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Abstract

Generally, the identification problem is a serious problem facing many researchers in their
empirical models and causes wrong interpretations leading to wrong decisions. In this paper, the
identification problem impact is investigated on a new proposed life time model so called the Power
Topp-Leone (PTL) distribution, some serious effects of the identification problem are illustrated and
solved in PTL distribution. Some mathematical properties are obtained. Parameters estimation of the
PTL distribution using maximum likelihood method (MLE) is performed. A simulation study is used
to show the impact of ignoring the identification problem and study estimators’ behavior, two real
data sets are applied to illustrate the distribution flexibility.

Keywords: Identification problem, Topp-Leone distribution, moments, orders statistics, maximum likelihood
estimation.

1. Introduction

Lifetime distributions, basically, are used to model the life of an item to study its properties so
that generalizing lifetime distributions and increasing its flexibility may provide more useful
information resulting more effective conclusions and decisions. The bounded Topp-Leone (TL)
distribution, presented by Topp and Leone (1955), for empirical data with J-shaped histogram as
powered band tool and automatic calculating machine failures. Many authors have studied the Topp-
Leone distribution as Nadarajah and Kotz (2003), Ghitany et al. (2005), Van Dorp and Kotz (2006),
Zhou et al. (2006), Kotz and Seier (2007), Nadarajah (2009) and Geng (2012).

The cumulative distribution function (CDF) and probability density function (PDF) of the
classical TL distribution (Nadarajah and Kotz 2003) are

i(y)=[y(2—y)]a;0<y<l;a>0, (1)

and

[ =2ay""(2 ) (1-). )
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When parameter values cannot be determined or known completely, even if the true distribution
f(x;-) is known, this problem is called the identification problem and this distribution is known as

a non-identified distribution. Also, any nested distribution by a non-identified distribution is non-
identified. Cleary, a parametric distribution is said to be identified if all its parameters values are
identified. Imposing constraints on the parameters can solve some problems, that constraints are said
to be identifying.

This paper goals to study the effect of the parameters identification problem on the new power
Topp-Leone (PTL) distribution, also it aims to find constraints on the parameters to solve these
problems. The rest of this paper is organized as follows: In Section 2, the PTL distribution is
presented, its special cases are shown and its asymptotes are given. In Section 3, some properties are
obtained. In Section 4, the Hazard function is given. In Section 5, the Rényi entropy is obtained. In
Section 6, the stress strength model is proposed. In Section 7, order statistics are studied. In Section
8, the MLE method is used in order to estimate the distribution parameters. In Section 9, a simulation
study is illustrated. Finally, in Section 10, some applications are used to clarify the flexibility of the
identified distribution.

2. The New PTL Distribution

1
In this section, the PTL distribution is presented, for the first time, as follows: setting x = y*

and substituting it into (1) gives

F(x):x“ﬁ(Z—xﬁ)a;0<x<l;a>0,ﬂ>0, 3)

PTL
one can see that when aff =1 the PTL distribution in (3) be non-identified. Basically, to avoid

identification problem, in PTL distribution, the join product of @f must be constrained as follows

F(x)=x“ﬂ(2—xﬂ)a;0<x<1;a>0,ﬂ>0;aﬂ¢l, 4)

PTL

differentiating (3) with respect to x yields,
f() =2apx (1-2") (2 "), (5)
PTL

when £ =1, the PTL distribution reduces to TL distribution (Topp and Leone 1955). Some shapes of
the density function for the identified PTL distribution are illustrated in Figure 1.
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Figure 1 The identified PTL density functions
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2.1. Expansions for the CDF and PDF

In this section, expansions for the CDF and PDF of the PTL distribution are given as follows:
2.1.1. An expansion for the CDF

Since,

(2-z) =i(—1)f ch[c.]zf, (1)

J
then, using (6) into (4) gives

F() = (-1) 2”"[7}(“*””,
PTL =0 J

hence,

F(x)=>m,x“"77, (2)
=0

PTL j

m, =(-1) 2f(a]

J

where,

2.1.2. An expansion for the PDF
Using (6) into (5) gives

£ =2aBY w1 (1-x7), ()

PTL i

w,=(~1) 27 (0‘ .—1]'

1

where,

Condition of the expansion for the PDF, since
2052 w,.j.ﬂx("’”)/H (1 —xﬁ)dx =1,
=0 0
then
2ai wB(a+i,2)=1, 4)
=0

where B(:,-) is the beta function.

