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Abstract 

In this paper, parameter estimation and reliability estimation for the extension of the exponential 

distribution are discussed. Point estimations of the stress-strength model deliberated. The maximum 

likelihood, maximum product spacing and Bayesian estimation are obtained. The results of Bayesian 

estimation are computed under the squared error loss (SEL) based on Markov chain Monte Carlo 

(MCMC). Monte Carlo simulation introduced to explicate and comparison the precision of the 

obtained estimators. An empirical study by using real data sets were conducted to support the 

theoretical aspect. 
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1. Introduction 

 The extension of the exponential (ExEx) distribution was introduced by Nadarajah and Haghighi 

(2011). We are interested in the inferential analysis for the ExEx distribution by using different 

estimation methods. The cumulative distribution function (cdf) and the probability density function 

(pdf) of the ExEx distribution are respectively as follows 
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Figure 1 displays the pdf of the ExEx distribution for some values of parameters. The model can 

be considered as another useful two-parameter of the ExEx distribution. It is noted that the ExEx 

distribution is reduced to the exponential distribution for 1.   Kumar et al. (2017) established 

recurrence relations for the single and product moments of order statistics from the EE distribution. 
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El-Damcese and Ramadan (2015) introduced modified ExEx distribution with three parameters.  

El-Din et al. (2016) discussed constant-stress accelerated life test is assumed when the lifetime of test 

units follows an ExEx distribution. In literature, estimation of parameters for ExEx distribution is 

discussed extensively, but no one has performed comparison of maximum likelihood estimation and 

maximum product spacing. 

 

 
Figure 1 Plot of the ExEx PDF for some values of parameters 

 

The statistical inferential analysis of lifetime data used follows a particular statistical distribution. 

Many of researchers uses traditional estimation methods such as the method of moments, maximum 

likelihood estimation (MLE) and maximum product spacing estimation (MPS). Each of them having 

their own advantages and limitations but the most popular method of estimation is MLE method. 

Ekström (2006) discussed MPS an alternative to the MLE method. In many situations, the MPS 

method works better than the MLE method and attractive properties such as consistency and 

asymptotic efficiency of the MPS estimator closely parallel those of the MLE when the latter works 

well. For more information of the methods (see Ranneby 1984), (see for example, Singh et al. 2014b, 

Almetwally et al. 2018, Ahmad and Almetwally 2020, and El-Sherpieny et al. 2020). 

The stress-strength reliability involving two independent random variables X  and ,Y  where X

represents the stress variable and  Y  represents the strength variable is defined as ( ).R P Y X   The 

estimation of stress-strength reliability has been widely used in the fields of aeronautical, civil, 

mechanical and electronic engineering. Singh et al. (2014a) discussed the problem of the estimation 

of stressed system reliability under both classical and Bayesian paradigms. Mokhlis et al. (2017) 

presented characterizations, associated with the stress strength reliability, of distributions with some 

general exponential and general inverse exponential forms. Different methods to estimate Fréchet 

distribution parameter based on stress-strength model (R) as maximum likelihood estimator, moments 

estimator, regression estimator, percentile estimator, least square estimator and L-moments estimator 

are studied by Abid (2014). Sabry et al. (2021) discussed fuzzy stress strength reliability model for 

inverse Rayleigh distribution. Abu El Azm et al. (2021) discussed stress-strength reliability for 

exponentiated inverted Weibull distribution with application on breaking of jute fiber and carbon 

fibers. Yousef and Almetwally (2021) discussed multi stress-strength reliability based on progressive 

first failure for Kumaraswamy distribution. 

In this paper, the MLE, MPS and Bayesian estimation under square error loss function are applied 

to estimate the parameters of the ExEx distribution. The purpose of this study is to discuss the best 
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estimation method for parameters of ExEx distribution, which we think would be of deep interest to 

statisticians. Reliability Functions (survival and hazard) are used for comparing between methods. The 

expression of reliability form stress-strength model based on ExEx distribution has been derived. A 

simulation study is conducted to compare the preferences between estimation methods. Also, a real 

data set is used and analyzed to investigate the model. 

 

2. Reliability Estimation 

 In this section, we propose the estimation of survival and hazard functions using MLE, MPS and 

Bayesian estimation under square error loss function for specified value of time say  mean( )t x  

where 
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 Cheng and Amin (1983) had mentioned in their paper 

that MPS also shows the invariance property just like MLE. So, on this basis using the invariance 

property we estimate the survival and hazard functions. The survival and hazard functions are given 

as follows  
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the hazard function defined by 

 ˆ 1ˆ ˆˆ ˆ( ) (1 ) .H x t x       (4) 

Figure 2 displays the hazard functions of the ExEx distribution by (4) for some values of 

parameters as follows 

  
Figure 2 Plots of the ExEx hazard functions for some values of parameters 

 

To obtained parameters estimation ̂  and ˆ,  we can use more estimation methods, but for the 

considered distribution, the MLE method, one which is not very common i.e. MPS method and 

Bayesian estimation by MCMC method will be used for estimating the parameters of an extension of 

the exponential distribution. 

 

2.1. Maximum likelihood estimation 

Casella and Berger (1990) discussed the likelihood function is the most frequently used method 

of parameter estimation. By using (1), the likelihood function of the an extension of the exponential 

distribution is 
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and by using (5), the log likelihood function is given as 
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respectively. To obtain the normal equations for the unknown parameters, we differentiate Equation 

(6) partially with respect to the parameters   and ,  and equate them to zero. The estimators ˆ
ML  

and ˆ
ML  can be obtained as the solution of the following equations: 
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The partial derivatives of MLE with respect to the unknown parameters cannot be solved directly, 

so we utilize numerical methods like the Newton-Raphson algorithms to calculate the MLE estimators. 

