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Abstract

In this paper, parameter estimation and reliability estimation for the extension of the exponential
distribution are discussed. Point estimations of the stress-strength model deliberated. The maximum
likelihood, maximum product spacing and Bayesian estimation are obtained. The results of Bayesian
estimation are computed under the squared error loss (SEL) based on Markov chain Monte Carlo
(MCMC). Monte Carlo simulation introduced to explicate and comparison the precision of the
obtained estimators. An empirical study by using real data sets were conducted to support the
theoretical aspect.
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1. Introduction

The extension of the exponential (ExEx) distribution was introduced by Nadarajah and Haghighi
(2011). We are interested in the inferential analysis for the EXEx distribution by using different
estimation methods. The cumulative distribution function (cdf) and the probability density function
(pdf) of the ExEx distribution are respectively as follows

Flra,d)=1-¢ ) x50 a4 %0, (1)
and

Fea,A) = Aa(l+ Ax) e ] ©)

Figure 1 displays the pdf of the ExEx distribution for some values of parameters. The model can
be considered as another useful two-parameter of the ExEx distribution. It is noted that the ExEx
distribution is reduced to the exponential distribution for & =1. Kumar et al. (2017) established
recurrence relations for the single and product moments of order statistics from the EE distribution.
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El-Damcese and Ramadan (2015) introduced modified ExEx distribution with three parameters.
El-Din et al. (2016) discussed constant-stress accelerated life test is assumed when the lifetime of test
units follows an ExEx distribution. In literature, estimation of parameters for EXEx distribution is
discussed extensively, but no one has performed comparison of maximum likelihood estimation and
maximum product spacing.
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Figure 1 Plot of the ExEx PDF for some values of parameters

The statistical inferential analysis of lifetime data used follows a particular statistical distribution.
Many of researchers uses traditional estimation methods such as the method of moments, maximum
likelihood estimation (MLE) and maximum product spacing estimation (MPS). Each of them having
their own advantages and limitations but the most popular method of estimation is MLE method.

Ekstrom (2006) discussed MPS an alternative to the MLE method. In many situations, the MPS
method works better than the MLE method and attractive properties such as consistency and
asymptotic efficiency of the MPS estimator closely parallel those of the MLE when the latter works
well. For more information of the methods (see Ranneby 1984), (see for example, Singh et al. 2014b,
Almetwally et al. 2018, Ahmad and Almetwally 2020, and El-Sherpieny et al. 2020).

The stress-strength reliability involving two independent random variables X and Y, where X

represents the stress variable and Y represents the strength variable is defined as R = P(Y < X). The

estimation of stress-strength reliability has been widely used in the fields of aeronautical, civil,
mechanical and electronic engineering. Singh et al. (2014a) discussed the problem of the estimation
of stressed system reliability under both classical and Bayesian paradigms. Mokhlis et al. (2017)
presented characterizations, associated with the stress strength reliability, of distributions with some
general exponential and general inverse exponential forms. Different methods to estimate Fréchet
distribution parameter based on stress-strength model (R) as maximum likelihood estimator, moments
estimator, regression estimator, percentile estimator, least square estimator and L-moments estimator
are studied by Abid (2014). Sabry et al. (2021) discussed fuzzy stress strength reliability model for
inverse Rayleigh distribution. Abu El Azm et al. (2021) discussed stress-strength reliability for
exponentiated inverted Weibull distribution with application on breaking of jute fiber and carbon
fibers. Yousef and Almetwally (2021) discussed multi stress-strength reliability based on progressive
first failure for Kumaraswamy distribution.

In this paper, the MLE, MPS and Bayesian estimation under square error loss function are applied
to estimate the parameters of the ExEx distribution. The purpose of this study is to discuss the best
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estimation method for parameters of ExEx distribution, which we think would be of deep interest to
statisticians. Reliability Functions (survival and hazard) are used for comparing between methods. The
expression of reliability form stress-strength model based on ExEx distribution has been derived. A
simulation study is conducted to compare the preferences between estimation methods. Also, a real
data set is used and analyzed to investigate the model.

2. Reliability Estimation
In this section, we propose the estimation of survival and hazard functions using MLE, MPS and

Bayesian estimation under square error loss function for specified value of time say (t = mean(x))

where mean(x) = %(e Gamma (1 + l, lj - 1]. Cheng and Amin (1983) had mentioned in their paper
a

that MPS also shows the invariance property just like MLE. So, on this basis using the invariance
property we estimate the survival and hazard functions. The survival and hazard functions are given
as follows
Ax=1)= e[l—(Hix)d} ’ 3)
the hazard function defined by
H(x=1)= A1+ ix)*". 4)
Figure 2 displays the hazard functions of the ExEx distribution by (4) for some values of
parameters as follows
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Figure 2 Plots of the ExXEx hazard functions for some values of parameters

To obtained parameters estimation ¢ and A, we can use more estimation methods, but for the
considered distribution, the MLE method, one which is not very common i.e. MPS method and
Bayesian estimation by MCMC method will be used for estimating the parameters of an extension of
the exponential distribution.

