Thailand Statistician
January 2022; 20(1): 36-52
http://statassoc.or.th
Contributed paper

Marshall-Olkin Sujatha Distribution and Its Applications

Agu Friday Ikechukwu*[a] and Joseph Thomas Eghwerido [b]

[a] Department of Statistics, University of Calabar, Calabar, Nigeria.

[b] Department of Mathematics, Federal University of Petroleum of Resources, Effurum, Delta
State, Nigeria.

*Corresponding author; e-mail: epsilomanalyst@gmail.com

Received: 4 May 2020
Revised: 16 August 2020
Accepted: 9 September 2020

Abstract

In this paper, we introduced a two-parameter heavy-tailed, monotone non-increasing hazard rate
distribution, and its regression model called the Marshall-Olkin Sujatha (MOS) distribution for life
processes. This study extends the Sujatha distribution using the Marshall-Olkin method and offers a
more flexible model for survival data. Some of its useful statistical properties such as the survival
rate function, hazard rate function, reversed hazard rate function, cumulative hazard rate function,
probability generating function, moment generating function, characteristic function, stochastic
ordering, Shannon, and Rényi entropies, heavy-tail property, and order statistics are derived. The
study adopted the method of maximum likelihood estimation to estimate the parameters of the
proposed model. Simulation studies are carried out to examine the flexibility behavior of the proposed
model. The numerical applications and usefulness of the proposed lifetime model are investigated
using two real-life data sets. The results obtained show that the proposed model yields the best
goodness of fit to all the data sets.

Keywords: Marshall-Olkin family of distributions, MOS regression model, order statistics, quantile function,
entropies.

1. Introduction

Survival and reliability analysis are very important areas in statistics. The survival or failure
behavior of a system can be considered as a stochastic process or a random variable due to the changes
from one system to another as a result of the nature of the system. Recently, to investigate the survival
or failure rate of a system, numerous one parameter classical survival models have been proposed in
the literature. This includes the Lindley (1958) one parameter Lindley distribution. Shanker (2015a,
2016¢c, 2016d) proposed one parameter Akash distribution, Aradhana distribution, and a thin-tailed
non-decreasing one parameter Sujatha distribution. Shanker and Shukla (2017) proposed one
parameter Ishita distribution. Shukla (2018) proposed one parameter Pranav distribution. Odom and
Ijomah (2019) proposed one parameter Odoma distribution among others. Unfortunately, these
distributions may not provide a good fit to some real-life situations with high kurtosis, non-increasing
rate, and heavy tail. Thus, extending such distributions yield better flexibility to real-life situations.
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In statistical literature, the extension of the classical or baseline one parameter survival models
has been introduced using a various approach such as Marshall and Olkin (1997) introduced an
approach based on the cumulative and probability densities function of a random variable. Gupta and
Kundu (1999) introduced the exponentiation approach. Patil and Rao (1978) introduced sized-biased
approach, and Mahdavi and Kundu (2017) proposed a method for generating new distributions called
the alpha power transformation among others. Adopting many of these approaches to introduce more
flexible distributions, researchers such as Pogany et al. (2015) proposed Marshall-Olkin exponential
Weibull distribution, George and Thobias (2017) proposed Marshall-Olkin Kumaraswamy
distribution, Tkechukwu et al. (2020) proposed A three parameter shifted exponential distribution,
Eghwerido et al. (2020) proposed the Gompertz alpha power inverted exponential distribution,
Eghwerido et al. (2021) proposed the alpha power Gompertz distribution, Agu, and Onwukwe (2019)
proposed modified Laplace distribution, AbuJarad et al. (2020) investigated Bayesian reliability
analysis of the Marshall and Olkin models, Agu and Runyi (2018) studied the goodness of fit test
for normal distribution, Khaleel et al. (2020) proposed Marshall-Olkin exponential Gompertz
distribution among others. All these researchers derived some useful statistical properties of their
models and investigated the flexibility using real-life data sets. Their results have shown that their
proposed models outperformed the baseline distributions.

Though, despite the easy in parameter estimation of the one-parameter distributions, the
distributions may lack flexibility on its property to model real life situations that may not follow any
classical distribution. Hence, the demand for more flexible distributions is increasing and to respond
to this demand, it is very important to derive a flexible statistical model that can offer more flexibility
for the failure or survival behavior of a system. Thus, the motivation behind this study is to propose
a heavy-tailed, monotone non-increasing hazard rate, high kurtosis distribution that can offer more
flexibility for failure or survival behavior of a system.