2.2. The asymptotes of the CDF and PDF
In this section, the asymptotes of the CDF and PDF of the PTL distribution are obtained.
2.2.1. The asymptotes of the CDF
First: as x converges to zero, since,
{_5%(2—xﬂ) =27,
then
F(x)~2"x“".

PTL

Second: as x converges to 1, using only first and second terms of binominal expansion leads to

F(x)~x*’ (2—axﬂ).

PTL



Mohamed Ali Ahmed 841

2.2.2. The asymptotes of the PDF
First: as x converges to zero, since

lim(1-x*) =1 lim (2-x/)"" =277,

x>0 x>0

then
f(x)~af2%x* 7.

PTL

Second: as x converges to 1, using only first and second terms of binominal expansion gives

F(x)~2apx”" (1-x" ) (2= (@ = Dx”).

PTL

3. Some Properties of the PTL Distribution
In this section some properties of the PTL distribution is considered as follows:
3.1. The r™ moment

Generally, the #" moment of a continuous random variable X is given by (Johnson et al. 1995)

EX")= J’xf f(x)dx. Substituting (8) into the last equation yields

E(X")= 2ai w[j.ﬂx(“”)ﬂ”*1 (1 —x" )dx,
i=0 0
then

E(X")=2a) WIB[M,zj_
P B
It can see that, setting » =0 leads to

E(X")= Zai wB((a+i),2),

i=0
substituting (9) into the last equation gives
E(X")=1.
Mean, variance, coefficient of variation (CV'), coefficient of skewness (), and coefficient of
kurtosis (K) of the PTL distribution can be given as follows

20(2 B( a+2ﬁ+l 2),

V(x)=223 M/I.B(%,Zj—{%zi mB(%,ZH :

Jzai WiB((aﬂw,z)_[za : WB(WZH
CV _ i=0 ﬁ i=0 ﬁ

S W((aﬂgﬂﬂ,zj ’

in the same way, S and K can be given by substituting into the following equations

_E(X)-3E(X)V(X)- [ECOT

7o)




842 Thailand Statistician, 2021; 19(4): 838-854

and
4 3 2 2 4
_E(X")-4E(X YE(X)+6E(X )[E(X)] —3[E(X)]
[reof |
Mean, variance, coefficient of variation, coefficient of skewness and coefficient of kurtosis of
the PTL distribution can be calculated, numerically, for different values of @ and £ in Table 1 for

the non-identified case and in Table 2 for the identified case.

K

Table 1 Mean, variance, coefficient of variation, coefficient of skewness and coefficient of kurtosis
of PTL distribution for the non-identified case

B=0.1, B=03 B=05 B=075 [5-09, f=15  B=20,

Measure a=10 a=333  a=2 a=133 a=111 a=066 a=05
Mean 10618 6430 5.145 4469  3.984 2900 2.600
Variance 352366  73.058  40.824 28368  20.264 9.123  7.079
cv 1.767 1329 1.241 1191 1.129 1040  1.023
Skewness 5826 2995  1.246 0.936  0.652 0452 0235
Kurtosis 36.164 15612 5.789 3861 1.696 0892 0518

Table 2 Mean, variance, coefficient of variation, coefficient of skewness and coefficient of kurtosis
of PTL distribution for the identified case

£ =3, B =3, B =3, £ =3, p =3, B =3, p=3,

Measure a=10 a=3233 a=2 a=133 g=111 a=066 a=05
Mean 2596 1.839 1.548 1.462 1.324 1.205 1.152
Variance 2.874 0.889 0.429 0.349 0.190 0.101 0.067
cv 0.653 0.512 0.423 0.404 0.329 0.263 0.224
Skewness 0.414 0.034 0311  -0580 —0.782 —1224  -1.621
Kurtosis 0.979 0.727 0.597 0.501 0.476 0.340 0.117

From last tables, as [ increases and ¢ is fixed, mean, variance, skewness and kurtosis decrease.
On the other hand, as « decreases and S is fixed, mean, variance, skewness and kurtosis decrease.

