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Abstract 

This  study  derived  a  four-parameter  Kumaraswamy  transmuted  generalized  form  of  Rayleigh 

distribution called Kumaraswamy transmuted Rayleigh distribution (KWTR) by including two-shape 

parameters and a transmutation parameter to the single parameter baseline Rayleigh distribution which 

will  take care of the spread and also give a generalised distribution. The statistical properties of the 

proposed distribution including the shape of the distribution, hazard rate and survival function were 

derived. These properties were compared with the existing baseline distributions, that is, exponentiated 

transmuted  generalized  Rayleigh  distribution  (ETGR),  transmuted  generalized  Rayleigh  (TGR), 

generalized  Rayleigh  (GR)  and  Rayleigh  (R)  distributions.  Estimates  of  KWTR  parameters  were 

derived by using maximum likelihood method. The performances of the distributions were compared 

using Akaike information criterion (AIC), Bayesian information criterion (BIC) and goodness of fit 

statistic contained in “fitdistrplus” of R. Two different datasets were considered. 

______________________________ 
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1. Introduction 

In applied science,  it  is very  important  to model and analyze  lifetime  data and  the probability 

model determines  the pattern or steps used in the statistical modelling. As a result of this, past and 

present  researchers have done tremendous  work on  improving  standard of probability distributions 

with  relevant  statistical  methodologies.  Nevertheless,  there  are  still  instances  where  classical  or 

standard probability models does not follow real data set. Hence, the need for developing more flexible 

statistical distributions is required. This research is aimed to provide a more flexible distribution that 

can efficiently model robust lifetime datasets. 

Rayleigh  distribution  is  commonly  used  in  lifetime  analysis,  it  is  applicable  to  modeling  and 

analyzing several aspect of statistics. The distribution also has a special form of Weibull distribution 

when  the  shape  parameter  is  2.  Literatures  shows  that  researchers  have  given  much  attention  to 

studying  Rayleigh  distribution  in  the  last  couple  of  decades.  Maximum  likelihood  and  Bayes 
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approaches were applied by Abushal (2011) in estimating the properties of Rayleigh distribution based 

on progressive first-failure censored data. The empirical Bayes estimates for parameter and reliability 

function associated to compound Rayleigh distribution under record data were obtained by Shajaee 

et  al.  (2012).  Also,  the  maximum  likelihood  and  Bayes  estimates  of  the  reliability  parameters 

corresponding  to  compound  Rayleigh  distribution  under  a  progressive  type-II  censored  data  was 

compared  by Barot  and  Patal  (2015). The  compound  Rayleigh distribution  with  constant  partially 

accelerated life tests under an adaptive type-II progressive hybrid censored data was studied by Abd-

Elmougod and Mahmoud (2016). 

The  ( )f x  which is the probability density function of the Rayleigh distribution is given by 

 
2 2

( ) exp ,
2

x x
f x

 

 
  

 
 for  [0, ).x                (1) 

The corresponding cumulative function, for Rayleigh is given by 

 
2

( ) 1 exp ,
2

x
F x



 
   

 
             (2) 

where   represent the distribution scale parameter. 

One of the limitations of the classical Rayleigh distribution is that it cannot provide adequate fit 

to real datasets, because it has only the scale parameter but no shape parameter. The rationale behind 

this research  is  that  the proposed distribution will be more flexible as  two shape parameters and a 

transmuted parameter will be added  to  the baseline distribution. The pdf plots can be  left or  right 

skewed.  The  proposed  Kumuraswamy  transmuted  Rayleigh  distribution  will  be  efficient  in  the 

modeling of lifetime and reliability datasets. The proposed distribution will provide statistical model 

that has a wide variety of application in different areas and an advantage among other distributions in 

its ability in context of lifetime data. 

