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Abstract

Now-a-days, road traffic accident increases day by day and becomes burning problem in India. With
the use of statistical methods and models it is possible to predict the future occurrence of road accident
or deaths with the available data. The present study talk about the development of a exponential
smoothing state space innovation model for the annual deaths due to road accident in India
considering the period from 1967 to 2015 and to forecast the number of annual deaths expected to
occur in forthcoming days. The researchers’ collected data from National Crime Record Bureau,
Ministry of Home Affairs, India. After examining all the probable models, it is observed that
exponential smoothing state space model (A, A, N) is suitable for the given data set. Further, study
also shows that forecasted number of deaths for the upcoming 10 years from the proposed model also
reveals an upward trend.

Keywords: Akaike information criteria, Kolmogorov-Smirnov test, mean absolute percentage error, mean
absolute scaled error.

1. Introduction

Technology has significant impact on transportation system. Ancient time’s people are moving
from one place to another on foot or by sea which is time consuming. But, due to enormous
development of technology, people can easily move from one place to another by bus, train or
airplane. Transportation through road is easily accessible to the common people. Further, Afere et al.
(2015) also suggested that the development of all forms of trade and industry and community
activities is incorporated with road transport. Due to the expansion of economic and financial
condition of the people number of motor vehicles also increases which leads to overcrowding on
road. Moreover, Sivakumar and Krishnaraj (2015) also state that overcrowding on road leads to traffic
accident. Finally, accident creates in injury, deaths, damage to property of the victims. Sometimes,
injuries causes from the accident make many people physical or mental disability. Finally, the lost
due to accident adversely affect the family and the nation.
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Road Traffic Accident (RTA) which is identified as the third most important causes of overall
mortality and the main cause of death among the age group 15-44 years and it represents 12% of
global burden of disease. The study carried out by Sivakumar and Krishnaraj (2015) shows that about
25% of all deaths gathered from road accident injury. National Crime Records Bureau, Ministry of
home affairs, India (2018) announced the number of vehicles increased by 28.6% (from 141,866 in
2011 to 182,445 in 2013) and the no. of road accidents have also increased by 5.6% for that period.
In view of the significance of the condition, it is necessary to acquire proper actions for reducing the
deaths and injuries from road accident. Further, forecasting of number of road accidents or number
of deaths or injuries may be extremely significant information for the government to take different
protection events.

Usually, time series observations are occurs in identical interval and the prime objective is to
prepare and fit a suitable mathematical model for the observed data. After fitting the appropriate
model, the next intension is to predict the future outcomes of the events. Moreover, Dutta et al.
(2020) discussed the importance forecasting technique which is usually applied to controlling past
and present operations which may assist with any long-term planning or decision making.
Exponential smoothing technique is generally used for forecasting purposes. The term “exponential
smoothing” replicates the information that the weights are decreases exponentially as the
observations become older. However, a limitation of exponential smoothing is that prediction
intervals cannot be obtained from this technique and only point forecasts are available. On the other
hand, Hyndman et al. (2008) in his study discussed the ETS model which provides maximum
likelihood estimation, procedures for model selection and prediction intervals. Here, the triplet
(E,T,S) represents to three components: error, trend and seasonality respectively. This technique is
first developed by Pegels (1969). This was later extended by Gardner (1985) who used damped trend
to the classification of the models. This extension is again modified by Hyndman et al. (2002) and
extended again by Taylor (2003) for multiplicative damped trend. Details of ETS models are clearly
discussed in Section 2.

