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Abstract 

Generally,  the  identification  problem  is  a  serious  problem  facing  many  researchers  in  their 

empirical  models  and  causes  wrong  interpretations  leading  to  wrong decisions.  In  this  paper,  the 

identification problem impact is investigated on a new proposed life time model so called the Power 

Topp-Leone (PTL) distribution, some serious effects of the identification problem are illustrated and 

solved in PTL distribution. Some mathematical properties are obtained. Parameters estimation of the 

PTL distribution using maximum likelihood method (MLE) is performed. A simulation study is used 

to show the impact of ignoring the identification problem and study estimators’ behavior, two real 

data sets are applied to illustrate the distribution flexibility. 

______________________________ 
Keywords: Identification problem, Topp-Leone distribution, moments, orders statistics, maximum likelihood 

estimation. 

 

1. Introduction 

Lifetime distributions, basically, are used to model the life of an item to study its properties so 

that  generalizing  lifetime  distributions  and  increasing  its  flexibility  may  provide  more  useful 

information  resulting  more  effective  conclusions  and  decisions.  The  bounded  Topp-Leone  (TL) 

distribution, presented by Topp and Leone  (1955),  for empirical data with  J-shaped histogram as 

powered band tool and automatic calculating machine failures. Many authors have studied the Topp-

Leone distribution as Nadarajah and Kotz (2003), Ghitany et al. (2005), Van Dorp and Kotz (2006), 

Zhou et al. (2006), Kotz and Seier (2007), Nadarajah (2009) and Genç (2012). 

The  cumulative  distribution  function  (CDF)  and  probability  density  function (PDF)  of  the 

classical TL distribution (Nadarajah and Kotz 2003) are 

   ( ) 2 ;0 1; 0,
TL

F y y y y


                         (1) 

and 

     
11( ) 2 2 1 .

TL

f y y y y

                    (2) 
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When  parameter  values  cannot  be  determined  or  known  completely,  even  if  the  true  distribution 

( ; )f x   is known, this problem is called the identification problem and this distribution is known as 

a non-identified distribution. Also, any nested distribution by a non-identified distribution  is non-

identified. Cleary, a parametric distribution  is said  to be  identified  if all  its parameters values are 

identified. Imposing constraints on the parameters can solve some problems, that constraints are said 

to be identifying. 

This paper goals to study the effect of the parameters identification problem on the new power 

Topp-Leone  (PTL)  distribution,  also  it  aims  to  find  constraints  on  the  parameters  to  solve  these 

problems.  The  rest  of  this  paper  is  organized  as  follows:  In  Section  2,  the  PTL  distribution  is 

presented, its special cases are shown and its asymptotes are given. In Section 3, some properties are 

obtained. In Section 4, the Hazard function is given. In Section 5, the Rényi entropy is obtained. In 

Section 6, the stress strength model is proposed. In Section 7, order statistics are studied. In Section 

8, the MLE method is used in order to estimate the distribution parameters. In Section 9, a simulation 

study is illustrated. Finally, in Section 10, some applications are used to clarify the flexibility of the 

identified distribution. 

 
2. The New PTL Distribution  

In this section, the PTL distribution is presented, for the first time, as follows: setting 
1

x y   

and substituting it into (1) gives 

   ( ) 2 ;0 1; 0, 0,
PTL

F x x x x
                        (3) 

one  can  see  that  when  1    the  PTL  distribution  in  (3)  be  non-identified.  Basically,  to  avoid 

identification problem, in PTL distribution, the join product of   must be constrained as follows  

   ( ) 2 ;0 1; 0, 0; 1,
PTL

F x x x x
                                           (4) 

differentiating (3) with respect to  x  yields, 

     
11( ) 2 1 2 ,

PTL

f x x x x
  
                   (5) 

when 1,  the PTL distribution reduces to TL distribution (Topp and Leone 1955). Some shapes of 

the density function for the identified PTL distribution are illustrated in Figure 1. 

