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Abstract 

The aim of this study  is to derive the average run length  (ARL) for detecting a changes  in the 

process mean of a  long-memory  autoregressive  fractionally  integrated moving-average  model with 

exogenous variables  (ARFIMAX( , ))*, ,p d q r    process with exponential white noise on a cumulative 

sum  (CUSUM) control chart. ARLs  are derived using  explicit  formulas  and  the numerical  integral 

equation  (NIE)  method,  which  is  the  solution  for  the  integral  equation.  Moreover,  proof  of  the 

existence and uniqueness of the proposed ARL based on Banach’s fixed-point theorem are presented. 

The performances of the two ARLs were evaluated in terms of accuracy and computational time for 

monitoring  shifts  in the process mean  for an   ARFIMAX , *, ,p d q r  process on a CUSUM control 

chart.  The  results  reveal  that  although  their  accuracies  were  similar,  the  explicit  formula  method 

consumed less computational time than the NIE method and so is recommended as a good alternative 

for this scenario. 

______________________________ 

Keywords: ARFIMA with exogenous variables, numerical integral equation (NIE) method, exponential 

white noise. 

 

1. Introduction 

Statistical process control is a popular approach for monitoring processes, with the key tool being 

the  control  chart.  The  Shewhart  control  chart  (Shewhart  1931)  was  the  first,  followed  by  the 

Cumulative Sum (CUSUM) control chart  initially suggested by Page (1954) and  the exponentially 

weighted  moving-average  (EWMA)  control  chart  first  reported  by  Roberts  (1959).  The  Shewhart 

control chart is appropriate for when there is a large shift size in the statistic parameter on interest (the 

mean or  variance)  of  a  process  when  the  observations  follow a  normal  distribution. Concurrently, 

small shift sizes in a statistic parameter can be detected by using the CUSUM and EWMA control 

charts;  these  are  also  more  applicable  for  when  the  observations  follow complex patterns  such  as 

autocorrelation or changing point (Yashchin 1993, Wardell et al. 1994). 
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The  prominent  feature  of  the  CUSUM  control  chart  is  that  it  can  detect  unstable  processes 

appropriately for subgroups of data and single observations. The use of the CUSUM control chart for 

real observations was reported by Sheng-Shu and Fong-Jung (2013) who suggested that for monitoring 

a quality control process for wafer production, the CUSUM control chart is better than the EWMA 

control  chart.  In  a  study by  Benoit  and  Pierre  (2009),  the  CUSUM control  chart  was  found  to  be 

suitable  for  small  shifts  and  persistent  changes  in  the  mean  and  variance  of  North  Sea  cod  trawl 

numbers  for  an  international  bottom  trawl  survey.  In  the  present  study,  the  effectiveness  of  the 

CUSUM control chart and its application to real-world situations is of interest. 

Observations  collected  from  real  stochastic  processes  often  have  a  time-series  component.  In 

particular, econometric observations in a time-series model can have autoregressive (AR) and moving 

average (MA) components. When establishing a model, the error (the difference between the actual 

and approximated value) should be as small as possible for maximum accuracy. The error of a time-

series model is called white noise that is normally distributed arising from autocorrelated observations. 

Sometimes,  the white noise in autocorrelated data is not normally distributed,  thus the  form of the 

time-series model where the white noise is exponentially distributed, such as wind speed, the amount 

of dissolved oxygen in a river, and daily flow rates of a river, is especially interesting. For example, 

Jacob and Lewis (1977) considered an ARMA(1,1) process with exponential white noise. At a later 

time, Mohamed and Hocine (2003) conducted a Bayesian analysis of AR(1) with exponential white 

noise, while Pereira and Turkrman (2004) used exponential white noise to develop a Bayesian analysis 

of threshold AR models. Recently, Suparman (2018) proposed parameter estimations for an AR model 

with exponential white noise when the order is unknown. 

Conventional models used for short-memory processes  AR ( ),p   MA( ),q ARMA( , ),p q  and AR 

integrated MA  (ARIMA( ), ),p d q  cannot be applied for long-memory ones. This problem has been 

solved by the establishment of several models, the best-known being the AR fractionally integrated 

MA  (ARFIMA( , , ))p d q   model.  In  addition,  the  ARFIMAX  model  is  an  extension  of  ARFIMA 

through the inclusion of exogenous variable, i.e.  ,ARFIMAX( )*, , .p d q r  Granger and Joyeux (1980) 

and  Hosking  (1981)  created ARFIMA  models  for  a  long-memory process  for  realized volatilities. 

Moreover, Ebens  (1999) used ARFIMAX  models  for estimating  the  realized volatilities  in  a Dow 

Jones Industrial Average portfolio. There is a relationship between econometric models and economic 

indicators (variables affecting economic forecasting). However, an exogenous variable is not affected 

by other variables in the system, only by external influences (for instance, the investment policies of 

the government) and include exchange, interest, and inflation rates, etc. Exogenous variables affect an 

econometric model when forecasting economic situations. For economic forecasting and other fields, 

if the forecasting model includes an exogenous variable, the model is usually more accurate than one 

without it. This type of time-series model is an interesting concept. Many control charts have been 

used for time-series modeling with ARFIMA. Ramjee (2000) analyzed the performance of Shewhart 

and EWMA control charts with correlated observations in an ARFIMA model; the results indicate that 

the control charts did not perform well for detecting process shifts, and so proposed the hyperbolic 

weighted MA (HWMA) control chart. Later, Ramjee et al. (2002) presented an HWMA forecast-based 

control  chart  especially  designed  for  a  non-stationary  ARFIMA  model  with  autocorrelated  data. 

