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Abstract 

In this paper, we introduced a two-parameter heavy-tailed, monotone non-increasing hazard rate 

distribution, and its regression model called the Marshall-Olkin Sujatha (MOS) distribution for life 

processes.  This study extends the Sujatha distribution using the Marshall-Olkin method and offers a 

more flexible model for survival data. Some of its useful statistical properties such as the survival 

rate function, hazard rate function, reversed hazard rate function, cumulative hazard rate function, 

probability  generating  function,  moment  generating  function,  characteristic  function,  stochastic 

ordering, Shannon,  and Rényi entropies, heavy-tail property,  and order  statistics are derived. The 

study  adopted  the  method  of  maximum  likelihood  estimation  to  estimate  the  parameters  of  the 

proposed model. Simulation studies are carried out to examine the flexibility behavior of the proposed 

model. The numerical applications and usefulness of the proposed lifetime model are investigated 

using  two  real-life  data  sets.  The  results  obtained  show  that  the  proposed  model  yields  the  best 

goodness of fit to all the data sets.  

______________________________ 
Keywords: Marshall-Olkin family of distributions, MOS regression model, order statistics, quantile function, 

entropies. 

 

1.  Introduction 

Survival and  reliability analysis are  very  important areas  in  statistics. The  survival or  failure 

behavior of a system can be considered as a stochastic process or a random variable due to the changes 

from one system to another as a result of the nature of the system. Recently, to investigate the survival 

or failure rate of a system, numerous one parameter classical survival models have been proposed in 

the literature. This includes the Lindley (1958) one parameter Lindley distribution. Shanker (2015a, 

2016c, 2016d) proposed one parameter Akash distribution, Aradhana distribution, and a thin-tailed 

non-decreasing  one  parameter  Sujatha  distribution.  Shanker  and  Shukla  (2017)  proposed  one 

parameter Ishita distribution. Shukla (2018) proposed one parameter Pranav distribution. Odom and 

Ijomah  (2019)  proposed  one  parameter  Odoma  distribution  among  others.  Unfortunately,  these 

distributions may not provide a good fit to some real-life situations with high kurtosis, non-increasing 

rate, and heavy tail. Thus, extending such distributions yield better flexibility to real-life situations. 
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In statistical literature, the extension of the classical or baseline one parameter survival models 

has  been  introduced  using  a  various  approach  such  as  Marshall  and  Olkin  (1997)  introduced  an 

approach based on the cumulative and probability densities function of a random variable. Gupta and 

Kundu (1999) introduced the exponentiation approach. Patil and Rao (1978) introduced sized-biased 

approach, and Mahdavi and Kundu (2017) proposed a method for generating new distributions called 

the alpha power transformation among others. Adopting many of these approaches to introduce more 

flexible distributions, researchers such as Pogány et al. (2015) proposed Marshall–Olkin exponential 

Weibull  distribution,  George  and  Thobias  (2017)  proposed  Marshall-Olkin  Kumaraswamy 

distribution,  Ikechukwu et al.  (2020) proposed A three parameter shifted exponential distribution, 

Eghwerido  et  al.  (2020)  proposed  the  Gompertz  alpha  power  inverted  exponential  distribution, 

Eghwerido et al. (2021) proposed the alpha power Gompertz distribution, Agu, and Onwukwe (2019) 

proposed  modified  Laplace  distribution,  AbuJarad  et  al.  (2020)  investigated  Bayesian  reliability 

analysis of the Marshall and Olkin models,  Agu and Runyi (2018) studied the goodness of fit test 

for  normal  distribution,  Khaleel  et  al.  (2020)  proposed  Marshall-Olkin  exponential  Gompertz 

distribution among others. All  these  researchers derived  some useful  statistical properties of  their 

models and investigated the flexibility using real-life data sets. Their results have shown that their 

proposed models outperformed the baseline distributions. 

Though,  despite  the  easy  in  parameter  estimation  of  the  one-parameter  distributions,  the 

distributions may lack flexibility on its property to model real life situations that may not follow any 

classical distribution. Hence, the demand for more flexible distributions is increasing and to respond 

to this demand, it is very important to derive a flexible statistical model that can offer more flexibility 

for the failure or survival behavior of a system. Thus, the motivation behind this study is to propose 

a heavy-tailed, monotone non-increasing hazard rate, high kurtosis distribution that can offer more 

flexibility for failure or survival behavior of a system. 