Therefore, this paper adopted the Marshall-Olkin approach to propose a two-parameter heavy-
tailed, monotone non-decreasing distribution called the Marshall-Olkin Sujatha (MOS) distribution
as an extension of the Sujatha distribution and introduced its regression model.

The rest of this paper is structured as follows: Section 2 presents the Marshall-Olkin family of
distributions, Section 2.1 presents the Sujatha distribution, Section 2.2 presents the proposed
Marshall-Olkin Sujatha distribution, section 2.3 presents the linear representation of the proposed
model, Section 3 presents the statistical properties of the proposed model, section 4 presents the
maximum likelihood estimation of the proposed model, Section 4.1 presents the Quantile function of
the proposed model, Section 4.2 presents the simulation studies, Section 5 presents the regression
model of the proposed distribution, section 6 presents the numerical applications of the proposed
model, and finally, Section 7 presents the conclusions.

2. The Marshall-Olkin Family of Distributions

Marshall and Olkin (1997) proposed a method for improving the flexibility of a family of
distributions. According to Marshall and Olkin, for a given cumulative density function (cdf) and
probability density function (pdf) of a baseline survival model defined the cdf of the Marshall-Olkin
family of distributions as

F(x)
1-(1=B)F(x)’
where —w<x<o, f#>0. F(x) and f(x) are the cdf and pdf of the baseline distribution. The

Ox, p) = M

corresponding pdf is defined as
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gvpy=— LI @)
[1-(-HFW)]

where —oo<x <o, f>0.

2.1. The Sujatha distribution
Shanker (2016d) defined the cdf of the one parameter Sujatha distribution as

9x(¢9x+¢9+2)} —ox
Fx,0)=1-|1+——= ¢ ", 3
(0 { 0> +60+2 )
where x >0, & > 0. The corresponding pdf is given as
0’ 2\ -6x
X,0)=————1+x+x" e . 4
J5:6) 6’2+9+2( ) )

2.2. The Marshall-Olkin Sujatha distribution

This section presents the proposed two parameters class of Sujatha distribution. Let X be a
random variable of the Marshall-Olkin Sujatha (MOS) distribution. Substituting (3) into (1), we
obtained the cdf of the proposed MOS model given as

(92+9+2)—[(92+9+2)+9x(9x+9+2)Je—9x

O(x; ,0) =— . —, 5)
© +€+2)—(1—ﬂ)[(¢9 +¢9+2)+0x(9x+¢9+2)]e x
where —oo < x <00, f#> 0,60 > 0. The corresponding pdf of the proposed MOS model is given as
& e (6% +0+2)(1+x +x*
4(x:5.0) = fe ( M) ©)

2 2 o P
[(9 +0+2)=(1- B)[ (0 +0+2)+0x(0x+0+2) |e” }
where —w<x<ow, f>0,0>0. The asymptotic behavior of the MOS distribution can be

investigated using (5) for x >0, O(x;4,0)=0 and x — o0,0(x;5,0)=1. Hence, the MOS

distribution has a valid pdf. Figures 1 and 2 presents the cdf and pdf plots of the MOS distribution
for different parameters values.

o | —
— PB=0.3,0=26
—— PB=46,0=45
© —— PB=3.5,0=5.0
—— PB=05,0=25
$=6.0, 0=5.2
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o |
o
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Figure 1 The cdf plots of the MOS distribution for different parameters values
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Figure 2 The pdf plots of the MOS distribution for different parameters values

2.3. The linear representation
The linear representation of the MOS distribution is examined in this section to facilitate and to
make tractable the properties of the MOS distribution. Let the binomial expansion of

= k-1
=0k [" +k ]xka('”k). Then,
k=0

[(92+9+2)—(1—ﬂ)((92+9+2)+9x(9x+9+2) } ZZZpkU g0k

k=0 i=0 j=0

k

density can be expressed as

where p,. = k l. kel ~1) (6+2)” l—ﬂkﬁ”j 6?2+49+27(H2). Then, the pdf of the MOS
kij
i)\Jj

i

Q(x;ﬁ,é’):izk: p ( +9+2) i+7 g 0k) (x2+x+1), (7)

k=0 i=0 j=

Equation (7) is the linear representation of (6).

3. Some Statistical Properties

This section derived some statistical properties of the MOS distribution such as the survival rate
function, hazard rate function, reversed hazard rate function, cumulative hazard rate function,
generating function, moment generating function, characteristic function, stochastic ordering,
Shannon and Rényi entropies, heavy-tail property, and order statistics.

