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Abstract

This study derived a four-parameter Kumaraswamy transmuted generalized form of Rayleigh
distribution called Kumaraswamy transmuted Rayleigh distribution (KWTR) by including two-shape
parameters and a transmutation parameter to the single parameter baseline Rayleigh distribution which
will take care of the spread and also give a generalised distribution. The statistical properties of the
proposed distribution including the shape of the distribution, hazard rate and survival function were
derived. These properties were compared with the existing baseline distributions, that is, exponentiated
transmuted generalized Rayleigh distribution (ETGR), transmuted generalized Rayleigh (TGR),
generalized Rayleigh (GR) and Rayleigh (R) distributions. Estimates of KWTR parameters were
derived by using maximum likelihood method. The performances of the distributions were compared
using Akaike information criterion (AIC), Bayesian information criterion (BIC) and goodness of fit
statistic contained in “fitdistrplus” of R. Two different datasets were considered.

Keywords: Kumaraswamy, lifetime, AIC, exponentiated.

1. Introduction

In applied science, it is very important to model and analyze lifetime data and the probability
model determines the pattern or steps used in the statistical modelling. As a result of this, past and
present researchers have done tremendous work on improving standard of probability distributions
with relevant statistical methodologies. Nevertheless, there are still instances where classical or
standard probability models does not follow real data set. Hence, the need for developing more flexible
statistical distributions is required. This research is aimed to provide a more flexible distribution that
can efficiently model robust lifetime datasets.

Rayleigh distribution is commonly used in lifetime analysis, it is applicable to modeling and
analyzing several aspect of statistics. The distribution also has a special form of Weibull distribution
when the shape parameter is 2. Literatures shows that researchers have given much attention to
studying Rayleigh distribution in the last couple of decades. Maximum likelihood and Bayes
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approaches were applied by Abushal (2011) in estimating the properties of Rayleigh distribution based
on progressive first-failure censored data. The empirical Bayes estimates for parameter and reliability
function associated to compound Rayleigh distribution under record data were obtained by Shajaee
et al. (2012). Also, the maximum likelihood and Bayes estimates of the reliability parameters
corresponding to compound Rayleigh distribution under a progressive type-II censored data was
compared by Barot and Patal (2015). The compound Rayleigh distribution with constant partially
accelerated life tests under an adaptive type-II progressive hybrid censored data was studied by Abd-
Elmougod and Mahmoud (2016).

The f(x) which is the probability density function of the Rayleigh distribution is given by

X

f(x):izexp(— zj, for x [0,00). (1)
a 2a
The corresponding cumulative function, for Rayleigh is given by
x
j, @
a

F(x)zl—exp(—2 >

where « represent the distribution scale parameter.

One of the limitations of the classical Rayleigh distribution is that it cannot provide adequate fit
to real datasets, because it has only the scale parameter but no shape parameter. The rationale behind
this research is that the proposed distribution will be more flexible as two shape parameters and a
transmuted parameter will be added to the baseline distribution. The pdf plots can be left or right
skewed. The proposed Kumuraswamy transmuted Rayleigh distribution will be efficient in the
modeling of lifetime and reliability datasets. The proposed distribution will provide statistical model
that has a wide variety of application in different areas and an advantage among other distributions in
its ability in context of lifetime data.

In this paper, we improve on the existing distribution of Ahmed et al. (2016) where the authors
introduced Kumaraswamy transmuted generalized family of distribution. This distribution has its CDF
given as

F(x) = 1={1-[(1+ D) H(x,@) - 1H(x,@)]" }b .
And the corresponding pdfto (3) is given by

f(x) = abh(x,c0) {1+ 2 - 22H (x, @)} { H(x,a)} [1+ 2 - 22H (x, )]

€)

b-1
]

<{1-[ 1+ ) H (x.a) - AH (x.a)* || @)
where h(x,a) and H(x,a) are the probability density function (PDF) and cumulative density

function (CDF) of an arbitrary baseline distribution respectively.

The main motivations of this research are to derive a robust distribution that will efficiently model
lifetime datasets. The classical Rayleigh distribution does not provide adequate fit to real data as it has
only the scale parameter but no shape parameter. This proposed distribution is more flexible as three
additional shape parameters are added to the base distribution. The PDF plots can be left or right
skewed. Kumuraswamy transmuted Rayleigh distribution provides a statistical model which has a
wide variety of application in different areas and the main advantage is its ability to model lifetime
data among better than other distributions considered in this study.