2.1. Maximum likelihood estimation

Casella and Berger (1990) discussed the likelihood function is the most frequently used method
of parameter estimation. By using (1), the likelihood function of the an extension of the exponential
distribution is
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Ly, = (Gay = T+ Ax) ", (5)

i=l1
and by using (5), the log likelihood function is given as
InL, =n(lna+InA)+Y (1-1+2Ax)*)+(a—=1) In(1+Ax), (6)

i=1 i=1
respectively. To obtain the normal equations for the unknown parameters, we differentiate Equation
(6) partially with respect to the parameters 4 and «, and equate them to zero. The estimators iML

and @,, can be obtained as the solution of the following equations:

OlnL,, _n_ Z(ng )* In(1+ Ax, )+Zln(1+/1x )
oa (22

all'lLML a-1

_:_ 1+1 + 1
o Zx( X))+ (a— )Z(H/l 5

The partial derivatives of MLE with respect to the unknown parameters cannot be solved directly,
so we utilize numerical methods like the Newton-Raphson algorithms to calculate the MLE estimators.

2.2. Maximum product spacing
According to Cheng and Amin (1983) introduced maximum product spacing as following

ooffin]”

where G is defined as the geometric mean of the product spacing function and where

Dl =F('xl)7
D, =D, =F(x;)-F(x,_);i=2,..,n,
D, =1-F(x,)),

n+l
such that ZD . =1 by using (2) and (7), the product spacing function of ExEx distribution is
i=1
1

G= [(1 B PR ’”)ﬁ[e”’“”x”‘ ) _ p-0425)%) B”” ' ®)
i=2

By using (8), the natural logarithm of the product spacing function is

InG = {m(l —e" ANy L (1= (14 Ax,)*)+ D In (e“*“”xﬂ 1A )} 9)
i=2

n+l
To obtain the normal equations for the unknown parameters, we differentiate Equation (9)
partially with respect to the parameters 4 and « and equate them to zero. The estimators /1MPS and

Qs of 4 and a can be obtained as the solution of the following equations:
I (e Ny, (1+Ax, )‘H
oG 1 (1=(e )

04 n+l el )a))axi (l +Ax, )‘H ) - (e(li(HM"' )a))axm (1 +Ax, )‘H

+Z( : :
: (0 (om0 y

—ax, (1 +Ax, )DH
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(I=(1+2x))
(e (L 2%) 0 e Y In(14 2x,)
omg 1| [(1metH7)

oa  n+lf (e“'(”“")a)ln(l+/1xl.))—(e“'“”"‘")a) In(1+ Ax, ))
+
; (A5 _ (004450

The partial derivatives of MPS with respect to the unknown parameters cannot be solved directly, so
we utilize numerical methods like the Newton-Raphson algorithms to calculate the MPS estimators.

2.3. Bayesian estimation

In this section we consider the Bayesian estimation of the unknown parameters 4 and «. The
Bayes estimates is considered under the assumption that the random variables 4 and a have an
independent gamma distribution is a conjugate prior to the extension of the exponential distribution
distributions. Assumed that A ~ Gamma(a,b) and o ~ Gamma(c,d), then, the joint prior density of

A and a can be written as
A a

g, a)<1""etaed; a,b,c, and d >0, (10)
here all the hyper parameters a,b,c and d are known and non-negative. For the choice of hyper-
parameters, the experimenters can incorporate their prior guess in terms of location and precision for

the parameter of interest. Such that E(a) = ba; Var(a) =ab’.

Based on the likelihood function (5) and the joint prior density (10), the joint posterior of & and
A is
A e 3 (1—(1+Ax, )zx) n -
gla, | x)=KA" " a" e b 4 e~ [T0+2x)"", (11)
i=1

here the normalizing constant K is

A a n o n -l
-2z 1-(1+Ax, -
KML — J’J‘irlﬂzfl an+cfl e b d ez,:l( ( ) ) (l+ix[-) lde da,:| .
0 i=1
In the method of the Markov chain Monte Carlo (MCMC) can be used to generate samples from
the posterior density function (11) and in turn to compute the Bayes estimates of the unknown
parameters. To generate samples from (11), we can rewrite the posterior density (11) as

gla, Al x)ec g (a] 4, x)g,(A]x).
For the extension of the exponential distribution distributions, the full conditional posterior
distributions of the parameters are given by

g A, x)e<a" e d ezjzl(mw,v)“) ﬁ(1+/1x[ )H,

i=1

A n o n
(i a, x)oe et 0 ) P14 ax, )

i=1
Since the full conditional posterior distributions do not have simple forms in perspective of
sampling, we use the Metropolis-Hastings algorithm within each Gibbs chain. To more example see
(Almetwally et al. 2018, Almetwally et al. 2019).
In our simulation study presented in the next section, MCMC procedure is used to generate the
full conditional posterior distributions of 4 and & under squared error loss function, obtain the
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_oN ) N0
Bayes estimates of 4 and o as A= 2/1— and & =Za—, respectively. We set the number of

i=I i=I

periods in the MCMC process to be N =10,000.

3. Stress-Strength Model
Let X and Y are the independent strength and stress random variables observed from ExEx
distribution. Then, the stress-strength reliability R is calculated as

R=Pr <20 =7 ([ £(0: e 2)dv) (it 2

Then, we have

(27<1+,{] 0 =(4d 07 )
dx

R= 1—1‘1021]:(1+i1x)“\ e (12)
If X ~ExEx(¢e,,4,) and Y ~ ExEx(a,,4,),

R=1- a,é g[alp_ 1](11 ) J‘: xpe-ZZ,o(’f;]u. " -Zf,o[ofj(ﬂa x)"

Figure 3 displays plots of the reliability functions of stress-strength for the ExEx distribution by

dx.

(12) for different values of parameters as follows
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Figure 3 Plots of the EXEx reliability functions of stress-strength by some values of parameters

The MLE, MPS and Bayesian estimation will be obtained to get the estimated model parameters
as well as the stress-strength system reliability in case of complete sample of observations.