ARFIMA and ARIMA models have been applied to applications for monitoring the air quality data in 

Taiwan  (Pan  and  Chen  2008);  the  authors  concluded  that  residual  control  charts  using  ARFIMA 

models were more suitable than an ARIMA model. The EWMA control chart to detect a change in 

the mean of a long-memory process was recently introduced by Rabyk and Schmid (2016), with the 

control chart’s design based on an   ARFIMA , ,p d q  process. 
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The statistical performances of control charts are generally evaluated in terms of the average run 

length (ARL) based on the expectation of the run length distribution. In other words, ARL represents 

the average number of observations plotted on a control chart until it provides an out-of-control signal 

or  a  false  alarm.  The  ARLs  when  the  process  is  in-  or  out-of-control  are  denoted  by  ARL0  

and ARL1, respectively. ARL0 should be large when the process is operating on target (the mean is at 

the desired level) but on the other hand, ARL1 should be small  to bestow the capability of rapidly 

detecting a change  in  the process mean. This performance measure can be computed by using  the 

integral equation    (IE) approach originally  introduced by Page (1954),  the Markov chain approach 

(MCA)  by  Brook  and  Evans  (1972),  Monte  Carlo  (MC)  simulation  by  Hawkins  (1981),  or  the 

numerical  IE  (NIE)  method  by  Peerajit  et  al.  (2018),  among  others.  The  IE  method  is  the  most 

advanced but requires a great deal of programming and computation. MCA requires discretization of 

the process continuity into many steps and calculations of a matrix inverse. MC is simple to program 

and good for checking accuracy but requires a large number of sample trajectories. NIE is good for 

checking the accuracy of explicit formulas, so it is usually very time consuming and it is also difficult 

and laborious to find the optimal design. In this paper, we derive explicit formulas and the NIE method 

through an algorithm developed in the Mathematica program. 

The rest of this paper is organized as follows. First, characteristics of the generalized ARFIMAX 

process  and  the  CUSUM  control  charts  are  reported  in  Section  2.  Derivations  of  the  ARLs  using 

explicit formulas and the NIE method for a long-memory process with exponential white noise on a 

CUSUM control chart are presented in Section 3. The solution of the IE to derive an exact expression 

for the ARL for monitoring shifts in the process mean on CUSUM control charts and the existence 

and uniqueness of the ARL via Banach’s fixed-point theorem is confirmed and discussed in Section 

4. The ARL results  to  compare  the performances of  the  ARLs based on explicit  formulas and  the  

NIE method for monitoring changes in the process mean are reported in Section 5. In section 6, the 

application of the ARL derived from explicit formulas and the NIE method on a CUSUM control chart 

is illustrated using the US dollar (USD) exchange rate data with an exogenous variable. ARLs using 

the two methods are compared in terms of their out-of-control performance. Finally, a discussion and 

conclusions of the study are provided in Section 7. 

 
2. Analysis and Characteristics of the Generalized ARFIMAX Process and the CUSUM 

Control Chart  

In  this  section,  we  describe  the  relevant  basics  of  a  long-memory  ARFIMAX  model  with 

exponential white noise. We also define the generalized ARFIMAX process used on a CUSUM control 

chart  appropriate for monitoring  shifts  in  the  process mean.  In  the  last  subsection,  we  explore  the 

characteristics of the ARL related to the evaluation of control chart performance. 

 

2.1.  The generalized ARFIMAX process 

The ARFIMAX model is an extension of the AR fractionally integrated MA model suggested by 

Granger and Joyeux (1980) and Hosking (1981). The  ARFIMAX( , , )*,p d q r  process, where  p  is the 

AR order,  q  is the MA order,  *d  is the fractional order of integration, and  r  means there are exogenous 

variable order  in  the  model.  Ebens  (1999)  was  applied  in  the  research. The  ARFIMAX( , , )*,p d q r  

process can be generalized as 

  *

1

( )(1 ) ( ) ,
r

d
p t k k q t

k

B B Y X B    


      (1) 
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where  1 2tY ,t , ,...  is a sequence of ARFIMAX process,    is the constant process mean of  ,
t

Y

kX  is an exogenous variable,  k  is an unknown parameters.,  t  is a white noise process assumed to 

be  exponentially  distributed,  ( )p B  and  ( )q B  are  AR  and  MA  polynomials  in  ,B  respectively, 

when  B  is  a  backward-shift  operator  defined  by 
1
.

t t
BY Y


  The  differencing  operator  (1 )B  is 

raised  to  a  fraction  power,  *,d  denoted  by  the  fractional  order  of  integration.  The  fractional 

differencing operator  *(1 )dB  can be defined according  to  the binomial expansion as described by 

Granger and Joyeux (1980), and Hosking (1981) as follows 

 
*

* * * * *
* 2 3( 1) ( 1)( 2)

(1 ) 1 ...,
2! 3!

  
     d d d d d d

B d B B B   (2) 

where  the  parameter  *d  is  not  an  integer  and  represents  the  fractional  order  of  integration.  

When  the  autocorrelations  are  all  positive,  process 
tY  is  intermediate-memory  for  0.5 * 0,d  

short-memory  (or short-range dependence) corresponding to a standard ARMA process for  * 0,d   

and long-memory (or long-range dependence) for  * 0.5.d   

Both  Equations  (1)  and  (2)  can  be  respectively  rearranged  for  the  generalized 

ARFIMAX( , , )*,p d q r  process with exponential white noise on a CUSUM control chart as follows 

* * * * *
*

1 1 1 2 1 3 1 3

* * * * *
*

2 2 2 3 2 4 2 5

* * * * *
*

1 2 3

( 1) ( 1)( 2)
...

2! 3!

( 1) ( 1)( 2)
...

2! 3!

( 1) ( 1)( 2)

2! 3!

t t t t t

t t t t

p t p p t p p t p p t p

d d d d d
Y Y d Y Y Y

d d d d d
Y d Y Y Y

d d d d d
Y d Y Y Y

    

   

   

   

   

      


   
     
 

   
     
 

  
    



1 1 2 2
1

* * * * *
*

1 2 3

...