 

2.2. Maximum product spacing 

According to Cheng and Amin (1983) introduced maximum product spacing as following  
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where G is defined as the geometric mean of the product spacing function and where 
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such that 
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  by using (2) and (7), the product spacing function of ExEx distribution is  
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By using (8), the natural logarithm of the product spacing function is 
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To obtain the normal equations for the unknown parameters, we differentiate Equation (9) 

partially with respect to the parameters   and    and equate them to zero. The estimators  ˆ
MPS  and 

ˆ
MPS  of   and   can be obtained as the solution of the following equations: 
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The partial derivatives of MPS with respect to the unknown parameters cannot be solved directly, so 

we utilize numerical methods like the Newton-Raphson algorithms to calculate the MPS estimators. 

 

2.3. Bayesian estimation  

In this section we consider the Bayesian estimation of the unknown parameters   and .   The 

Bayes estimates is considered under the assumption that the random variables   and   have an 

independent gamma distribution is a conjugate prior to the extension of the exponential distribution 

distributions. Assumed that ~ Gamma( , )a b  and ~ Gamma( , ),c d  then, the joint prior density of 

  and   can be written as 
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here all the hyper parameters , ,a b c  and d  are known and non-negative. For the choice of hyper-

parameters, the experimenters can incorporate their prior guess in terms of location and precision for 

the parameter of interest. Such that   2( ) ; var .E ba ab    

Based on the likelihood function (5) and the joint prior density (10), the joint posterior of   and 

  is 
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here the normalizing constant K  is 
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In the method of the Markov chain Monte Carlo (MCMC) can be used to generate samples from 

the posterior density function (11) and in turn to compute the Bayes estimates of the unknown 

parameters. To generate samples from (11), we can rewrite the posterior density (11) as 
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For the extension of the exponential distribution distributions, the full conditional posterior 

distributions of the parameters are given by 
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Since the full conditional posterior distributions do not have simple forms in perspective of 

sampling, we use the Metropolis-Hastings algorithm within each Gibbs chain. To more example see 

(Almetwally et al. 2018, Almetwally et al. 2019). 

In our simulation study presented in the next section, MCMC procedure is used to generate the 

full conditional posterior distributions of   and   under squared error loss function, obtain the 
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Bayes estimates of   and  as 
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periods in the MCMC process to be 10,000.N   

 

3. Stress-Strength Model 

Let X  and Y  are the independent strength and stress random variables observed from ExEx 

distribution. Then, the stress-strength reliability R  is calculated as 
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Figure 3 displays plots of the reliability functions of stress-strength for the ExEx distribution by 

(12) for different values of parameters as follows 

  
Figure 3 Plots of the ExEx reliability functions of stress-strength by some values of parameters 

 

The MLE, MPS and Bayesian estimation will be obtained to get the estimated model parameters 

as well as the stress-strength system reliability in case of complete sample of observations. 

 

3.1. Maximum likelihood estimation 

The likelihood function of an extension of the exponential distribution for stress-strength model 

is 
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and the log-likelihood function of ExEx distribution under stress-strength model is given as 
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respectively. To obtain the normal equations for the unknown parameters, we differentiate Equation 

(13) partially with respect to the parameters   where  1 1 2 2, , ,      and equate them to zero. 

The estimators ̂  can be obtained as the solution of the following equations. 
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where    , , , .ij i j jz x y s n m   

 

3.2. Maximum product spacing 

The Maximum product spacing for stress-strength model is denoted as following  
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By using (14), the natural logarithm of the product spacing function of the ExEx distribution for 

stress-strength model is denoted as following 
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To obtain the normal equations for the unknown parameters, we differentiate Equation (15) 

partially with respect to the parameters   and equate them to zero. The estimators ̂  can be 

obtained as the solution of the following equations. 
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The above nonlinear equations cannot be solved analytically so, ̂  of .   

 

3.3. Bayesian estimation  

In this subsection, we discuss the Bayesian inference of the unknown parameters of an ExEx 

distribution under stress-strength model. For Bayesian parameter estimation we will consider squared 

error loss function. When the parameters of the model are unknown, a joint conjugate prior for the 

parameters does not exist. We suggest using independent gamma priors for   having pdfs. The joint 

prior density of   and   can be written as 
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4. Simulation Study  

In this section, we provide a complete algorithm of Monte Carlo simulation (MCS) study. We 

explain our algorithm through an application in estimation methods framework, especially; we will 

use Monte Carlo technique to compare between MLE, MPS and Bayesian estimation methods based 

on complete data for estimating ExEx distribution in life time by R language. 

Simulation Algorithm: We can build our model by generate all simulation controls. In this stage, 

we must follow the following steps by order: 

Step 1. Suppose different values of the parameters vector of ExEx distribution. 

Step 2. Choose the sample size 30,50n   and 100. 

Step 3. Generate the sample random values of ExEx distribution by using quantile function in 

equation   11
1 ln 1 1 ;0 1.i ix u u


         

Step 4. Solve differential equations for each estimation methods, to obtain the estimators of the 

parameters for ExEx distribution, we calculate ̂  and ˆ.  

Step 5. Repeat this experiment 1L   times. In each experiment, the same values of the parameters.  

It is certain that, the values of generating random are varying from experiment to experiment even 

though n are not changed. In the end, we have L -values of mean, MSE survival by (3, 12) and hazard 
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by (4), we restricted the number of repeat this experiment to 10,000. Take the averages of these values 

and call them Monte Carlo estimates, where ̂   is the estimated value of  ˆ ,    and the mean 

squared error (MSE) of the estimator, 2ˆMSE mean( ) .    After ending the treatment stage, we 

must check and evaluate the simulation result before put or discuss (display) it in our paper (research). 