3.1. Maximum likelihood estimation
The likelihood function of an extension of the exponential distribution for stress-strength model
is

@) =T/ LT/t o),

and the log-likelihood function of ExEx distribution under stress-strength model is given as
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[(Q)=InL(Q) =n(ng, +ln/L‘)+Zn:(l—(l+/11x,.)“‘)+(0{1 —I)anln(l+ﬂ1xl.)

+m(lne, +11’112)+i(1—(1+12yj)a2)+(O.’2 —1)i1n(1+,12yj), (13)

Jj=1 j=1
respectively. To obtain the normal equations for the unknown parameters, we differentiate Equation

(13) partially with respect to the parameters Q where Q = (al,ll,az,/lz) and equate them to zero.

The estimators Q can be obtained as the solution of the following equations.

S, S,
?: LY A+ 4,z)% In(1+ 2,2,)) In(1+ 4,z,); j=1,2,
a; o=l i=1
AQ) S, § =
—=——aq, 1+ 4, +(a, -
on, 4 270 AE) )Z(1+/1)

where z; =(x,v,y;,-), s; =(n,m).

3.2. Maximum product spacing

The Maximum product spacing for stress-strength model is denoted as following
1

GS(Q)_(ﬁD(xu ala ﬂ')] [ﬁD(yj’ aZ’ 2)]m+] > (14)

such that ZD (z,,,a 4 )—l, where

D =F(z,;a;,4)),
D[(zﬂ;aj,/ij): D,.:F(zﬂ; /1)—F(zj(,;l);aj,lj);i:2,...,sj,j:1,2,
D, =1-F(z,;a,,4)).

By using (14), the natural logarithm of the product spacing function of the ExEx distribution for
stress-strength model is denoted as following

5(Q) = InGS(Q) = ﬁ[m@ —e@*“*’"'*”“‘))+(1 ~(1+ A, )" )+iln( () _ fi-ess >"‘>ﬂ

n 1 1|:ln(1_ (1 (14 2,1)" )\J (1 (1+12y )az) éln(e(l(lﬂﬂ/l)”z) _e(l(Mz.v/)az)ﬂ' (15)

m+
To obtain the normal equations for the unknown parameters, we differentiate Equation (15)

partially with respect to the parameters Q and equate them to zero. The estimators Q can be
obtained as the solution of the following equations.

=142z, -
fgs(Q) 1 : a2, (14 4,2, )"

oA, _sj+1 [1_6(10%;[1) )j

1=(142,2 ;) -1 =144z, =
5; [e( o )aijl- (1+ljzﬂ )a] ]_(e( o ) j jl 1(1+ﬂjzﬂ 1) ]
+
; (6(1(1%[@,] )“/) _e(l—(HlJzﬂ )”/)j

-a,z, (l+/1 z. ) =

J< jn
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5 (Q) : e(l*(lvljz/‘l)af) 11’1(1+ﬂ - )

8gS < a;

aaj - Sj +1 ( (1—(1+/1j2/1)q’)j / _(l+ﬂ’jzjn) ln(l+ljz./'")
l—e

1-(1+4,2,) 1=(1+4,2;)
. (e( Y )ln(1+ljzjn )j—[e( " )ln(1+ﬁjzﬁ_1 )]
h (E(I(H}vzﬂl )q’) _ e(l—(uzﬂﬂ )4 ) ] ’

The above nonlinear equations cannot be solved analytically so, Q of Q.

3.3. Bayesian estimation

In this subsection, we discuss the Bayesian inference of the unknown parameters of an ExEx
distribution under stress-strength model. For Bayesian parameter estimation we will consider squared
error loss function. When the parameters of the model are unknown, a joint conjugate prior for the
parameters does not exist. We suggest using independent gamma priors for Q having pdfs. The joint
prior density of 4 and « can be written as

i

2
g« [[47 e "a, e ;s ab,candd=0,j=12, (16)
Jj=1

4 &
J
where the hyper-parameters a,,b,,a,,b,,c,,d,,c, and d , are selected to reflect the prior knowledge

about the unknown parameters and
lwx ~iY) l vk -~
(sz'l n, j Ezz':l n,
1 k ~if~i 1wx ~iY 1 K ~if~i 1wk ~i)
K =1 i=1 nl (n‘ _}ZH nlj K-1 i=1 nl (n‘ _EZH nlj

4. Simulation Study

In this section, we provide a complete algorithm of Monte Carlo simulation (MCS) study. We
explain our algorithm through an application in estimation methods framework, especially; we will
use Monte Carlo technique to compare between MLE, MPS and Bayesian estimation methods based
on complete data for estimating ExEx distribution in life time by R language.

J

Simulation Algorithm: We can build our model by generate all simulation controls. In this stage,
we must follow the following steps by order:

Step 1. Suppose different values of the parameters vector of ExEx distribution.

Step 2. Choose the sample size # =30,50 and 100.

Step 3. Generate the sample random values of EXEx distribution by using quantile function in
. 1 v }
equation x, =—{|1-In(1—-u, ) |* -1};0<u <1.
q = {[ (1-u,)]

Step 4. Solve differential equations for each estimation methods, to obtain the estimators of the
parameters for ExEx distribution, we calculate ¢ and A

Step 5. Repeat this experiment L —1 times. In each experiment, the same values of the parameters.