In this paper, we improve on the existing distribution of Ahmed et al. (2016) where the authors 

introduced Kumaraswamy transmuted generalized family of distribution. This distribution has its CDF 

given as 

    ( ) 1 1 (1 ) ( , ) ( , ) .
ba

F x H x H x                      (3) 

And the corresponding pdf to (3) is given by 

    1
( ) ( , ) 1 2 ( , ) ( , ) 1 2 ( , )

a
f x abh x H x H x H x       
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      

 
1

21 (1 ) ( , ) ( , ) ,
ba

H x H x   


                   (4) 

where  ( , )h x   and  ( , )H x   are  the  probability  density  function  (PDF)  and  cumulative  density 

function (CDF) of an arbitrary baseline distribution respectively. 

The main motivations of this research are to derive a robust distribution that will efficiently model 

lifetime datasets. The classical Rayleigh distribution does not provide adequate fit to real data as it has 

only the scale parameter but no shape parameter. This proposed distribution is more flexible as three 

additional  shape  parameters  are  added  to  the  base distribution. The PDF plots  can be  left  or  right 

skewed.  Kumuraswamy  transmuted Rayleigh distribution  provides  a  statistical  model  which has  a 

wide variety of application in different areas and the main advantage is its ability to model lifetime 

data among better than other distributions considered in this study. 

 

2. The Proposed Distribution 

This  paper  aimed  to  introduce  a  novel  distribution  known  as  the  Kumaraswamy  transmuted 

Rayleigh distribution (KWTR) by inserting the Rayleigh distribution into the generalized family of 
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Kumaraswamy transmuted distribution of Ahmed et al. (2016). The PDF and the CDF of the proposed 

distribution are given in (6) and (7), respectively. 

Let  X   be  a  random  variable  with  Rayleigh  distribution  as  specified  in  (1)  and  (2).  Letting 

2
exp .

2

x
k
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 
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 
 Then Equation (2) above becomes  

  ( , ) 1 .H x k                (5) 

Inserting (1) and (5) into (4) to have the derived PDF as 
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Verification of the true PDF, 
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Since the derivation of the KWTR is equal to 1, this shows that it is a true PDF. 

The corresponding cumulative density function of the novel distribution can be expressed as 

 

1
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It can be shown that 
0
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Figure 1 The Probability density function plot of the proposed chart 

 

3. Properties of Proposed Kumaraswamy Transmuted Rayleigh Distribution 

The  properties of  the  proposed Kumaraswamy  transmuted  Rayleigh distribution  including  the 

survival function, hazard rate function, mixture representation, quantiles function and the maximum 

likelihood shall be investigated and  discussed in the subsections below 

3.1. Survival function 

 

                              

                   (8) 

 

3.2. Hazard rate function 

The hazard rate function of the proposed distribution in (6) is given by 
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 (9) 

Figure 2 shows that hazard rate (failure rate) could be monotonically increasing or decreasing which 

makes it suitable for failure times datasets. 

 

 
Figure 2 The hazard rate function plot 

 

3.3. Mixture representation 

The expansion of the power series of the novel distribution to be powers of  ( 1)a   then  ( 1)b   

is given as 

                                                     (10) 

For any real non-integer which holds for   and  , expanding the term with power  1a   in (6) 

after applying the power series of (10) to (6), we have 
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                                                   (13) 

where       and   

where  ( )g x  and  ( )G x  are the PDF and CDF of transmuted Rayleigh distribution, respectively. 

 

3.4. Quantile function 

Quantile  function  is defined as  the  inverse  function  of  the CDF of a  random variable  .X  The 

quantile function of a distribution is the real solution of  ( )F xq q  for  0 1.q   And the quantiles

( )xq of KWTR distribution is expressed in the form given below as 

.                                                       (14) 

 

3.5. Maximum likelihood estimation of the proposed distribution 

Maximum  likelihood  estimation  (MLE)  is  generally  known  for  its  estimation  of  unknown 

parameters. Considering a random sample  1 2, ,..., nx x x  from the Kumaraswamy transmuted Rayleigh 

(Kw-TR) distribution. Then, the likelihood function is given by 
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4.    Simulation Study 

The  Monte  Carlo  Simulation  approach  will  be  used  to  evaluate  the  maximum  likelihood 

estimations  (MLEs)  of  the  KWTR  distribution  for  varying  values  of  parameters  of  the  proposed 

distribution. A random samples of size N will be selected in the estimation. This approach was also 

implemented by Cakmakyapan and Ozel (2018). The plots of the several sample sizes is presented in 

Figures 3-5. 
 