An impact of identification problem appears in last tables, as it can be seen that, when « is fixed,
the coefficient of variation of the identified distribution is smaller than the coefficient of variation of
the non-identified distribution.

3.2. Moment generating function

Basically, the moment generating function (MGF) of a continuous random variable X is given
by

M _(t)=E(e") = j & f(x)dx.
A first representation can be obtained by substituting (8) into the last equation, yields
© 1 i
M. (t)=2aB) w, '.-e”)c(o”')m1 (1 -x’ ) dx,
i=0 0

using binomial expansion for the last equation gives
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» 1
M. ()=2aB) w, I X
i=0 0
where

W[* =W Zl:(_l)j [i]

Then the following integration (Gradshteyn and Ryzhik 2000) is used

. . 1
1E(a’a+l’t)_j = ga- le )

a 0

using (10) yields
((a+l+]),6;(a+i+j)ﬂ+l;t)

(a+i+j)

M (t)= 20:2

Furthermore, the following expansion (Gradshteyn and Ryzhik 2000) is applied
I'(a+u)z"

Fi(a;b; 6
(@b:2)= ZF(b+u) ul’ ©)
using (11) gives
> 20 TF'((a+i+))p+k) ¢
M (=73, W, ( — ) -
So+i+j ,(OF((O!+l+j)ﬂ+1+k)k!
hence,

k

0

M= WYy —

Sa+ivj S k(( a+z+])ﬁ+k)

A second representation for MGF based on the exponential expansion can be obtained as follows:

Since M _(t) = E(€"), then using exponential expansion in the last equation gives

o= £

then

M(t:g E( “).

3.3. The quantile function and the median
The definition of the 100u™ is
u=P(X<x,)=F(x,); x,>0,0<u<l,
substituting (4) into u gives
u=x"’ (2—xﬂ)a.
One can see that the last equation is a nonlinear quantile function needing a numerical solution,
with respect to x, to be solved.

3.4. The mean deviation
Basically, the mean deviation about the mean and about the median for a random variable X
can be given, respectively, by
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8,00 = [[x— | f(x)dx and S, (x) = [[x— M| f(x)dx,

easily, it can be given by, the proof is included in Appendix I of Ali Ahmed (2021),
S, (x) = 2,L1F(;t)—2t(,u) and S, (x) = ,u—2t(M),

q
where T(q) = J x f(x)dx is the linear incomplete moment.

—0

Substituting (8) into 7'(-) gives

0 q
T(q)= 2aZwl.J.,b’x(“”)ﬁ (l—xﬁ)dx,
i=0 0
then,
T(q)= ZaiwiB(q;(a +i)ﬂ+l,2),
i=0

where B (-; . ) is the incomplete beta function.

3.5. The mode
The natural logarithm of (5) is

log f(x) =log(2apf) + (aff —1)log x +log(1— x") + (a — 1) log(2 — x*),

PTL
differentiating the last equation, with respect to x, and equating it to zero gives
(@f-1)_px"" (a-Dpx""
- - =0.
X 1-x 2-x"

The last equation is a nonlinear equation which does not have an analytic solution with respect

to x, therefore it has to be solved numerically, if x, is a root for the last equation then it must be

f”[log (xo)] <0.

4. The Hazard Function of the PTL Distribution
Basically, the survival function of a random variable X (Meeker and Escobar 1998) can be
given by
S(x)=1-F(x),
substituting (4) into the last equation yields
S(x) =1-x(2-x")";0<x<La>0,5> 0,08 #1.