2. The Proposed Distribution
This paper aimed to introduce a novel distribution known as the Kumaraswamy transmuted
Rayleigh distribution (KWTR) by inserting the Rayleigh distribution into the generalized family of
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Kumaraswamy transmuted distribution of Ahmed et al. (2016). The PDF and the CDF of the proposed
distribution are given in (6) and (7), respectively.
Let X be a random variable with Rayleigh distribution as specified in (1) and (2). Letting

k= exp(—ﬁ). Then Equation (2) above becomes

H(x,a)=1-k. (5)
Inserting (1) and (5) into (4) to have the derived PDF as

f(x,a,b,a,l):abizexp(— xzzj{l—/1+216xp(— xzz j}
a 2a 2a
X X x )Y -
s ool 552wl 55 )]
X X x Y 1
x{l—{l+/lexp(—2a2)—exp(—2a2)—/l(exp(—2azn } } . (6)

Verification of the true PDF,

f(x)= abT h(x,a){l+A-22H (x,a)}{H(x,a)} [+ A - AH(x, 01)]“71

><{l [+ DH(x,a)- 21H (x,a) ]“}ZF1 dx.

Let P=H(v,a), L = hix,a), dx=—_
dx h(x,a)
1 a b-1
f(x):ab'fh(x,a){l+/1—2/1P}{P}[1+/1—/1P]‘Hx{l—[(1+/1)P—/lP2]} h(dp).
0 X,
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1 1
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Since the derivation of the KWTR is equal to 1, this shows that it is a true PDF.

bl
==-gf, =1,

The corresponding cumulative density function of the novel distribution can be expressed as
b-1

F(x,a,b,a,/i):1—{1—|:1+/lexp(—2x2j—exp(—2—xzj—/l(exp(—2x2D } } . 7)
o [04 [04

It can be shown that 1irr(} F(x)=0 and lim F(x) =1,
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lim F(x) =1~ {1 [+ ) (1-exp(-0) - 2(1-exp(-0))* | }h
- 1—{1—[(1+/1)(1—1)—/1(1—1)2]”}b =0,
lim F(x) =1 —{1—[(l+ A)(1-exp(-0)) - A(1 —exp(—oo))z]a}

=1—{1—[(1+/1)(1—0)—/1(1—0)2]“}b =1.
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Figure 1 The Probability density function plot of the proposed chart

3. Properties of Proposed Kumaraswamy Transmuted Rayleigh Distribution

The properties of the proposed Kumaraswamy transmuted Rayleigh distribution including the
survival function, hazard rate function, mixture representation, quantiles function and the maximum
likelihood shall be investigated and discussed in the subsections below
3.1. Survival function

S(x;a,a,b,;t) = l—F(x;a,a,b,l)

b

:1_[1—{1—[1+,1k—k—/1k2)]“}b] ={1—[1+,1k—k—/1k2)]“}.

b-1
x’ x’ 2 ’
S(x,a,b,a,2)=11—| 1+Aexp ~5o7| TP~ — | exp By . 8)

3.2. Hazard rate function
The hazard rate function of the proposed distribution in (6) is given by

" )_f(x;a,a,b,/l)
S (b 2)
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abi2 ex{— x22 j{l —-A+24 exp{— x22 JHl +A ex{— x22 J— exp(— x22 J — ﬂ(exp(— XZZD }
a 20 2a 2a 20 2a )
1- [l +A exp(— x22 j —exp[— x22 J— ﬂ{exp[— x22 D ]
2a 2a 2c

Figure 2 shows that hazard rate (failure rate) could be monotonically increasing or decreasing which
makes it suitable for failure times datasets.
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Figure 2 The hazard rate function plot

3.3. Mixture representation
The expansion of the power series of the novel distribution to be powers of (a—1) then (b—1)

is given as
_ q
(1—Z)H= —( ) r(b)z".
Oq!F(b—q)

For any real non-integer which holds for ‘ z‘ <1 and b >0, expanding the term with power a—1 in (6)

M8

(10)

k

after applying the power series of (10) to (6), we have

(e ak—k-ak* )" = {14 2k -k -2k}
Then applying (10) to the last term of (6) i.e., the term with power b—1
« (-1)'T(b “a" a(-1) a
Zw [1+/1k—k—/1k2} = ZM[IJrﬂk—k—ﬂkz] ! (11)
k=0q!F(b—q) k=0q!F(b—q)
Then the pdf of Kw-TR becomes

,f@)=é§k@+ﬂk-k-1y}iﬁiﬁﬁ@ﬂﬂﬂ

. 2 (g+1)a-1
PR pa [tk -k [ (12)

g(x)

G(X)(qmm

This can be re-written as
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£(3)=$r,e(x)G ()" (13)

1

—1)" abI'(b
where qu%, g(x)z%k{l+/1k—k—/1k2} and G(x):{l+/1k—k—,1k2}

where g(x) and G(x) are the PDF and CDF of transmuted Rayleigh distribution, respectively.