All the estimates reveal the property of consistency, i.e., the MSE and reliability measure decrease 

when n  increases. Keeping 1   and fixed, the MSE of ̂  decreases, the MSE of ̂  increases and 

the MSE of reliability measure decreases when   increases, as shown in Table 1. In most cases, the 

MPS method is superior to the MLE method with an increase hazard. While the Bayesian method 

remains in the first place in estimation methods.  

All the estimates reveal the property of consistency, i.e., the MSE and reliability measure decrease 

when n  increases. Keeping   fixed, the MSE of ̂  decreases, the MSE of ̂  decreases and the 

MSE of reliability measure decreases when   increases, as shown in Tables 2-4. In most cases, the 

MPS method is superior to the MLE method with an increase hazard, except in small samples and this 

is so frequent when 1.5.   While the Bayesian method remains in the first place in estimation 

methods, as shown in Figures 4 and 5. 

From the Tables 5 and 6, we observe the following: In general, for increasing the sample size, the 

MSE of the considered parameters and reliability measure of stress-strength decreases. The method of 

Bayesian shows its absolute efficiency in estimating the parameters and reliability measure of stress-

strength model, where MSE values are lower than other methods, as shown in Figure 6. 

 

Table 1 Mean and MSE for MLE, MPS and Bayesian of ExEx parameters when 0.5   
and with different values of   

0.5, 0.5    

n   
MLE MPS MCMC 

Mean MSE Mean MSE Mean MSE 

30 

̂  0.59488 0.05322 0.48937 0.02388 0.57361 0.02794 

̂ 0.51300 0.11205 0.68778 0.19861 0.52821 0.06184 

survival 0.30399 0.00169 0.31374 0.00166 0.26807 0.00135 
hazard 8.96156 8.47578 10.16688 13.03217 8.23178 8.64200 

50 

̂  0.56512 0.03943 0.49266 0.01601 0.53139 0.00742 

̂ 0.50010 0.06144 0.62249 0.10555 0.48734 0.01636 

survival 0.30040 0.00112 0.30682 0.00109 0.29246 0.00057 
hazard 8.90739 5.56718 9.73008 7.56715 8.80939 5.35966 

100 

̂  0.52436 0.00807 0.48658 0.00596 0.51573 0.00348 

̂ 0.49998 0.02901 0.56934 0.04172 0.49516 0.01037 

survival 0.29487 0.00050 0.29890 0.00049 0.29002 0.00028 
hazard 8.98618 2.56423 9.47379 3.22060 8.89299 2.37430 
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Table 1 (Continued) 

0.5, 1.5    

n   
MLE MPS MCMC 

Mean MSE Mean Mean MSE Mean 

30 ̂  0.63314 0.11880 0.51051 0.02151 0.57599 0.02172 

 ̂ 1.37657 0.52672 1.66502 0.43466 1.35241 0.19312 

 survival 0.30875 0.00179 0.32058 0.00167 0.29147 0.00068 
 hazard 2.89543 0.93810 3.24347 1.27990 2.79876 0.93917 

50 

̂  0.56224 0.03184 0.49628 0.00862 0.51572 0.00311 

̂ 1.39775 0.30360 1.61921 0.24352 1.46457 0.03334 

survival 0.30169 0.00089 0.31011 0.00087 0.29608 0.00054 
hazard 2.94649 0.60509 3.19485 0.78147 2.98323 0.58323 

100 

̂  0.52162 0.00509 0.49063 0.00363 0.50593 0.00134 

̂ 1.44668 0.12824 1.58901 0.14198 1.48368 0.01973 

survival 0.29478 0.00035 0.30057 0.00038 0.29172 0.00020 
hazard 2.99828 0.26497 3.14837 0.32793 3.01095 0.26210 

0.5, 3.0    

30 

̂  0.55929 0.05379 0.48941 0.00931 0.53064 0.00707 

̂ 2.81155 0.60979 3.11389 0.34674 2.85008 0.27680 

survival 0.29914 0.00071 0.31868 0.00113 0.29594 0.00045 
hazard 1.48963 0.21478 1.65395 0.29913 1.48997 0.21031 

50 

̂  0.54103 0.03020 0.48654 0.00301 0.50762 0.00212 

̂ 2.84105 0.62670 3.09685 0.18276 2.97411 0.03174 

survival 0.29729 0.00052 0.30933 0.00056 0.29410 0.00043 
hazard 1.49297 0.13340 1.60999 0.17023 1.50995 0.12889 

100 

̂  0.51128 0.00257 0.49054 0.00148 0.50344 0.00103 

̂ 2.94140 0.12712 3.07084 0.10072 2.99475 0.01838 

survival 0.29263 0.00018 0.30126 0.00024 0.29229 0.00019 
hazard 1.49281 0.06736 1.55879 0.07885 1.50084 0.06573 
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Table 2 Mean and MSE for MLE, MPS and Bayesian of ExEx parameters when 1.5   

and with different values of   

1.5, 0.5    

 n   
  
  