3.1. The survival rate function

This section presents the survival rate function of the proposed MOS distribution. Let X be a
random variable with MOS cdf and pdf defined in (5) and (6) respectively, and then the survival rate
function of the MOS distribution is given as

fe [(92 +0+2)+Ox(0x+ 0+ 2)]

S(x; B,0) = > -~ > .
@ +0+2)—-(1-Pe x[(& +¢9+2)+0x(6’x+6’+2)}
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3.2. The hazard rate function

The corresponding hazard rate function of a random variable X with cdf and pdf of the MOS
distribution is given as
Fe " 1+x+x7)

(0> +¢9+2)—(1—ﬂ)e*f”[(¢92+0+2)+9x(¢9x+9+2)]'

H(x; 5,0) =

Figures 3 and 4 present the survival and hazard rate functions of the proposed MOS distribution
for different parameter values. The hazard plots indicated that the MOS model has a monotone non-
increasing function.

3.3. The reversed hazard rate function
The reversed rate hazard function of a random variable X with the cdf and pdf of the MOS
distribution is given as

0’ fe " (0* +0+2)1+x+x7)
w2+0+2y—a“{w2+9+2) H«{aﬂ+a+2y—a—ﬁp4xrg”+9+m }}

Rv, (x;3,0) =
{ +0x(Ox+6+2) +0x(Ox+6+2)

3.4. The cumulative hazard rate function
The cumulative hazard rate function of a random variable X with the cdf and pdf of the MOS
is given as

e [(92 +0+2)+0x(Ox + 0+ 2)]

he(x;3,60)=-1 )
A (55,0 =-n (92+9+2)—(1—ﬂ)e*5”‘[(92+9+2)+9x(9x+9+2)]

o |
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Figure 3 The survival rate plot of the MOS distribution for different parameters values
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Figure 4 The hazard rate function plot of the MOS distribution for different parameters values

3.5. Generating functions
The probability generating function (pgf) of the MOS density is defined as

) i P .
M(t)zzzk:ZPkﬁ93ﬁ(92+9+2)%L X (b x+1)e M . (®)
k=0 i=0 j=0 :
On simplifying (8), we have the pgf as
(9 k+1)) P+l+]+2)l"(p+i+j+3)
M(;):i / Zl:pkyﬂ}ﬂ(92+9 2) +(a k+1
k=0 i=0 j=0
+(9 (k+1) ) (pai+) D(p+i+j+1)

) p+1+]+1

L(p+i+j+2)|

3.6. Moment generating functions (mgf)
The MOS mgf for a random variable X is defined as

My (@)= Zzzplﬂj€3 (92+9+2).[ i+ (x2+x+1)e—:9x(k+l)+tx dx.

k=0 i=0 j=0

On simplifying, we have
(0(k+1)=e) (4 j43)
My ()= ZZ l pkl/93 ( +9+2) +(9(k+1)—t)_(i+j+l)F(i+j+2) .
+(9(k+1)—t)_(i+j)F(i+j+1)
The »"™ moment of the MOS distribution is defined as
(0(k+1)+r)_(i+j+2) L(i+r+j+3)

iZk:Zp,ﬂ/éﬁ ( +9+2) +(6(k+1)+r)_(i+j+l)F(i+r+j+2).

k=0 =0 j i)
+(6(k+l)+r) C(i+r+j+1)
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3.7. The characteristic function
Let X be a random variable with the cdf and pdf of the MOS distribution. The characteristic
function of X is defined as

o0

by (1) = E(e™) Z E(Xr

=0
where E(X") is the »™ of the MOS distribution. Thus, the characteristic function of the MOS

distribution is defined as
(H(k +1)+ )70%2) L(i+r+j+3)
i+j+1)

. 3 0( p2
P 0 ﬂ(@ —:9-’—2) +<6’ k+1 +7”)
r!
(6

+

mmiii

k=0 r=0 i=0 j=0

C(i+r+j+2)|.

O(k+1)+ ) j)l“(i+r+j+1)

3.8. Stochastic orderings
The comparative study of the behavior of continuous random variables can be investigated using
stochastic ordering. Consider X and Y to be random variables. X is said to be smaller than ¥ in
Shanthikumar (1994) if the following conditions hold.
X<, V=>X<, V=X<,Y

U
X<, Y

—st

Stochastic order (X <, 7Y) if Oy (x)ZQy( ) for all x, hazard rate order (X <, Y) if

q, (x) 2q,(y ( ) for all x, mean residual life order (X <, Y) if m, (x) <m, (y) for all x, likelihood

-m

. L q.(x) .
ratio order (X <; Y) if —— decreases in x.

g, (x)

Theorem 1. Let X and Y ~Agu-F-D with 6,0, and B, B, respectively. If 6, > 6, and p > j,,
then X<, Y. Hence, X<, Y, X< Y and X<,Y.

