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Abstract

The aim of this study is to derive the average run length (ARL) for detecting a changes in the
process mean of a long-memory autoregressive fractionally integrated moving-average model with
exogenous variables (ARFIMAX(p, d*, g, )) process with exponential white noise on a cumulative

sum (CUSUM) control chart. ARLs are derived using explicit formulas and the numerical integral
equation (NIE) method, which is the solution for the integral equation. Moreover, proof of the
existence and uniqueness of the proposed ARL based on Banach’s fixed-point theorem are presented.
The performances of the two ARLs were evaluated in terms of accuracy and computational time for

monitoring shifts in the process mean for an ARFIMAX( J22 d*,q,r) process on a CUSUM control
chart. The results reveal that although their accuracies were similar, the explicit formula method

consumed less computational time than the NIE method and so is recommended as a good alternative
for this scenario.

Keywords: ARFIMA with exogenous variables, numerical integral equation (NIE) method, exponential
white noise.

1. Introduction

Statistical process control is a popular approach for monitoring processes, with the key tool being
the control chart. The Shewhart control chart (Shewhart 1931) was the first, followed by the
Cumulative Sum (CUSUM) control chart initially suggested by Page (1954) and the exponentially
weighted moving-average (EWMA) control chart first reported by Roberts (1959). The Shewhart
control chart is appropriate for when there is a large shift size in the statistic parameter on interest (the
mean or variance) of a process when the observations follow a normal distribution. Concurrently,
small shift sizes in a statistic parameter can be detected by using the CUSUM and EWMA control
charts; these are also more applicable for when the observations follow complex patterns such as
autocorrelation or changing point (Yashchin 1993, Wardell et al. 1994).



Wilasinee Peerajit 145

The prominent feature of the CUSUM control chart is that it can detect unstable processes
appropriately for subgroups of data and single observations. The use of the CUSUM control chart for
real observations was reported by Sheng-Shu and Fong-Jung (2013) who suggested that for monitoring
a quality control process for wafer production, the CUSUM control chart is better than the EWMA
control chart. In a study by Benoit and Pierre (2009), the CUSUM control chart was found to be
suitable for small shifts and persistent changes in the mean and variance of North Sea cod trawl
numbers for an international bottom trawl survey. In the present study, the effectiveness of the
CUSUM control chart and its application to real-world situations is of interest.

Observations collected from real stochastic processes often have a time-series component. In
particular, econometric observations in a time-series model can have autoregressive (AR) and moving
average (MA) components. When establishing a model, the error (the difference between the actual
and approximated value) should be as small as possible for maximum accuracy. The error of a time-
series model is called white noise that is normally distributed arising from autocorrelated observations.
Sometimes, the white noise in autocorrelated data is not normally distributed, thus the form of the
time-series model where the white noise is exponentially distributed, such as wind speed, the amount
of dissolved oxygen in a river, and daily flow rates of a river, is especially interesting. For example,
Jacob and Lewis (1977) considered an ARMA(1,1) process with exponential white noise. At a later
time, Mohamed and Hocine (2003) conducted a Bayesian analysis of AR(1) with exponential white
noise, while Pereira and Turkrman (2004) used exponential white noise to develop a Bayesian analysis
of threshold AR models. Recently, Suparman (2018) proposed parameter estimations for an AR model
with exponential white noise when the order is unknown.

Conventional models used for short-memory processes AR (p), MA(q), ARMA(p,q), and AR

integrated MA (ARIMA(p,d,q)) cannot be applied for long-memory ones. This problem has been

solved by the establishment of several models, the best-known being the AR fractionally integrated
MA (ARFIMA(p,d,q)) model. In addition, the ARFIMAX model is an extension of ARFIMA

through the inclusion of exogenous variable, i.e. ARFIMAX(p,d*,q,r). Granger and Joyeux (1980)

and Hosking (1981) created ARFIMA models for a long-memory process for realized volatilities.
Moreover, Ebens (1999) used ARFIMAX models for estimating the realized volatilities in a Dow
Jones Industrial Average portfolio. There is a relationship between econometric models and economic
indicators (variables affecting economic forecasting). However, an exogenous variable is not affected
by other variables in the system, only by external influences (for instance, the investment policies of
the government) and include exchange, interest, and inflation rates, etc. Exogenous variables affect an
econometric model when forecasting economic situations. For economic forecasting and other fields,
if the forecasting model includes an exogenous variable, the model is usually more accurate than one
without it. This type of time-series model is an interesting concept. Many control charts have been
used for time-series modeling with ARFIMA. Ramjee (2000) analyzed the performance of Shewhart
and EWMA control charts with correlated observations in an ARFIMA model; the results indicate that
the control charts did not perform well for detecting process shifts, and so proposed the hyperbolic
weighted MA (HWMA) control chart. Later, Ramjee et al. (2002) presented an HWMA forecast-based
control chart especially designed for a non-stationary ARFIMA model with autocorrelated data.
ARFIMA and ARIMA models have been applied to applications for monitoring the air quality data in
Taiwan (Pan and Chen 2008); the authors concluded that residual control charts using ARFIMA
models were more suitable than an ARIMA model. The EWMA control chart to detect a change in
the mean of a long-memory process was recently introduced by Rabyk and Schmid (2016), with the