Therefore, this paper adopted the Marshall-Olkin approach to propose a two-parameter heavy-

tailed, monotone non-decreasing distribution called the Marshall-Olkin Sujatha (MOS) distribution 

as an extension of the Sujatha distribution and introduced its regression model. 

The rest of this paper is structured as follows: Section 2 presents the Marshall-Olkin family of 

distributions,  Section  2.1  presents  the  Sujatha  distribution,  Section  2.2  presents  the  proposed 

Marshall-Olkin Sujatha distribution, section 2.3 presents  the  linear  representation of  the proposed 

model,  Section  3  presents  the  statistical  properties of  the  proposed model,  section 4  presents  the 

maximum likelihood estimation of the proposed model, Section 4.1 presents the Quantile function of 

the proposed model, Section 4.2 presents the simulation studies, Section 5 presents the regression 

model of  the proposed distribution,  section 6 presents  the  numerical applications of  the proposed 

model, and finally, Section 7 presents the conclusions. 

 
2.  The Marshall-Olkin Family of Distributions 

Marshall  and  Olkin  (1997)  proposed  a  method  for  improving  the  flexibility  of  a  family  of 

distributions. According  to Marshall and Olkin,  for a given cumulative density  function (cdf) and 

probability density function (pdf) of a baseline survival model defined the cdf of the Marshall-Olkin 

family of distributions as 

 
( )
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where  , 0.x        ( )F x   and  ( )f x   are  the  cdf  and pdf of  the  baseline  distribution.  The 

corresponding pdf is defined as 
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where  , 0.x       

 

2.1. The Sujatha distribution 

Shanker (2016d) defined the cdf of the one parameter Sujatha distribution as 
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where  0, 0.x    The corresponding pdf is given as 
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2.2. The Marshall-Olkin Sujatha distribution 

This section presents  the proposed  two parameters class of Sujatha distribution.  Let  X  be a 

random  variable  of  the  Marshall-Olkin  Sujatha  (MOS)  distribution.  Substituting  (3)  into  (1),  we 

obtained the cdf of the proposed MOS model given as 

 

2 2

2 2

( 2) ( 2) ( 2)
( ; , ) ,

( 2) (1 ) ( 2) ( 2)

x

x

x x e
Q x

x x e





      
 

       





         
         
 

   (5) 

where  , 0, 0.x         The corresponding pdf of the proposed MOS model is given as 
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where  , 0, 0.x          The  asymptotic  behavior  of  the  MOS  distribution  can  be 

investigated  using  (5)  for  0, ( ; , ) 0x Q x      and  , ( ; , ) 1.x Q x       Hence,  the  MOS 

distribution has a valid pdf. Figures 1 and 2 presents the cdf and pdf plots of the MOS distribution 

for different parameters values. 

 

 
Figure 1 The cdf plots of the MOS distribution for different parameters values 
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Figure 2 The pdf plots of the MOS distribution for different parameters values 

 

2.3. The linear representation 

The linear representation of the MOS distribution is examined in this section to facilitate and to 

make  tractable  the  properties  of  the  MOS  distribution.  Let  the  binomial  expansion  of 
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 Then, the pdf of the MOS 

density can be expressed as 
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Equation (7) is the linear representation of (6). 

 
3. Some Statistical Properties 

This section derived some statistical properties of the MOS distribution such as the survival rate 

function,  hazard  rate  function,  reversed  hazard  rate  function,  cumulative  hazard  rate  function, 

generating  function,  moment  generating  function,  characteristic  function,  stochastic  ordering, 

Shannon and Rényi entropies, heavy-tail property, and order statistics. 

 
3.1. The survival rate function 

This section presents the survival rate function of the proposed MOS distribution. Let  X  be a 

random variable with MOS cdf and pdf defined in (5) and (6) respectively, and then the survival rate 

function of the MOS distribution is given as 
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3.2. The hazard rate function 

The corresponding hazard rate function of a random variable  X  with cdf and pdf of the MOS 

distribution is given as  
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Figures 3 and 4 present the survival and hazard rate functions of the proposed MOS distribution 

for different parameter values. The hazard plots indicated that the MOS model has a monotone non-

increasing function. 