 
Figure 1 The identified PTL density functions 
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2.1. Expansions for the CDF and PDF  

In this section, expansions for the CDF and PDF of the PTL distribution are given as follows: 

2.1.1. An expansion for the CDF 

Since, 

   
0

2 ( 1) 2 ,
c j c j j

j

c
z z

j






 
    

 
                                                   (1) 

then, using (6) into (4) gives 

     

0

( ) 1 2 ,
j jj

PTL j

F x x
j

  




 
   

 
  

hence, 

   

0

( ) ,
j

j
PTL j

F x m x
 






                                          (2) 

where, 

 1 2 .
j j

jm
j

   
   

 
 

  

2.1.2. An expansion for the PDF 

Using (6) into (5) gives 

     1

0

( ) 2 1 ,
i

i
PTL i

f x w x x
  


 



                                  (3) 

where, 

    1 1
1 2 .

i i
iw

i
    

   
 

   

Condition of the expansion for the PDF, since 

     
1

1

0 0

2 1 1,i

i
i

w x x dx   


 



    

then 

 
0

2 ( , 2) 1,i
i

w B i 




                                                               (4) 

where  ( , )B    is the beta function. 

 

2.2. The asymptotes of the CDF and PDF  

In this section, the asymptotes of the CDF and PDF of the PTL distribution are obtained. 

2.2.1. The asymptotes of the CDF  

First: as  x  converges to zero, since, 

 
0

lim 2 2 ,
x

x
 


   

then 

( ) 2 .
PTL

F x x  
 

Second: as  x  converges to 1, using only first and second terms of binominal expansion leads to 

 ( ) 2 .
PTL

F x x x    
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2.2.2. The asymptotes of the PDF 

First: as  x  converges to zero, since 

   
1 1

0 0
lim 1 1, lim 2 2 ,
x x

x x
   

 
     

then 
1( ) 2 .

PTL

f x x     

Second: as  x  converges to 1, using only first and second terms of binominal expansion gives 

  1( ) 2 1 2 ( 1) .
PTL

f x x x x        

 

3.    Some Properties of the PTL Distribution  

In this section some properties of the PTL distribution is considered as follows: 

3.1. The thr  moment 

Generally, the  thr  moment of a continuous random variable  X  is given by (Johnson et al. 1995) 

( ) ( ) .r r

x

E X x f x dx   Substituting (8) into the last equation yields 

   
1

1

0 0

( ) 2 1 ,i rr
i

i

E X w x x dx   


  



    

then 

0

( )
( ) 2 ,2 .r

i
i

i r
E X w B

 








  
  

 
  

It can see that, setting  0r   leads to 

 0

0

( ) 2 ( ), 2 ,i
i

E X w B i 




   

substituting (9) into the last equation gives 
0( ) 1.E X   

Mean, variance, coefficient of variation  ( ),CV  coefficient of skewness  ( ),S  and coefficient of 

kurtosis  ( )K  of the PTL distribution can be given as follows 

 
 

0

1
2 , 2 ,i

i

i
E X w B

 








  
  

 


 
2

0 0

( ) 2 ( ) 1
( ) 2 , 2 2 ,2 ,i i

i i

i i
V X w B w B

   
 

 

 

 

       
      

    
   

2

0 0

0

( ) 2 ( ) 1
2 , 2 2 ,2

,
( ) 1

2 ,2

i i
i i

i
i

i i
w B w B

CV
i

w B

   
 

 

 




 

 





       
     

    


  
 
 

 


 

in the same way,  S  and  K  can be given by substituting into the following equations 

 
33

3

( ) 3 ( ) ( ) ( )
,

( )

E X E X V X E X
S

V X

 


 
 
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and 

   
 

2 44 3 2

2

( ) 4 ( ) ( ) 6 ( ) ( ) 3 ( )
.

( )

E X E X E X E X E X E X
K

V X

  
  

Mean, variance, coefficient of variation, coefficient of skewness and coefficient of kurtosis of 

the PTL distribution can be calculated, numerically, for different values of   and    in Table 1 for 

the non-identified case and in Table 2 for the identified case. 