MLE MPS MCMC 

Mean MSE Mean MSE Mean MSE 

30 

̂  1.66809 0.35623 1.30389 0.29091 1.47989 0.11180 

̂ 0.59847 0.18783 0.81946 0.35808 0.60276 0.05966 

survival 0.38658 0.00036 0.39288 0.00032 0.36998 0.00140 

hazard 1.05901 0.02960 1.14573 0.04058 1.01657 0.03136 

50 

̂  1.62096 0.22994 1.34259 0.20657 1.49200 0.02307 

̂ 0.55412 0.09087 0.71726 0.19092 0.52004 0.00835 

survival 0.38945 0.00023 0.39174 0.00025 0.39215 0.00048 

hazard 1.06178 0.01602 1.11830 0.02003 1.06944 0.01560 

100 

̂  1.58618 0.16217 1.39871 0.12642 1.50184 0.01477 

̂ 0.52771 0.04324 0.62067 0.07552 0.51056 0.00477 

survival 0.39102 0.00014 0.39179 0.00016 0.39152 0.00021 

hazard 1.06475 0.00883 1.09711 0.01020 1.06562 0.00867 

1.5, 1.5    

30 

̂  1.94743 0.87027 1.46045 0.36492 1.59284 0.10808 

̂ 1.51318 0.96218 1.97679 1.18410 1.49941 0.14194 

survival 0.39353 0.00028 0.40161 0.00020 0.39253 0.00081 

hazard 0.35180 0.00333 0.37958 0.00438 0.35430 0.00321 

50 

̂  1.80966 0.57281 1.45225 0.27681 1.50631 0.01714 

̂ 1.52989 0.64473 1.89544 0.84467 1.49713 0.02394 

survival 0.39359 0.00021 0.39753 0.00015 0.40077 0.00114 

hazard 0.35304 0.00215 0.37169 0.00262 0.36355 0.00205 

100 

̂  1.70656 0.33274 1.46307 0.16467 1.50406 0.01036 

̂ 1.48624 0.36150 1.73747 0.42839 1.50190 0.01612 

survival 0.39468 0.00014 0.39531 0.00010 0.39571 0.00044 

hazard 0.35562 0.00105 0.36617 0.00120 0.35948 0.00098 

1.5, 3.0    

30 

̂  2.00318 1.11189 1.46458 0.17177 1.57516 0.06323 

̂ 2.74916 1.92576 3.37882 1.20923 2.94043 0.23351 

survival 0.39709 0.00011 0.40946 0.00031 0.39980 0.00107 

hazard 0.17367 0.00081 0.18797 0.00103 0.17846 0.00079 

50 

̂  1.88991 0.82655 1.46449 0.11353 1.51080 0.01408 

̂ 2.84384 1.81114 3.28059 0.81588 2.98196 0.03063 

survival 0.39657 0.00015 0.40400 0.00013 0.40000 0.00134 

hazard 0.17583 0.00048 0.18545 0.00057 0.18053 0.00042 

100 

̂  1.80891 0.50709 1.47446 0.06027 1.50664 0.00802 

̂ 2.72458 1.09764 3.15668 0.43294 2.99301 0.01831 

survival 0.39840 0.00014 0.39921 0.00004 0.39491 0.00052 

hazard 0.17775 0.00025 0.18309 0.00029 0.17919 0.00024 
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Table 3 Mean and MSE for MLE, MPS and Bayesian of ExEx parameters when 3.0   

and with different values of   

3.0, 0.5    

n   
MLE MPS MCMC 

Mean MSE Mean MSE Mean MSE 

30 

̂  3.03467 0.31470 2.74217 0.38518 2.87975 0.22365 

̂ 0.56012 0.11058 0.62347 0.17813 0.56502 0.02497 

survival 0.41074 0.00028 0.43008 0.00036 0.40490 0.00092 
hazard 0.43445 0.00349 0.46753 0.00489 0.42813 0.00362 

50 

̂  3.07436 0.33960 2.81452 0.21761 2.97892 0.02981 

̂ 0.52749 0.05101 0.56431 0.06492 0.50991 0.00373 

survival 0.41407 0.00014 0.42749 0.00023 0.41706 0.00052 
hazard 0.43610 0.00206 0.45880 0.00273 0.44003 0.00209 

100 

̂  2.94291 0.25166 2.85951 0.13069 2.99047 0.01867 

̂ 0.55194 0.04894 0.54353 0.02662 0.50835 0.00218 

survival 0.41479 0.00010 0.42437 0.00012 0.41795 0.00023 
hazard 0.43486 0.00105 0.44851 0.00120 0.43685 0.00105 

3.0, 1.5    

30 

̂  3.34024 1.23929 2.72874 0.56213 2.99092 0.18260 

̂ 1.66399 0.94957 1.82715 0.59593 1.55702 0.08917 

survival 0.41057 0.00017 0.42993 0.00026 0.42093 0.00105 
hazard 0.14280 0.00036 0.15403 0.00046 0.14756 0.00037 

50 

̂  3.28550 1.15310 2.75542 0.41808 2.99058 0.02650 

̂ 1.63631 0.69903 1.75207 0.35555 1.49699 0.01872 

survival 0.41284 0.00009 0.42594 0.00013 0.42476 0.00140 
hazard 0.14441 0.00022 0.15213 0.00028 0.14965 0.00027 

100 

̂  3.04631 0.74717 2.80515 0.23996 2.99570 0.01723 

̂ 1.72029 0.63023 1.67284 0.17363 1.50368 0.01100 

survival 0.41317 0.00008 0.42311 0.00005 0.42167 0.00061 
hazard 0.14486 0.00012 0.14960 0.00014 0.14754 0.00012 

3.0, 3.0    

30 

̂  3.77067 2.78647 2.85302 0.25646 3.02692 0.15340 

̂ 2.91819 2.67049 3.18848 0.45241 2.96689 0.16916 

survival 0.41378 0.00017 0.43404 0.00060 0.42841 0.00163 
hazard 0.07194 0.00010 0.07787 0.00013 0.07604 0.00011 

