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Abstract 

Now-a-days, road traffic accident increases day by day and becomes burning problem in India. With 

the use of statistical methods and models it is possible to predict the future occurrence of road accident 

or deaths with the available data. The present study talk about the development of a exponential 

smoothing state space innovation model for the annual deaths due to road accident in India 

considering the period from 1967 to 2015 and to forecast the number of annual deaths expected to 

occur in forthcoming days. The researchers’ collected data from National Crime Record Bureau, 

Ministry of Home Affairs, India. After examining all the probable models, it is observed that 

exponential smoothing state space model (A, A, N) is suitable for the given data set. Further, study 

also shows that forecasted number of deaths for the upcoming 10 years from the proposed model also 

reveals an upward trend.  

______________________________ 
Keywords: Akaike information criteria, Kolmogorov-Smirnov test, mean absolute percentage error, mean 

absolute scaled error. 

 

1. Introduction 

Technology has significant impact on transportation system. Ancient time’s people are moving 

from one place to another on foot or by sea which is time consuming. But, due to enormous 

development of technology, people can easily move from one place to another by bus, train or 

airplane. Transportation through road is easily accessible to the common people. Further, Afere et al. 

(2015) also suggested that the development of all forms of trade and industry and community 

activities is incorporated with road transport. Due to the expansion of economic and financial 

condition of the people number of motor vehicles also increases which leads to overcrowding on 

road. Moreover, Sivakumar and Krishnaraj (2015) also state that overcrowding on road leads to traffic 

accident.  Finally, accident creates in injury, deaths, damage to property of the victims. Sometimes, 

injuries causes from the accident make many people physical or mental disability. Finally, the lost 

due to accident adversely affect the family and the nation.  
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Road Traffic Accident (RTA) which is identified as the third most important causes of overall 

mortality and the main cause of death among the age group 15-44 years and it represents 12% of 

global burden of disease.  The study carried out by Sivakumar and Krishnaraj (2015) shows that about 

25% of all deaths gathered from road accident injury. National Crime Records Bureau, Ministry of 

home affairs, India (2018) announced the number of vehicles increased by 28.6% (from 141,866 in 

2011 to 182,445 in 2013) and the no. of road accidents have also increased by 5.6% for that period. 

In view of the significance of the condition, it is necessary to acquire proper actions for reducing the 

deaths and injuries from road accident. Further, forecasting of number of road accidents or number 

of deaths or injuries may be extremely significant information for the government to take different 

protection events.  

Usually, time series observations are occurs in identical interval and the prime objective is to 

prepare and fit a suitable mathematical model for the observed data. After fitting the appropriate 

model, the next intension is to predict the future outcomes of the events.  Moreover, Dutta et al. 

(2020) discussed the importance forecasting technique which is usually applied to controlling past 

and present operations which may assist with any long-term planning or decision making. 

Exponential smoothing technique is generally used for forecasting purposes. The term “exponential 

smoothing” replicates the information that the weights are decreases exponentially as the 

observations become older.  However, a limitation of exponential smoothing is that prediction 

intervals cannot be obtained from this technique and only point forecasts are available. On the other 

hand, Hyndman et al. (2008) in his study discussed the ETS model which provides maximum 

likelihood estimation, procedures for model selection and prediction intervals. Here, the triplet 

(E,T,S) represents to three components: error, trend and seasonality respectively. This technique is 

first developed by Pegels (1969). This was later extended by Gardner (1985) who used damped trend 

to the classification of the models. This extension is again modified by Hyndman et al. (2002) and 

extended again by Taylor (2003) for multiplicative damped trend. Details of ETS models are clearly 

discussed in Section 2. 

There are extensive literatures available for using exponential smoothing and innovations state 

space models in different fields. Hyndman et al. (2002) developed automatic forecasting of 

exponential smoothing technique which allows calculating (i) likelihood function (ii) model selection 

criteria based on Akaike information criteria (AIC), corrected Akaike information criteria (AICC) and 

Bayesian information criteria (BIC). (iii) Computation of prediction intervals (iv) random simulation 

from the underlying state space model. Further, Taylor (2003) used damped multiplicative 

exponential smoothing trend to make an experiential study using time series data from M3-

competetion. This technique is the extension of the original multiplicative trend which was developed 

by Pegels (1969). Moreover, Hyndman et al. (2008) discussed the admissible parameter space for 

exponential smoothing. In this study, the researchers come to the conclusion that usual boundaries 

on smoothing parameters (i.e. lie between 0 and 1) do not always lead to stable models. Similarly, 

Paul (2011) discussed the procedure for selection of optimal value of exponential smoothing constant. 