PTL

(12)
On the other hand, the hazard function (Meeker and Escobar 1998) can be given by
H(x) =L,
S(x)

substituting (5) and (12) into last equation yields
20x7 " (1-x")(2—x" o
iy 25 (=)o)

PIL 1-x** (2—x'g)a

;0<x<La>0,8>0,0f #1.

Some shapes of the hazard function for the identified PTL distribution are illustrated in Figure 2.
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Figure 2 The identified PTL hazard functions

One can see in Figure 2, three types of hazard functions curves of the PTL distribution are

described as follows: A decreasing then constant hazard curve, a constant then increasing hazard
curve and a decreasing then constant then increasing (bathtub) hazard curve

5. The Rényi Entropy of the PTL Distribution

The Rényi entropy of a random variable X (Meeker and Escobar 1998) is given by

1 »
1 dx |,
- ogh[f(x)] x}

e (p)= 1

substituting (8) into the last equation gives

e (p) = 1plog{(2aﬂ)”j‘x(“ﬂl)p (l—xﬁ )p {iwi (xﬁ )l}pdx},

i=0
since
{Z w, (x”) } = n,(x”), (Gradshteyn and Ryzhik 2000)
i=0 i=0
1 t
where n, =wy, n z ip—t+i)wn_;t>1, then
tW() i=1
— 1 P p 1 ap-1)p+if
ey (p) = 10g Qa) B Zn I,b’x (1 x ) dxt,
PTL 1 i %
hence,
e, (p) = log{(Za)” ﬂpfl Zni B[w,p + 1}}
PTL —p i=0 ﬂ

6. Reliability: The Stress Strength Model of the PTL Distribution
Basically, the stress strength model of a random variable X (Meeker and Escobar 1998) can be
given by

R=[ £ A)F (x5 4,)dk,

substituting (7) and (8) into the last equation, £ is a common parameter, gives
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R= ZaIZwm J‘,b’x(“'“m +’)ﬁl(l x )d

i,j=0

hence,

R =2a, i:wl.ij(oc1 +ita,+ j,2).

i,j=0

7. Order Statistics of the PTL Distribution
The density function f(x,, ) of the u™ order statistics for u=12,...,v from i,i.d. random

variables X, X,,..., X following the PTL distribution (Arnold et al. 1992) is given by

f(x) -t
=——" _F 1-F
S =gt B F ) (1)
using binomial expansion in the last equation gives
(x ) ~ k V- u+k-1
S(x) = Bluv— u+1)2( ) [ jF( )] (13)

substituting (7) and (8) into (13) yields

2a’,6’2( j —l)kiwi
(a+i)B—1+pa(u+k-1)

ut+k-1
_ k=0 i=0 i\ 3— - B = B
X, )= X 1-x m.x ,
PO SR TSI A (=) S |
since
u+k-1 . )
{ } Z )j, (Gradshteyn and Ryzhik 2000)
s j=0
where p, =mi* ' p = (ju+k=1)—n+j)m,p, ;n>1, then
nm, =
20! = = a+ita(u+k-1)+j)p—
f(x,.) :—'stk Z wp, xu( (utk=1)+))p l(l—xuﬂ), (7)

Bu,v-u+1)i% i,j=0

v—u .
where s, = X (-D".

7.1. The r™ moment of order statistics
The " moment of order statistics of the PTL distribution can be got by
E (X 1::\)) = Ix; f(x,)dx,, substituting (14) into the last equation yields

v—u

r 2 (a+i+a(u+k=1)+ /) p+r—

then,
£lx ) 5 (@+i+va(u+k=1)+j)p+r )
( "V)_B(uv u+l)zskzwp B ’

i,j=0
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8. Estimation of the PTL Distribution Parameters
Let X,,X,,....,X, be the iid. random variables from the PTL(x;A) distribution, where

A =(a, ), then the likelihood function for the vector of parameter A =(«, ) (Garthwaite et al.
1995) can be given by

L=Capy T TI[-< T 2-<]""

the log likelihood function is given by
¢ =nlog2ap)+(af-1)y logx,+ Y log(1-x/)+(a-1)Y log(2-x/)
i=1 i=1 i=1
The score functions for the parameters  and £ are given by
ol

n < N
5:;+ﬂ;10gxi +;10g(2—x;5), (®)

and

B n P
—:£+a210gx _in (logxl.)_zxi (logxi). ©

aﬂ ﬂ i=1 i=1 l_x,-ﬂ i=1 2—)61.'8

The maximum likelihood estimators (MLEs) of the distribution parameters are obtained by
solving the nonlinear likelihood (15) and (16), numerically. Estimating the parameters needs an
iterative technique such as a Newton-Raphson algorithm.