Proof: The MOS distribution will be ordered based on the strongest likelihood ordering as established
in Shanthikumar (1994).

0’ Be (07 +6,+2)(1+x+x7)
2
g(00,8) [0 +6+D-(1-B)[O+6,+2)+0x(0x+6,+2) [ " |

q(x, 6,, ﬂz) 0, Be " (6, +0, +2)(1+x+x7)
[(922 +6,+2)-(1-£,)[ (6, +0, +2)+ 0,x(0,x + 6, +2) | e*‘)z*]z
d. 4.(x0.8) _ 2(1-8)[ & +2x(07 +6)]

dv - q,(x.0,, ) (@2 +6,+2-(1-B)[ (67 +6,+2) +x(Ox+, +2)]e*91*}2
) 2(1-3,)[ 05 +2x(6; +6,) ]
(@46, +2)-1-B)[(6 +0,+ 2+ 0,05+ 6, + D) ] * |

+6,-0,.
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x’ 9 2
Therefore, for 6, <6, and £, 3, >1, d In qx( 1 ﬂl)

<0=>X<,Y, for §>6, and
dx q}v(xagzaﬂz)

.0,
B By <1, il ( b
dx qy(xﬁz,ﬂz

X<, Y, X<, Yand X<,7.

—st

)) >0, and if 6, =0, and /i, f5, =1, i1HM

=0. Thus,
dx gq, (x,@z, ﬂz)

3.9. Entropies
Let X be a continuous random variable with the pdf defined in (7). The entropy of X deals

with the measure of uncertainty or spread of X. Rényi (1961) defined the entropy of X as
R, = 1ng{lim jo”[q(x;ﬂ,e)]“ dx},a >0,a#0. )
—a c—>w
Substituting (7) into (9), we have that

= —log{ZZZpk,, & (92 +60+ 2) ] {lggoj: [x”j (xz +x+1)e_€x(k+l)+tx ]a dx}.

k=0 i=0 j=0

Thus, the Rényi entropy of the MOS distribution can be expressed as
(ea (k+1)+ r)fa(HHz) C(i+r+j+3)

o ki a o
log [ZZ Pk,,¢93( +¢9+2)} +(¢9a(k+1)+r)7a(lﬂ+])F(i+r+j+2)

+(¢9a(k+1)+r)7a([+j)l"(i+r+j+1)

3.10. The Shannon entropy
Shannon (1948) defined the Shannon entropy of a continuous random variable X with a pdf

q(x; 3,0) as
SH, = ~E {log[q(x; 8.0)]}. (10)
Thus, the Shannon entropy of the MOS distribution based on Equation (10) can be expressed as
(H(k +1)+ r)f(H'Hz) C(i+r+j+3)

SH, ==Elog iizpkﬁﬂ( +9+2) +(9(k+1)+r)_(i+j+l)F(i+r+j+2)

k=0 i=0 j (i)
+(9(k+1)+r) UT(i+r+j+1)

3.11. The heavy-tailed property
Supposing X is a continuous random variable with a probability density function gq(x;/f,8)

defined in (6). By definition, g(x; £, 8) is said to be heavy-tailed if and only if
limsup[q(x; 8,0)]e" =o0;  Vi>0. (11)

Substituting (6) into (11), we obtain
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3 —0x 2 2
limsup[q(x; #,0)] " = limsup O fe (0 +0+2)(1+x+x) e,

 T@re .
Le +0+2)-( 'B)Lex(gﬁ‘g”)} }

Thus,

3 2 2
limsup[q(x; 8,0)]e" =limsup OpO +6+2)(1+x+x) e =

{(92+9+2)—(l—ﬂ){(92+9+2) H

00,

+0x(Ox+60+2)

Therefore, the pdf defined in (6) is a heavy-tailed density function.