In this study, the researcher used trial and error method to determine the optimal value of smoothing 

constant so that Mean Square Error (MSE) and Mean Absolute Deviation (MAD) would be 

minimized. Moreover, Makatjane and Moroke (2016) made a comparative study of Holt-Winters 

triple exponential smoothing method and SARIMA model to predict the monthly car sales in South 

Africa. The researcher used Power test to make the comparison between SARIMA and Holt-Winters 

Model. The study shows that Holt-Winters model have 0.3% more predictive power as compared to 

SARIMA model.  
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From the above discussion, the researchers come to know that exponential smoothing state space 

model widely used in modeling and forecasting time series observations. With this background, the 

researchers proposed exponential smoothing state space model to determine the trend and identify 

the suitable model for the annual deaths due to road accident in India. Finally, the fitted model is used 

to forecast the number of annual deaths expected to occur in future. The paper is dived into four 

sections. Section 2 talks about sources of the data and complete methodology assumed in the study. 

In Section 3, results of the study are discussed. Finally, conclusion of the study is given in Section 4.   

 

2. Data and Methodology  

The data of the present study are completely secondary and collected from National Crime 

Record Bureau, Ministry of Home Affairs, India. Researchers collected information about yearly 

deaths due to road accident in India covering the period from 1967 to 2015. In this study, the 

methodology propounded by Hyndman et al. (2008) called the exponential smoothing state space 

(ETS) method is used. The ETS (error, trend, seasonal) model provides an automatic technique of 

choosing the best model for forecasting and also provides the prediction intervals.  There are two 

models for each method: one with additive error and one with multiplicative errors, i.e. in total 30 

models are given in the following table. 

 

Table 1 Classification of ETS model 

Trend Component 
Seasonal Component 

N(None) A(Additive) M(Multiplicative) 

N(None) ANN/MNN ANA/MNA ANM/MNM 

A(Additive) AAN/MAN AAA/MAA AAM/MAM 

Ad(Additive damped) AAdN/MAdN AAdA/MAdA AAdM/MAdM 

M(Multiplicative) AMN/MMN AMA/MMA AMM/MMM 

Md(Multiplicative damped) AMdN/MMdN AMdA/MMdA AMdM/MMdM 

 

Table 1 shows the classification of ETS models. The first letter in each model represents type of 

error (additive or multiplicative), the second letter represents type of trend (none, additive, additive 

damped, multiplicative or multiplicative damped) and the third letter denotes the type of seasonality 

(none, additive or multiplicative). Some of the combination of ETS model can lead to numerical 

difficulties. These models are: ETS(A,N,M), ETS(A,A,M), ETS(A,Ad,M), ETS(A,M,N), 

ETS(A,M,A), ETS(M,M,A), ETS(A,M,M), ETS(A,Md,N), ETS(A,Md,A), ETS(M,Md,A), 

ETS(A,Md,M). Models with multiplicative errors are useful for strictly positive data- but are not 

numerically stable with data containing zeros or negative values. In that case only the six fully 

additive models will be applied please see details of Hyndman et al. (2008). 

The state space models for all 30 exponential smoothing methods suggested by Hyndman et al. 

(2008) are given below. 

The general model framework involves a state vector tx  and state space equations of the form  

 1 1( ) ( ) ,t t ttY h kx x                   (1) 

 1 1( ) ( ) ,t t t tf gx xX                   (2) 

where { }t is a Gaussian white noise process with mean zero and variance 2. Here,

 1 ( 1), , , ,..., ,t t t t t t mx l b s s s   1( )t t te k x    and 1( ).tt h x   Then .ttty e 
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The model with additive errors is written as ttty     where  1 1tt F    denotes the one-

step forecast made at time 1.t   So, in this case 1( ) 1.tk x    The model with multiplicative errors is 

written as  1 .ttty     Thus, 1( )t t
k x    for this model and 

( )t tt
t

t t

ye 


 


   and hence t is 

a relative error for the multiplicative model. The underlying equations are given in Table 2. 

The only difference between the additive error and multiplicative error models is in the 

observation (1). The state (2) can be put in exactly the same form by substituting 
1( )

t
t

t

e

k x




  into 

each state equation. 

 

Table2 State space equations for each additive error model in the classification (multiplicative error 

models are obtained by replacing t  by t t   in the equations) 

  

Trend 
Seasonal 

N A M 

 

N 
1tt l   

1t t tl l    
1t t t ml s     

1t t tl l    

t t m ts s     

 

 

1t t t ml s     
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t
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t
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
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 

 

 

1
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   

A 1 1t tt l b     

1 1t t t tl l b      

1t t tb b  
 

1 1t t t mt l b s       

1 1t t t tl l b      

1t t tb b    

t t m ts s   
 

 1 1t t t mt l b s    

1 1
t

t t t

t m

l l b
s


 


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1
t

t t

t m
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 

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Table 2 (Continued) 

 

The different steps for forecasting of ETS models are discussed below: 

Step 1. First applies the method to all the models that are appropriate for the data and optimize 

the parameters of the model using any optimization criterion. Details of parameter estimation 

procedure are discussed below: 

It is easy to compute the likelihood of the innovation state space models and so parameters are 

obtained using the maximum likelihood approach.  