control chart’s design based on an ARFIMA( p,d ,q) process.
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The statistical performances of control charts are generally evaluated in terms of the average run
length (ARL) based on the expectation of the run length distribution. In other words, ARL represents
the average number of observations plotted on a control chart until it provides an out-of-control signal
or a false alarm. The ARLs when the process is in- or out-of-control are denoted by ARLy
and ARL, respectively. ARL, should be large when the process is operating on target (the mean is at
the desired level) but on the other hand, ARL; should be small to bestow the capability of rapidly
detecting a change in the process mean. This performance measure can be computed by using the
integral equation (IE) approach originally introduced by Page (1954), the Markov chain approach
(MCA) by Brook and Evans (1972), Monte Carlo (MC) simulation by Hawkins (1981), or the
numerical IE (NIE) method by Peerajit et al. (2018), among others. The IE method is the most
advanced but requires a great deal of programming and computation. MCA requires discretization of
the process continuity into many steps and calculations of a matrix inverse. MC is simple to program
and good for checking accuracy but requires a large number of sample trajectories. NIE is good for
checking the accuracy of explicit formulas, so it is usually very time consuming and it is also difficult
and laborious to find the optimal design. In this paper, we derive explicit formulas and the NIE method
through an algorithm developed in the Mathematica program.

The rest of this paper is organized as follows. First, characteristics of the generalized ARFIMAX
process and the CUSUM control charts are reported in Section 2. Derivations of the ARLs using
explicit formulas and the NIE method for a long-memory process with exponential white noise on a
CUSUM control chart are presented in Section 3. The solution of the IE to derive an exact expression
for the ARL for monitoring shifts in the process mean on CUSUM control charts and the existence
and uniqueness of the ARL via Banach’s fixed-point theorem is confirmed and discussed in Section
4. The ARL results to compare the performances of the ARLs based on explicit formulas and the
NIE method for monitoring changes in the process mean are reported in Section 5. In section 6, the
application of the ARL derived from explicit formulas and the NIE method on a CUSUM control chart
is illustrated using the US dollar (USD) exchange rate data with an exogenous variable. ARLs using
the two methods are compared in terms of their out-of-control performance. Finally, a discussion and
conclusions of the study are provided in Section 7.

2. Analysis and Characteristics of the Generalized ARFIMAX Process and the CUSUM
Control Chart
In this section, we describe the relevant basics of a long-memory ARFIMAX model with
exponential white noise. We also define the generalized ARFIMAX process used on a CUSUM control
chart appropriate for monitoring shifts in the process mean. In the last subsection, we explore the
characteristics of the ARL related to the evaluation of control chart performance.

2.1. The generalized ARFIMAX process
The ARFIMAX model is an extension of the AR fractionally integrated MA model suggested by
Granger and Joyeux (1980) and Hosking (1981). The ARFIMAX(p,d*,q,r) process, where p is the

AR order, ¢ isthe MA order, d * is the fractional order of integration, and » means there are exogenous
variable order in the model. Ebens (1999) was applied in the research. The ARFIMAX(p,d*,q,r)

process can be generalized as

4, (BY1=B)Y"Y, = u+ Y f.X, +0,(B)e,. (1)
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where {Y,,£=1,2,..} is a sequence of ARFIMAX process, x is the constant process mean of {Y },
X, is an exogenous variable, £, is an unknown parameters., &, is a white noise process assumed to
be exponentially distributed, ¢,(B) and ¢ (B) are AR and MA polynomials in B, respectively,
when B is a backward-shift operator defined by BY =Y . The differencing operator (1—-2B) is
raised to a fraction power, d*, denoted by the fractional order of integration. The fractional
differencing operator (1-B)" can be defined according to the binomial expansion as described by
Granger and Joyeux (1980), and Hosking (1981) as follows

d*(a;—l) "N d'd - ;)!(d* -2
where the parameter d * is not an integer and represents the fractional order of integration.