50 

̂  3.50924 1.86948 2.86380 0.16909 2.99510 0.02509 

̂ 3.00010 1.91814 3.18641 0.30135 2.98844 0.02913 

survival 0.41610 0.00007 0.43019 0.00035 0.42680 0.00202 
hazard 0.07186 0.00006 0.07592 0.00007 0.07462 0.00005 

100 

̂  3.33708 1.09460 2.89536 0.10194 3.00130 0.01522 

̂ 3.01925 1.34534 3.11719 0.16516 2.98729 0.01779 

survival 0.41646 0.00003 0.42498 0.00015 0.42054 0.00085 
hazard 0.07281 0.00003 0.07526 0.00004 0.07386 0.00002 
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Table 4 Mean and MSE for MLE, MPS and Bayesian of ExEx parameters when 5.0   

and with different values of   

5.0, 1.5    

n   
MLE MPS MCMC 

Mean MSE Mean MSE Mean MSE 

30 

̂  4.96935 1.51168 4.80995 0.24573 4.93800 0.26088 

̂ 1.81123 1.19999 1.54742 0.06261 1.55281 0.06277 

survival 0.41935 0.00037 0.44636 0.00091 0.43237 0.00116 
hazard 0.07942 0.00011 0.08629 0.00015 0.08240 0.00011 

50 

̂  5.05866 0.78220 4.83439 0.15603 4.98159 0.03082 

̂ 1.59157 0.26579 1.53596 0.03578 1.50504 0.01646 

survival 0.42430 0.00022 0.44159 0.00052 0.43321 0.00150 
hazard 0.08045 0.00006 0.08512 0.00008 0.08277 0.00007 

100 

̂  5.00921 0.98968 4.89491 0.07757 5.00092 0.01918 

̂ 1.60894 0.29749 1.51415 0.01512 1.49803 0.00885 

survival 0.42435 0.00009 0.43573 0.00022 0.42901 0.00058 
hazard 0.08110 0.00003 0.08399 0.00004 0.08212 0.00004 

5.0, 3.0    

30 

̂  5.49853 2.95436 4.83599 0.17311 4.95377 0.22890 

̂ 3.23043 2.61829 3.02878 0.12096 2.99933 0.14102 

survival 0.42116 0.00032 0.44689 0.00102 0.44064 0.00212 
hazard 0.03998 0.00003 0.04349 0.00004 0.04264 0.00004 

50 

̂  5.30403 2.56847 4.86101 0.11422 4.97478 0.02804 

̂ 3.31764 2.56027 3.02739 0.07729 2.99138 0.02511 

survival 0.42248 0.00016 0.44159 0.00059 0.43320 0.00205 
hazard 0.04026 0.00002 0.04275 0.00002 0.04153 0.00001 

100 

̂ 5.15858 1.02403 4.90820 0.05516 4.99159 0.01852 

̂ 3.08877 0.74298 3.01974 0.03589 2.99856 0.01700 

survival 0.42551 0.00009 0.43606 0.00025 0.43009 0.00086 
hazard 0.04050 0.00001 0.04192 0.00001 0.04107 0.00001 

5.0, 5.0    

30 

̂  5.680840 2.860923 4.865118 0.178747 4.968343 0.209533 

̂ 4.950917 3.120347 5.029074 0.118472 4.946462 0.223036 

survival 0.422584 0.000378 0.446757 0.001058 0.444833 0.002616 
hazard 0.023862 0.000009 0.025931 0.000014 0.025774 0.000014 

50 

̂ 5.532185 2.739056 4.879961 0.107061 4.984977 0.028485 

̂ 5.052125 3.602149 5.028304 0.083244 4.984005 0.030100 

survival 0.424315 0.000179 0.441760 0.000634 0.433633 0.002174 
hazard 0.024093 0.000005 0.025566 0.000007 0.024838 0.000003 

100 

̂ 5.519398 2.892982 4.919757 0.053511 4.996870 0.019168 

̂ 5.027814 3.143470 5.019490 0.040923 4.991419 0.018846 

survival 0.426187 0.000067 0.436422 0.000291 0.430631 0.001014 
hazard 0.024273 0.000003 0.025138 0.000004 0.024634 0.000002 
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Figure 4 Plots of the MSE of parameters when 3.0   and with different values of   

 

 

  
Figure 5 Plots of the MSE of parameters when 1.5   and with different values of   

 

  



138                                                                   Thailand Statistician, 2022; 20(1): 124-143 

Table 5 Mean and MSE for MLE, MPS and Bayesian of ExEx parameters for stress-strength model 

when 1 1 2 20.5, 0.9, 0.9, 1.5        

( , )n m   MLE MPS Bayes 
 Mean MSE Mean MSE Mean MSE 

(30,20) 

1  0.59667 0.06552 0.48769 0.02816 0.52360 0.00592 

1 0.92999 0.33065 1.24318 0.59749 0.86891 0.02810 

2  1.30318 0.57414 0.95423 0.24378 0.91719 0.01350 

2  1.35833 0.85819 1.99598 1.69263 1.49766 0.02967 
R 0.77532 0.00341 0.75721 0.00340 0.77329 0.00154 

(50,40) 

1  0.56288 0.02821 0.49270 0.01479 0.51748 0.00334 

1 0.88419 0.17273 1.09654 0.28852 0.87468 0.01856 

2  1.11403 0.24489 0.91240 0.14754 0.91013 0.00779 

2  1.41357 0.48277 1.85933 0.90450 1.50156 0.01765 
R 0.77561 0.00218 0.76402 0.00220 0.77360 0.00102 

(100,70) 