Suppose, the Likelihood is      
2

*
20 1

11 1

, log 2 log .
n n

i
t

tt t

e
L X n k x

k x
 

 

 
  

 
  Then L  is 

equal to twice the negative logarithm of the conditional likelihood function (with constant terms 

eliminated). Further, the parameters  , , ,     and the initial states of the model i.e.

 0 0 0 1 10 , , , ,..., mx l b s s s    can be estimated by minimizing .L  On the other hand, parameters of the 

model can be estimated by minimizing the one step Mean Square Error (MSE), minimizing the one 

step Mean Absolute Percentage Error (MAPE), minimizing the residual variance 2.   

Step 2. In this step, identify the best of the models using −AIC, corrected AIC, Bayesian 

information criterion (BIC). It is necessary to select that model which has minimum value of AIC, 

BIC or AICC 

Trend 
Seasonal 

N A M 

Ad 1 1t tt l b     

1 1t t t tl l b      

1t t tb b    

1 1t t t mt l b s       

1 1t t t tl l b      

1t t tb b    
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Step 3. Next, the appropriate model is used for forecasting. Forecast performances of the model 

are examined by Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and 

Mean Absolute Scaled Error (MASE). 

RMSE =  
2

1

1
,

n

t t
t

Y F
n 

  where n is the number of time periods, tY  is the actual number of 

observations at time period t and tF  is the forecasted number of observations at time period t. 

MAPE = 
1

1
100

n
t

t t

e

n Y

  where n  is the number of time periods, tY  is the actual number of 

observation at time period t and te is the forecast error in time period .t  

MASE = mean ( ),tq  where 

1
2

,
1

t

t n

t t
t

e
q

y y
n 






    

te

 

is the forecast error in time period ,t  and

tY  is the observations at time period .t  

Step 4. This is the final step where the prediction intervals of the fitted model are obtained. Exact 

formula for prediction intervals is available for some models. In general, simulate future sample paths 

conditional on the last estimate of the states and to obtain prediction intervals from the percentiles of 

these simulated future paths.  

 

3. Findings 

Figure 1 shows the time plot of total number of deaths due to road accident in India from 1967-

2015. Figure1 reveals a significant upward trend. The researchers also investigated some descriptive 

statistics like mean and variance of the data set. It is observed that an average death due to road 

accident for the period is 58,621 with standard deviation 44,568.  After that, the entire data set is 

separated into two sections i.e. testing part (1967-2005) and validation part (2006-2015). First, the 

researchers develop the ETS model for testing part and compare the forecasted values from the model 

with validation part. In the second step, if the model adequately fitted to the testing data and satisfies 

all the assumptions, then model is refit for the whole data set i.e. 1967-2015.Finally, the potential 

model is applied to forecast the number of deaths due to road accidents for the upcoming 10 years. 

 
Figure 1 Plotting of original data 
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The researchers first apply all the models that are appropriate for the data and optimize the 

parameters of the model using likelihood criterion. In this stage, the researcher found that out of thirty 

models only six models are appropriate for the data. This is due to the fact that data set contains only 

trend component, therefore the researchers ignored all the seasonal component models. Secondly, 

ETS(A,M,N) and ETS(A,Md,N) model lead to numerical difficulties and they are not appropriate for 

the data. The suitable models for the data are namely ETS(A,A,N), ETS(M,A,N), ETS(A,Ad,N), 

ETS(M,Ad,N), ETS(M,Md,N), ETS(M,M,N). Next for choosing the best model, the researchers 

calculated information criteria value for each of the model which are mentioned in Table 3. 

 

Table 3 Information criterion value for the ETS model 

 

 

Table 3 shows the information criteria value against each of the ETS model. Comparing all the 

models it is observed that ETS(M,A,N) model has the minimum of AIC, AICC, BIC values. From 

this result, the researchers may conclude that ETS(M,A,N) model is suitable for the data set. Next, to 

check the forecasting precision of the models point forecast are estimated along with RMSE, MAPE 

and MASE value for each of the model. Forecast accuracy of the models are presented in the 

following table. 

 

Table 4 Accuracy measures of ETS model 

Models RMSE MAPE MASE 

ETS(A,A,N) 3,243.89 6.70 0.75 

ETS(M,A,N) 3,498.10 6.99 0.83 

ETS(A,Ad,N) 3,296.59 6.72 0.76 

ETS(M,Ad,N) 3,564.58 7.07 0.85 

ETS(M,Md,N) 3,291.39 6.55 0.78 

ETS(M,M,N) 3,709.01 7.68 0.94 

 

Now, comparing the accuracy measures of the models it is observed that RMSE and MASE is 

minimum for the ETS(A,A,N) model whereas MAPE is lowest for ETS(M,Md,N) followed by 

ETS(A,A,N).  The MASE was proposed by Hyndman and Koehler (2006) is used to determine the 

suitable model for the given data.  From the above result, it is observed that ETS(A,A,N) Model is 

accurate for forecasting as compared to the other models. 