3.12.Order statistics
Let x,,x,,...,x, be arandom sample of size n of the MOS distribution with pdf ¢(x; £,6) and

cdf O(x; B,6). Then, the order statistics of X; <X, <...< X, for X random variable is defined as

0, ()= e (le@] e (12

The pdf of the minimum order statistic of the MOS distribution is obtained by setting j =1 in
(12) such that

O (x) =na(x)[1-0()]".
Thus, the minimum order statistic of the MOS distribution can be expressed as
B, (14.0) - OB E L0 D)
(0 +6+2) }HX
- +Ox(Ox + 6 +2) ]
_ I (13)
Be ™ [(92 +0+2)+0x(Ox+0+ z)]
(0°+6+2) }

(6’2+0+2)—(l—ﬂ){

+Ox(Ox+6+2)

(6 +60+2)-(1-pB)e™ {

The pdf of the maximum order statistic of the MOS distribution is obtained by setting j=n in
(12) such that

o, (x)=ng(x)[o(x)]". (14)

Hence, using (14), the maximum order statistic of the MOS distribution can be expressed as

10 fe (6 +0+2)(1+x+x°) (" +6+2)=[ (" +6+2)+0x(Ox+0+2) | ™

O, (x; B, 9) =

PN LG 2= N I RS {(92+9+2> }
{(9 +0+2)~(1 ﬂ)Lex(exwm} } G +0+D=U=P) orro+2)|
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4. Maximum Likelihood Estimation

In the literature, numerous approaches have been used for parameter estimation. In this paper,
we used the maximum likelihood estimation method to obtain the parameters of the MOS
distribution.

Let X|,X,,...,X, bearandomsample of size n from a distribution function with pdf g(x; 3,6).

Then, the log-likelihood function can be defined as
InL(x,,%,,...,x,; 8,0) = Y Inq(x,,x,.....x,; B,0).

Jj=1
Hence, the log-likelihood function of the MOS distribution can be derived as

InL(x;,%,,....x,; 5,0) = zmq(xl,xz,...,xn;ﬂ,@)
Jj=1

" 0 Be " (0> +0+2)(1+x; +x,%)
= Zln J J
Jj=1

(6% +6+2) } QXT
e J

>

2 j— u—
[(9 Horn=d ﬂ)Lexj(exﬁmz)

where j=1,2,3,..n.
Let D, =(0° +0+2)—(1- B)[ (0" +0+2)+0x,(0x, +0+2) | and Z =67 +0+2 such that

I L(x X000 X3 8,0) = D InZO B(1+x; +x])e™ D}
j=1
This implies that

InL(x,,%,,....x,; 8,0) =3nIn@+nln B+nlnZ+ D (1+x, +x2)+0 x,-2> InD, =0. (15)
j=1 j=1 j=1
However, taking the partial derivative of (15) with respect to each of the parameters and equating

to zero, we have

dlnL(xl,xz,...,xn;,B,ﬁ):i_zil)_}:o 16)
dp B 4D,

. n n D'
dlnL(xl,xz,...,xn,ﬂ,H):3n+zxj+ n(20 +1) _22 6

on =0, 17
do 0 (0* +6+2) a

j=i j=1 "Je

where D!, =(6° +0+2)+0x,;(0x; +6+2) and
Dy =(20+1)-(1- ﬂ)[(29+1)+2x 5(0x; +¢9+1)], respectively.

Equations (16) and (17) cannot be expressed in closed form therefore solving it directly will be
very cumbersome. However, these equations can be solved iteratively using Fisher's scoring method.
We therefore have

dp’ = Dj,

Let P; =(0° +60+2)+0x;(0x; + 0 +2) such that

2
n 2
A In L(x,, %3105, 5.0) _ L”Z[w +0+2)+0x;(0x,+0+2)| |
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2 . n_ p2
d 1r1L(xl,xz,...,xn,ﬂ,é’)= no, P;

dp’ =P

From (17), let K; =v;u’; —u ;v such that

K, =2(60" +0+2)-(20+1) +220+1)(1- B)[ (20+1)+ 2x,(0x, + 0 +1) ]

—2(1= B[+ +x,)O0 +0+2)+(6” +0+2)+0x,(0x, + 0+2) |+

(1-p) [2(1+x§ +X,)(07 +0+2+0x,(0x, +0+2)~[ 20 +1+2x,(0x, +9+1)ﬂ.

Then,
2 n
InL ey X5 3-260(60+1
d”In (xlsxziz axn’ﬂae):_3_’;+n[ - ( 2)]—22K1D;2
do 0 (0" +6+2) =
Recall that
2 dzP/ '
P, =(0°+0+2)+0x.(0x; +0+2) such that — =P
J J J dﬂd@
Similarly,
Dj:(92+9+2)—(1—ﬂ)[(92+9+2)+9xj(9xj+0+2)].
2 .
Then, - = D). Thus, we have

dBdo

2 . n
Lt 0 3511,y

J=1

The maximum likelihood estimates (B, é) of (5,0) of the MOS distribution are the solution of

the following equations

d*InL(x;, %y, X3 5,0)  d*InL(x;,%y,.... %,; 5,6) dInL(x,,Xys0s X, 3 B, 6)
dp? dpdo Bl dp

2 L(xy, X%, f,6)  d2INL(xp, Xy x,: ,60) || 6] | dINL(x,%,00%,38,0) |
dpdo de* de

where ﬁ and @ are the initial estimate values of B and O, respectively. The R package maxLik

function was used to obtain the estimated values of the ﬁ’ and 6, respectively.