It is certain that, the values of generating random are varying from experiment to experiment even
though n are not changed. In the end, we have L -values of mean, MSE survival by (3, 12) and hazard
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by (4), we restricted the number of repeat this experiment to 10,000. Take the averages of these values

and call them Monte Carlo estimates, where & is the estimated value of 5= (a,l) and the mean

squared error (MSE) of the estimator, MSE = mean(ﬁ —06)°. After ending the treatment stage, we

must check and evaluate the simulation result before put or discuss (display) it in our paper (research).
All the estimates reveal the property of consistency, i.e., the MSE and reliability measure decrease

when » increases. Keeping « <1 and fixed, the MSE of A decreases, the MSE of & increases and
the MSE of reliability measure decreases when A increases, as shown in Table 1. In most cases, the
MPS method is superior to the MLE method with an increase hazard. While the Bayesian method
remains in the first place in estimation methods.

All the estimates reveal the property of consistency, i.e., the MSE and reliability measure decrease
when , increases. Keeping A fixed, the MSE of & decreases, the MSE of & decreases and the
MSE of reliability measure decreases when A increases, as shown in Tables 2-4. In most cases, the
MPS method is superior to the MLE method with an increase hazard, except in small samples and this
is so frequent when « <1.5. While the Bayesian method remains in the first place in estimation
methods, as shown in Figures 4 and 5.

From the Tables 5 and 6, we observe the following: In general, for increasing the sample size, the
MSE of the considered parameters and reliability measure of stress-strength decreases. The method of
Bayesian shows its absolute efficiency in estimating the parameters and reliability measure of stress-
strength model, where MSE values are lower than other methods, as shown in Figure 6.

Table 1 Mean and MSE for MLE, MPS and Bayesian of EXEx parameters when a = 0.5
and with different values of 1

a=051=0.5
MLE MPS MCMC

" Mean MSE Mean MSE Mean MSE
a 0.59488  0.05322 0.48937  0.02388  0.57361 0.02794

30 A 0.51300  0.11205 0.68778  0.19861  0.52821 0.06184
survival  0.30399  0.00169 031374  0.00166  0.26807 0.00135
hazard 8.96156 847578  10.16688 13.03217  8.23178 8.64200

a 0.56512  0.03943 0.49266  0.01601  0.53139 0.00742

50 y) 0.50010  0.06144 0.62249  0.10555  0.48734 0.01636
survival  0.30040  0.00112 0.30682  0.00109  0.29246 0.00057
hazard 8.90739  5.56718 9.73008  7.56715  8.80939 5.35966

a 0.52436  0.00807 0.48658  0.00596  0.51573 0.00348

100 ) 0.49998  0.02901 0.56934  0.04172  0.49516 0.01037
survival  0.29487  0.00050 0.29890  0.00049  0.29002 0.00028

hazard 8.98618  2.56423 9.47379 3.22060 8.89299 2.37430
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Table 1 (Continued)
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a=051=1.5
" MLE MPS MCMC
Mean MSE Mean Mean MSE Mean

30 a 0.63314  0.11880 0.51051 0.02151 0.57599 0.02172
p) 1.37657  0.52672 1.66502 0.43466 1.35241 0.19312

survival 0.30875  0.00179 0.32058 0.00167 0.29147 0.00068
hazard 2.89543  0.93810 3.24347 1.27990 2.79876 0.93917

a 0.56224  0.03184 0.49628 0.00862 0.51572 0.00311

50 A 1.39775  0.30360 1.61921 0.24352 1.46457 0.03334
survival 0.30169  0.00089 0.31011 0.00087 0.29608 0.00054
hazard 2.94649  0.60509 3.19485 0.78147 2.98323 0.58323

a 0.52162  0.00509 0.49063 0.00363 0.50593 0.00134

100 A 1.44668  0.12824 1.58901 0.14198 1.48368 0.01973
survival 0.29478  0.00035 0.30057 0.00038 0.29172 0.00020
hazard 2.99828  0.26497 3.14837 0.32793 3.01095 0.26210

a=05,1=3.0

a 0.55929  0.05379 0.48941 0.00931 0.53064 0.00707

30 A 2.81155  0.60979 3.11389 0.34674 2.85008 0.27680
survival 0.29914  0.00071 0.31868 0.00113 0.29594 0.00045
hazard 1.48963  0.21478 1.65395 0.29913 1.48997 0.21031

a 0.54103  0.03020 0.48654 0.00301 0.50762 0.00212

50 A 2.84105  0.62670 3.09685 0.18276 2.97411 0.03174
survival 0.29729  0.00052 0.30933 0.00056 0.29410 0.00043
hazard 1.49297  0.13340 1.60999 0.17023 1.50995 0.12889

a 0.51128  0.00257 0.49054 0.00148 0.50344 0.00103

100 A 2.94140  0.12712 3.07084 0.10072 2.99475 0.01838
survival 0.29263  0.00018 0.30126 0.00024 0.29229 0.00019
hazard 1.49281 0.06736 1.55879 0.07885 1.50084 0.06573
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Table 2 Mean and MSE for MLE, MPS and Bayesian of EXEx parameters when o =1.5
and with different values of A4

a=151=05
" MLE MPS MCMC
Mean MSE Mean MSE Mean MSE
a 1.66809 0.35623 1.30389 0.29091 1.47989 0.11180

30 A 0.59847 0.18783 0.81946 0.35808 0.60276 0.05966
survival  0.38658 0.00036 0.39288 0.00032 0.36998 0.00140
hazard 1.05901 0.02960 1.14573 0.04058 1.01657 0.03136