 

Table 1 Mean, variance, coefficient of variation, coefficient of skewness and coefficient of kurtosis 

of PTL distribution for the non-identified case 

Measure 
0.1,   0.3,   0.5,   0.75,   0.9,   1.5,   2.0,   

10    3.33    2    1.33    1.11    0.66    0.5   

Mean    10.618    6.430   5.145    4.469    3.984    2.900  2.600 

Variance  352.366   73.058  40.824  28.368  20.264    9.123  7.079 

CV    1.767    1.329    1.241    1.191    1.129    1.040  1.023 

Skewness    5.826    2.995   1.246    0.936    0.652    0.452  0.235 

Kurtosis    36.164   15.612   5.789    3.861    1.696    0.892  0.518 

 

Table 2 Mean, variance, coefficient of variation, coefficient of skewness and coefficient of kurtosis 
of PTL distribution for the identified case 

Measure 
3,   3,   3,    3,   3,    3,   3,   

10    3.33    2    1.33    1.11    0.66    0.5   

Mean  2.596  1.839  1.548   1.462   1.324   1.205   1.152 

Variance  2.874  0.889   0.429   0.349   0.190   0.101  0.067 

CV  0.653  0.512  0.423   0.404   0.329   0.263   0.224 

Skewness  0.414  0.034  −0.311  −0.580  −0.782  −1.224  −1.621 

Kurtosis  0.979  0.727   0.597   0.501   0.476   0.340   0.117 

 

From last tables, as   increases and   is fixed, mean, variance, skewness and kurtosis decrease. 

On the other hand, as  decreases and    is fixed, mean, variance, skewness and kurtosis decrease. 

An impact of identification problem appears in last tables, as it can be seen that, when   is fixed, 

the coefficient of variation of the identified distribution is smaller than the coefficient of variation of 

the non-identified distribution. 

 

3.2. Moment generating function 

Basically, the moment generating function (MGF) of a continuous random variable  X  is given 

by 

( ) ( ) ( ) .tx tx
x

x

M t E e e f x dx    

A first representation can be obtained by substituting (8) into the last equation, yields 

   
1

1

0 0

( ) 2 1 ,
itx

x i
i

M t w e x x dx
  


 



    

using binomial expansion for the last equation gives  
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 
1

1*

0 0

( ) 2 ,
i jtx

x i
i

M t w e x dx
 


  



    

where 
1

*

0

1
( 1) .j

i i
j

w w
j

 
   

 
  

Then the following integration (Gradshteyn and Ryzhik 2000) is used

 
 

  1
1 1 1

0

; 1;
,tz aF a a t

e z dz
a


                                         (5) 

using (10) yields 

    
 

1 1*

0

; 1;
( ) 2 .x i

i

F i j i j t
M t w

i j

   








    


 
  

Furthermore, the following expansion (Gradshteyn and Ryzhik 2000) is applied  

  1 1
0

( )
( ; ; ) ,

( ) !

u

u

a u z
F a b z

b u u





 


 
   (6) 

using (11) gives 

 
 

*

0 0

( )2
( ) ,

( ) 1 !

k

x i
i k

i j k t
M t w

i j i j k k

 

  

 

 

   


      
   

hence, 

  
*

0 0

2
( ) .

!

k

x i
i k

t
M t w

i j k i j k



  

 

 


    

   

A second representation for MGF based on the exponential expansion can be obtained as follows:  

Since
 

( ) ( ),tx
xM t E e  then using exponential expansion in the last equation gives 

 
0

( ) ,
!

k

x
k

tx
M t E

k





 
 
 
 
  

then 

 
0

( ) .
!

k
k

x
k

t
M t E x

k





 
 

 

3.3. The quantile function and the median 

The definition of the  th100u  is 

( ) ( ) ; 0, 0 1,u u uu P X x F x x u       

 substituting (4) into  u  gives  

 2 .u x x
      

One can see that the last equation is a nonlinear quantile function needing a numerical solution, 

with respect to  ,x  to be solved. 

 

3.4. The mean deviation 

Basically, the mean deviation about the mean and about the median for a random variable  X  

can be given, respectively, by
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1( ) ( )
x

S x x f x dx   and   2 ( ) ( ) ,
x

S x x M f x dx   

easily, it can be given by, the proof is included in Appendix I of Ali Ahmed (2021), 

     1 2 2S x F t     and     2 2 ,S x t M   

where  ( ) ( )
q

T q x f x dx


   is the linear incomplete moment. 

Substituting (8) into  ( )T   gives 

   
0 0

( ) 2 1 ,
q

i

i
i

T q w x x dx   






    

then, 

 
0

( ) 2 ; ( ) 1,2 ,i
i

T q w B q i  




    

where   ; ,B     is the incomplete beta function. 