4.1. Quantile function

This section presents the quantile function of the propose MOS distribution. The quantile
function of the MOS distribution can be derived as follows:

Recall

(92+9+2)—[(92+9+2)+9x(9x+9+2)]e*“’*
(0> +0+2)=(1- B[ (0" +0+2)+Ox(Ox+0+2) |e "

O(x; 5,0) =

Let &* +6+2=m and 1— S = n, such that
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m— [m +0*x* + 0 x + 26’x} e
O(x; B,0) =

m— n[m +6*°x* + 0 x+ ZHx] e’

and
6*x* +6°x +20x = 0°x* + x(6° +26).
m— [m +6°x* +x(0° + 20)} e

Similarly, let u =
m-—n [m +60°x +x(0° + 29)] e

, where u €[0,1]. On simplifying, we have

m— [m +6° x> +x(0° + 26’)] e™ =y [m -n [m +6°x +x(0° + 26’)]@"%]
=um—un [m +0° X +x(0° + 29)]67&.
un [m +60°x +x(0° + 26’)] e — [m +60°x +x(6° + 29)] e =um—m=m@u-1).
This implies that

[m+0°% +x(67 +20) | (un—1) = m(u-1).

Also, let [m +60°x* +x(6° + 29)] e’ = mu=l) _ k. Thus,
(un—1)

me % +0*x2e™% + x(0% +20)e™% =k, and let w= 6> +26. Thus, we have

6>’ + xwe ™ + me™ ™ =k.
Hence,

ox (W+m)E£J(w+m)’ +40°k

xe " =
207

X
——=a=>x=ae”
eX

However, let xe™™ =« then,
o (=)@ 0 (—1) @ !
= —_x, =1,2,3...,n). so xe ~ =a. We have X
e ()' j=12,3 Al ox We h ()"
_ J: =1 J:
Jj=1 J

=a and

x"'=3" jla(=1)7 6. The MOS distribution quantile function can be expressed as
=1

(18)

x= [z =176’ ][jl”] :

Jj=1

4.2. The simulation study
In this section, we present a simulation study to examine the flexibility, and performance of the
MOS distribution. We examined the mean estimates (ME), variance (V), biases (B) and root mean
square errors (RMSEs) of the MLEs. The bias is calculated as
600
2 (7-T)
B =t forT=0,p8.
s 500 B

Similarly, the MSEs is obtained as
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MSE, =421
600

Tables 1 and 2 show the simulation for different parameter values for the MOS distribution. The
simulation is performed as follows:

a. Data is generated using the derived quantile function.

b. The sample sizes are taken as n = 50, 100, 200, 300, 500 and 600.

c. The parameters values are setas 8 =0.5, f#=2.3 and 8=2.5, f=0.8.

d. Each sample size is replicated 600 times.

The results obtained in Tables 1 and 2 show that as the sample size increases, the RMSEs, biases,
and variances of the MLEs of the parameters become smaller respectively. This result is in line with
the first-order asymptotic theory.

Table 1 Simulation results for mean estimates (ME), variance (V), biases (B), and mean

squared errors (MSE) of the 6 and ,B, respectively for the MOS distribution

Parameter n ME B A\ MSE
0=05 50 21691 1.0826 0.6931 1.8652
=23 09750 1.7178 0.3820 3.3328
6=0.5 100 2.1890 1.1122 0.6140 1.8509
p=23 0.8339 1.6787 0.2565 3.0746
6=05 200 2.1654 1.1237 0.4813 1.7441
p=23 0.7041 1.6830 0.2018 3.0375
0=0.5 300 2.0560 0.5599 0.3517 0.6652
p=23 0.5841 0.9701 0.1381 1.0791
0=0.5 500 19033 1.1177 0.2356 1.4849
p=23 0.4496 0.5296 0.0844 0.3649
6=0.5 600 1.8497 0.3576 0.1907 0.3186
p=23 0.4099 0.2322 0.0687 0.1226