Let A be the vector of the distribution parameter («,/f), then any element of the 2x2

information matrix /(e, ) can be obtained by

[i.(A)=E|: azf(A) ‘ }’
v OA,; 6[\ A=A

where [, l-jil (A) is the variance covariance matrix of the unknown parameters, the asymptotic
distributions of the PTL parameters is

V(A =A) = N, (0.1 (A)), i =1.2,
the approximation 100(1—-y)% confidence intervals of the unknown parameters using the asymptotic

distribution of the PTL (e, ) distribution are derived, respectively, as

A£Z  \T'(A),i=12,

where Zy ,, 1s the upper (y/ 2)™ percentile of a standard normal distribution.

The derivatives in the observed information matrix /(e, ) for the unknown parameters are

obtained as follows

and
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9. A Simulation Study

Obtaining MLEs of parameters of the PTL distribution using random numbers is the goal of this
section to study the finite sample behavior of the MLEs. The algorithm of obtaining parameters
estimates is discussed in the following steps:

Step (1) Generating arandom sample X, X,,...., X, ofsizes n= (10, 20,30,50,100,300) byusing
the PTL distribution.

Step (2) Two different sets values of the parameters are selected as: Set(1): (o =1.5,5=0.5),
Set(2): (¢ =2,5=0.5)

Step (3) Solving (15) and (16) by iteration to get MLEs, biases, the root of mean squared error
(RMSE) and the Pearson type of parameters estimators, Pearson (1895), of the PTL distribution.

Step (4) Repeating steps, from 1 to 3, 10,000 times.

Random numbers samples are generated using Mathcad package V14.0 where the conjugate
gradient iteration method is performed. All results are indicated in tables and included in Appendix II.

From results of the study, in Appendix II, it is clear that, as sample size increases, estimators,

biases and RMSEs decrease, as expected. Moreover, the sampling distribution of B can be the
Pearson type IV distribution in all times, the sampling distribution of & differs according to sample
size. An impact of identification problem appears here where ¢ and ﬁ , in the identified distribution

(Set (1)), can be consistent, specially, when sample size increases, but in the non-identified
distribution (Set (2)) they cannot be consistent.

10. Applications

In this application, two real data sets are given to investigate the flexibility of the identified PTL
distribution, practically, via Mathematica package version 10. In this examples, different distributions
are used as: the PTL distribution, the TL distribution, the Kumaraswamy distribution, Kumaraswamy
(1980), the beta distribution, and the Weibull distribution, the following data sets are given from the
UK National Physical Laboratory, more details are available at: http://www.npl.co.uk/.

Example 1. The following data represents the lifetime (Hours) of classical lamps for 50 devices:
0.913, 0.786, 0.860, 0.904, 0.971, 0.616, 0.961, 0.789, 0.817, 0.722, 0.956, 0.835, 0.853, 0.692,
0.850, 0.677, 0.898, 0.965, 0.820, 0.964, 0.865, 0.947, 0.798, 0.746, 0.926, 0.709, 0.615, 0.747,
0.931, 0.913, 0.895, 0.745, 0.839, 0.766, 0.690, 0.531, 0.838, 0.846, 0.876, 0.817, 0.719, 0.907,
0.915, 0.879, 0.890, 0.865, 0.869, 0.772, 0.933, 0.875

The results of some goodness of fit measures are in Table 3, the results of likelihood ratio tests
are in Table 4, Figure 3 illustrates probability density functions for different distributions having
similar skewness and kurtosis, Figure 4 illustrates probability density functions for nested distribution.
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Figure 3 Probability density functions for different distributions having