Table 1 Maximum likelihood estimates of the proposed distribution for varying values 

Parameter        a   b  

Actual value  1.00  0.80  3.00  2.00 

Estimate (N = 10,000)  0.90  0.69  3.92  1.64 

Estimate (N = 1,000)  1.07  0.74  2.84  1.96 

Estimate (N = 100)  0.95  0.53  4.26  2.19 

 

 

Figure 3 The density plot when N = 10,000 

 

 
Figure 4 The density plot when N = 1,000 
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Figure 5 The density plot when N = 100 

 

4.1. Applications 

In order  to  investigate  the  robustness of  the proposed distribution,  two  different datasets were 

used  in  this  section.  The  proposed  KWTR  distribution  will  be  compared  with  the  other  existing 

distributions  including  the  exponentiated  transmuted  generalized  Rayleigh  distribution  (ETGR) 

(Ahmed et al. 2015). The goodness of fit statistic and the goodness of fit plot were provided in order 

to check the models that best fit the data among the models for each dataset used for this research. The 

first and second datasets considered were single fibers tested under tension at gauge lengths 20 mm 

(data  set  1  with  sample  size  of  74  observations)  and  10  mm  (data  set  2  with  sample  size  of  63 

observations) obtained from Kundu and Raqab (2009). 

 

Table 2 Maximum likelihood estimates for 20 mm. data set 

Model 
Parameters 

   A  B  Λ 

KWTR 
12.58 

(33.81) 

3.51 

(3.35) 

2.05 

(1.50) 

−0.33 

(2.05) 

ETGR 
0.70 

(0.04) 

2.12 

(0.32) 

7.79 

(1.73) 

0.32 

(0.23) 

TGR 
0.62 

(0.02) 

5.51 

(0.78) 

0.36 

(0.25) 

- 

- 

GR 
0.64 

(1.49) 

7.78 

(0.05) 

- 

- 

- 

- 

R 
0.40 

(0.02) 

- 

- 

- 

- 

- 

- 

 

Table 3 Log-likelihood, AIC and BIC for the fitted distributions for 20 mm. data set 

MODEL  Log-likelihood  AIC  BIC 

KWTR    51.132  110.264  119.480 

ETGR  113.400  121.352  130.600 

TGR  123.610  129.610  136.500 

GR  135.202  139.202  143.811 

R  188.302  190.302  192.606 
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Table 4 Goodness of fit statistic for 20 mm. data set 

MODEL 

Goodness of fit statistic 

Kolmogorov-Smirnov 

statistic 

Cramér-von 

Mises statistic 

Anderson-Darling 

statistic 

KWTR  0.05621079 0.02566735  0.20015125 

ETGR  0.07381433 0.12020216  0.78642796 

TGR  0.61522390 8.94058030 - 

GR  0.07360201 0.10969873  0.71394327 

R  0.33929870 2.65435530 13.31257390 

 

 

Figure 6 The P-P plots of gauge lengths of 20 mm. data 

 

Table 2 shows the MLE of the parameters and their standard errors in parenthesis also Table 3 

shows  the  log-likelihood,  Akaike  information  criterion  (AIC)  and  Bayesian  information  criterion 

(BIC) values for the fitted Kumaraswamy  transmuted Rayleigh  (KWTR), exponentiated transmuted 

generalized Rayleigh  (ETGR), transmuted generalized Rayleigh  (TGR), generalized Rayleigh  (GR) 

and Rayleigh (R) distributions for the first data set of 20 mm. gauge length. Also, the goodness of fit 

statistics is presented in Table 4. The probability plot of the datasets for the distributions used in this 

study is presented in Figure 6. The histogram of the data and the estimated density functions is also 

shown  in  Figure  7.  Also  Figure  8  shows  the  empirical  cumulative  function  of  the  data  and  the 

estimates. 
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Figure 7 The histogram of the fitted and estimated distributions of gauge lengths of 20 mm. data 

 