A

a 1.62096 0.22994 1.34259 0.20657 1.49200 0.02307

50 A 0.55412 0.09087 0.71726 0.19092 0.52004 0.00835
survival ~ 0.38945 0.00023 0.39174 0.00025 0.39215 0.00048

hazard  1.06178  0.01602  1.11830  0.02003  1.06944  0.01560

é 1.58618  0.16217  1.39871  0.12642  1.50184  0.01477

100 ] 0.52771  0.04324  0.62067  0.07552  0.51056  0.00477
survival  0.39102  0.00014 039179  0.00016  0.39152  0.00021

hazard  1.06475  0.00883  1.09711  0.01020  1.06562  0.00867

a=151=15

a 1.94743  0.87027  1.46045 036492 159284  0.10808

30 y) 151318 096218  1.97679  1.18410 149941  0.14194
survival  0.39353  0.00028  0.40161  0.00020  0.39253  0.00081

hazard  0.35180  0.00333 037958  0.00438  0.35430  0.00321

a 1.80966  0.57281  1.45225  0.27681 1.50631  0.01714

50 A 1.52989  0.64473  1.89544  0.84467 149713  0.02394
survival ~ 0.39359  0.00021 039753  0.00015  0.40077  0.00114

hazard  0.35304  0.00215 037169  0.00262  0.36355  0.00205

a 170656  0.33274  1.46307  0.16467 150406  0.01036

100 y 148624 036150  1.73747 042839 150190  0.01612
survival ~ 0.39468  0.00014 039531  0.00010  0.39571  0.00044

hazard  0.35562  0.00105 036617  0.00120  0.35948  0.00098

a=151=30

é 200318  1.11189 146458  0.17177  1.57516  0.06323

30 ] 274916  1.92576 337882 1.20923  2.94043  0.23351
survival ~ 0.39709  0.00011  0.40946  0.00031  0.39980  0.00107

hazard ~ 0.17367  0.00081  0.18797  0.00103  0.17846  0.00079

a 1.88991  0.82655  1.46449  0.11353  1.51080  0.01408

50 ] 2.84384  1.81114 328059  0.81588  2.98196  0.03063
survival ~ 0.39657  0.00015  0.40400  0.00013  0.40000  0.00134

hazard  0.17583  0.00048  0.18545  0.00057  0.18053  0.00042

a 1.80891 050709  1.47446  0.06027 150664  0.00802

100 y) 272458 1.09764  3.15668  0.43294 299301  0.01831

survival ~ 0.39840 0.00014 0.39921 0.00004 0.39491 0.00052
hazard  0.17775 0.00025 0.18309 0.00029 0.17919 0.00024
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Table 3 Mean and MSE for MLE, MPS and Bayesian of EXEx parameters when « =3.0
and with different values of A4

a=3.0,A=05
n MLE MPS MCMC
Mean MSE Mean MSE Mean MSE

a 3.03467 0.31470 2.74217 0.38518 2.87975 0.22365

30 A 0.56012 0.11058 0.62347 0.17813 0.56502 0.02497
survival 0.41074 0.00028 0.43008 0.00036 0.40490 0.00092

hazard 0.43445 0.00349 0.46753 0.00489 0.42813 0.00362

a 3.07436 0.33960 2.81452 0.21761 2.97892 0.02981

50 p) 0.52749 0.05101 0.56431 0.06492 0.50991 0.00373
survival 0.41407 0.00014 0.42749 0.00023 0.41706 0.00052

hazard 0.43610 0.00206 0.45880 0.00273 0.44003 0.00209

a 2.94291 0.25166 2.85951 0.13069 2.99047 0.01867

100 p) 0.55194 0.04894 0.54353 0.02662 0.50835 0.00218
survival 0.41479 0.00010 0.42437 0.00012 0.41795 0.00023

hazard 0.43486 0.00105 0.44851 0.00120 0.43685 0.00105

a=3.0,1=15

a 3.34024 1.23929 2.72874 0.56213 2.99092 0.18260

30 p) 1.66399 0.94957 1.82715 0.59593 1.55702 0.08917
survival 0.41057 0.00017 0.42993 0.00026 0.42093 0.00105

hazard 0.14280 0.00036 0.15403 0.00046 0.14756 0.00037

a 3.28550 1.15310 2.75542 0.41808 2.99058 0.02650

50 y) 1.63631 0.69903 1.75207 0.35555 1.49699 0.01872
survival 0.41284 0.00009 0.42594 0.00013 0.42476 0.00140

hazard 0.14441 0.00022 0.15213 0.00028 0.14965 0.00027

a 3.04631 0.74717 2.80515 0.23996 2.99570 0.01723

100 i 1.72029 0.63023 1.67284 0.17363 1.50368 0.01100
survival 0.41317 0.00008 0.42311 0.00005 0.42167 0.00061

hazard 0.14486 0.00012 0.14960 0.00014 0.14754 0.00012

a=3.0,A=3.0

a 3.77067 2.78647 2.85302 0.25646 3.02692 0.15340

30 p) 2.91819 2.67049 3.18848 0.45241 2.96689 0.16916
survival 0.41378 0.00017 0.43404 0.00060 0.42841 0.00163

hazard 0.07194 0.00010 0.07787 0.00013 0.07604 0.00011

a 3.50924 1.86948 2.86380 0.16909 2.99510 0.02509

50 A 3.00010 1.91814 3.18641 0.30135 2.98844 0.02913
survival 0.41610 0.00007 0.43019 0.00035 0.42680 0.00202

hazard 0.07186 0.00006 0.07592 0.00007 0.07462 0.00005

a 3.33708 1.09460 2.89536 0.10194 3.00130 0.01522

100 A 3.01925 1.34534 3.11719 0.16516 2.98729 0.01779
survival 0.41646 0.00003 0.42498 0.00015 0.42054 0.00085

hazard 0.07281 0.00003 0.07526 0.00004 0.07386 0.00002
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Table 4 Mean and MSE for MLE, MPS and Bayesian of EXEx parameters when o =5.0
and with different values of 4
a=50,1=1.5
MLE MPS MCMC
Mean MSE Mean MSE Mean MSE
a 496935 1.51168 4.80995 0.24573  4.93800  0.26088