Table 3 The MLE of the parameters and the associated AIC, BIC and CAIC values

similar skewness and kurtosis

849

MLE - o
o parameters < ? 5 -
Distributions §D g KS  p-value ? 2 AIC BIC CAIC
a p ¢ g a
PTL 2.286 4328 —0.625 3.703 0.110 0.537 48.078 —94.141 —92.229 -94.058
(1.054) (0.008)
Non-dentified 4.286 0.233 -0.909 2.823 0.470 0.005 26985 —64.054 —60.230 —63.799
PTL (3.845) (0.618)
Beta 11.087 3.231 -0.823 3203 0.287 0.011 39488 —74975 -71.151 -74.720
(2.269) (0.423)
Kumaraswamy 8.666 4288 —0.643 3.750 0.238 0.015  40.524 -77.049 73225 -76.793
(1.111) (0.022)
Weibull 10.695 0.832 —0.765 3.943 0.246 0.013 39993 75985 —72.161 —75.729
(1.238) (0.032)

In Table 3, the MLEs of distributions parameters, parameters standard error (SEs), in
parentheses, Kolmogorov-Smirnov (KS) test statistic, Akaike information criterion (AIC), the
consistent Akaike information criterion (CAIC) and Bayesian information criterion (BIC), Merovcia
and Puka (2014), are calculated for every distribution having similar skewness and kurtosis values.
The null hypothesis that the data follow the PTL distribution, can be accepted at significance level
a =0.05. It is clear that the PTL distribution has the smallest KS, AIC, CAIC, BIC, SEs and the
largest log likelihood and p-value, so that, the PTL distribution can be the best fitted distribution to
the data compared with other distributions having similar skewness and kurtosis. Cleary, the non-
identified PTL distribution has the largest KS, AIC, CAIC, BIC, SEs and the smallest log likelihood
and p-value, all of that explain several effects of the identification problem.
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Table 4 The log-likelihood function, the likelihood ratio tests statistic and p-value

A

DF
Parameters ¢ (Likelihood

Distributi - D £ -val
istribution (log-likelihood)  ratio test (DS8CS © p-value
a s . freedom)
statistics)
TL 24.581 - 40.147 15.862 1 6.813x10°
2.61)

*Note that the log likelihood of the PTL distribution = 48.078

In Table 4, based on the likelihood ratio test, the null hypothesis is the data follow the nested
model and the alternative is the data follow the full model, where the TL distribution is nested by the
PTL distribution, it is clear that, null hypothesis can be rejected at significance level « =0.05.

| /
/ o

of /7 — 1L

]
06 07 08 09 1.0

Figure 4 Probability density functions for nested distribution by PTL distribution

Example 2. The following data represents the lifetime (Hours) of classical lamps for 20 devices:
0.618, 0.711, 0.600, 0.553, 0.188, 0.313, 0.176, 0.300, 0.834, 0.004, 0.053, 0.614, 0.263, 0.751,
0.216, 0.416, 0.242, 0.232, 0.241, 0.039.

The results of some goodness of fit measures are in Table 5, the results of likelihood ratio tests
are in Table 6, Figure 5 illustrates probability density functions for different distributions having
similar skewness and kurtosis, Figure 6 illustrates probability density functions for nested distribution.

30

— PTL
—— Non-identified PTL

150 ; beta

ol ) N— — Kumaraswamy

1 K \\\s — Weibul
>

5t ~ ;
0.0

——
0.2 0.4 0.6 0.8 1.0

Figure 5 Probability density functions for different distributions having
similar skewness and kurtosis
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Table 5 The MLE of the parameters and the associated AIC, BIC and CAIC values

MLE -
) =
parameters 3 ? 5 —
Distributions = g KS p-value £ o AIC BIC CAIC
2 2 g
14 ©® o
a B i &
PTL 0.8 2.000 0.754 12514 0238  0.104 -—1.222 6.444 8.435 7.150