 

3.5. The mode  

The natural logarithm of (5) is 

log ( ) log(2 ) ( 1) log log(1 ) ( 1) log(2 ) ,
PTL

f x x x x            

differentiating the last equation, with respect to  ,x  and equating it to zero gives 

1 1( 1) ( 1)
0.

1 2

x x

x x x

 

 

     
  

 
 

The last equation is a nonlinear equation which does not have an analytic solution with respect 

to  ,x  therefore it has to be solved numerically, if  0x  is a root for the last equation then it must be 

 0log ( ) 0.f x   

 

4.   The Hazard Function of the PTL Distribution 

Basically,  the  survival  function of a  random variable  X   (Meeker  and Escobar 1998) can be 

given by 

( ) 1 ( ),S x F x   

substituting (4) into the last equation yields    

   ( ) 1 2 ;0 1; 0, 0; 1.
            

PTL

S x x x x             

(12) 

On the other hand, the hazard function (Meeker and Escobar 1998) can be given by

 ( )
( ) ,

( )

f x
H x

S x


 

substituting (5) and (12) into last equation yields 

  
 

112 1 2
;0 1; 0, 0; 1.( )

1 2PTL

x x x
xH x

x x

  

  


  

  
     

 
 

Some shapes of the hazard function for the identified PTL distribution are illustrated in Figure 2. 
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Figure 2 The identified PTL hazard functions 

 

One  can  see  in  Figure  2,  three  types  of  hazard  functions  curves  of  the  PTL distribution  are 

described as  follows: A decreasing  then constant  hazard curve,  a constant  then  increasing hazard 

curve and a decreasing then constant then increasing (bathtub) hazard curve. 

 

5.    The Rényi Entropy of the PTL Distribution 

The Rényi entropy of a random variable  X  (Meeker and Escobar 1998) is given by 

 
1

( ) log ( ) ,
1

R

x

e f x dx





 
  

  
  

substituting (8) into the last equation gives 

     
1

1

00

1
( ) log (2 ) 1 ,

1

i

R i
PTL i

e x x w x dx


    








   
    

    
  

since  

   
0 0

,
i i

i i
i i

w x n x



 
 

 

 
 

 
   (Gradshteyn and Ryzhik 2000) 

where   0 0
10

1
, ; 1,

t

t i t i
i

n w n i t i w n t
t w

  


      then 

   
1

11

0 0

1
( ) log (2 ) 1 ,

1

i

R i
PTL i

e n x x dx
       




 



  
  

   
 

 hence, 

1

0

1 ( 1) 1
( ) log (2 ) , 1 .

1
R i

PTL i

i
e n B    

   
 






    
   

   


  

6.    Reliability: The Stress Strength Model of the PTL Distribution 

Basically, the stress strength model of a random variable  X  (Meeker and Escobar 1998) can be 

given by 

1 1 2 2( ; ) ( ; ) ,
x

R f x F x dx  
 

substituting (7) and (8) into the last equation,    is a common parameter, gives 
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   1 2

1
1

1
, 0 0

2 1 ,
i j

i j
i j

R w m x x dx
    


   



  
 

hence, 

 1 1 2
, 0

2 , 2 .i j
i j

R w m B i j  




     

 

7.  Order Statistics of the PTL Distribution 

The  density  function  :( )u vf x   of  the  thu   order  statistics  for  1, 2, ,u v    from  i,i.d.  random 

variables  1 2, , ,   vX X X  following the PTL distribution (Arnold et al. 1992) is given by 
 

 1
:

( )
( ) ( ) 1 ( ) ,

( , 1)

v uuu
u v u u

f x
f x F x F x

B u v u

 
   

using binomial expansion in the last equation gives 

   
1

:

( )
( ) ( 1) ( ) ,

( , 1)

v u
u kku

u v u
k o

v uf x
f x F x

kB u v u


 



 
   

   
                               (13) 

substituting (7) and (8) into (13) yields 

 
     

1

0 1 1

:
0

2 1

( ) 1 ,
( , 1)

v u
k

u ki
k o i i u k j

u v u u j u
j

v u
w

k
f x x x m x

B u v u

    


 

 


      



 
 

     
   

 
  

since  

   
1

0 0

,

u k
j j

j u j u
j j

m x p x 

 
 

 

 
 

 
   (Gradshteyn and Ryzhik 2000) 

where   1
0 0

10

1
, ( 1) ; 1,

n
u k

n j n j
j

p m p j u k n j m p n
n m

 




        then  

 
    1 1

:
, 0

2
( ) 1 ,

( , 1)

v u
i u k j

u v k i j u u
k o i j

f x s w p x x
B u v u

     
     

 

 
 

          (7) 

where  ( 1) .
 