There are extensive literatures available for using exponential smoothing and innovations state
space models in different fields. Hyndman et al. (2002) developed automatic forecasting of
exponential smoothing technique which allows calculating (i) likelihood function (ii) model selection
criteria based on Akaike information criteria (AIC), corrected Akaike information criteria (AICc) and
Bayesian information criteria (BIC). (iii) Computation of prediction intervals (iv) random simulation
from the underlying state space model. Further, Taylor (2003) used damped multiplicative
exponential smoothing trend to make an experiential study using time series data from M3-
competetion. This technique is the extension of the original multiplicative trend which was developed
by Pegels (1969). Moreover, Hyndman et al. (2008) discussed the admissible parameter space for
exponential smoothing. In this study, the researchers come to the conclusion that usual boundaries
on smoothing parameters (i.e. lie between 0 and 1) do not always lead to stable models. Similarly,
Paul (2011) discussed the procedure for selection of optimal value of exponential smoothing constant.
In this study, the researcher used trial and error method to determine the optimal value of smoothing
constant so that Mean Square Error (MSE) and Mean Absolute Deviation (MAD) would be
minimized. Moreover, Makatjane and Moroke (2016) made a comparative study of Holt-Winters
triple exponential smoothing method and SARIMA model to predict the monthly car sales in South
Africa. The researcher used Power test to make the comparison between SARIMA and Holt-Winters
Model. The study shows that Holt-Winters model have 0.3% more predictive power as compared to
SARIMA model.
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From the above discussion, the researchers come to know that exponential smoothing state space
model widely used in modeling and forecasting time series observations. With this background, the
researchers proposed exponential smoothing state space model to determine the trend and identify
the suitable model for the annual deaths due to road accident in India. Finally, the fitted model is used
to forecast the number of annual deaths expected to occur in future. The paper is dived into four
sections. Section 2 talks about sources of the data and complete methodology assumed in the study.
In Section 3, results of the study are discussed. Finally, conclusion of the study is given in Section 4.

2. Data and Methodology

The data of the present study are completely secondary and collected from National Crime
Record Bureau, Ministry of Home Affairs, India. Researchers collected information about yearly
deaths due to road accident in India covering the period from 1967 to 2015. In this study, the
methodology propounded by Hyndman et al. (2008) called the exponential smoothing state space
(ETS) method is used. The ETS (error, trend, seasonal) model provides an automatic technique of
choosing the best model for forecasting and also provides the prediction intervals. There are two
models for each method: one with additive error and one with multiplicative errors, i.e. in total 30
models are given in the following table.

Table 1 Classification of ETS model
Seasonal Component

Trend Component

N(None) A(Additive) M(Multiplicative)

N(None) ANN/MNN ANA/MNA ANM/MNM
A(Additive) AAN/MAN AAA/MAA AAM/MAM
Ad(Additive damped) AAN/MAN AAA/MAGA AAM/MAM
M(Multiplicative) AMN/MMN AMA/MMA AMM/MMM
My(Multiplicative damped) AMN/MMGN AMGA/MMGA AMM/MMeM

Table 1 shows the classification of ETS models. The first letter in each model represents type of
error (additive or multiplicative), the second letter represents type of trend (none, additive, additive
damped, multiplicative or multiplicative damped) and the third letter denotes the type of seasonality
(none, additive or multiplicative). Some of the combination of ETS model can lead to numerical
difficulties. These models are: ETS(A,N,M), ETS(A,A,M), ETS(A,A4,M), ETS(A,M,N),
ETS(A,M,A), ETS(M,M,A), ETS(A,M,M), ETS(A,MyN), ETS(A,MgA), ETS(M,MgA),
ETS(A,My4,M). Models with multiplicative errors are useful for strictly positive data- but are not
numerically stable with data containing zeros or negative values. In that case only the six fully
additive models will be applied please see details of Hyndman et al. (2008).

The state space models for all 30 exponential smoothing methods suggested by Hyndman et al.
(2008) are given below.

The general model framework involves a state vector x, and state space equations of the form

Yt :h(Xt—l)"'k(Xt—l)é'ts (1)
Xo=f(x)+g(xi)en 2

where {¢,} is a Gaussian white noise process with mean zero and variance o’. Here,

Xt = (lzsbszza Si-150s SI—(mfl))5 et = k(xtfl)gt and ,ut = h(x&l)' Then yt = ,ut +et'
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The model with additive errors is written as y, = u,+¢, where u,= F (., denotes the one-
step forecast made at time #—1. So, in this case k(x,_,) =1. The model with multiplicative errors is

written as y, = 4, (1+¢,). Thus, k(x, ) = g, for this model and ¢, _e _Wimn) and hence ¢, is
H, H,
a relative error for the multiplicative model. The underlying equations are given in Table 2.
The only difference between the additive error and multiplicative error models is in the

observation (1). The state (2) can be put in exactly the same form by substituting &, = — % into

xtfl

each state equation.