1  0.52284 0.00769 0.48530 0.00565 0.50556 0.00127 

1 0.91027 0.09965 1.03348 0.13892 0.89060 0.00681 

2  1.02257 0.10911 0.89456 0.07499 0.90377 0.00352 

2  1.44568 0.30869 1.74873 0.51307 1.49707 0.00734 
R 0.77413 0.00110 0.76706 0.00112 0.77359 0.00045 

(30,30) 

1  0.59748 0.067011 0.488782 0.030782 0.523678 0.005434 

1 0.939538 0.353553 1.257958 0.647879 0.861523 0.02734 

2  1.236736 0.488852 0.941885 0.199651 0.915826 0.010885 

2  1.414832 0.791999 1.892941 1.141962 1.49347 0.027591 
R 0.77553 0.003243 0.759996 0.003181 0.77435 0.001349 

(50,50) 

1  0.556114 0.02554 0.486826 0.013375 0.513975 0.003436 

1 0.885732 0.166738 1.098986 0.277789 0.871903 0.017735 

2  1.104154 0.206331 0.913773 0.105485 0.909875 0.006627 

2  1.384466 0.440184 1.772895 0.725963 1.493925 0.016915 
R 0.7759 0.001769 0.765103 0.001796 0.775157 0.000807 

(100,100) 

1  0.521714 0.007302 0.484404 0.005393 0.505193 0.001346 

1 0.905112 0.088704 1.029167 0.126605 0.892328 0.006477 

2  0.992143 0.078847 0.884044 0.045039 0.907428 0.002934 

2  1.477091 0.279797 1.708956 0.36437 1.496547 0.007238 
R 0.775071 0.000928 0.768714 0.000933 0.77452 0.000406 

(30,40) 

1  0.60304 0.06613 0.49260 0.02942 0.52257 0.00553 

1 0.90608 0.31412 1.21602 0.55916 0.86186 0.02659 

2  1.15014 0.33520 0.90121 0.12074 0.91323 0.00872 

2  1.45673 0.70000 1.87261 0.96745 1.49814 0.02869 
R 0.77603 0.00292 0.76185 0.00282 0.77506 0.00118 

(50,60) 

1  0.55659 0.02923 0.48735 0.01657 0.51382 0.00316 

1 0.91008 0.19316 1.13160 0.33355 0.87853 0.01732 

2  1.03542 0.13775 0.88192 0.07946 0.90600 0.00605 

2  1.47414 0.39998 1.80985 0.62388 1.50327 0.01758 
R 0.77515 0.00189 0.76465 0.00194 0.77387 0.00085 

(100,150) 

1  0.52657 0.00832 0.48847 0.00590 0.50721 0.00131 

1 0.89933 0.09393 1.02243 0.13119 0.88908 0.00729 

2  0.97715 0.05776 0.88675 0.03394 0.90363 0.00245 

2  1.47308 0.23966 1.66306 0.28204 1.50096 0.00714 
R 0.77468 0.00091 0.76879 0.00091 0.77389 0.00037 
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Table 6 Mean and MSE for MLE, MPS and Bayesian of ExEx parameters for stress-strength model 

when 1 1 2 21.5, 2.5, 1.5, 2.5        

( , )n m   MLE MPS Bayes 
 Mean MSE Mean MSE Mean MSE 

(30,20) 

1  2.3248 2.1587 1.5459 0.5311 1.4967 0.0189 

1 1.9065 2.2625 2.5406 2.1210 1.9720 0.0300 

2  3.8310 3.2068 2.7277 1.0673 3.0056 0.0295 

2  1.8831 2.0880 2.3068 1.8002 1.7123 0.0258 
R 0.6820 0.0064 0.6702 0.0031 0.6822 0.0014 

(50,40) 

1  2.0187 1.2575 1.4991 0.3654 1.5036 0.0114 

1 1.9805 1.4401 2.4756 1.4509 1.9888 0.0182 

2  3.5306 2.1880 2.7547 0.7631 3.0005 0.0190 

2  1.8893 1.4777 2.1375 1.0197 1.7003 0.0157 
R 0.6785 0.0031 0.6689 0.0020 0.6769 0.0009 

(100,70) 

1  1.7974 0.5949 1.4697 0.1815 1.5001 0.0053 

1 1.9967 0.9343 2.3235 0.8052 1.9946 0.0075 

2  3.4389 1.5293 2.7913 0.4915 3.0028 0.0080 

2  1.7908 0.9414 2.0060 0.5804 1.7024 0.0065 
R 0.6788 0.0014 0.6711 0.0012 0.6777 0.0004 

(30,30) 

1  2.2217 2.0379 1.5079 0.5426 1.5002 0.0193 

1 2.0500 2.2757 2.6797 2.3374 1.9777 0.0277 

2  3.7129 3.1513 2.7164 0.9237 3.0125 0.0277 

2  1.9848 2.3249 2.2521 1.3817 1.7145 0.0241 
R 0.6737 0.0078 0.6687 0.0028 0.6818 0.0014 

(50,50) 

1  1.9365 1.0509 1.4568 0.3303 1.5007 0.0103 

1 2.0382 1.4424 2.5371 1.5181 1.9888 0.0189 

2  3.5419 2.1468 2.7633 0.6286 2.9994 0.0176 

2  1.8218 1.1965 2.0650 0.7293 1.7048 0.0144 
R 0.6774 0.0025 0.6690 0.0017 0.6781 0.0008 

(100,100) 