  
 

k
k

v u
s

k
 

 

7.1. The thr  moment of order statistics 

  The  thr  moment of order statistics of the PTL distribution can be got by 

 : ( ) ,r r
u v u u u

x

E X x f x dx   substituting (14) into the last equation yields 

      
1

1 1

:
, 0 0

2
1 ,

( , 1)

v u
i u k j rr

u v k i j u u u
k o i j

E X s w p x x dx
B u v u

   


 
      

 

 
 

  
 

then, 

 
 

  
:

, 0

12
, 2 .

, 1

v u
r
u v k i j

k o i j

i u k j r
E X s w p B

B u v u

  



 

 

      
  

    
 
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8.   Estimation of the PTL Distribution
 
Parameters

 
Let  1 2, , , nX X X  be  the  i.i.d.  random  variables  from  the  PTL( );x  distribution,  where

( , ),    then the likelihood function for the vector of parameter  ( , )    (Garthwaite et al. 

1995) can be given by 

11

1 1 1

(2 ) 1 2 ,
n n n

n
i i i

i i i

L x x x
  


  

            

the log likelihood function is given by 

   
1 1 1

log(2 ) ( 1) log log 1 ( 1) log 2 .
n n n

i i i
i i i

n x x x   
  

           

The score functions for the parameters   and    are given by 

   
1 1

log log 2 ,
n n

i i
i i

n
x x

   


   


 


                                   (8)  

and   

 
   

1 1 1

log log
log .

1 2

n n n
i i i i

i
i i ii i

x x x xn
x

x x

 

 


    


   

  
  


  (9) 

The  maximum  likelihood  estimators  (MLEs)  of  the  distribution  parameters  are  obtained  by 

solving  the  nonlinear  likelihood  (15)  and  (16),  numerically.  Estimating  the  parameters  needs  an 

iterative technique such as a Newton-Raphson algorithm. 

Let     be  the  vector  of  the  distribution  parameter  ( ), ,    then  any  element  of  the  2×2 

information matrix  ( , ) I  can be obtained by 

2

ˆ
ˆ ( )

( ) ,


 
  

  

 
 

 


ij

i j

I E  

where 
1 ˆ( )

ijI  is  the  variance  covariance  matrix  of  the  unknown  parameters,  the  asymptotic 

distributions of the PTL parameters is 
1

2
ˆ ˆ( ) (0, ( )), 1,2,i i in N I i      

the approximation 100(1 )%  confidence intervals of the unknown parameters using the asymptotic 

distribution of the   , PTL distribution are derived, respectively, as 

1
/ 2

ˆ ˆ( ), 1, 2,
   i iZ I i  

where  / 2Z  is the upper  th( / 2)  percentile of a standard normal distribution.  

The  derivatives  in  the  observed  information  matrix  ( , ) I   for  the  unknown parameters  are 

obtained as follows 
2

2 2
,

 

 




 n
  

2

2 2
,

n

 

 





 

and 

   
2 22

2
1 1

log log
1 1 .

1 1 2 2

  

       

    
       

        
 

 n n
i i i ii i

i ii i i i

x x x xx xn

x x x x
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9.    A Simulation Study 

Obtaining MLEs of parameters of the PTL distribution using random numbers is the goal of this 

section  to  study  the  finite  sample  behavior  of  the  MLEs.  The  algorithm  of  obtaining  parameters 

estimates is discussed in the following steps: 

Step (1) Generating a random sample  1 2, , ., nX X X  of sizes   10,20,30,50,100,300n   by using 

the PTL distribution. 

Step (2) Two different sets values of the parameters are selected as: Set(1):  ( 1.5, 0.5),    

Set(2):  ( 2, 0.5)    

Step (3) Solving (15) and (16) by iteration to get MLEs, biases, the root of mean squared error 

(RMSE) and the Pearson type of parameters estimators, Pearson (1895), of the PTL distribution.  