...

( 1) ( 1)( 2)
...

2! 3!

r

t t t q t q i i
i

t t t

X

d d d d d
d Y Y Y

         


  



 
 
 

    

   
    
 



 

or  
* *

*
(i 1) (i 2)

1

( 1)
...

2!

p

t i t i i t i t
i

d d
Y Y d Y Y       



 
     

 
  

 
* *

*
1 2

1 1

( 1)
... ,

2!

q r

t j t j k k t t
j k

d d
X d Y Y     

 

 
      

 
    (3) 

where  t  is  a  white  noise  process  assumed  to  be  an  independently  identically  distributed  (i.i.d.) 

observed  sequence  in  exponential  distribution  ( ~ Exp( )).
t
   Furthermore,   1 1i   and 

1 1j    are the constraints of the AR and MA coefficients, respectively. In this research, the initial 

value  of  the  ARFIMAX( , , )*,p d q r  process  1 2 ( 1), ,..., , ,...t t t p t pY Y Y Y    
 
and 

1 2, ,...,  t t t q    is 

assumed to be 1. 
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2.2.  The CUSUM control chart for monitoring shifts in the process mean 

The concept of the CUSUM control chart was first proposed by Page (1954). It is well known 

that the CUSUM control chart performs better than the Shewhart control chart for small-to-medium-

sized changes in the process mean. The commonly used form of the upper-sided CUSUM control chart 

is based on the sequence 

  1max , f0 , 1,2,...o ,rt t tS S Y a t      (4) 

where  tS  is the CUSUM control chart statistic used for detecting upward shifts, quantity  1tS   denotes 

the previous value of the statistic (its initial value 
0

S  is set to u  and the parameter of process  tY  is the 

sequence of the generalized  ARFIMAX( , , )*,p d q r  process with exponential white noise), and  a  is 

a suitably chosen positive constant. 

The corresponding stopping time ( h ) for a CUSUM control chart with predetermined threshold 

h can be written as 

  inf f ,, or0;h tt hS h u       (5) 

where h  is a constant parameter-the upper control limit (UCL) of CUSUM chart.  

 

2.3. Characteristics of the average run length (ARL) 

Let  , 1,2,...,
t

t  be a sequence of continuous i.i.d. random variables taken from an exponential 

distribution. This sequence has a distribution function   ( , )F x   by following the change point model 

 
0

1 0

Exp( ), 1, 2, ..., 1

Exp( ), , 1, ... ,
t

t m

t m m




 




 

  



  (6) 

where 
0
  and 

1
  are known parameters. By considering the change point in Equation (6), the ARL is 

defined more rigorous with  (.)mE  as the expectation for a fixed change point  .m  Thus, 

 
 

0

1 0

( ),
ARL

, .

h

h

E

E

  

 
 








  (7) 

As previously mentioned,  the ARL denotes the average number of observations until the signal 

for  a  sequence  with  a  constant  expectation  indicates  the  out-of-control  state.  Meanwhile,   m  

indicates no change in the statistical process: the so-called in-control ARL (ARL0). On the other hand, 

1m  marks the first time point that a change takes place from 
0
  to  in the statistical process: the 

so-called out-of-control ARL (ARL1). 

 

3. Derivation of the Explicit and Approximated ARLs for a Long-memory ARFIMAX 

Process with Exponential White Noise on a CUSUM Control Chart 

In this section,  the explicit and approximated ARLs are derived as the solution of the IE for a 

long-memory ARFIMAX process with exponential white noise on a CUSUM control chart to monitor 

changes in the process mean. 

Let   S S
   be  the  probability  measure  (expectation)  corresponding  to  the  initial  value  .  

Formally, let  ( )L   be the ARL for the upper-sided CUSUM control chart. The initial value of the in 

monitoring statistic 
0

S   for a long-memory ARFIMAX model process after it has been determined 

at  [0, ].h   



Wilasinee Peerajit  149 

The ARL is defined as a function of  (( .) )
m h

L       Hence, it can be shown that the IE is in 

the form 

 1 1 1( ) 1 { 0} (0) [ {0 } ( )],s sS I hL S SL L          (8) 

where  1{0 }I S h 
 
is the indicator function.  

The  IE derived  from  the  Fredholm  integral  equation of  the  second  kind  can be written  in  the 

following form 

  
0

( ) 1 (0) ( ) ( ) ,+ 
h

t tL L LF a Y z f z a Y dz           (9) 

for [0, ]h   is UCL of CUSUM chart. 

Let  , 1,2,...,t t   be  a  sequence  of  continuous  i.i.d  random  variables  with  an  exponential 

distribution. Therefore, in (9) becomes 


* *

*
(i 1) (i 2)

1

* *
*

1 2
1 1

( 1)
...

2!
( ) 1 1 exp (0)

( 1)
...

2!

p

i t i i t i t
i

q r

t j t j k k t t
j k

d d
a Y d Y Y

L
d d

L

X d Y Y

    

   


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3.1. The ARL based on explicit formulas 

 

Theorem 3.1   Let ( )L  be the ARL of the IE in (9) corresponding to the long-memory 

ARFIMAX( , , )*,p d q r  process on a CUSUM control chart, then 
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Proof: First,  by  introducing  the  IE  and  defining 
0

( ) exp{ } ,
h

c z dzL z   Equation  (10)  can  be 

simplified as follows 
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By replacing  0   in (11), we obtain 


* *

*
(i 1) (i 2)

1

* *
*

1 2
1 1

0

( 1)
...

2!
( ) 1 1 exp (0)

( 1)
...

2!

p

i t i i t i t
i

q r

t j t j k k t t
j k

d d
a Y d Y Y

L
d d

X d Y Y

L

    

   

    


  
 

   
        

   
     

              



 
 

          


* *

*
(i 1) (i 2)

1

* *
*

1 2
1 1

( 1)
...