(0.298)  (0.625)
Non-dentified 3476 2956 1375 4.140 0485 0000 -5.102  11.029  12.025 11.252
PTL (1.249)  (0.863)

Beta 1.003 1787 —0214  1.801 0344 0012 2434 8868 10859  9.573

(0.284)  (0.558)

Kumaraswamy  1.012 1.804 —0202 1.802 0342 0013 2288 8576 10567  9.282

0.261)  (0.601)

Weibull 1341 0397 3.183 9.692 0371 0010 -2.994 9983  11.980  10.694

0.251)  (0.068)

In Table 5, the MLEs of distributions parameters, SEs (in parentheses), KS test statistic, AIC,
CAIC and BIC are calculated for every distribution having similar skewness and kurtosis values. The
null hypothesis that the data follow the PTL distribution, can be accepted at significance level & = 0.05 .
It is clear that the PTL distribution has the smallest KS, AIC, CAIC, BIC, SEs and the largest log
likelihood and p-value, so that, the PTL distribution can be the best fitted distribution to the data
compared with other distributions having similar skewness and kurtosis. The non-identified PTL
distribution has the largest KS, AIC, CAIC, BIC, SEs and the smallest log likelihood and p-value, all
of that explain several effects of the identification problem.

Table 6 The log-likelihood function, the likelihood ratio tests statistic and p-value

P t A DF
o arameters ¢ (Likelihood
Distribution - o ) (Degrees of p-value
(log-likelihood) ratio test
a B . freedom)
statistics)
TL 0.4 - —4.514 6.584 1 0.01
(0.15)

*Note that the log likelihood of the PTL distribution = —1.222

In Table 6, based on the likelihood ratio test, the null hypothesis is the data follow the nested
model and the alternative is the data follow the full model, where the TL distribution is nested by the
PTL distribution, it is clear that, null hypothesis can be rejected at significance level o = 0.05.



852 Thailand Statistician, 2021; 19(4): 838-854

AN
3

— TL

Q\\ o

02 04 0.6 0.8 1.0

Figure 6 Probability density functions for nested distribution by PTL distribution

11. Conclusions

In empirical models, the impact of the identification problem leads models estimators to be
inconsistent causing wrong interpretations making wrong decisions. The power Topp-Leone
distribution is a useful lifetime distribution having flexible properties and wide applications but must
be constrained to avoid the identification problem. The author encourages researchers, in future, to
study more distributions suffering from identification problem and investigate its estimator’s
behavior in censored and complete samples.

Acknowledgements
The author thanks anyone provided any comment or suggested any useful advice for this paper.

References

Ali Ahmed M. The new form Libby-Novick distribution. Commun Stat Theory Methods. 2021;
50(3): 540-559.

Arnold BC, Balakrishnan N, Nagaraja, HN. A first course in order statistics. New York: John Wiley
and Sons; 1992.

Garthwaite PH, Jolliffe IT, Jones B. Statistical inference. London: Prentice Hall International (UK)
Limited; 1995.

Geng Al. Moments of order statistics of Topp-Leone distribution. Stat Papers. 2012; 53: 117-131.

Ghitany ME, Kotz S, Xie M. On some reliability measures and their stochastic orderings for the
Topp-Leone distribution. J Appl Stat. 2005; 32(7): 715-722.

Gradshteyn IS, Ryzhik IM. Tables of integrals, series, and products. San Diego: Academic Press;
2000.

Johnson NL, Kotz S, Balakrishnan N. Continuous univariate distributions. New York: John Wiley
and Sons; 1995.

Kotz S, Seier E. Kurtosis of the Topp-Leone distributions. Interstat. 2007; 1: 1-15.

Kumaraswamy P. A generalized probability density function for double-bounded random-processes.
J Hydrol. 1980; 46(1-2): 79-88.

Meeker WQ, Escobar LA. Statistical methods for reliability data. New York: John Wiley; 1998.

Merovci F, Puka L. Transmuted Pareto distribution. ProbStat Forum. 2014; 7: 1-11.

Nadarajah S, Kotz S. Moments of some J-shaped distributions. J Appl Stat. 2003; 30(3): 311-317.