Step (4) Repeating steps, from 1 to 3, 10,000 times. 

Random  numbers  samples  are  generated  using  Mathcad  package  V14.0  where  the  conjugate 

gradient iteration method is performed. All results are indicated in tables and included in Appendix II. 

From results of the study, in Appendix II, it is clear that, as sample size increases, estimators, 

biases  and  RMSEs  decrease,  as  expected.  Moreover,  the  sampling  distribution  of  ̂   can  be  the 

Pearson type IV distribution in all times, the sampling distribution of  ̂ differs according to sample 

size. An impact of identification problem appears here where ̂  and  ˆ,  in the identified distribution 

(Set  (1)),  can  be  consistent,  specially,  when  sample  size  increases,  but  in  the  non-identified 

distribution (Set (2)) they cannot be consistent.  

 

10. Applications 

In this application, two real data sets are given to investigate the flexibility of the identified PTL 

distribution, practically, via Mathematica package version 10. In this examples, different distributions 

are used as: the PTL distribution, the TL distribution, the Kumaraswamy distribution, Kumaraswamy 

(1980), the beta distribution, and the Weibull distribution, the following data sets are given from the 

UK National Physical Laboratory, more details are available at: http://www.npl.co.uk/. 

Example 1. The following data represents the lifetime (Hours) of classical lamps for 50 devices:  

0.913,  0.786,  0.860,  0.904,  0.971,  0.616,  0.961,  0.789,  0.817,  0.722,  0.956,  0.835,  0.853,  0.692, 

0.850,  0.677,  0.898,  0.965,  0.820,  0.964,  0.865,  0.947,  0.798,  0.746,  0.926,  0.709,  0.615,  0.747, 

0.931,  0.913,  0.895,  0.745,  0.839,  0.766,  0.690,  0.531,  0.838,  0.846,  0.876,  0.817,  0.719,  0.907, 

0.915, 0.879, 0.890, 0.865, 0.869, 0.772, 0.933, 0.875  

The results of some goodness of fit measures are in Table 3, the results of likelihood ratio tests 

are  in Table 4, Figure 3  illustrates probability density  functions  for different distributions having 

similar skewness and kurtosis, Figure 4 illustrates probability density functions for nested distribution. 
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Figure 3 Probability density functions for different distributions having  

similar skewness and kurtosis 

 

Table 3 The MLE of the parameters and the associated AIC, BIC and CAIC values 

Distributions 

MLE  

parameters 
S

kew
ness 

K
urtosis 

KS  p-value 

L
og 

L
ikelihoo

d 

AIC  BIC  CAIC 

    

PTL  2.286  4.328 −0.625  3.703  0.110  0.537  48.078  −94.141  −92.229  −94.058 

  (1.054)  (0.008)                

Non-dentified  4.286  0.233 −0.909  2.823  0.470    0.005  26.985  −64.054  −60.230  −63.799 

PTL  (3.845)  (0.618)                

Beta  11.087  3.231 −0.823  3.203  0.287  0.011  39.488  −74.975  −71.151  −74.720 

  (2.269)  (0.423)                

Kumaraswamy  8.666   4.288 −0.643  3.750  0.238    0.015   40.524  −77.049  −73.225  −76.793 

  (1.111)  (0.022)                

Weibull  10.695  0.832 −0.765  3.943  0.246   0.013  39.993  −75.985  −72.161  −75.729 

  (1.238)  (0.032)                

 

In  Table  3,  the  MLEs  of  distributions  parameters,  parameters  standard  error  (SEs),  in 

parentheses,  Kolmogorov-Smirnov  (KS)  test  statistic,  Akaike  information  criterion  (AIC),  the 

consistent Akaike information criterion (CAIC) and Bayesian information criterion (BIC), Merovcia 

and Puka (2014), are calculated for every distribution having similar skewness and kurtosis values. 