2!
exp .

( 1)
...

2!

p

i t i i t i t
i

q r

t j t j k k t t
j k

d d
a Y d Y Y

c
d d

X d Y Y

    



   

    


  
 

   
        

   
  

              



 
+    


* *

*
(i 1) (i 2)

1

* *
*

1 2
1 1

( 1)
...

2!
( ) exp .

( 1)
...

2!

0

p

i t i i t i t
i

q r

t j t j k k t t
j k

d d
a Y d Y Y

c
d d

L

X d Y Y

    



   

    


  
 

  
      

  
  

         
  





 
  (12) 

Subsequently, by substituting  ( )0L  from (12)
 
into (11), it follows that 
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(14) 

Finally, substituting constant  c  from (14) into (13) results in 
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Therefore, the proof is complete. 

 

As  was  shown  in  the  preceding  equation,  a  process  in  the  in-control  state  depends  on  the 

exponential  parameter 0( ).   For  this  reason,  ARL0  of  the  CUSUM  control  chart  is  then  

determined by 
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      (16) 

On  the other hand,  a process  in  the out-of-control  state depends on  the exponential  parameter

1( ),   which  represents a  shift  in  the process  level  ( )  by  1 0 =  ,    where  0 1.   Therefore, 

ARL1 of the CUSUM control chart is then determined by detecting the change in the process mean. 
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3.2.  The NIE method 

 The  quadrature  method  is  usually  based  on  Equation  (9).  The  integral 
0

( )
h

f z dz  can  be 

approximated by summing the areas of the rectangles with the integral  f  value. It is chosen by base 

/h m  with  heights  at  the  midpoints  of  the  intervals  of  length  /h m  beginning  at  zero.  There  are 

division  points  1 ... ma a   within  the  interval  [0, ],h  and  jw  are  the  weights  defined  for  different 

quadrature rules for which  / 0h m   can be written in the following form 

10

( ) ( ) ( ),
h m

j j
j

W z f z dz w f a


   

where  ( )W z  is a weight function and  ja  is a set of points for    =  2 1 / 2 ,  = 1,2,..., .ja h j m j m  

Let  ( )L  be the approximated ARL of  the NIE method using  the Gauss-Legendre  quadrature 

rule. Consequently, the NIE method for the ARL of the CUSUM control chart in detecting a shift in 

the process mean for a long-memory  ARFIMAX( , , )*,p d q r  process can be written as 
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4. The Existence and Uniqueness of the IE for the ARL Based on Explicit Formulas 

 The  derivation  of  the  ARL  through  an  IE  for  an  upper-sided  CUSUM  control  chart  was 

discussed by Venkateshwara et al. (2001). Based on this, Banach’s fixed-point theorem was applied 

as the source for the existence and uniqueness theorem (Wilasinee et al. 2019). The theoretical proof 

for its existence and uniqueness ensures  that solving  the IE results  in  the ARL  based on explicit 

formulas has the same accuracy as the ARL based on the NIE method. 

 

Definition 4.1 (Metric space) A metric space is a pair  ,d  where   is a non-empty set and 

distance function on 
n

P  (or metric on  ). If a function :d      satisfied, for all , , ,P Q R   

the following properties: 

1)  , 0 implies ,d P Q P Q   

2)    , , ;d P Q d Q P  (Symmetry), 

3)      , , ,d P Q d P R d R Q   (Triangle inequality), 

where d  is called distance function, which associates a distance  ,d P Q P Q   with every pair 

of points , ,P Q  and the pair  ,d  is said to be a metric space.  
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Note: The definition for a metric is always positive, for all  .,P Q   

       0 , , , 2 , .   d P P d P Q d Q P d P Q  

Now, the author recalls the definition of Cauchy sequence, which is the formalization of the concept 

of a sequence. 

 

Definition 4.2 A sequence  
0n n

P  elements in metric space   is a Cauchy sequence if for each 

0,  there exists N  such that all , ,n m N  then  , .n md P P   

 

Definition 4.3 The metric space is complete if each Cauchy sequence  
0n n

P  converges, i.e. there 

exists P   so that  , 0n md P P   as .n  

 

Definition 4.4 (Fixed points of mappings) Let : ,T    then P   is called a fixed point of T  

if  ( ) .T P P  

 

Theorem 4.1 (Banach’s fixed-point theorem or the contraction theorem) Let  ,d   be a 

complete metric space, then mapping : T    is said to be a contraction (or a contraction 

mapping) on   if there exists real number [; 0,1)    such that 

   ( ), ( ) ,d T P T Q d P Q  for every , ,P Q   

Thus, T  has a precisely unique fixed point (e.g. unique P  such that ( )P T P ). 

 

Theorem 4.2 Suppose that ( )L in Theorem 4.1, the ARL based on explicit formulas corresponding 

to the CUSUM control chart for a long-memory ARFIMAX process exists and is unique. 

 

Proof: To prove the existence of the ARL derived from explicit formulas,  let T  be a contraction in 

complete  metric  space   , ,d  [0, ]hC  be  a  set  of  continuous  functions  of  the  ARL  on  interval 

[0, ]h  and  0ARL  be an arbitrary but fixed element in  .  Define a sequence of iterates  
0

ARLn n
 

in   by 

1ARL (ARL ),n nT   for all  1.n   

Since  T  is a contraction, then 

        2 1 1 0 1 0ARL ,ARL ARL , ARL ARL ,ARL ,d d T T d   for some  (0,1).   