 
Figure 8 The CDF of the fitted and estimated distributions of gauge lengths of 20 mm. data 

 

Table 5 Maximum likelihood estimates for 10 mm. data set 

Model 
Parameters 

Σ  A  b   Λ 

KWTR 
1.6366 

(1.6961) 

2.1061 

(5.9399) 

1.7517 

(1.8407) 

  −0.7344 

(1.8224) 

ETGR 
0.5347 

(0.0510) 

2.4051 

(0.8800) 

0.5830 

(0.2070) 

6.9503 

(1.4880) 

TGR 
0.5021 

(0.0110) 

6.2143 

(1.2160) 

0.1207 

(0.3690) 

- 

- 

GR 
0.5145 

(0.0240) 

6.2130 

(0.9660) 

- 

- 

- 

- 

R 
0.3200 

(0.0240) 

- 

- 

- 

- 

- 

- 
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Table 6 Log-likelihood, AIC and BIC for the fitted distributions for 10 mm. data set 

Model  Log-likelihood  AIC  BIC 

KWTR    55.95  119.91  128.49 

ETGR  115.00  122.97  131.50 

TGR  118.64  124.63  131.06 

GR  122.60  126.62  130.91 

R  187.04  189.04  191.18 

 

Table 7 Goodness of fit statistic for 10 mm. data set 

Model 
Goodness of fit statistic 

Kolmogorov-Smirnov Cramér-von Mises Anderson-Darling 

KWTR  0.07173262 0.04429238 0.26657112 

ETGR  0.08261972 0.06183080 0.33526336 

TGR  0.12452320 0.20166460 1.51058230 

GR  0.08737195 0.06418944 0.35980264 

R  0.36071560  2.19116620  11.0175148 

 

 
Figure 9 The P-P plots of gauge lengths of 10 mm. data 

 

In Table 5, the maximum likelihood estimation (MLEs) of the parameters and their standard errors 

in parenthesis is presented and Table 6 shows the log-likelihood, AIC and BIC values for the Proposed 

distribution  and  its  counterparts  considered  in  this  study  for  the  second  data  set  of  10 mm.  gauge 

length.  Figure  9  shows  the  probability  of  the  data  and  the  estimated  ones.  Figure  10  shows  the 

histogram of the data and the estimated density functions. Figure 11 shows the empirical cumulative 

function of the data and the estimated ones. 

The numerical results in Tables 3 and 6 shows that the log-likelihood, AIC and BIC of the KWTR 

distribution  are  lower  than  the  other  four  allied  fitted  distributions.  Likewise,  the  goodness  of  fit 

statistic in Tables 4 and 7 shows that KWTR has the lowest Kolmogorov-Smirnov, Cramér-von Mises 

and  Anderson-Darling  statistics  which  served  as  baseline  of  comparison.  Figures  6-11  show  that 
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KWTR distribution provides a good fit as its points were closer to the expected line. Therefore, KWTR 

distribution can be chosen as the best model for lifetime dataset. 

 

 
Figure 10 The histogram of the fitted and estimated distributions of gauge lengths of 10 mm. data 

 

 

Figure 11 The CDF of the fitted and estimated distributions of gauge lengths of 10 mm. data 

 

5. Conclusions 

We  proposed  a  new  family  of  Rayleigh  distribution,  named  the  Kumaraswamy  transmuted 

Rayleigh distribution. The KWTR distribution provides better results than the ETGR, TGR, GR and 

R distributions. In this model,  the new distribution provides more flexibility  in modeling reliability 

data. We were able to derive the density and distribution function, survival function, hazard function 

and quantile function of the proposed distribution. We discussed the maximum likelihood estimation 

and also obtained the standard error of each parameter estimate as well as the information criteria used 

for comparison. Application to real dataset using MLE, AIC, BIC and goodness of fit statistic to show 
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the usefulness of the new distribution was illustrated. It is evident KWTR could be chosen as the best 

model over other models  in comparison  from  the application  to  real  life dataset. We hope  that  the 

proposed KWTR  model  may  attract  and  find  wider  application  in  the  analysis  of  reliability  data, 

insurance, engineering, etc. 
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