Table2 State space equations for each additive error model in the classification (multiplicative error
models are obtained by replacing &, by x,&, in the equations)

Seasonal
Trend
N A M
M= H = Ir—l TS H = lf*I TS
N Li=latag, Li=l.at+ag, ag,
L=+

S[:St—m+7gt St-m

Ve

1= Stem T

t-1

dg

Li=1+ :

St-m

VE

St =Si-mt :

-1
A ﬂ[:lt—l+bt—l ﬂ/:ll—l+bt—]+sl—m y1:(11-1+b1“)s“”’
Li=1a+bt+ag, Li=latbhatag, L=1.+b +0lg,

= L -1

bt=b1—1+ﬂ€t bt=b1—1+ﬂ€t St-m

St =St-mTVE: ﬂé‘

bi=bat+ :

St-m

Y&

Sf :Sf*n7+—
lii+bia
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Table 2 (Continued)

Seasonal
Trend
N A M
Aq u =1+ b “o=1a+Pbtsin =Lt bia)sin
Li=la+dbtas, li=1.+¢b_+asg, ae,
I, :lt—l+¢bt—l+_
bt:¢b171+ﬂgt bt:¢b”l+ﬁg’ St-m
Si=Si-mTVE ﬂg
t l t bt _¢bt—l+_t
St-m
o =5 VEr
t t—m
(lia+0b.)
M M, = lia1b o M, = lt—lbt—l""St—m M, = Licibio1S-m
Li=libatas, Li=liabiatag, ag
ﬂ ﬁ Iy :lt—lbt—1+_t
g s -m
bt:bt—l+i b; :bt—1+_t !
L lia _ ,Bé‘t
_ bi=bit+t—7——
St=St-mT V& S:= SemTVE (St—mll—l)
§i =5, —LE
(Li-1bim1)
Mg Ho=loab! M= liabi ¥ s Mo =1abls
11211—1b1—1¢ 4:80!5, [, = ltlb?l"’ﬂaé‘z lt:ltilbﬁl-}_aé‘[
& & St-m
b, = bt—l¢ == b: :bf—l'*'_[
o - b, = bfﬂﬁ'L
Si=Simt Ve (s0-mli1)
V&

The different steps for forecasting of ETS models are discussed below:

Step 1. First applies the method to all the models that are appropriate for the data and optimize
the parameters of the model using any optimization criterion. Details of parameter estimation
procedure are discussed below:

It is easy to compute the likelihood of the innovation state space models and so parameters are
obtained using the maximum likelihood approach.

n 2 n
Suppose, the Likelihood is L*(H,Xo)znlog(zei (x )j+221og|k(x,l)|. Then L is
t=1 t-1 t=1

equal to twice the negative logarithm of the conditional likelihood function (with constant terms
eliminated). Further, the parameters Q= (a,ﬂ,7,¢) and the initial states of the model i.e.

X, = ([ 05D 0> S05 S 155 5,,,”1) can be estimated by minimizing L". On the other hand, parameters of the

model can be estimated by minimizing the one step Mean Square Error (MSE), minimizing the one
step Mean Absolute Percentage Error (MAPE), minimizing the residual variance o”.
Step 2. In this step, identify the best of the models using —AIC, corrected AIC, Bayesian

information criterion (BIC). It is necessary to select that model which has minimum value of AIC,
BIC or AICc
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Step 3. Next, the appropriate model is used for forecasting. Forecast performances of the model
are examined by Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and
Mean Absolute Scaled Error (MASE).

1 n
RMSE = f—Z(Yt -F )2 , where n is the number of time periods, ¥, is the actual number of
noo

observations at time period ¢ and F, is the forecasted number of observations at time period z.