Continuing inductively, we obtain 

       2
1 1 1 2 1 0ARL ,ARL ARL ,ARL ARL ,ARL ... ARL ,ARL .n

n n n n n nd d d d           

Repeatedly applying the triangle inequality into this formula when  n m  implies that

  1 1ARL ,ARL (ARL ,ARL ) ... (ARL ,ARL ),n m n n m md d d     

and from above, it follows that 

  1 1
1 0ARL , ARL ( ... ) (ARL , ARL ).n n m

n md d        

Using the property of sum is a geometric series in  ,  we obtain 
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  1 0ARL , ARL (ARL ,ARL ).
1

n

n md d






 

From  above,  1   implies  that  (1 ) 0n    as  .n   Hence,   
0

ARLn n
 is  a  Cauchy 

sequence. There is a limit point of ARL in   because   ,d�  is complete metric space. Hence, there 

exists a unique point  ARL   such that 

  1(ARL) lim ARL lim ARL ARL.n n
n n

T T 
 

    

Therefore, the ARL has a fixed point. 

 

Proof: To prove the uniqueness of the ARL derived from explicit formulas, it must be shown that the 

operator T  is a contraction mapping. Let  1ARL  and  2ARL  be two arbitrary functions in   [0, ] .hC

The common term for complete metric space is    [0, ] , . .h


C  That is to say, a set of continuous 

functions of the ARL defined on  [0, ],h  and   [0, ]hC  becomes norm space if we define 

[0, ]

0

ARL sup ( , ) ,
h

h k z dz 
   

for all functions  (( , ) [0, ]),k z h C  where  ( , )k z  is a kernel function of the IE for the ARL based 

on explicit formulas obtained by using Theorem 4.1: 

1 2(ARL ) (ARL )T T


   

[ 0, ]sup h 


* *

*
(i 1) (i 2)

1

1 2* *
0 *

1 2
1 1

( 1)
...

2!
exp ARL ( ) ARL ( )

( 1)
...

2!

   

p

i t i i t i th
i

q r

t j t j k k t t
j k

d d
a Y d Y Y

z z dz
d d

X d Y Y

    



   

    


  
 

   
        

   
  

           
   




 
 

[0 , ]sup h 


* *

*
(i 1) (i 2)

1

1 2* *
0 *

1 2
1 1

( 1)
...

2!
exp ARL ( ) ARL ( )

( 1)
...

2!

p

i t i i t i th
i

q r

t j t j k k t t
j k

d d
a Y d Y Y

z z dz
d d

X d Y Y

    







  

    


  
 

  
       

  
 

  
      

 
 
 
 
 
 

  


 




 

 

[0 , ]sup h 


* *

*
(i 1) (i 2)

1

1 2* *
0 *

1 2
1 1

( 1)
...

2!
exp ARL ( ) ARL ( ) .

( 1)
...

2!

p

i t i i t i th
i

q r

t j t j k k t t
j k

d d
a Y d Y Y

dy z z
d d

X d Y Y

    



 



 

    




  
 

 
 
 
 
 
 
 

 
       

  
 

  
       

  




 

 

Hence, we have  

1 2 1 2(ARL ) (ARL ) ARL ( ) ARL ( ) ,T T z z 
     

where  [0, ]

0

sup ( , 10 )
h

h k z dz      is a positive constant,  

Thus, 
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
* *

*

(i 1) (i 2)
1

* *

*

1 2
1 1

( 1)
...

2!
( , ) exp .

( 1)
...

2!

p

i t i i t i t
i

q r

t j t j k k t t
j k

d d
a Y d Y Y

k z
d d

X d Y Y

    

 

  





    


  
 

  
       

  
  

           



 
 

The triangular inequality is used for the supremum norm as follows: 

1 2 [0, ] 1 2 1 2ARL (0) ARL (0) sup ARL ( ) ARL ( ) ARL ARL .s h   
      

That  is  to  say,     :  [0, ] [0, ]hT h C C  is  a  contraction  mapping  in  complete  metric  space 

  [0, ] , . .h


C  Hence, by Theorem 4.2, the uniqueness of the ARL based on explicit formulas such 

that  (ARL) ARLT   is confirmed. This completes the proof.  

 

  Therefore, the ARL based on explicit formulas for the CUSUM control chart for a long-memory 

 ARFIMAX , *, ,p d q r  process exists and is unique. 

 

5. Numerical Results  

The  performances  of  the  ARLs  from  the  derived  explicit  formulas  and  the  NIE method  were 

compared for detecting changes in the process mean on a CUSUM control chart for a long-memory 

 ARFIMAX , *, ,p d q r  process. Two  in-control  ARL  values,  ARL0  = 370 and  ARL0  = 500, were 

considered. The number of division points m  = 800 nods was used for the NIE method. The out-of-

control process is referred to as ARL1. For the in-control state, exponential parameter  0 1,   while 

for  the  out-of-control  state,  1 =  1.01,  1.02,  1.03,  1.05,  1.10,  1.20,  and  1.40.  The  non-stationary 

ARFIMAX(1,0.25,1,1), ARFIMAX(1,0.35,1,1), ARFIMAX(2,0.25,1,1), and ARFIMAX(2,0.35,1,1) 

models were applied to attain a comprehensive view of the long-memory process. 

The other model parameters were set as follows: 

(i) Autoregressive (AR) coefficient:  1 0.01     and  2 0.02.   

(ii) Moving-average (MA) coefficient:  1 0.01.   

(iii) Fraction order:  * 0.25, 0.35. d   

(iv) Exogenous coefficient: 
1

0.5.   
 

Definition 5.1 The percentage error (PE) used to compare the performance of the explicit formulas 

and NIE ARLs across a range of changes in the process mean from 1.01 to 1.40 is defined as 

 Percentage error (PE) 
( ) ( )

  100%,
( )

L L

L

 




 


  (19) 

where  ( )L  is  ARL  derived  from  the  explicit  formulas,  and  ( )L  is  approximated  ARL  of  NIE 

method. 

The following observations are evident in the numerical results reported in Tables 1 and 2: 

1. In the out-of-control cases when  1,   the ARL1 results tended to decrease rapidly as the  1  

level increased. 