Table 2 Simulation results for mean estimates (ME), variance (V), biases (B), and mean

squared errors (MSE) of the 6 and ,B respectively for the MOS distribution

Parameter n ME B \Y MSE
0=25 50 3.8114 1.1095 0.1283 1.3594
£ =038 0.4856 1.1268 0.0259 1.2956
0=25 100 3.7409 1.0711 0.1218 1.2691
£ =038 1.2115 1.0970 0.0100 1.2156
0=25 200 3.6035 1.0190 0.1204 1.1607
£ =038 0.3423 1.0668 0.0075 1.1455
0=25 300 3.4877 0.9799 0.1103 1.0705
£ =038 0.3055 1.0495 0.0074 1.1089
0=25 500 3.2638 0.2225 0.0054 0.0549
£ =038 0.2527 1.0245 0.0060 1.0555

=25 600 3.2043 0.1634 0.0032 0.0299
B=038 0.2392 1.0130 0.0057 1.0319
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5. The MOS Regression Model
This section introduced the regression model for the proposed MOS distribution. Let P be a
random variable with MOS probability density function and € = ¢ as the parameter; a function of

X=(1,xl,x2,... X )T such that

>n

O=N+@x +PX, +...+J,x,. (19)
Then, the probability function is written as

Q' e (@’ +p+2)1+p+p’)
(@ +0+2)-(-P[(@" +0+2)+oplpp+o+2)]e |

where £ >0, and ¢ is the regression model defined in (19) above. The survival rate function of the

Gree (P P) =

MOS regression model is given by
Be[(¢ +p+2)+op(pp+p+2)]
(@ +9+2) == [ (¢ +p+2)+pplpp+o+2) |
The corresponding hazard rate function for MOS regression model is given as
H(plp)=— petprp) .
(@ +p+2)=(1- B [(9* + 9+ +pp(pp+p+2) |

S(plo)=

6. Numerical Application and Goodness-of-fit Test

The numerical applications of the MOS distribution are demonstrated using two real lifetime
data sets and its fitness performance is investigated using Akaike information criteria (AIC), Bayesian
information criteria (BIC), Hannan and Quinn information criteria (HQIC), Standard Errors (S.E),
Kolmogorov-Smirnov (K-S), Anderson-Darling (A), and Cramér-von Misses (W) tests. The
distribution with the least AIC, BIC, HQIC values is considered the best model to the data sets.

Data set I consist of the survival times in days of 72 guinea pigs infected with virulent tubercle
bacilli reported in Bjerkedal (1960). The data set is presented in Table 3. The fitness of the MOS
distribution to the data set I is compared with the Power Ishita distribution (PID) (Shukla and Shanker
2018), Sujatha distribution (Shanker 2016d), and Quasi-Akash distribution (A Quasi) (Shanker et al.
2018), Marshall-Olkin extended Lindley distribution (MOELD) of Ghitany et al. (2012), and
Marshall-Olkin exponential distribution (MOED) of Marshall and Olkin (1997).

Data set II consists of the number of vehicle fatalities for 39 cities in South Carolina for 2012
collected by the National Highway Traffic Safety Administration (www-fars.nhtsa.dot.gov/States).
The data set is presented in Table 4. The fitness performance of the MOS distribution is compared
with Sujatha distribution (Shanker 2016d), Quasi-Akash distribution (A Quasi) (Shanker et al. 2018),
Marshall-Olkin extended Lindley distribution (MOELD) of Ghitany et al. (2012), and Marshall-Olkin
exponential distribution (MOED) of Marshall and Olkin (1997).

Firstly, we examined the descriptive statistics for the data sets and are presented in Tables 5 and
6. Tables 7, 8, 9, and 10 provide the values of the test statistics, parameter estimates, standard errors,
and the maximum likelihood estimates (MLE) values for the fitted models to the data sets I and II
respectively. The results obtained in Tables 7, 8, 9 and 10 show that the proposed MOS distribution
gave the least values of the AIC, BIC, HQIC, A, W, and K-S and the highest p-values to all the data
sets. Therefore, the MOS distribution is considered the best model for the data sets under
consideration and could be an alternative to the models compared to modeling real-lifetime situations.
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Table 3 Data set I

10, 33, 44, 56, 59, 72,74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112,
113, 115, 116, 120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168,
171, 172, 176, 183, 195, 196, 197, 202, 213, 215, 216, 222, 230, 231, 240, 245, 251, 253, 254, 254,
278,293,327, 342, 347, 361, 402, 432, 458, 555

