 2 The plot of gamma prior density (blue line) and its estimation (red dotted line) using EBD 

for support set  0,...,10T   

 

Figure 3 The plot of gamma prior density (blue line) and its estimation (red dotted line) using EBD 

for support set  0,..., 20T   
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Figure 4 The plot of gamma prior density (blue line) and its estimation (red dotted line) using EBD 

for support set  0,...,30T   

 

Table 1 Bias for gamma prior density estimation 

Support set 
Gamma parameter 

( , )   
Bias 

Gamma parameter 

( , )   
Bias 

 0,...,5T   (1,2) −0.00122 (2,1) −0.00046 

 (1,4) −0.00553 (4,1) −0.00519 

 (1,6) −0.00866 (6,1) −0.01250 

 0,...,10T   (1,2) 0.00017 (2,1)  0.00008 

 (1,4) −0.00071 (4,1) −0.00007 

 (1,6) −0.00181 (6,1) −0.00061 

 0,..., 20T   (1,2) 0.00017 (2,1) 0.00011 

 (1,4) 0.00003 (4,1) 0.00001 

 (1,6) −0.00014 (6,1) 0.00001 

 0,...,30T   (1,2) 0.00013 (2,1) 0.00010 

 (1,4) 0.00005 (4,1) 0.00001 

 (1,6) 0.00001 (6,1) 0.00000 
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Table 2 Standard deviation of gamma prior density estimation 

Support set 
Gamma parameter 

( , )   
Standard 

deviation 

Gamma parameter 

( , )   
Standard 

deviation 

 0,...,5T   (1,2) 0.00421 (2,1) 0.00407 

 (1,4) 0.00451 (4,1) 0.00581 

 (1,6) 0.00329 (6,1) 0.00201 

 0,...,10T   (1,2) 0.00207 (2,1) 0.00177 

 (1,4) 0.00190 (4,1) 0.00215 

 (1,6) 0.00222 (6,1) 0.00221 

 0,..., 20T   (1,2) 0.00072 (2,1) 0.00067 

 (1,4) 0.00090 (4,1) 0.00065 

 (1,6) 0.00086 (6,1) 0.00085 

 0,...,30T   (1,2) 0.00037 (2,1) 0.00034 

 (1,4) 0.00050 (4,1) 0.00038 

 (1,6) 0.00055 (6,1) 0.00037 

 

4. Application 

In Indonesia, education has become the primary policy to foster growth developed, and 

Indonesia's education system has gradually improved, and enrolment rates have significantly increased 

over the last 50 years. However, Indonesia still faces some barriers for a student to get a better 

education, such as dropping out of school before graduating. Not only in Indonesia, but school dropout 

is also considered a global problem (Ajaja 2012, Sang et al. 2013), especially at the high school level. 

Some studies on dropout have been conducted in Indonesia to explain factors contributing to dropping 

out of high school students (Setyadharma et al. 2018). Setyadharma et al. (2018) had collected primary 

data from 439 former high school students, and 878 parents/guardians participated in Central Java 

province, Indonesia. In their study, they found that female student and having more family members 

indicates increasing the probability of dropout. However, a lower level of dropout happened when 

household heads have a university degree, when student academic activities supported by mothers (but 

not by fathers), and when poor students receive government cash transfers. 

West Java is a province of Indonesia on the western part of the island of Java. West Java is the 

most populous province of Indonesia, with a population of 48,683,861 as of 2018. However, the level 

of dropout in West Java in 2018 is 37,971 students from primary school until high school. Children 

who dropped out of primary school reached 5,627 students, junior high schools reached 9,621 students, 

high schools reached 5,403, and the worst were vocational students who totaled 17,320 students 

dropping out of school. Based on data from Regional Education Balance 2018 for 9 cities and 18 

districts in West Java, we focus on the number of high school student dropout and the statistics 

descriptive of the data are shown in Tables 3 and 4. 
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Table 3 High school students dropout data in West Java province 2018 