 

3.3. The reversed hazard rate function 

The reversed rate hazard  function of a  random variable  X  with  the cdf and pdf of  the MOS 

distribution is given as
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3.4. The cumulative hazard rate function

 
The cumulative hazard rate function of a random variable  X  with the cdf and pdf of the MOS 

is given as 
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Figure 3 The survival rate plot of the MOS distribution for different parameters values 
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Figure 4 The hazard rate function plot of the MOS distribution for different parameters values 

 
3.5. Generating functions 

The probability generating function (pgf) of the MOS density is defined as 
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On simplifying (8), we have the pgf as 

     
 

  
 

 

  
 

 

  
 

 

2

13 2

0 0 0

1 3

log
2 1 2 .

!

1 1

p i j

p
k i p i j

kij
k i j

p i j

k p i j

t
M t p k p i j

p

k p i j



    



   

    

  
  

     
 
 

         
 
       
 

    

 

3.6. Moment generating functions (mgf) 

The MOS mgf for a random variable  X  is defined as  
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   

    
 

    
 

    
 

2

13 2

0 0 0

1 3

2 1 2 .

1 1

i j

k i
i j

X kij

k i j
i j

k r i r j

M t p k r i r j

k r i r j



    



  


  

  
 

       
 

          
 
        
 

  

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

H
(x

)

 

=5.0,=4.0
=0.7,=3.2
=1.5,=2.4
=8.0,=5.0

=0.4,=0.5



42   Thailand Statistician, 2022; 20(1): 36-52 

3.7. The characteristic function 

Let  X  be a random variable with the cdf and pdf of the MOS distribution. The characteristic 

function of  X  is defined as 
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where  ( )rE X   is  the  thr   of  the  MOS  distribution.  Thus,  the  characteristic  function  of  the  MOS 

distribution is defined as 
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3.8. Stochastic orderings 

The comparative study of the behavior of continuous random variables can be investigated using 

stochastic ordering. Consider  X  and  Y  to be random variables.  X  is said to be smaller than  Y  in  

Shanthikumar (1994) if the following conditions hold.  
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Stochastic  order  ( )stX Y   if       X yQ x YQ   for  all  ,x   hazard  rate  order  ( )hrX Y   if 

   x yq x yq  for all  ,x  mean residual life order  ( )mX Y  if     x ym x ym  for all  ,x  likelihood 

ratio order  ( )LX Y  if 
 
 

 
x

x

q x

q x
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Theorem 1. Let X  and Y Agu-F-D with 1 2,   and 1, 2   respectively. If 1 2   and 1 2 ,   

then .LX Y  Hence, ,hrX Y  mX Y  and .stX Y  

 
Proof: The MOS distribution will be ordered based on the strongest likelihood ordering as established 
in Shanthikumar (1994). 
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Therefore,  for  1 2    and  1 2, 1,    
 
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,
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dx q
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   Thus, 

,hrX Y   mX Y  and  .stX Y  

 
3.9. Entropies 

Let  X  be a continuous random variable with the pdf defined in (7). The entropy of  X  deals 

with the measure of uncertainty or spread of  .X  Rényi (1961) defined the entropy of  X  as 

    
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1
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E
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R q x dx a a
a
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Substituting (7) into (9), we have that  
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Thus, the Rényi entropy of the MOS distribution can be expressed as 
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3.10. The Shannon entropy  

Shannon (1948) defined the Shannon entropy of a continuous random variable  X  with a pdf 

( ; , )q x    as 

    log ( ; , ) .SH E q x      (10) 

Thus, the Shannon entropy of the MOS distribution based on Equation (10) can be expressed as 
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3.11. The heavy-tailed property 

Supposing  X   is a continuous random variable with a probability density  function  ( ; , )q x  

defined in (6). By definition,  ( ; , )q x    is said to be heavy-tailed if and only if  

   lim sup ( ; , ) ; 0.tx

x
q x e t 
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      (11) 

Substituting (6) into (11), we obtain 
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Therefore, the pdf defined in (6) is a heavy-tailed density function. 

  
3.12. Order statistics 

Let  1 2, ,..., nx x x  be a random sample of size  n  of the MOS distribution with pdf  ( ; , )q x    and 

cdf  ( ; , ).Q x    Then, the order statistics of  1 2 ... nX XX    for  X  random variable is defined as 
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The pdf of the minimum order statistic of the MOS distribution is obtained by setting  1j   in 

(12) such that 
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Thus, the minimum order statistic of the MOS distribution can be expressed as 
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  (13) 

The pdf of the maximum order statistic of the MOS distribution is obtained by setting  j n  in 

(12) such that 
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Hence, using (14), the maximum order statistic of the MOS distribution can be expressed as 
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4.  Maximum Likelihood Estimation 

In the literature, numerous approaches have been used for parameter estimation. In this paper, 

we  used  the  maximum  likelihood  estimation  method  to  obtain  the  parameters  of  the  MOS 

distribution. 