30 A 1.81123  1.19999  1.54742  0.06261  1.55281  0.06277
survival  0.41935  0.00037  0.44636  0.00091  0.43237  0.00116
hazard  0.07942  0.00011  0.08629  0.00015 0.08240  0.00011

a 5.05866  0.78220  4.83439  0.15603  4.98159  0.03082

50 A 1.59157  0.26579  1.53596  0.03578  1.50504  0.01646
survival  0.42430  0.00022  0.44159  0.00052  0.43321  0.00150
hazard  0.08045 0.00006  0.08512  0.00008  0.08277  0.00007

a 5.00921  0.98968  4.89491  0.07757  5.00092  0.01918

100 A 1.60894  0.29749  1.51415 0.01512  1.49803  0.00885

survival  0.42435  0.00009 0.43573  0.00022  0.42901  0.00058
hazard  0.08110  0.00003  0.08399  0.00004  0.08212  0.00004

a=50,1=3.0
a 5.49853  2.95436  4.83599  0.17311  4.95377  0.22890
30 A 3.23043  2.61829  3.02878  0.12096  2.99933  0.14102

survival  0.42116  0.00032  0.44689  0.00102  0.44064  0.00212
hazard  0.03998  0.00003  0.04349  0.00004  0.04264  0.00004

a 5.30403  2.56847 4.86101  0.11422  4.97478  0.02804

50 A 331764  2.56027  3.02739  0.07729  2.99138  0.02511

survival  0.42248  0.00016  0.44159  0.00059  0.43320  0.00205
hazard  0.04026  0.00002  0.04275  0.00002  0.04153  0.00001

Q 5.15858  1.02403  4.90820  0.05516  4.99159  0.01852

100 A 3.08877  0.74298  3.01974  0.03589 2.99856  0.01700

survival  0.42551 0.00009  0.43606  0.00025  0.43009  0.00086

hazard  0.04050 0.00001 0.04192  0.00001 0.04107  0.00001
a=50,41=50

a 5.680840 2.860923 4.865118 0.178747 4.968343 0.209533

30 A 4.950917 3.120347 5.029074 0.118472 4.946462 0.223036

survival 0.422584 0.000378 0.446757 0.001058 0.444833 0.002616
hazard  0.023862 0.000009 0.025931 0.000014 0.025774 0.000014

a 5.532185 2.739056 4.879961 0.107061 4.984977 0.028485

50 A 5.052125 3.602149 5.028304 0.083244 4.984005 0.030100

survival 0.424315 0.000179 0.441760 0.000634 0.433633 0.002174
hazard  0.024093 0.000005 0.025566 0.000007 0.024838 0.000003

Q 5.519398 2.892982 4.919757 0.053511 4.996870 0.019168

100 A 5.027814 3.143470 5.019490 0.040923 4.991419 0.018846

survival 0.426187 0.000067 0.436422 0.000291 0.430631 0.001014
hazard  0.024273  0.000003 0.025138 0.000004 0.024634 0.000002
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Figure 5 Plots of the MSE of parameters when A =1.5 and with different values of o
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Table 5 Mean and MSE for MLE, MPS and Bayesian of ExEx parameters for stress-strength model
when ¢, =0.5,4, =09,a, =09,4, =1.5
(n,m) MLE MPS Bayes
’ Mean MSE Mean MSE Mean MSE
a, 059667 0.06552 0.48769  0.02816  0.52360  0.00592
0.92999  0.33065 1.24318  0.59749  0.86891 0.02810
(30,200 @, 1.30318 0.57414 095423  0.24378  0.91719  0.01350
A, 1.35833  0.85819  1.99598  1.69263  1.49766  0.02967
R 0.77532  0.00341 0.75721  0.00340  0.77329  0.00154
a, 056288  0.02821 0.49270 0.01479  0.51748  0.00334
4 0.88419  0.17273  1.09654 0.28852  0.87468  0.01856