City/District 
Number of high 

school students DO 

Proportion of high 

school students DO 

Kota Banjar 15 0.0043 

Kota Cimahi 19 0.0021 

Kab Pangandaran 24 0.0057 

Kota Sukabumi 25 0.0031 

Kab Sumedang 34 0.0021 

Kota Tasikmalaya 39 0.0026 

Kota Depok 52 0.0021 

Kota Cirebon 54 0.0044 

Kab Ciamis 60 0.0040 

Kab Majalengka 62 0.0037 

Kota Bekasi 124 0.0030 

Kab Kuningan 134 0.0074 

Kota Bogor 148 0.0075 

Kab Indramayu 174 0.0095 

Kab Subang 177 0.0077 

Kab Cirebon 200 0.0092 

Kab Bekasi 236 0.0048 

Kab Bandung Barat 237 0.0090 

Kab Purwakarta 245 0.0161 

Kab Tasikmalaya 265 0.0127 

Kota Bandung 326 0.0054 

Kab Bandung 327 0.0062 

Kab Karawang 346 0.0111 

Kab Sukabumi 411 0.0118 

Kab Cianjur 471 0.0145 

Kab Bogor 573 0.0083 

Kab Garut 625 0.0140 

 

Table 4 Statistics descriptive for high school students dropout data in West Java province 2018 

Summary statistics 

Mean 200.11 

St. Dev 172.97 

Variance 29,920.03 

n  27 

Minimum 15 

1st Quartile 52 

Median 174 

3rd Quartile 326 

Maximum 625 
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Figure 5 Frequency of dropout high school students in 27 City/District in West Java 2018 

 

 

Figure 6 Number of high school students dropout and percentage proportion of high school students 
DO in West Java 2018 

 

From Figures 5 and 6, Kab Garut has the highest number of high school student dropouts, i.e., 

625 students from a total of 44,609 high school students, but the highest proportion of the number of 

high school students dropout is 0.0161 in Kab Purwakarta. Based on the percentage proportion of high 

school students drop out in Figure 8, we can see that the number of high school dropout students ( )iW  

has Poisson characteristics. Because of the data taken from a survey, we believe that the true number 

of high school students dropout data ( )iX  measured with error and iW  as the realization of the exact 

number of high school students dropout. We assumed the number of high school students dropout has 

a Poisson distribution with the Poisson parameter has prior distribution. We estimated the probability 

of the true number of high school students drop out ( )( ) P( )i ig x X x   using the EBD method for the 

various number of high school students drop out in a support set. We choose three finite discrete 

support sets based on range value of iW  by EBD method in DeconvolveR package as in Figure 7. 
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(a)   15,16,17,..., 200T    

 

(b)  15,16,17,..., 400T   

 

(c)  15,19,24,...,625T   
 

Figure 7 (a)-(c) Probability estimation of high school students dropout in West Java and its bias 

using EBD method for 3 types of discrete support set 

 

Based on prior probability estimation for every city and district in support set 

 15,19,24,...,625 ,T   we fitted that prior probability estimation into pdf of gamma distribution 

because gamma distribution is a conjugate prior for Poisson distribution. We also estimated the 

parameter of gamma distribution, and we got shape parameter estimation = 0.352 and scale parameter 

estimation = 8.715. We compared the plot of prior density estimation ˆ( )g x  from the EBD method and 

fitted pdf plot of gamma distribution based on iW  in Figure 8(a). In Figure 8(b), we estimated the 

number of high school student dropouts for 27 cities/districts in West Java 2018 with prior parameter 

distribution of Poisson was fitted gamma distribution, and it was very close to iW  implying the 

suitability of the obtained prior. 
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(a) Prior density estimation vs. fitted gamma pdf   (b) Estimation of number of high school DO 

 

Figure 8 (a)-(b) Number of high school students dropout in West Java and its estimation using 

gamma prior probability estimation based on EBD method 

 

5.    Conclusions 

In this paper, we presented the effect of selecting the discrete support set for estimating prior 

gamma density function based on the empirical Bayes deconvolution method (Efron 2016). From 

some simulation scenario, if we choose a broader discrete set for the domain of gamma density, the 

estimation of gamma’s prior density will look like the specific gamma density function, but still, 

underestimate or overestimate in initial discretization points. However, after generated 1,000 datasets 

and did the same scenario, we computed standard deviation and bias for gamma’s prior density 

estimation in a short and broader discretization set. We conclude that bias will have a smaller value 

for a larger discretization set of domain gamma density. As a real application, we implemented the 

EBD method for estimating the prior probability for the number of high school students drop out in 

West Java 2018. Then we also compute an estimation of the number of high school student dropouts 

in West Java. However, in high school student’s dropout data, we do not consider or include any 

covariate that can use as possible predictive or explanatory variable of the number of high school 

students dropout. In the next research, we will investigate the underestimate or overestimate problem 

for prior density estimation in some initial point in support set based on empirical Bayes 

deconvolution, not only for conjugate prior for Poisson distribution. 
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