2. There are two ARL0 values and the ARL1 values are affected by the UCL because the out-of-

control signals are obtained from the computation in Equation (16). Small ARL1 values are obtained 

with small  h values for different shifts in the process mean. 
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3. For  all  processes,  ARL1  for  the  explicit  formulas  and  the  NIE  method  were  similar.  In 

determining  the computed performances  for ARL1 of  the explicit  formulas  and  the NIE method  in 

terms of PE were less than 0.25%. 

4. For all processes,  the computational time of the ARL with explicit formulas was substantially 

less  than  that  of  the  NIE  method  (less  than  1  second  compared  to  between  1.23  to  2  hours, 

respectively). 

Figures 1 and 2 show bar graphs of different values of  1 (shifts in the process mean) versus their 

respective ARL1  value using  the explicit  formulas.  ARL1  values  were  derived  for each mean  shift 

scenario in different long-memory processes. These graphs exhibit various characteristics of the long-

memory  ARFIMAX( , , )*,p d q r  processes on  a  CUSUM  chart  with  coefficients  1 0.1,  2 0.2,   

1 0.1,   and 1 0.5   in  Figure  1  and  1 0.1,     2 0.2,    1 0.1,   and 1 0.5   in  Figure  2.  A 

downward trend can be observed as the shift in the process mean increases, i.e. ARL1 is reduced by 

an  increase  in  1.  In  addition,  the  ARL  of  ,0AR .2FIMA 5,X(1 1,1)  was  slightly  lower  than  that  of 

,0.ARF 15,IMAX(1 1,1),  while  the process  that provided the  lowest ARL  is  ,0AR .2FIMA 5,X(2 1,1)  

for both short-(ARL0 = 370) and long-term (ARL0 = 500) detection. 

It is evident from the results that the ARL using explicit formulas is a good alternative to the NIE 

method  for  evaluating  shifts  in  the  process  mean  on  a  CUSUM  control  chart  for  a  long-memory 

ARFIMAX( , , )*,p d q r  process  with  exponential  white  noise  because  of  the  substantially  reduced 

computational time along with similarly low PE values (less than 0.25%). 

 

6. Practical Applications 

The explicit formulas and the NIE method were applied to evaluate their ARLs using real data to 

illustrate their practical application on a CUSUM control chart. The real data are the stock prices for 

Airports of Thailand Public Company Limited (AOT: Bangkok) with  the exogenous variable (X) as 

the exchange rate of Thai baht (THB) per USD (unit: the THB rate). The observations were collected 

daily (5 days per week) from 8 January 2020 to 4 June 2020 and consist of 101 observations (source: 

https://th.investing.com).  

The dataset was diagnosed and fitted to a long-memory ARFIMAX(1,0.499999,1,1) process with 

coefficients  1 0.857998,  1 0.658997,    and  1 7.048698,    and  significantly  distributed 

exponential  white  noise. Using  the  Kolmogorov-Smirnov  test, we  determined  that  the  white  noise 

followed  an  exponential  distribution  with  mean  0  =  1.3919.  Hence,  we  treated  1.3919  as  the 

exponential parameter for the in-control state. For the CUSUM chart parameters,  a  = 1.5 and  h  (the 

CUSUM control limit) was selected to give the desired in-control ARL0 = 370 and 500, for which  h  

= 1.304021 and 1.724015, respectively, as calculated using Equation (16). The ARLs on the CUSUM 

control chart were derived using the two methods, the results of which are summarized in Table 3; it 

can be seen that the results are obviously in agreement with those in Tables 1 and 2. The numerical 

results  obtained  from  the  explicit  formulas  and  the  NIE  method  were  similar  for  all  cases  when 

detecting small-to-moderate-sized changes in the process mean. However, the computational time of 

the ARL with explicit formulas was substantially less than that of the NIE method (less than 1 second 

compared to between 1.3 to 1.4 hours, respectively). To sum up, the explicit formula approach is a 

good alternative for practical applications in detecting changes process mean on a CUSUM control 

chart. 
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Figure 1 ARL results of the explicit formulas in the out-of-control case on the CUSUM control 

chart for a long-memory  ARFIMAX( ), *, ,   p d q r  process with 1 = 0.1,  2 = 0.2,  1 = 0.1 and  

1 = 0.5 

 

 

Figure 2 ARL results of the explicit formulas in the out-of-control case on the CUSUM control 

chart for a long-memory  ARFIMAX( , , )*,p d q r  process with 1 0.1,   2 = 0.2,  1 = 0.1 and  

1 = 0.5 

 

7. Discussion and Conclusions 

 ARLs based on explicit formulas and the NIE method to detect shifts  in the process mean of a 

long-memory  ARFIMAX  process  with  exponential  white  noise  on  a  CUSUM  control  chart  were 

derived  and  evaluated.  Furthermore,  the  existence  and  uniqueness  of  the  ARL  based  on  explicit 

formulas  were  proved.  In  a  numerical  study,  the  in-control  ARL  was  established  with  different 

parameter settings and levels of process mean shift with which a comparison of the ARL with explicit 

formulas and the NIE method in monitoring the mean shifts was demonstrated. In conclusion, the PEs 

of the ARLs based on explicit formulas and the NIE method were similar, but the former consumed 

much less computational time than the latter. Herein, the ARL is derived using explicit formulas for a 

long-memory  ARFIMAX  process on  a  CUSUM  control  chart.  The  focus  of  the  study  was  on  the 

exogenous variable  in an ARFIMAX  process, which  affects  econometric  models when  forecasting 

since a forecasting model including an exogenous variable is usually more accurate than one without 

it.  In  future  studies,  it  would  be  interesting  to  determine  more  than  one  criterion  can  be  used  for 

measuring control chart performance. This approach could be extended to other performance measures 

such  as  the  average  extra  quadratic  loss  (AEQL),  the  average  ratio  of  ARL  (ARARL),  and  the 

probability of a false alarm (PFA) (see Abujiya et al. 2015, Abujiya et al. 2016). 
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Table 1 ARL results for the explicit formulas and the NIE method in the out-of-control case on 

the CUSUM control chart for a long-memory  ARFIMAX( , , )*,p d q r  process with  3a   and 