3.4. Quantile function
Quantile function is defined as the inverse function of the CDF of a random variable X. The

quantile function of a distribution is the real solution of F(xq)=g¢g for 0 < g <1. And the quantiles

(xq) of KWTR distribution is expressed in the form given below as

x, =a —1n1—[1—(1—q)2}“ : (14)

3.5. Maximum likelihood estimation of the proposed distribution
Maximum likelihood estimation (MLE) is generally known for its estimation of unknown
parameters. Considering a random sample x,,Xx,,...,x, from the Kumaraswamy transmuted Rayleigh

(Kw-TR) distribution. Then, the likelihood function is given by

I= nloga+nlogb+210g[ki in +210g(1—/1+2/1k,.)+(a—l)ﬁog(l—k[)
=T a = =1
+(b—1)i[1—(l—ki+/1k,.—/lkf)a} (15)

i=1
_x_z
where k. =ex = .
! p[ Zazj

Let j, =1-A+24k,, z; =1+ Ak, and 1, =z, (1-k,)

l—nloga+nlogb+210g( j "(Zxrzj Zlogjl a—l)ilogr,.
i a i=1

i=1

+(b—l)zn:log(l—r[“) (16)
i=1
o _n 3 r” logr, 17
- a+;logr (b- 1);—1—;;.“ (17
o n I
— =— —r 18
b b+;log(l 7, ) (18)

k.
ol 2n x 0:3/_ ~ /}
da « +,Z:1“a3+2/1§‘ Ji _1[ [Z M-k ]

+(b- 111[ [z -a(1- k)]/} {b—l)g{k;;"[zi—/i(l—ki)]/(l—ri)}} (19)
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4. Simulation Study

The Monte Carlo Simulation approach will be used to evaluate the maximum likelihood
estimations (MLEs) of the KWTR distribution for varying values of parameters of the proposed
distribution. A random samples of size N will be selected in the estimation. This approach was also
implemented by Cakmakyapan and Ozel (2018). The plots of the several sample sizes is presented in
Figures 3-5.

Table 1 Maximum likelihood estimates of the proposed distribution for varying values

Parameter a A a b
Actual value 1.00 0.80 3.00 2.00
Estimate (N = 10,000) 0.90 0.69 3.92 1.64
Estimate (N = 1,000) 1.07 0.74 2.84 1.96
Estimate (N = 100) 0.95 0.53 4.26 2.19

Histogram and theoretical densities

— KWTR
z <7
ES
= [
= T T T T 1
0.5 1.0 1.5 2.0 25
data
Figure 3 The density plot when N = 10,000
Histogram and theoretical densities
— KWTR
= -
3
= -
= { I
T T T T 1
0.5 1.0 1.5 2.0 2.5

data

Figure 4 The density plot when N = 1,000
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Figure 5 The density plot when N =100

4.1. Applications

In order to investigate the robustness of the proposed distribution, two different datasets were
used in this section. The proposed KWTR distribution will be compared with the other existing
distributions including the exponentiated transmuted generalized Rayleigh distribution (ETGR)
(Ahmed et al. 2015). The goodness of fit statistic and the goodness of fit plot were provided in order
to check the models that best fit the data among the models for each dataset used for this research. The
first and second datasets considered were single fibers tested under tension at gauge lengths 20 mm
(data set 1 with sample size of 74 observations) and 10 mm (data set 2 with sample size of 63
observations) obtained from Kundu and Ragab (2009).

Table 2 Maximum likelihood estimates for 20 mm. data set

P t
MO de 1 = a;ame ers B A
KWIR sy ooh sy 2os
0on 0 am oo
0oy o o :
GR w009 : :
: o) | | |

Table 3 Log-likelihood, AIC and BIC for the fitted distributions for 20 mm. data set

MODEL Log-likelihood AIC BIC
KWTR 51.132 110.264 119.480
ETGR 113.400 121.352 130.600

TGR 123.610 129.610 136.500
GR 135.202 139.202 143.811

R 188.302 190.302 192.606




Ganiyu Dawodu et al. 833

Table 4 Goodness of fit statistic for 20 mm. data set
Goodness of fit statistic

MODEL Kolmogorov-Smirnov Cramér-von  Anderson-Darling
statistic Mises statistic statistic

KWTR 0.05621079 0.02566735 0.20015125
ETGR 0.07381433 0.12020216 0.78642796
TGR 0.61522390 8.94058030 -
GR 0.07360201 0.10969873 0.71394327
R 0.33929870 2.65435530 13.31257390