1  1.8019 0.5648 1.4724 0.1727 1.5015 0.0055 

1 1.9541 0.8291 2.2945 0.7305 1.9935 0.0067 

2  3.2992 1.4584 2.7667 0.4190 2.9986 0.0074 

2  1.8835 0.9949 1.9896 0.4467 1.6991 0.0066 
R 0.6796 0.0012 0.6726 0.0010 0.6767 0.0004 

(30,40) 

1  2.2321 2.0014 1.5123 0.5247 1.5006 0.0196 

1 2.0135 2.2107 2.6468 2.3022 1.9673 0.0281 

2  3.6859 2.7540 2.7507 0.7039 3.0066 0.0285 

2  1.9095 1.9494 2.1273 1.0048 1.6989 0.0213 
R 0.6755 0.0053 0.6693 0.0026 0.6804 0.0013 

(50,60) 

1  2.0102 1.1889 1.4959 0.3511 1.4985 0.0122 

1 1.9463 1.2733 2.4612 1.3705 1.9886 0.0171 

2  3.4144 1.9632 2.7138 0.6075 3.0014 0.0173 

2  1.9140 1.2435 2.1110 0.7392 1.7069 0.0141 
R 0.6800 0.0019 0.6713 0.0017 0.6791 0.0008 

(100,150) 

1  1.8126 0.6223 1.4806 0.1889 1.5058 0.0054 

1 1.9711 0.9007 2.2999 0.7584 1.9947 0.0075 

2  3.3383 1.3079 2.8225 0.2886 2.9970 0.0069 

2  1.7845 0.6902 1.8996 0.2535 1.7007 0.0056 
R 0.6775 0.0010 0.6722 0.0008 0.6759 0.0004 
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Figure 6 Plots of the reliability functions of stress-strength and MSE 

 

5. Application 

The numerical results of the parameter estimation and reliability estimation of ExEx distribution 

of real data have been presented. And also, we present the numerical results of the stress-strength 

model of ExEx distribution. 

Firstly: We discuss an application of ExEx distribution using real data set to illustrate any 

estimation methods of ExEx distribution provides significant improvements over. The data represents 

the remission times (in months) of a random sample from bladder cancer patients reported in Lee and 

Wang (2003).  

The data are as follows: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 

6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 

14.24, 25.82, 0.51, 2.54,  3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 7.32, 10.06, 14.77, 

32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 

2.69, 4.23, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 

7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 

18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 3.31, 4.51, 6.54, 8.53, 

12.03, 20.28, 2.02, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 
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Table 7 Estimate, standard error, Kolmogorov-Smirnov test and reliability measure for  

ExEx distribution 

 MLE MPS Bayes 

Estimate 
Standard 

error 
Estimate 

Standard 
error 

Estimate 
Standard 

error 

̂  0.9341502 0.158806 0.84832 0.137941 0.9348 0.00437 

̂ 0.1163695 0.033877 0.13305 0.038098 0.1123 0.00254 

D 0.082065 0.086685 0.07577 
p-value 0.378900 0.313700 0.480100 
survival 0.3626037 0.3644294 0.375822 
hazard 0.1034702 0.09963253 0.0998613 

 

The results of goodness of fit tests by using Kolmogorov-Smirnov test, based on the p-values for 

all methods, it is clear that the ExEx distribution fit the data of a bladder cancer study, as seen in Table 

7. Depending on stander error, the comparison between the three methods show that the Bayes method 

estimation is the beast, next MPS then MLE method, because it has the least stander error. Also, the 

reliability estimation confirms this conclusion as the Bayes has the largest survival which means the 

probability of remission times in months from bladder cancer.  

Secondly: We discuss a stress-strength reliability of ExEx distribution using real data set to 

illustrate any estimation methods of ExEx based on stress-strength reliability model provides 

significant improvements over. The real data sets of the waiting times before service of the customers 

of two banks, A and B, respectively have been used. These data sets have been discussed by  

Singh et al. (2014a) for estimating the stress-strength reliability in case of the generalized Lindley 

distribution. 

The data of Bank A are as follows: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 

3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 

6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 

9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 

13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 

27.0, 31.6, 33.1, 38.5. 

The data of Bank B are as follows: 0.1, 0.2, 0.3, 0.7, 0.9, 1.1, 1.2, 1.8, 1.9, 2.0, 2.2, 2.3, 2.3, 2.3, 

2.5, 2.6, 2.7, 2.7, 2.9, 3.1, 3.1, 3.2, 3.4, 3.4, 3.5, 3.9, 4.0, 4.2, 4.5, 4.7, 5.3, 5.6, 5.6, 6.2, 6.3, 6.6, 6.8, 7.3, 7.5, 

7.7, 7.7, 8.0, 8.0, 8.5, 8.5, 8.7, 9.5, 10.7, 10.9, 11.0, 12.1, 12.3, 12.8, 12.9, 13.2, 13.7, 14.5, 16.0, 16.5, 28.0. 

 

Table 8 Estimate, Stander Error, Kolmogorov-Smirnov test and reliability measure  
for ExEx distribution of Bank A data  

 MLE Bayes 
Estimate Standard error Estimate Standard error 

̂  3.32613 1.78020 3.32445 0.00412 

̂ 0.02123 0.01356 0.01951 0.00227 

D 0.10759 0.09838 
p-value 0.19730 0.28780 
survival 0.4132846 0.450830 
hazard 0.1099570 0.097718 
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Table 9 Estimate, Standard Error, Kolmogorov-Smirnov test and reliability measure  

for ExEx distribution of Bank B data 

 MLE Bayes 
Estimate Standard error Estimate Standard error 

̂  2.06586 1.07900 2.06221 0.00531 

̂ 0.05754 0.03946 0.05531 0.00227 

D 0.08547 0.07789 
p-value 0.77310 0.85980 
survival 0.404120 0.421480 
hazard 0.165820 0.157319 

 

In this data, we cannot use MPS because there are equal observation in the data, so the spacing 

will be zero hence the product will also be zero see Equations (3.4) and (3.5) and to compute the MPS 

estimator, we take the log of product spacing, as we know the log(0) equal-Inf. Despite the 

effectiveness of the MPS method in the estimate, but this problem hinders their use in the estimation 

process. 