ARL0 = 370 

Models   h Parameters  ARL 
1 

1.01  1.02  1.03  1.05  1.10  1.20  1.40 

A
R

F
IM

A
X

 
(1

, 0
.2

5,
 1

, 1
) 

4.262875  1 = 0.1,  Explicit  345.3398 322.7642 302.0659 265.5874 196.6006 116.4961 51.9757 

  1 = 0.1,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.5  NIE  344.5824  322.0689  301.4267  265.0449  196.2324  116.3118  51.9162 

    (Hrs.)  (1.24)  (1.24)  (1.23)  (1.23)  (1.23)  (1.23)  (1.23) 

    PE(%)  0.22  0.22  0.21  0.20  0.19  0.16  0.11 

4.039879  1 = -0.1,  Explicit  345.9915  323.9673  303.734  267.9719  199.9146  119.9389  54.2965 

  1 = 0.1,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.5  NIE  345.2445  323.2789  303.0989  267.4290  199.5397  119.7452  54.2305 

    (Hrs.)  (1.23)  (1.23)  (1.23)  (1.24)  (1.23)  (1.23)  (1.23) 

    PE(%)  0.22  0.21  0.21  0.20  0.19  0.16  0.12 

A
R

F
IM

A
X

 
(1

, 0
.3

5,
 1

, 1
) 

4.51753  1 = 0.1,  Explicit  344.4419 321.1091 299.7754 262.3266 192.1142 111.9209 48.9882 

  1 = 0.1,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.5  NIE  343.6858  320.4190  299.1447  261.7973  191.7647  111.7548  48.9395 

    (Hrs.)  (1.24)  (1.23)  (1.23)  (1.24)  (1.24)  (1.24)  (1.24) 

    PE(%)  0.22  0.21  0.21  0.20  0.18  0.15  0.10 

4.304278  1 = -0.1,  Explicit  345.2064 322.5176 301.7242 265.0997 195.9261 115.802 51.5157 

  1 = 0.1,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 =0.5  NIE  344.4481  321.8221  301.0852  264.5583  195.5601  115.6201  51.4577 

    (Hrs.)  (1.24)  (1.24)  (1.24)  (1.24)  (1.24)  (1.24)  (1.24) 

    PE(%)  0.22  0.22  0.21  0.20  0.19  0.16  0.11 

A
R

F
IM

A
X

 
(2

, 0
.2

5,
 1

, 1
) 

4.5305238  1 = 0.1,  Explicit  344.3906 321.0149 299.6455 262.1422 191.8621 111.6666 48.8251 

  2 = 0.2,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.1,  NIE  343.635  320.3256  299.0156  261.6141  191.514  111.5017  48.777 

  1 = 0.5  (Hrs.)  (1.57)  (1.57)  (1.57)  (1.58)  (1.58)  (1.58)  (1.58) 

    PE(%)  0.22  0.21  0.21  0.20  0.18  0.15  0.10 

4.262877  1 = -0.1,  Explicit  345.3404  322.7647  302.0664  265.5878  196.6009  116.4962  51.9758 

  2 = 0.2,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.1,  NIE  344.5829  322.0694  301.4271  265.0453  196.2327  116.3119  51.9162 

  1  = 0.5  (Hrs.)  (1.57)  (1.57)  (1.57)  (1.57)  (1.58)  (1.59)  (1.58) 

    PE(%)  0.22  0.22  0.21  0.20  0.19  0.16  0.11 

A
R

F
IM

A
X

 
(2

, 0
.3

5,
 1

, 1
) 

4.7842064  1 = 0.1,  Explicit  343.2759 318.9664 296.8182 258.1376 186.418 106.2342 45.4075 

  2 = 0.2,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.1,  NIE  342.5413  318.3019  296.2161  257.6413  186.1043  106.098  45.3746 

  1  = 0.5  (Hrs.)  (1.58)  (1.57)  (1.58)  (1.58)  (1.59)  (1.59)  (1.58) 

    PE(%)  0.21  0.21  0.20  0.19  0.17  0.13  0.07 

4.51753  1 = -0.1,  Explicit  344.4419  321.1091  299.7754  262.3266  192.1142  111.9209  48.9882 

  2 = 0.2,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.1,  NIE  343.6858  320.4190  299.1447  261.7973  191.7647  111.7548  48.9395 

  1  = 0.5  (Hrs.)  (1.57)  (1.57)  (1.57)  (1.57)  (1.58)  (1.58)  (1.57) 

    PE(%)  0.22  0.21  0.21  0.20  0.18  0.15  0.10 

The results are expressed as percentage errors (PE%) with the computational times in parentheses for the explicit 

formulas (seconds) and the NIE method (hours). 
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Table 2 ARL results for the explicit formulas and the NIE method in the out-of-control case on 

the CUSUM control chart for a long-memory  ARFIMAX( , , )*,p d q r  process with  3a   and 

ARL0 = 500 

Models   h  Parameters  ARL 
1 

1.01  1.02  1.03  1.05  1.10  1.20  1.40 

A
R

F
IM

A
X

 
(1

, 0
.2

5,
 1

, 1
)  

4.635784  1 = 0.1,  Explicit  464.4094  431.9796  402.3839  350.5727  254.0075  144.9958  61.1589 

 1 = 0.1,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.5  NIE  463.2989  430.9671  401.4592  349.7979  253.4975  144.7543  61.0880 