Let  1 2, ,..., nX X X  be a random sample of size  n  from a distribution function with pdf  ( ; , ).q x    

Then, the log-likelihood function can be defined as 
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Hence, the log-likelihood function of the MOS distribution can be derived as 
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where  1, 2,3,... .j n  
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However, taking the partial derivative of (15) with respect to each of the parameters and equating 

to zero, we have 
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where  2( 2) ( 2)j j jD x x             and

(2 1) (1 ) (2 1) 2 ( 1) ,j j jD x x                 respectively. 

Equations (16) and (17) cannot be expressed in closed form therefore solving it directly will be 

very cumbersome. However, these equations can be solved iteratively using Fisher's scoring method. 

We therefore have 
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Let  2( 2) ( 2)j j jP x x           such that  
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From (17), let  j j j j jK v u u v    such that  
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Recall that  
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Similarly, 
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The maximum likelihood estimates  ˆ ˆ( , )   of  ( , )   of the MOS distribution are the solution of 

the following equations 
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where  ̂  and  ̂  are the initial estimate values of    and  ,  respectively. The R package maxLik 

function was used to obtain the estimated values of the  ̂  and  ˆ,  respectively. 

 

4.1. Quantile function 

This  section  presents  the  quantile  function  of  the  propose  MOS  distribution.  The  quantile 

function of the MOS distribution can be derived as follows: 

Recall  
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Let  2 2 m     and 1 ,n   such that  
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and  
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 where  [0,1].u  On simplifying, we have 
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4.2. The simulation study 

In this section, we present a simulation study to examine the flexibility, and performance of the 

MOS distribution. We examined the mean estimates (ME), variance (V), biases (B) and root mean 

square errors (RMSEs) of the MLEs. The bias is calculated as  
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Similarly, the MSEs is obtained as 
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Tables 1 and 2 show the simulation for different parameter values for the MOS distribution. The 

simulation is performed as follows: 

a. Data is generated using the derived quantile function. 

b. The sample sizes are taken as  n  = 50, 100, 200, 300, 500 and 600.  

c. The parameters values are set as  0.5,  2.3   and  2.5,  0.8.   

d. Each sample size is replicated 600 times. 

The results obtained in Tables 1 and 2 show that as the sample size increases, the RMSEs, biases, 

and variances of the MLEs of the parameters become smaller respectively. This result is in line with 

the first-order asymptotic theory. 

 

Table 1 Simulation results for mean estimates (ME), variance (V), biases (B), and mean 

squared errors (MSE) of the  ̂  and  ˆ,  respectively for the MOS distribution 

Parameter  n   ME  B  V  MSE 
0.5   
2.3   

50  2.1691 
0.9750 

1.0826 
1.7178 

0.6931 
0.3820 

1.8652 
3.3328 

0.5   
2.3   

100  2.1890 
0.8339 

1.1122 
1.6787 

0.6140 
0.2565 

1.8509 
3.0746 

0.5   
2.3   

200  2.1654 
0.7041 

1.1237 
1.6830 

0.4813 
0.2018  

1.7441 
3.0375 

0.5   
2.3   

300  2.0560 
0.5841 

0.5599 
0.9701 

0.3517 
0.1381 

0.6652 
1.0791 

0.5   
2.3   

500  1.9033 
0.4496 

1.1177 
0.5296 

0.2356 
0.0844 

1.4849 
0.3649 

0.5   
2.3   

600  1.8497 
0.4099 

0.3576 
0.2322 

0.1907 
0.0687 

0.3186 
0.1226 

 
Table 2 Simulation results for mean estimates (ME), variance (V), biases (B), and mean 

squared errors (MSE) of the  ̂  and  ̂  respectively for the MOS distribution 

Parameter  n   ME  B  V  MSE 
2.5   
0.8   

50  3.8114 
0.4856 

1.1095 
1.1268 

0.1283 
0.0259 

1.3594 
1.2956 

2.5   
0.8   

100  3.7409 
1.2115 

1.0711 
1.0970 

0.1218 
0.0100 

1.2691 
1.2156 

2.5   
0.8   

200  3.6035 
0.3423 

1.0190 
1.0668 

0.1204 
0.0075 

1.1607 
1.1455 

2.5   
0.8   

300  3.4877 
0.3055 

0.9799 
1.0495 

0.1103 
0.0074 

1.0705 
1.1089 

2.5   
0.8   

500  3.2638 
0.2527 

0.2225 
1.0245 

0.0054 
0.0060 

0.0549 
1.0555 

2.5   
0.8   

600  3.2043 
0.2392 

0.1634 
1.0130 

0.0032 
0.0057 

0.0299 
1.0319 



Agu Friday Ikechukwu and Joseph Thomas Eghwerido  49 

5.  The MOS Regression Model 

This section introduced the regression model for the proposed MOS distribution. Let  P  be a 

random variable with MOS probability density function and    as the parameter; a function of 