 

 Table 10 Estimate and reliability of stress-strength model for ExEx distribution of Bank data  
 

 1̂  
1̂  2̂  

2̂  R̂  
MLE 3.328227 0.021210 2.112340 0.055860 0.632156 

Bayes 2.184240 0.043160 2.095250 0.076005 0.646155 

 

6. Conclusions 

In this paper, parameters estimation for the ExEx distribution are discussed based on the MPS, 

MLE and the Bayesian methods. In this model, the estimators based on MPS method behave quite 

better than the estimators based on the MLE but the Bayesian estimation is the best one, where the 

MSE is less than from the other methods. In case of reliability stress-strength model estimation, we 

note that when parameters value of stress is small, the estimated model efficiency increases. By 

checking the previous results, we note that MPS is better than MLE. We can conclude that the MPS 

method is a good alternative method to the usual MLE method in many situations. We hope that the 

finding in this paper will be useful for researchers and statistician. 

 

Acknowledgements 

The authors would like to thank the editor, as well as anonymous referees as suggestions given 

by referees, contributed to improving the quality of the work. 

 

References 

Nguyen HT. Statistics of fuzzy data: a research direction for applied statistics. Thail Stat. 2015; 13(1): 
1-31. 

Abid SH. The Fréchet stress-strength model. Int J Appl Math Res. 2014; 3(3), 207-213. 

Abu El Azm WS, Almetwally EM, Alghamdi AS, Aljohani HM, Muse AH, Abo-Kasem OE. Stress-

strength reliability for exponentiated inverted Weibull distribution with application on breaking 

of jute fiber and carbon fibers. Comput Intell Neurosci. 2021; 2021: 4227346. 

Ahmad HH, Almetwally E. Marshall-Olkin generalized Pareto distribution: Bayesian and non 

Bayesian estimation. Pak J Stat Oper. 2020; 16(1): 21-33. 



Mohamed A. Sabry et al. 143 

Almetwally EM, Almongy HM, El Sayed Mubarak A. Bayesian and maximum likelihood estimation 

for the Weibull generalized exponential distribution parameters using progressive censoring 

schemes. Pak J Stat Oper. 2018; 14(4): 853-868. 

Almetwally EM, Almongy HM, ElSherpieny EA. Adaptive type-II progressive censoring schemes 

based on maximum product spacing with application of generalized Rayleigh distribution. Data 

Sci J. 2019; 17(4): 802-831. 

Almetwally EM, Almongy HM. Estimation method for new Weibull-Pareto distribution: Simulation 

and application. Data Sci J. 2019; 17(3): 610-630. 

Casella G, Berger RL. Statistical inference. Brooks/Cole Publishing; 1990. 

Cheng RCH, Amin NAK. Estimating parameters in continuous univariate distributions with a shifted 

origin. J R Stat Soc. Series B. 1983; 45(3): 394-403. 

Ekström M. Maximum product of spacings estimation. John Wiley & Sons; 2006. 

El-Damcese MA, Ramadan D. Studies on properties and estimation problems for modified extension 

of exponential distribution. arXiv preprint arXiv: 2015:1508.02083. 

El-Din MM, Abu-Youssef SE, Ali NS, El-Raheem AA. Estimation in constant-stress accelerated life 

tests for extension of the exponential distribution under progressive censoring. Metron. 2016; 

74(2): 253-273. 

El-Sherpieny ESA, Almetwally EM, Muhammed HZ. Progressive type-II hybrid censored schemes 

based on maximum product spacing with application to power Lomax distribution. Phys A: Stat. 

Mech Appl. 2020; 553: 124251. 

Kumar D, Dey S, Nadarajah S. Extended exponential distribution based on order statistics. Commun 

Stat-Theory Method. 2017; 46(18): 9166-9184. 

Lee ET, Wang J. Statistical methods for survival data analysis. John Wiley & Sons; 2003. 

Mokhlis NA, Ibrahim EJ, Gharieb DM. Stress-strength reliability with general form 

distributions. Commun Stat-Theory Method, 2017; 46(3): 1230-1246. 

Nadarajah S, Haghighi F. An extension of the exponential distribution. Stat. 2011; 45(6): 543-558. 

Ranneby B. The maximum spacing method. An estimation method related to the maximum likelihood 

method. Scand J Stat. 1984: 93-112. 

Sabry MA, Almetwally EM, Alamri OA, Yusuf M, Almongy HM, Eldeeb AS. Inference of fuzzy 

reliability model for inverse Rayleigh distribution. AIMS Math. 2021; 6(9): 9770-9785. 

Singh SK, Singh U, Sharma VK. Estimation on system reliability in generalized Lindley stress-

strength model. J Stat Appl Prob. 2014a; 3(1), 61-75. 

Singh U, Singh SK, Singh RK. Product spacings as an alternative to likelihood for Bayesian 

inferences. J Stat Appl Prob. 2014b; 3(2): 179-188. 

Yousef MM, Almetwally EM. Multi stress-strength reliability based on progressive first failure for 

Kumaraswamy model: Bayesian and non-Bayesian estimation. Symmetry. 2021; 13(11): 2120.  

 