The null hypothesis that the data follow the PTL distribution, can be accepted at significance level 

0.05.   It  is clear that  the PTL distribution has the smallest KS, AIC, CAIC, BIC, SEs and the 

largest log likelihood and p-value, so that, the PTL distribution can be the best fitted distribution to 

the data compared with other distributions having similar skewness and kurtosis. Cleary,  the non-

identified PTL distribution has the largest KS, AIC, CAIC, BIC, SEs and the smallest log likelihood 

and p-value, all of that explain several effects of the identification problem. 
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 Table 4 The log-likelihood function, the likelihood ratio tests statistic and p-value 

Distribution 

Parameters 
  

(log-likelihood)

Λ 

(Likelihood 

ratio test 

statistics) 

DF 

(Degrees of 

freedom) 

p-value 

     

TL  24.581   ـ 40.147  15.862  1  6.813×10-5 

 (2.61)           

*Note that the log likelihood of the PTL distribution = 48.078 

 

In Table 4, based on the likelihood ratio test, the null hypothesis is the data follow the nested 

model and the alternative is the data follow the full model, where the TL distribution is nested by the 

PTL distribution, it is clear that, null hypothesis can be rejected at significance level  0.05.   

 

 

Figure 4 Probability density functions for nested distribution by PTL distribution 

 

Example 2. The following data represents the lifetime (Hours) of classical lamps for 20 devices: 

0.618,  0.711,  0.600,  0.553,  0.188,  0.313,  0.176,  0.300,  0.834,  0.004,  0.053,  0.614,  0.263,  0.751,   

0.216, 0.416, 0.242, 0.232, 0.241, 0.039. 

The results of some goodness of fit measures are in Table 5, the results of likelihood ratio tests 

are  in Table 6, Figure 5  illustrates probability density  functions  for different distributions having 

similar skewness and kurtosis, Figure 6 illustrates probability density functions for nested distribution. 

 

 
Figure 5 Probability density functions for different distributions having  

similar skewness and kurtosis 
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Table 5 The MLE of the parameters and the associated AIC, BIC and CAIC values 

Distributions 

MLE  

parameters 

S
kew

n
ess 

K
urtosis 

KS  p-value 

L
og 

L
ikelihoo

d 

AIC  BIC  CAIC 

    

PTL  0.8  2.000  0.754  12.514  0.238  0.104  −1.222  6.444  8.435  7.150 

  (0.298)  (0.625)                 

Non-dentified  3.476  2.956  1.375  4.140  0.485  0.000  −5.102  11.029  12.025  11.252 

PTL  (1.249)  (0.863)                 

Beta  1.003  1.787  −0.214  1.801  0.344  0.012  −2.434  8.868  10.859  9.573 

  (0.284)  (0.558)                 

Kumaraswamy  1.012  1.804  −0.202  1.802  0.342  0.013  −2.288  8.576  10.567  9.282 

  (0.261)  (0.601)                 

Weibull  1.341  0.397  3.183  9.692  0.371  0.010  −2.994  9.988  11.980  10.694 

  (0.251)  (0.068)                 

 

In Table 5, the MLEs of distributions parameters, SEs (in parentheses), KS test statistic, AIC, 

CAIC and BIC are calculated for every distribution having similar skewness and kurtosis values. The 

null hypothesis that the data follow the PTL distribution, can be accepted at significance level 0.05  . 

It is clear that the PTL distribution has the smallest KS, AIC, CAIC, BIC, SEs and the largest log 

likelihood and p-value,  so  that,  the PTL distribution can be  the best  fitted distribution  to  the data 

compared  with  other  distributions  having  similar  skewness  and  kurtosis.  The  non-identified  PTL 

distribution has the largest KS, AIC, CAIC, BIC, SEs and the smallest log likelihood and p-value, all 

of that explain several effects of the identification problem. 

 

Table 6 The log-likelihood function, the likelihood ratio tests statistic and p-value 

Distribution 

Parameters 
  

(log-likelihood) 

Λ 

(Likelihood 

ratio test 

statistics) 

DF 

(Degrees of 

freedom) 

p-value 

     

TL  0.4  -  −4.514  6.584  1  0.01 

 (0.15)           

*Note that the log likelihood of the PTL distribution = −1.222 

 

In Table 6, based on the likelihood ratio test, the null hypothesis is the data follow the nested 

model and the alternative is the data follow the full model, where the TL distribution is nested by the 

PTL distribution, it is clear that, null hypothesis can be rejected at significance level  0.05.   
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Figure 6 Probability density functions for nested distribution by PTL distribution 