Table 4 Data set 11

4,48,9,9,31, 22,26,17,20, 12, 6, 5, 14, 9, 16, 27, 3, 33, 9, 20, 68, 13, 51, 13, 48, 23, 12, 13, 10, 15,
8,1,2,4,17, 16,6, 52, 50

Table 5 Descriptive statistics for the data set I

Min. 1stQu. Median Mean 3rdQu. Max. Skewness Kurtosis
10.00 108.00 149.50 176.80 224.00 555.00 1.34 4.99
Table 6 Descriptive statistics for the data set II
Min. IstQu. Median Mean 3rd Qu. Max. Skewness Kurtosis
1.00  9.00 14.00 19.54 2450 68.00 1.29 3.79

Table 7 The parameters estimates of é, ﬁ, S.E., K-S, and p-values of the fitted model

using data set [

Parameters Estimates

Model 0 (SE) ,B (SE) K-S p-value
Sujatha  0.2031 (0.041) - 0.2327 0.0660
MOS 0.0048 (0.030) 1.8100 (0.136) 0.0314 0.8101
PID 0.2284 (0.341)  0.0096 (0.473) 0.1510 0.0590

A Quasi  0.0046 (0.552)  0.5060 (0.506) 0.1542 0.0299
MOELD 1.5565 (0.804)  0.0169 (0.617) 0.7931  0.0000
MOED 0.0157 (0.602) 11.6995 (0.561) 0.7148  0.0001

Table 8 The MLE, AIC, BIC, HQIC, A, and W values of the fitted models using data set I

Model MLE AIC BIC HQIC A W
Sujatha  14.0409 34.0819 40.5113 36.6106 0.5969 0.0972
MOS  14.0277 32.1353 35.0647 33.1640 0.5652 0.0908
PID  14.1885 38.3769 46.9495 41.7486 0.7043 0.4011

A Quasi  14.5027 37.0055 45.5780 40.3777 0.6857 0.3288
MOELD 567.0000 1138.0000 1142.5600 1139.8200 0.9937 0.7402
MOED 428.1300  860.2600  864.8100  862.0700 0.8005 0.5558
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Table 9 The parameters estimates of é, /} , S.E., K-S and p-values for the fitted model
using data set 1
Parameters Estimates
6 (SE. B (SE)
Sujatha  0.1480 (0.014) - 09396 0.0413
MOS  0.0865 (0.002) 0.1618 (0.142) 0.9020 0.6421
A Quasi 0.1154 (0.024) 10.3074 (11.565) 0.9289  0.2047
MOELD 0.3107 (0.054) 1.000 (0.432) 0.9532  0.0000
MOED  0.0718 (0.018) 2.0228 (1.040) 0.9121 0.3946

Model K-S p-value

Table 10 The MLE, AIC, BIC, HQIC, A, and W values of the fitted models using data set 11
Model MLE AIC BIC HQIC A w
Sujatha 158.2024 318.4047 320.0683 319.0016 39.7878 6.7294
MOS 154.6959 313.3918 316.7190 314.5856 34.1918 6.4556
A Quasi 1549862 315.7322 318.0595 317.9160 39.0247 6.6136
MOELD 1749122 345.8243 342.4972 344.6306 NA NA
MOED 156.5340 314.2510 317.5322 316.2087 37.5374 6.6023

Note: NA means not available.

7. Conclusions

In this paper, we adopt the Marshall-Olkin approach of developing more flexible distributions to
introduce a heavy-tailed, monotone non-increasing two parameters Marshall-Olkin Sujatha (MOS)
distribution as an extension of the classical Sujatha distribution. Some of its useful statistical
properties have been derived. The regression model of the proposed MOS distribution has been
introduced. Simulation studies have been carried out to investigate the flexibility behavior of the
proposed MOS distribution. The estimate of the parameters of the proposed MOS distribution was
obtained by the method of maximum likelihood and its numerical applications have been studied
using two real-life data sets. The results obtained indicated that the proposed MOS distribution
provides a better goodness-of-fit than the Sujatha distribution (SD), Power Ishita distribution (PID),
A Quasi-Akash (A Quasi) distribution, Marshall-Olkin extended Lindley distribution (MOELD), and
Marshall-Olkin exponential (MOED) distribution for all the data sets under consideration. The results
obtained are in line with the motivation of the study. Hence, the MOS distribution could be used as
an alternative model to SD, PID, A Quasi, MOELD, and MOED in modeling real-lifetime scenarios.
Further studies can be carried out to examine other statistical properties of the proposed model not
covered in this study and its applications to other data sets as well as the application of the MOS
regression model in modeling real life situations.
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