 1 21, , ,...,
T

nX x x x  such that 

  1 1 2 2 ... .n nx x x           (19) 

Then, the probability function is written as 
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where  0,   and   is the regression model defined in (19) above. The survival rate function of the 

MOS regression model is given by 
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The corresponding hazard rate function for MOS regression model is given as 
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6.  Numerical Application and Goodness-of-fit Test 

The numerical applications of  the MOS distribution are demonstrated using  two real  lifetime 

data sets and its fitness performance is investigated using Akaike information criteria (AIC), Bayesian 

information criteria (BIC), Hannan and Quinn information criteria (HQIC), Standard Errors (S.E), 

Kolmogorov-Smirnov  (K-S),  Anderson-Darling  (A),  and  Cramér-von  Misses  (W)  tests.  The 

distribution with the least AIC, BIC, HQIC values is considered the best model to the data sets. 

Data set I consist of the survival times in days of 72 guinea pigs infected with virulent tubercle 

bacilli reported in Bjerkedal (1960). The data set is presented in Table 3. The fitness of the MOS 

distribution to the data set I is compared with the Power Ishita distribution (PID) (Shukla and Shanker 

2018), Sujatha distribution (Shanker 2016d), and Quasi-Akash distribution (A Quasi) (Shanker et al. 

2018),  Marshall-Olkin  extended  Lindley  distribution  (MOELD)  of  Ghitany  et  al.  (2012),  and 

Marshall-Olkin exponential distribution (MOED) of Marshall and Olkin (1997). 

 Data set II consists of the number of vehicle fatalities for 39 cities in South Carolina for 2012 

collected by the National Highway Traffic Safety Administration (www-fars.nhtsa.dot.gov/States). 

The data set is presented in Table 4. The fitness performance of the MOS distribution is compared 

with Sujatha distribution (Shanker 2016d), Quasi-Akash distribution (A Quasi) (Shanker et al. 2018), 

Marshall-Olkin extended Lindley distribution (MOELD) of Ghitany et al. (2012), and Marshall-Olkin 

exponential distribution (MOED) of Marshall and Olkin (1997). 

Firstly, we examined the descriptive statistics for the data sets and are presented in Tables 5 and 

6. Tables 7, 8, 9, and 10 provide the values of the test statistics, parameter estimates, standard errors, 

and the maximum likelihood estimates (MLE) values for the fitted models to the data sets I and II 

respectively. The results obtained in Tables 7, 8, 9 and 10 show that the proposed MOS distribution 

gave the least values of the AIC, BIC, HQIC, A, W, and K-S and the highest p-values to all the data 

sets.  Therefore,  the  MOS  distribution  is  considered  the  best  model  for  the  data  sets  under 

consideration and could be an alternative to the models compared to modeling real-lifetime situations.  
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Table 3 Data set I 

10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 

113, 115, 116, 120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 

171, 172, 176, 183, 195, 196, 197, 202, 213, 215, 216, 222, 230, 231, 240, 245, 251, 253, 254, 254, 

278, 293, 327, 342, 347, 361, 402, 432, 458, 555 

 
Table 4 Data set II 

4, 48, 9, 9, 31, 22, 26, 17,20, 12, 6, 5, 14, 9, 16, 27, 3, 33, 9, 20, 68, 13, 51, 13, 48, 23, 12, 13, 10, 15, 
8, 1, 2, 4, 17, 16, 6, 52, 50 

 

Table 5 Descriptive statistics for the data set I 

Min.  1st Qu.  Median  Mean  3rd Qu.  Max.  Skewness  Kurtosis 
10.00  108.00  149.50  176.80  224.00  555.00  1.34  4.99 

 

Table 6 Descriptive statistics for the data set II 

Min.  1st Qu.  Median  Mean  3rd Qu.  Max.  Skewness  Kurtosis 
1.00  9.00  14.00  19.54  24.50  68.00  1.29  3.79 

 

Table 7 The parameters estimates of  ˆ, ˆ ,  S.E., K-S, and p-values of the fitted model  

using data set I 

Model 
Parameters Estimates 

K-S  p-value ˆ (S.E.)   ˆ  (S.E.)  