1
MAPE = -3 |
ne=ly,

observation at time period t and e, is the forecast error in time period 7.

x100 where n is the number of time periods, Y, is the actual number of

MASE = mean (|ql|), where ¢, = S — e, is the forecast error in time period ¢, and

Y, is the observations at time period .

Step 4. This is the final step where the prediction intervals of the fitted model are obtained. Exact
formula for prediction intervals is available for some models. In general, simulate future sample paths
conditional on the last estimate of the states and to obtain prediction intervals from the percentiles of
these simulated future paths.

3. Findings

Figure 1 shows the time plot of total number of deaths due to road accident in India from 1967-
2015. Figurel reveals a significant upward trend. The researchers also investigated some descriptive
statistics like mean and variance of the data set. It is observed that an average death due to road
accident for the period is 58,621 with standard deviation 44,568. After that, the entire data set is
separated into two sections i.e. testing part (1967-2005) and validation part (2006-2015). First, the
researchers develop the ETS model for testing part and compare the forecasted values from the model
with validation part. In the second step, if the model adequately fitted to the testing data and satisfies
all the assumptions, then model is refit for the whole data set i.e. 1967-2015.Finally, the potential
model is applied to forecast the number of deaths due to road accidents for the upcoming 10 years.

original data

no.ofdeaths
100000 140000
| |

60000
\

20000
\

T T T T T
1970 1980 1990 2000 2010

year

Figure 1 Plotting of original data
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The researchers first apply all the models that are appropriate for the data and optimize the
parameters of the model using likelihood criterion. In this stage, the researcher found that out of thirty
models only six models are appropriate for the data. This is due to the fact that data set contains only
trend component, therefore the researchers ignored all the seasonal component models. Secondly,
ETS(A,M,N) and ETS(A,M4,N) model lead to numerical difficulties and they are not appropriate for
the data. The suitable models for the data are namely ETS(A,A,N), ETS(M,A,N), ETS(A,Ad,N),
ETS(M,Ad,N), ETS(M,Md,N), ETS(M,M,N). Next for choosing the best model, the researchers
calculated information criteria value for each of the model which are mentioned in Table 3.

Table 3 Information criterion value for the ETS model

Models AIC AlCc BIC
ETS(A,AN) 783.47 785.29 791.79
ETS(M,A,N) 777.04 778.86 785.36
ETS(A,Aq4,N) 786.73 789.35 796.71
ETS(M,A4,N) 780.85 783.47 790.83
ETS(M,Mg4,N) 777.90 780.52 787.88
ETS(M,M,N) 783.65 785.46 791.96

Table 3 shows the information criteria value against each of the ETS model. Comparing all the
models it is observed that ETS(M,A,N) model has the minimum of AIC, AIC¢, BIC values. From
this result, the researchers may conclude that ETS(M,A,N) model is suitable for the data set. Next, to
check the forecasting precision of the models point forecast are estimated along with RMSE, MAPE
and MASE value for each of the model. Forecast accuracy of the models are presented in the
following table.

Table 4 Accuracy measures of ETS model

Models RMSE MAPE MASE
ETS(A,AN) 3,243.89 6.70 0.75
ETS(M,A,N) 3,498.10 6.99 0.83
ETS(A,A4N) 3,296.59 6.72 0.76
ETS(M,A4,N) 3,564.58 7.07 0.85
ETS(M,Mg,N) 3,291.39 6.55 0.78
ETS(M,M,N) 3,709.01 7.68 0.94

Now, comparing the accuracy measures of the models it is observed that RMSE and MASE is
minimum for the ETS(A,A,N) model whereas MAPE is lowest for ETS(M,Mg4,N) followed by
ETS(A,A,N). The MASE was proposed by Hyndman and Koehler (2006) is used to determine the
suitable model for the given data. From the above result, it is observed that ETS(A,A,N) Model is
accurate for forecasting as compared to the other models.

From Table 2, the equations of the model are:

Observation equation: g, =/, +b,.,

State equations: Li=latbotasg, bi=b+ Pes
where /, denotes the series level at time ¢, b, denotes the slope at time ¢, & denotes the error

component, ¢ and S are smoothing parameters.
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The parameters of the accurate model are estimated and optimized the value of the parameters
based on likelihood function. The values of the smoothing parameters are: o = 0.99, # = 0.08 with

initial states / = 4,128.17 and b =1,371.34.