(50,40) @, 1.11403  0.24489 091240 0.14754  0.91013  0.00779
A, 141357  0.48277 1.85933  0.90450 1.50156  0.01765
R 0.77561  0.00218  0.76402  0.00220  0.77360  0.00102
a, 0.52284 0.00769  0.48530  0.00565  0.50556  0.00127
A 091027  0.09965 1.03348  0.13892  0.89060  0.00681
(100,70) &, 1.02257  0.10911  0.89456  0.07499  0.90377  0.00352
A, 144568  0.30869 1.74873  0.51307 1.49707  0.00734
R 0.77413  0.00110  0.76706  0.00112  0.77359  0.00045
a, 059748 0.067011 0.488782 0.030782 0.523678 0.005434
A 0939538 0.353553 1.257958 0.647879 0.861523  0.02734
(30,30)  «, 1.236736 0.488852 0.941885 0.199651 0.915826 0.010885
A, 1414832 0.791999 1.892941 1.141962 1.49347  0.027591
R 0.77553  0.003243 0.759996 0.003181 0.77435  0.001349
a, 0.556114 0.02554 0.486826 0.013375 0.513975 0.003436
A 0.885732 0.166738 1.098986 0.277789 0.871903 0.017735
(50,50)  «, 1.104154 0.206331 0.913773 0.105485 0.909875 0.006627
A, 1384466 0.440184 1.772895 0.725963 1.493925 0.016915
R 0.7759  0.001769 0.765103 0.001796 0.775157 0.000807
a, 0.521714 0.007302 0.484404 0.005393 0.505193 0.001346
A4 0905112 0.088704 1.029167 0.126605 0.892328  0.006477
(100,100) &, 0.992143 0.078847 0.884044 0.045039 0.907428 0.002934
A, 1477091 0.279797 1.708956 0.36437 1.496547 0.007238
R 0.775071 0.000928 0.768714 0.000933  0.77452  0.000406
a, 0.60304 0.06613  0.49260 0.02942  0.52257  0.00553
A 090608 031412 1.21602 0.55916 0.86186  0.02659
(30,40) @, 1.15014 0.33520 0.90121  0.12074  0.91323  0.00872
A, 145673  0.70000 1.87261  0.96745  1.49814  0.02869
R 0.77603  0.00292  0.76185  0.00282  0.77506  0.00118
a, 0.55659 0.02923  0.48735 0.01657 0.51382  0.00316
A 091008 0.19316  1.13160  0.33355  0.87853  0.01732
(50,60) @, 1.03542 0.13775 0.88192  0.07946  0.90600  0.00605
A, 147414 0.39998  1.80985  0.62388  1.50327  0.01758
R 0.77515  0.00189  0.76465 0.00194  0.77387  0.00085
a, 0.52657 0.00832  0.48847 0.00590 0.50721  0.00131
A 0.89933  0.09393  1.02243  0.13119  0.88908  0.00729
(100,150) @, 097715 0.05776  0.88675  0.03394  0.90363  0.00245
A, 147308 0.23966 1.66306 0.28204 1.50096  0.00714
R 0.77468  0.00091  0.76879  0.00091  0.77389  0.00037
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Table 6 Mean and MSE for MLE, MPS and Bayesian of EXEx parameters for stress-strength model
when o, =1.5,4, =2.5,a, =1.5,4, =2.5
MLE MPS Bayes

(n, m) Mean  MSE  Mean MSE  Mean  MSE
o 23248 2.1587 15459 05311 14967 0.0189

A 19065 22625 2.5406 2.1210 1.9720 0.0300
(30,200 @, 3.8310 3.2068 2.7277 1.0673 3.0056 0.0295
A, 1.8831 2.0880 2.3068 1.8002 1.7123 0.0258
R 0.6820 0.0064 0.6702 0.0031 0.6822 0.0014
a, 20187 12575 1.4991 03654 1.5036 0.0114
A 1.9805 1.4401 24756 1.4509 1.9888 0.0182
(50,40)  a, 3.5306 2.1880 2.7547 0.7631 3.0005 0.0190
A, 1.8893 14777 2.1375 1.0197 1.7003 0.0157
R 0.6785 0.0031 0.6689 0.0020 0.6769 0.0009
a, 1.7974 05949 14697 0.1815 1.5001 0.0053
A 1.9967 0.9343 23235 0.8052 1.9946 0.0075
(100,70) «, 3.4389 1.5293 2.7913 0.4915 3.0028 0.0080
A, 17908 0.9414 2.0060 0.5804 1.7024 0.0065
R 0.6788 0.0014 0.6711 0.0012 0.6777 0.0004
a, 22217 20379 15079 0.5426 1.5002 0.0193
A 2.0500 22757 26797 23374 19777 0.0277
(30,30) @, 3.7129 3.1513 27164 0.9237 3.0125 0.0277
A, 19848 23249 22521 1.3817 1.7145 0.0241
R 0.6737 0.0078 0.6687 0.0028 0.6818 0.0014
a, 19365 1.0509 14568 03303 1.5007 0.0103
A 20382 1.4424 25371 15181 1.9888 0.0189
(50,50) @, 3.5419 2.1468 2.7633 0.6286 2.9994 0.0176
A, 1.8218 1.1965 2.0650 0.7293 1.7048 0.0144
R 0.6774 0.0025 0.6690 0.0017 0.6781 0.0008
a, 18019 05648 14724 0.1727 1.5015 0.0055
A 1.9541 0.8291 22945 0.7305 1.9935 0.0067
(100,100) «, 3.2992 1.4584 2.7667 0.4190 2.9986 0.0074
A, 1.8835 0.9949 19896 0.4467 1.6991 0.0066
R 0.6796 0.0012 0.6726 0.0010 0.6767 0.0004
a, 22321 20014 1.5123 0.5247 1.5006 0.0196
A 20135 22107 2.6468 23022 1.9673 0.0281
(30,40) @, 3.6859 2.7540 2.7507 0.7039 3.0066 0.0285
A, 19095 19494 21273 1.0048 1.6989 0.0213
R 0.6755 0.0053 0.6693 0.0026 0.6804 0.0013
a, 20102 1.1889 14959 03511 1.4985 0.0122
A 19463 1.2733 24612 13705 1.9886 0.0171
(50,60) @, 3.4144 19632 2.7138 0.6075 3.0014 0.0173
A, 19140 12435 2.1110 0.7392 1.7069 0.0141
R 0.6800 0.0019 0.6713 0.0017 0.6791 0.0008
a, 18126 0.6223 1.4806 0.1889 1.5058 0.0054
A4 1.9711 0.9007 22999 0.7584 1.9947 0.0075
(100,150) o, 3.3383 1.3079 2.8225 0.2886 2.9970  0.0069
A, 1.7845 0.6902 1.8996 0.2535 1.7007 0.0056
R 0.6775 0.0010 0.6722 0.0008 0.6759 0.0004
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Figure 6 Plots of the reliability functions of stress-strength and MSE

5. Application

The numerical results of the parameter estimation and reliability estimation of ExEx distribution
of real data have been presented. And also, we present the numerical results of the stress-strength
model of ExEx distribution.