    (Hrs.)  (1.39)  (1.40)  (1.39)  (1.39)  (1.39)  (1.40)  (1.40) 

    PE(%)  0.24  0.23  0.23  0.22  0.20  0.17  0.12 

4.394693  1 = -0.1,  Explicit  465.5070 433.9997 405.1757 354.5372 259.4316 150.4777 64.6975 

 1 = 0.1,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.5  NIE  464.4093 432.9938 404.2526 353.7563 258.9057 150.2177 64.6150 

    (Hrs.)  (1.42)  (1.42)  (1.42)  (1.42)  (1.42)  (1.42)  (1.43) 

    PE(%)  0.24  0.23  0.23  0.22  0.20  0.17  0.13 

A
R

F
IM

A
X

 
(1

, 0
.3

5
, 1

, 1
)  

4.921236  1 = 0.1,  Explicit  462.7985 429.0229 398.3079 344.8123 246.2152 137.2809 56.3496 

 1 = 0.1,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.5  NIE  461.6955 428.0255 397.4047 344.0678 245.7445 137.0750 56.2982 

    (Hrs.)  (1.43)  (1.42)  (1.42)  (1.43)  (1.42)  (1.43)  (1.43) 

    PE(%)  0.24  0.23  0.23  0.22  0.19  0.15  0.09 

4.681308  1 = -0.1,  Explicit  464.1772 431.5529 401.7949 349.7384 252.8727 143.8612 60.4398 

 1 = 0.1,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 =0.5  NIE  463.0661 430.5409 400.8718 348.9666 252.3674 143.6243 60.3715 

   (Hrs.)  (1.43)  (1.42)  (1.42)  (1.42)  (1.42)  (1.46)  (1.43) 

    PE(%)  0.24  0.23  0.23  0.22  0.20  0.16  0.11 

A
R

F
IM

A
X

 
(2

, 0
.2

5,
 1

, 1
)  

4.936225  1 = 0.1,  Explicit  462.7028 428.8476 398.0666 344.4721 245.7578 136.8332 56.0760 

 2 = 0.2  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.1,  NIE  461.6010 427.8518 397.1652 343.7299 245.2899 136.6297 56.0258 

  1 = 0.5  (Hrs.)  (1.99)  (2.02)  (1.99)  (1.99)  (1.99)  (1.99)  (1.99) 

    PE(%)  0.24  0.23  0.23  0.22  0.19  0.15  0.09 

4.635785  1 = -0.1,  Explicit  464.4097 431.9800 402.3842 350.5729 254.0076 144.9959 61.1589 

 2 = 0.2,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.1,  NIE  463.2992 430.9674 401.4595 349.7982 253.4977 144.7544 61.0880 

  1 = 0.5  (Hrs.)  (1.99) (1.99) (1.99) (1.99) (1.99) (1.99) (1.98) 

    PE(%)  0.24  0.23  0.23  0.22  0.20  0.17  0.12 

A
R

F
IM

A
X

 
(2

, 0
.3

5,
 1

, 1
)  

5.242483  1 = 0.1,  Explicit  460.4471 424.7189 392.3917 336.4982 235.1194 126.5613 49.9393 

 2 = 0.2,  (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.1,  NIE  459.3926 423.7797 391.5538 335.8286 234.7285 126.4189 49.9195 

  1  = 0.5  (Hrs.)  (1.98) (1.99) (1.99) (1.99) (1.98) (1.98) (1.98) 

    PE(%)  0.23  0.22  0.21  0.20  0.17  0.11  0.04 

4.921236  1 = -0.1,  Explicit  462.7985 429.0229 398.3079 344.8123 246.2152 137.2809 56.3496 

 2 = 0.2,  (Sec.)  (0.01)  (0.02)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

  1 = 0.1,  NIE  461.6955 428.0255 397.4047 344.0678 245.7445 137.0750 56.2982 

  1  = 0.5  (Hrs.)  (1.99) (1.99) (2.00) (1.99) (2.00) (2.00) (2.01) 

    PE(%)  0.24  0.23  0.23  0.22  0.19  0.15  0.09 

The results are expressed as percentage errors (PE%) with the computational times in parentheses for the explicit 

formulas (seconds) and the NIE method (hours). 
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Table 3 ARL results for the explicit formulas and the NIE method in the out-of-control case for a 

long-memory  ,0.499ARFIMA 999X(1 ,1,1)  process on a CUSUM control chart under data  

on USD exchange rate with in-control case  0 = 1.3919 

ARL0    a  h  ARL 
1   

1.4019  1.4119  1.4219  1.4419  1.4919  1.5919  1.7919  2.3919 

370  1.5  1.304021  Explicit  354.6527  340.1446  326.4205  301.1234  248.4526  175.3344  98.0433  30.5826 

      (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

      NIE  354.4193  339.9224  326.2084  300.9305  248.2989  175.233  97.9933  30.5714 

      (Hrs.)  (1.35)  (1.35)  (1.35)  (1.35)  (1.35)  (1.35)  (1.33)  (1.33) 

      PE(%)  0.07  0.07  0.06  0.06  0.06  0.06  0.05  0.04 

500  1.5  1.724015  Explicit  478.2225 457.6806 438.2898 402.6578 328.9754 228.0561 123.7877 36.3935 

      (Sec.)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 

      NIE  477.8065  457.2843  437.9130  402.3174  328.7071  227.8820  123.7042  36.3658 

      (Hrs.)  (1.37) (1.37) (1.37) (1.36) (1.36) (1.36) (1.36) (1.36) 

      PE(%)  0.09  0.09  0.09  0.08  0.08  0.08  0.07  0.07 

The  results  are  expressed  as  percentage  errors  (PE%) with  the  computational  times  in parentheses  for  the 

explicit formulas (seconds) and the NIE method (hours).  Coefficients  1 = 0.857998,  1 = −0.658997, and  1

= −7.048698. 
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