 

11.  Conclusions 

In  empirical  models,  the  impact  of  the  identification  problem  leads  models  estimators  to  be 

inconsistent  causing  wrong  interpretations  making  wrong  decisions.  The  power  Topp-Leone 

distribution is a useful lifetime distribution having flexible properties and wide applications but must 

be constrained to avoid the identification problem. The author encourages researchers, in future, to 

study  more  distributions  suffering  from  identification  problem  and  investigate  its  estimator’s 

behavior in censored and complete samples. 
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Appendices 

Appendix (I) 

The Mean Deviation about Mean and about Median 

The mean deviation about mean and about median can be given by, respectively, 

1( ) ( )  
y

x x f x dx  and   2 ( ) ( ) ,  
x

S x x M f x dx x M  

easily, it can be given by 

1( ) 2 ( ) 2 ( )S x F t     and  2 ( ) 2 ( ), S x t M  

where  ( ) ( )


 
q

T q x f x dx  is the linear incomplete moment. 

Proof: 

First: mean deviation about mean: 

Since  

1( ) ( ) ,x x f x dx 




   

then 

     1( ) ( ) ( ) ,x x f x dx x f x dx




  




      

hence 

1( ) ( ) ( ) ( ) ( ) ,x xf x dx f x dx f x dx xf x dx
 

 

  
 

 

        

so 

1( ) ( ) ( ) ( ) ( ) ,x xf x dx F F xf x dx




      




       

adding and subtracting to ( )xf x dx



  gives 

1( ) ( ) 2 ( ) ( ) ( ) ( ) ,x xf x dx F xf x dx xf x dx xf x dx
  



   


  

          

then 

1( ) ( ) 2 ( ) 2 ( ) ,x xf x dx F x xf x dx


  


 

      

hence 

1( ) 2 ( ) 2 ( ); ( ) ( ) .x F T T xf x dx


    


     

Similarly, the mean deviation about median can be given. 
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Appendix (II) 

Set(1):  ( 1.5, 0.5)    

Sample 

Size 
Parameters 

Mean of 

Estimators 
Biases 

Total 

Bias 
RMSE 

Total 

RMSE 

Pearson 

System 

Coefficients 

Pearson 

Type 

10  1.5    32.396   30.896  30.924  68.819  68.848  −0.326  I 

0.5   1.823  1.323  2.017  0.316  IV 

20  1.5    20.805   19.305  19.313  52.748  52.770  1.639  VI 

0.5   1.067  0.567  1.530  0.354  IV 

30  1.5    13.497   11.997  12.001  46.993  47.005 

 

0.318  IV 

0.5   0.828  0.328  1.086  0.456  IV 

50  1.5   4.112  2.612  2.614  27.150  27.151 

 

0.432  IV 

0.5   0.618  0.118  0.249  0.638  IV 

100  1.5   2.907  1.407  1.407  5.117  5.117  0.360  IV 

0.5   0.535  0.035  0.039  0.764  IV 

300  1.5   1.527  0.027  0.027  0.832  0.832  1.019  VI 

0.5   0.501  0.001  0.009  0.738  IV 

 

Set(2):  ( 2, 0.5)    

Sample 

Size 
Parameters 

Mean of 

Estimators 
Biases 

Total 

Bias 
RMSE 

Total 

RMSE 

Pearson 

System 

Coefficients 

Pearson 

Type 

10  2    331.187  329.187  329.341  625.334  329.189  −0.383  I 

0.5     10.582   10.082     5.427  0.305  IV 

20  2    125.529  123.529  123.761  338.073  338.091  1.572  VI 

0.5       8.077     7.577    3.442  0.338  VI 

30  2    72.242  70.242  70.608  244.636  244.643  0.377  IV 

0.5      7.682    7.182    1.783  0.575  IV 

50  2    24.053  22.053  22.422  108.187  108.188  0.335  IV 

0.5      4.553    4.053    0.535  0.207  IV 

100  2    16.119  14.119  14.435  36.652  36.653  0.848  IV 

0.5      3.507    3.007    0.282  0.325  IV 

300  2      5.332    3.332   3.892    9.308    9.309  0.379  IV 

0.5      2.512    2.012    0.153  0.238  IV 

 