Firstly: We discuss an application of ExEx distribution using real data set to illustrate any
estimation methods of ExEx distribution provides significant improvements over. The data represents
the remission times (in months) of a random sample from bladder cancer patients reported in Lee and
Wang (2003).

The data are as follows: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98,
6.97,9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47,
14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 7.32, 10.06, 14.77,
32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05,
2.69,4.23,7.62,10.75, 16.62, 43.01, 1.19,2.75, 4.26, 5.41, 7.63, 17.12,46.12, 1.26, 2.83, 4.33, 5.49,
7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,
18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 3.31, 4.51, 6.54, 8.53,
12.03,20.28, 2.02, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.
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Table 7 Estimate, standard error, Kolmogorov-Smirnov test and reliability measure for
ExEXx distribution

MLE MPS Bayes
Estimate Standard Estimate Standard Estimate Standard
error error error

a 0.9341502 0.158806 0.84832 0.137941  0.9348  0.00437
yl 0.1163695 0.033877 0.13305 0.038098  0.1123  0.00254

D 0.082065 0.086685 0.07577
p-value 0.378900 0.313700 0.480100
survival 0.3626037 0.3644294 0.375822
hazard 0.1034702 0.09963253 0.0998613

The results of goodness of fit tests by using Kolmogorov-Smirnov test, based on the p-values for
all methods, it is clear that the ExEx distribution fit the data of a bladder cancer study, as seen in Table
7. Depending on stander error, the comparison between the three methods show that the Bayes method
estimation is the beast, next MPS then MLE method, because it has the least stander error. Also, the
reliability estimation confirms this conclusion as the Bayes has the largest survival which means the
probability of remission times in months from bladder cancer.

Secondly: We discuss a stress-strength reliability of ExEx distribution using real data set to
illustrate any estimation methods of ExEx based on stress-strength reliability model provides
significant improvements over. The real data sets of the waiting times before service of the customers
of two banks, A and B, respectively have been used. These data sets have been discussed by
Singh et al. (2014a) for estimating the stress-strength reliability in case of the generalized Lindley
distribution.

The data of Bank A are as follows: 0.8,0.8,1.3,1.5,1.8,19,1.9,2.1,2.6,2.7,2.9,3.1,3.2, 3.3,
3.5,3.6,4.0,4.1,4.2,42,43,43,44,44,4.6,4.7,4.7,48,49,49,5.0,5.3,55,5.7,5.7,6.1, 6.2,
6.2,6.2,63,6.7,69,7.1,7.1,7.1,7.1,7.4,7.6,7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6,
9.7,9.8,10.7,10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6,
13.7,13.9, 14.1, 15.4,15.4,17.3,17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0,
27.0,31.6, 33.1, 38.5.

The data of Bank B are as follows: 0.1,0.2,0.3,0.7,09,1.1,1.2,1.8,19,2.0,2.2,2.3,2.3,2.3,
2.5,26,2.7,27,29,3.1,3.1,32,34,34,35,39,4.0,4.2,4.5,47,53,5.6,5.6,6.2,6.3,6.6,6.8,7.3, 7.5,
7.7,7.7,8.0,8.0,8.5,8.5,8.7,9.5,10.7,109, 11.0, 12.1, 12.3,12.8, 12.9, 13.2, 13.7, 14.5, 16.0, 16.5, 28.0.

Table 8 Estimate, Stander Error, Kolmogorov-Smirnov test and reliability measure
for ExEx distribution of Bank A data

MLE Bayes
Estimate Standard error Estimate Standard error
a 3.32613 1.78020 3.32445 0.00412
A 0.02123 0.01356 0.01951 0.00227
D 0.10759 0.09838
p-value 0.19730 0.28780
survival 0.4132846 0.450830

hazard 0.1099570 0.097718
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Table 9 Estimate, Standard Error, Kolmogorov-Smirnov test and reliability measure
for EXEx distribution of Bank B data

MLE Bayes
Estimate  Standard error Estimate  Standard error

a 2.06586 1.07900 2.06221 0.00531

yl 0.05754 0.03946 0.05531 0.00227

D 0.08547 0.07789
p-value 0.77310 0.85980
survival 0.404120 0.421480
hazard 0.165820 0.157319

In this data, we cannot use MPS because there are equal observation in the data, so the spacing
will be zero hence the product will also be zero see Equations (3.4) and (3.5) and to compute the MPS
estimator, we take the log of product spacing, as we know the log(0) equal-Inf. Despite the
effectiveness of the MPS method in the estimate, but this problem hinders their use in the estimation
process.

Table 10 Estimate and reliability of stress-strength model for EXEx distribution of Bank data

dl ﬂjl 6?2 jz R\
MLE 3.328227 0.021210 2.112340 0.055860 0.632156

Bayes  2.184240 0.043160 2.095250 0.076005 0.646155

6. Conclusions

In this paper, parameters estimation for the ExEx distribution are discussed based on the MPS,
MLE and the Bayesian methods. In this model, the estimators based on MPS method behave quite
better than the estimators based on the MLE but the Bayesian estimation is the best one, where the
MSE is less than from the other methods. In case of reliability stress-strength model estimation, we
note that when parameters value of stress is small, the estimated model efficiency increases. By
checking the previous results, we note that MPS is better than MLE. We can conclude that the MPS
method is a good alternative method to the usual MLE method in many situations. We hope that the
finding in this paper will be useful for researchers and statistician.
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