From Table 2, the equations of the model are:  

Observation equation: 1 1,t tt l b     

State equations: 1 1 ,t t t tl l b     1 ,t t tb b    

where tl  denotes the series level at time ,t tb  denotes the slope at time ,t t denotes the error 

component,   and   are smoothing parameters. 

Models AIC AICC BIC 

ETS(A,A,N) 783.47 785.29 791.79 

ETS(M,A,N) 777.04 778.86 785.36 

ETS(A,Ad,N) 786.73 789.35 796.71 

ETS(M,Ad,N) 780.85 783.47 790.83 

ETS(M,Md,N) 777.90 780.52 787.88 

ETS(M,M,N) 783.65 785.46 791.96 
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The parameters of the accurate model are estimated and optimized the value of the parameters 

based on likelihood function. The values of the smoothing parameters are:  = 0.99,  = 0.08 with 

initial states l = 4,128.17 and b = 1,371.34.  

The following fig shows the plot of the residuals from the fitted model, Autocorrelation Function 

(ACF) of the residuals and histogram of the residuals. 

 

 
Figure 2 Residuals, ACF of the residuals and histogram of the residuals of ETS(A,A,N) Model 

 

From Figure 2, it is observed that autocorrelation coefficient of the residuals is inside the 

confidence limits and histogram of the residuals plot indicates that the residuals are not normally 

distributed. Further, white noise of the residuals are test from a univariate test (from the normwhn.test 

package in R). The p-value of the test is found to be0.1856 which indicates that the residuals follow 

white noise. Moreover, the normality of the residuals are checked using Kolmogorov- Smirnov test. 

The test reveals that residuals are not normally distributed. Therefore, the researchers applied 

bootstrap simulation to determine the prediction intervals. This result reflects that ETS(A,N,N) model 

is adequate for the data. 

Now, the precision of the fitted model is checked plotting the actual observations with the 

predicted values along with 95% prediction interval. 

 

 
Figure 3 Plot of actual observations versus forecasted observations along with  

95% confidence interval 

 

From Figure 3, it is observed that the total number of predicted deaths due to road accidents in 
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India from 2006-2015 is nearly equal and same pattern with the actual observation. From the figure, 

it is also observed that actual observations are also within the prediction limit (95%). As a result, it 

may be accomplished that proposed model would be good fitted to the given data. 

After examining the accuracy of the model, the reserchers again fit the model for the whole data 

set. The value of the smoothing parameters are  = 0.99,  = 0.11 with initial states l = 4,128.35 

and b = 1,327.15. 

Now, the forecasted number of deaths due to road accident in India from the final model is shown 

in the following table. 

 

Table 5 Forecasted number of deaths from ETS(A,A,N) model for upcoming 10 years 

Year Point forecast 
95% Confidence Interval 

lower upper 

2016 152,963.4 146,760.9 163,558.5 

2017 157,220.2 148,846.8 170,945.5 

2018 161,476.9 150,478.5 177,788.1 

2019 165,733.7 152,431.1 183,905.2 

2020 169,990.5 154,332.1 190,894.2 

2021 174,247.2 156,125.3 198,095.4 

2022 178,504.0 158,167.5 204,901.5 

2023 182,760.7 159,912.8 211,237.0 

2024 187,017.5 161,947.3 218,208.0 

2025 191,274.3 164,165.3 225,267.2 

 

Table 5 shows the number of deaths due to road accidents for the period 2016-2017 along with 

95% confidence interval. Form the table it is observed that number of deaths due to road accidents 

will be increase for the upcoming days.   

 
Figure 4 Plot of the forecasted values from the ETS(A,A,N) model 

 

The above figure shows the forecasted number of deaths due to road accident cases possibly to 

take place in India for the upcoming 10 years. The mean absolute percentage error of the fitted model 
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is found to be 5.84 and MASE of the fitted model is 0.69. 

 

4. Conclusions 

In this paper, ETS methodology is used examine the trend of number of yearly deaths due to road 

accident in India. The estimation and diagnostic study of the proposed model shows that the model 

is effectively fitted to the given data. The residual analysis of the fitted model, established that there 

is no contravention of the postulates in relation to model adequacy apart from normality of residuals 

is not satisfied. Finally, the results of the present study reveals that forecasted number of deaths due 

to road accidents in India for the upcoming 10 years also shows an upward trend. 

From this study it may be concluded that although ETS models are not widely applied in 

forecasting purposes, but the empirical results assert the importance of their application. 
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