The following fig shows the plot of the residuals from the fitted model, Autocorrelation Function
(ACF) of the residuals and histogram of the residuals.

Residuals
15000 =

10000 -

5000 =

1 2 3 4 5 6 7 8 9 10 11 12 13 -10000 10000

0
Lag Residuals

Figure 2 Residuals, ACF of the residuals and histogram of the residuals of ETS(A,A,N) Model

From Figure 2, it is observed that autocorrelation coefficient of the residuals is inside the
confidence limits and histogram of the residuals plot indicates that the residuals are not normally
distributed. Further, white noise of the residuals are test from a univariate test (from the normwhn.test
package in R). The p-value of the test is found to be0.1856 which indicates that the residuals follow
white noise. Moreover, the normality of the residuals are checked using Kolmogorov- Smirnov test.
The test reveals that residuals are not normally distributed. Therefore, the researchers applied
bootstrap simulation to determine the prediction intervals. This result reflects that ETS(A,N,N) model
is adequate for the data.

Now, the precision of the fitted model is checked plotting the actual observations with the
predicted values along with 95% prediction interval.

200000
—$-actual observation
2 150000 -+
g
= 100000 - forecasted
‘E observation
c 50000
lower
0 +— —— — )
[ d O — N M o=
= i ™ = =
SEEEESEEE858 ——wee
year

Figure 3 Plot of actual observations versus forecasted observations along with
95% confidence interval

From Figure 3, it is observed that the total number of predicted deaths due to road accidents in
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India from 2006-2015 is nearly equal and same pattern with the actual observation. From the figure,
it is also observed that actual observations are also within the prediction limit (95%). As a result, it
may be accomplished that proposed model would be good fitted to the given data.

After examining the accuracy of the model, the reserchers again fit the model for the whole data
set. The value of the smoothing parameters are a = 0.99, B = 0.11 with initial states / = 4,128.35
and b =1,327.15.

Now, the forecasted number of deaths due to road accident in India from the final model is shown
in the following table.

Table 5 Forecasted number of deaths from ETS(A,A,N) model for upcoming 10 years
95% Confidence Interval

Year Point forecast
lower upper

2016 152,963 .4 146,760.9 163,558.5
2017 157,220.2 148,846.8 170,945.5
2018 161,476.9 150,478.5 177,788.1
2019 165,733.7 152,431.1 183,905.2
2020 169,990.5 154,332.1 190,894.2
2021 174,247.2 156,125.3 198,095 .4
2022 178,504.0 158,167.5 204,901.5
2023 182,760.7 159,912.8 211,237.0
2024 187,017.5 161,947.3 218,208.0
2025 191,274.3 164,165.3 225,267.2

Table 5 shows the number of deaths due to road accidents for the period 2016-2017 along with
95% confidence interval. Form the table it is observed that number of deaths due to road accidents
will be increase for the upcoming days.

Forecasts from ETS(A,A,N)

200000

V 4

no.of deaths

50000 100000

0
\

T T T T T T T
0 10 20 30 40 50 60

year

Figure 4 Plot of the forecasted values from the ETS(A,A,N) model

The above figure shows the forecasted number of deaths due to road accident cases possibly to
take place in India for the upcoming 10 years. The mean absolute percentage error of the fitted model
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is found to be 5.84 and MASE of the fitted model is 0.69.

4. Conclusions

In this paper, ETS methodology is used examine the trend of number of yearly deaths due to road
accident in India. The estimation and diagnostic study of the proposed model shows that the model
is effectively fitted to the given data. The residual analysis of the fitted model, established that there
is no contravention of the postulates in relation to model adequacy apart from normality of residuals
is not satisfied. Finally, the results of the present study reveals that forecasted number of deaths due
to road accidents in India for the upcoming 10 years also shows an upward trend.

From this study it may be concluded that although ETS models are not widely applied in
forecasting purposes, but the empirical results assert the importance of their application.
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