Sujatha  0.2031 (0.041)  -  0.2327  0.0660 

MOS 0.0048 (0.030) 1.8100 (0.136) 0.0314 0.8101 

PID  0.2284 (0.341)  0.0096 (0.473)  0.1510  0.0590 

A Quasi  0.0046 (0.552)  0.5060 (0.506)  0.1542  0.0299 

MOELD  1.5565 (0.804)  0.0169 (0.617)  0.7931  0.0000 

MOED  0.0157 (0.602)  11.6995 (0.561)  0.7148  0.0001 

                 

Table 8 The MLE, AIC, BIC, HQIC, A, and W values of the fitted models using data set I 

Model  MLE  AIC  BIC  HQIC  A  W 

Sujatha  14.0409  34.0819  40.5113  36.6106  0.5969  0.0972 

MOS 14.0277 32.1353 35.0647 33.1640 0.5652 0.0908 

PID  14.1885  38.3769  46.9495  41.7486  0.7043  0.4011 

A Quasi  14.5027  37.0055  45.5780  40.3777  0.6857  0.3288 

MOELD  567.0000  1138.0000  1142.5600  1139.8200  0.9937  0.7402 

MOED  428.1300  860.2600  864.8100  862.0700  0.8005  0.5558 
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Table 9 The parameters estimates of  ˆ, ˆ ,  S.E., K-S and p-values for the fitted model  

using data set II 

Model 
Parameters Estimates 

K-S  p-value ˆ (S.E.)   ˆ  (S.E.)  

Sujatha  0.1480 (0.014)  -  0.9396  0.0413 

MOS 0.0865 (0.002) 0.1618 (0.142) 0.9020 0.6421 

A Quasi  0.1154 (0.024)  10.3074 (11.565)  0.9289  0.2047 

MOELD  0.3107 (0.054)  1.000 (0.432)  0.9532  0.0000 

MOED  0.0718 (0.018)  2.0228 (1.040)  0.9121  0.3946 

 
Table 10 The MLE, AIC, BIC, HQIC, A, and W values of the fitted models using data set II 

Model  MLE  AIC  BIC  HQIC  A  W 

Sujatha  158.2024  318.4047  320.0683  319.0016  39.7878  6.7294 

MOS 154.6959 313.3918 316.7190 314.5856 34.1918 6.4556 

A Quasi  154.9862  315.7322  318.0595  317.9160  39.0247  6.6136 

MOELD  174.9122  345.8243  342.4972  344.6306  NA  NA 

MOED  156.5340  314.2510  317.5322  316.2087  37.5374  6.6023 

                Note: NA means not available.  

 

7.  Conclusions 

In this paper, we adopt the Marshall-Olkin approach of developing more flexible distributions to 

introduce a heavy-tailed, monotone non-increasing two parameters Marshall-Olkin Sujatha (MOS) 

distribution  as  an  extension  of  the  classical  Sujatha  distribution.  Some  of  its  useful  statistical 

properties  have  been  derived.  The  regression  model  of  the  proposed  MOS  distribution  has  been 

introduced.  Simulation  studies have been carried out  to  investigate  the  flexibility  behavior  of  the 

proposed MOS distribution. The estimate of the parameters of the proposed MOS distribution was 

obtained by  the  method of maximum  likelihood and  its numerical  applications have been studied 

using  two  real-life  data  sets.  The  results  obtained  indicated  that  the  proposed  MOS  distribution 

provides a better goodness-of-fit than the Sujatha distribution (SD), Power Ishita distribution (PID), 

A Quasi-Akash (A Quasi) distribution, Marshall-Olkin extended Lindley distribution (MOELD), and 

Marshall-Olkin exponential (MOED) distribution for all the data sets under consideration. The results 

obtained are in line with the motivation of the study. Hence, the MOS distribution could be used as 

an alternative model to SD, PID, A Quasi, MOELD, and MOED in modeling real-lifetime scenarios.  

Further studies can be carried out to examine other statistical properties of the proposed model not 

covered in this study and its applications to other data sets as well as the application of  the MOS 

regression model in modeling real life situations. 
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