Nadarajah S. Bathtub-shaped failure rate functions. Qual Quant. 2009; 43: 855-863.

Pearson K. Contributions to the mathematical theory of evolution. II. Skew variations in homogeneous



Mohamed Ali Ahmed 853

material. Philos T R Soc Lond. 1895; 186: 343-414.

Topp CW, Leone FC. A family of J-shaped frequency functions. J] Am Stat Assoc. 1955; 50(269):
209-219.

Van Dorp JR, Kotz S. Modeling income distributions using elevated distributions on a bounded
domain. In Distribution models theory. 2006; 1-25.

Zhou M, Yang DW, Wang Y, Nadarajah S. Some J-shaped distributions: Sums, products and ratios.
In: Proceedings of the Annual Reliability and Maintainability Symposium. 2006; 175-181.

Appendices
Appendix (I)
The Mean Deviation about Mean and about Median
The mean deviation about mean and about median can be given by, respectively,

é‘l(x):J.|x—y|f(x)dx and Sz(x):_[|x—M|f(x)dx|x—M|,

easily, it can be given by
S, (x) =2uF (u)—2t(p) and S,(x) = u—26(M),
q

where T(q) = j x f(x)dx is the linear incomplete moment.

—0

Proof:
First: mean deviation about mean:
Since
5,(0) = [ = p f (),
then
5(x) = T(x—,u)f(x)dx+jf (u-x)f(x)dx,
hence
5,00 = 15/ (=] f()ax + ] uf ()= | 3f (),
SO

8,6) = [ 3f () =t Py e+ uF ()= [ of (),

M
adding and subtracting to | xf(x)dx gives

-0

8,(x) = | xf (x)dx — g+ 2 F (1)~ ’j f (X)dx + 'f f (x)dx — 'f ¥ (x)dx,

then

0,(x)= T xf(x)dx— u+ 2/1F(x)—2]£ xf (x)dx,

—0

hence
8,(6) =21 F () = 2T(w); T(a) = | f (x).

Similarly, the mean deviation about median can be given.
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Appendix (IT)

Set(1): (¢=1.5,=0.5)
R T I O S o e
10 a=1.5 32.396 30.896 30.924 68.819 68.848 —0.326 I
£=05 1.823 1.323 2.017 0.316 v
20 a=1.5 20.805 19.305 19313 52.748 52.770 1.639 VI
£ =05 1.067 0.567 1.530 0.354 v
30 a=1.5 13.497 11.997 12.001 46.993  47.005 0.318 v
£=05 0.828 0.328 1.086 0.456 v
50 a=1.5 4.112 2.612 2.614 27.150 27.151 0.432 v
£ =05 0.618 0.118 0.249 0.638 v
100 a=15 2.907 1.407 1.407 5.117 5.117 0.360 v
£ =05 0.535 0.035 0.039 0.764 v
300 a=1.5 1.527 0.027 0.027 0.832 0.832 1.019 VI
£ =05 0.501 0.001 0.009 0.738 v

Set(2): (¢ =2,£=0.5)
Sz;rinz}z:le Parameters Et:ierjllzfs Biases B};(;tal RMSE RI\;I[:?] COéf}}E}E I}e;;zon
10 a=2 331.187  329.187 329.341 625334 329.189 —0.383 I
£ =05 10.582 10.082 5.427 0.305 v
20 a=2 125.529 123.529 123.761 338.073 338.091 1.572 VI
£=05 8.077 7.577 3.442 0.338 VI
30 a=2 72.242 70.242  70.608 244.636 244.643 0.377 v
£=05 7.682 7.182 1.783 0.575 v
50 a=2 24.053 22.053 22.422 108.187 108.188 0.335 v
£ =05 4.553 4.053 0.535 0.207 v
100 a=2 16.119 14.119 14435 36.652  36.653 0.848 v
£ =05 3.507 3.007 0.282 0.325 v
300 a=2 5.332 3.332 3.892 9.308 9.309 0.379 v
£=05 2.512 2.012 0.153 0.238 v