Empirical probabilities

Theoretical probabilities

Figure 6 The P-P plots of gauge lengths of 20 mm. data

Table 2 shows the MLE of the parameters and their standard errors in parenthesis also Table 3
shows the log-likelihood, Akaike information criterion (AIC) and Bayesian information criterion
(BIC) values for the fitted Kumaraswamy transmuted Rayleigh (KWTR), exponentiated transmuted
generalized Rayleigh (ETGR), transmuted generalized Rayleigh (TGR), generalized Rayleigh (GR)
and Rayleigh (R) distributions for the first data set of 20 mm. gauge length. Also, the goodness of fit
statistics is presented in Table 4. The probability plot of the datasets for the distributions used in this
study is presented in Figure 6. The histogram of the data and the estimated density functions is also
shown in Figure 7. Also Figure 8 shows the empirical cumulative function of the data and the
estimates.
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gauge lengths fits
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Figure 7 The histogram of the fitted and estimated distributions of gauge lengths of 20 mm. data
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Figure 8 The CDF of the fitted and estimated distributions of gauge lengths of 20 mm. data

Table 5 Maximum likelihood estimates for 10 mm. data set

Model Parameters

ode > A b A
1.6366 2.1061 1.7517 —0.7344

KWTR
w (1.6961) (5.9399) (1.8407) (1.8224)
ETGR 0.5347 2.4051 0.5830 6.9503
(0.0510) (0.8800) (0.2070) (1.4880)
0.5021 6.2143 0.1207 -

TGR
(0.0110) (1.2160) (0.3690) -
0.5145 6.2130 - -

R
G (0.0240) (0.9660) - -
R 0.3200 - - -

(0.0240)




Ganiyu Dawodu et al. 835

Table 6 Log-likelihood, AIC and BIC for the fitted distributions for 10 mm. data set

Model Log-likelihood AIC BIC
KWTR 55.95 119.91 128.49
ETGR 115.00 122.97 131.50
TGR 118.64 124.63 131.06
GR 122.60 126.62 130.91

R 187.04 189.04 191.18

Table 7 Goodness of fit statistic for 10 mm. data set
Goodness of fit statistic

Model
Kolmogorov-Smirnov ~ Cramér-von Mises Anderson-Darling
KWTR 0.07173262 0.04429238 0.26657112
ETGR 0.08261972 0.06183080 0.33526336
TGR 0.12452320 0.20166460 1.51058230
GR 0.08737195 0.06418944 0.35980264
R 0.36071560 2.19116620 11.0175148

Empirical probabilities

00 02 04 06 08 10

Theoretical probabilities

Figure 9 The P-P plots of gauge lengths of 10 mm. data

In Table 5, the maximum likelihood estimation (MLEs) of the parameters and their standard errors
in parenthesis is presented and Table 6 shows the log-likelihood, AIC and BIC values for the Proposed
distribution and its counterparts considered in this study for the second data set of 10 mm. gauge
length. Figure 9 shows the probability of the data and the estimated ones. Figure 10 shows the
histogram of the data and the estimated density functions. Figure 11 shows the empirical cumulative
function of the data and the estimated ones.

The numerical results in Tables 3 and 6 shows that the log-likelihood, AIC and BIC of the KWTR
distribution are lower than the other four allied fitted distributions. Likewise, the goodness of fit
statistic in Tables 4 and 7 shows that KWTR has the lowest Kolmogorov-Smirnov, Cramér-von Mises
and Anderson-Darling statistics which served as baseline of comparison. Figures 6-11 show that
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KWTR distribution provides a good fit as its points were closer to the expected line. Therefore, KWTR
distribution can be chosen as the best model for lifetime dataset.
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Figure 10 The histogram of the fitted and estimated distributions of gauge lengths of 10 mm. data
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Figure 11 The CDF of the fitted and estimated distributions of gauge lengths of 10 mm. data

5. Conclusions

We proposed a new family of Rayleigh distribution, named the Kumaraswamy transmuted
Rayleigh distribution. The KWTR distribution provides better results than the ETGR, TGR, GR and
R distributions. In this model, the new distribution provides more flexibility in modeling reliability
data. We were able to derive the density and distribution function, survival function, hazard function
and quantile function of the proposed distribution. We discussed the maximum likelihood estimation
and also obtained the standard error of each parameter estimate as well as the information criteria used
for comparison. Application to real dataset using MLE, AIC, BIC and goodness of fit statistic to show
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the usefulness of the new distribution was illustrated. It is evident KWTR could be chosen as the best
model over other models in comparison from the application to real life dataset. We hope that the
proposed KWTR model may attract and find wider application in the analysis of reliability data,
insurance, engineering, etc.
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