(1-B) =1-d'B+ )

When the autocorrelations are all positive, process Y is intermediate-memory for —0.5 <d* <0,

short-memory (or short-range dependence) corresponding to a standard ARMA process for d* =0,
and long-memory (or long-range dependence) for d* <0.5.

Both Equations (1) and (2) can be respectively rearranged for the generalized
ARFIMAX(p,d*,q,r) process with exponential white noise on a CUSUM control chart as follows

. d'(d -1 d(d -1)d -2
v u+[¢lx1 —agr e gy D +j
. d(d -1 d"(d -1)d -2
+(¢2Yt2—d e +]
. d'(d -1 A d =1)d" -2)
+(¢,,Y,p gy, gy SNy y +]

te,—0¢, ,—0,6 ,—.—0¢ , + Z,BIXI.
i=1

=2

J{d*yﬂ_d @-n,  d@-)d _2)1/,3—--}

2! 3!
2 * d* d* _l
or Y = /u+z(¢iyti —-d ¢th—(i+1) + (2| )¢th—(i+2) _]
im1 :
q r . d(d -1
+¢, —;6/51—1 +;ﬂkxk +(d Y, _2—!)/;72 +"']’ €)

where &, is a white noise process assumed to be an independently identically distributed (i.i.d.)
observed sequence in exponential distribution (& ~ Exp(4)). Furthermore, —-1<¢ <1 and
—1<8, <1 are the constraints of the AR and MA coefficients, respectively. In this research, the initial
value of the ARFIMAX(p,d*,q,r) process Y .Y ,,..Y, .Y, ... and & ,¢ ,,..,6, 18

assumed to be 1.
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2.2. The CUSUM control chart for monitoring shifts in the process mean
The concept of the CUSUM control chart was first proposed by Page (1954). It is well known
that the CUSUM control chart performs better than the Shewhart control chart for small-to-medium-
sized changes in the process mean. The commonly used form of the upper-sided CUSUM control chart
is based on the sequence
S, =max{S,_ +Y —a, 0}, for t=1,2,..., 4)
where S, is the CUSUM control chart statistic used for detecting upward shifts, quantity S, , denotes
the previous value of the statistic (its initial value S, is setto , and the parameter of process Y, is the
sequence of the generalized ARFIMAX(p,d*,q,r) process with exponential white noise), and a is
a suitably chosen positive constant.
The corresponding stopping time ( 7, ) for a CUSUM control chart with predetermined threshold
h can be written as
7, =inf{t>0; S, > h}, for u <h, 5)

where 7 is a constant parameter-the upper control limit (UCL) of CUSUM chart.

2.3. Characteristics of the average run length (ARL)
Let ¢, t=12,..., be a sequence of continuous i.i.d. random variables taken from an exponential

distribution. This sequence has a distribution function (F (x, /1)) by following the change point model

Exp(4,), t=1,2,..,m-1
’:{Expm SA),  t=maom+l, ..., ©
where A, and A, are known parameters. By considering the change point in Equation (6), the ARL is
defined more rigorous with E, (.) as the expectation for a fixed change point m. Thus,

E (7)), A=4,

E(r,), A%, 2

ARL :{

As previously mentioned, the ARL denotes the average number of observations until the signal
for a sequence with a constant expectation indicates the out-of-control state. Meanwhile, m = oo
indicates no change in the statistical process: the so-called in-control ARL (ARLy). On the other hand,

m =1 marks the first time point that a change takes place from A, to Ain the statistical process: the
so-called out-of-control ARL (ARL,).

3. Derivation of the Explicit and Approximated ARLs for a Long-memory ARFIMAX
Process with Exponential White Noise on a CUSUM Control Chart
In this section, the explicit and approximated ARLs are derived as the solution of the IE for a
long-memory ARFIMAX process with exponential white noise on a CUSUM control chart to monitor
changes in the process mean.

Let [P, (Es) be the probability measure (expectation) corresponding to the initial value w.
Formally, let L(y) be the ARL for the upper-sided CUSUM control chart. The initial value of the in
monitoring statistic S, =y for a long-memory ARFIMAX model process after it has been determined

at v €[0,4].
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The ARL is defined as a function of L(y) =E

the form

(z,) <oo. Hence, it can be shown that the IE is in

m

Liy)=1+P{S, =0} L(0)+E [I{0 < S, <h}L(S))], ®)
where /{0 < S, < h} is the indicator function.

The IE derived from the Fredholm integral equation of the second kind can be written in the
following form

L) =1 F(a—y ~Y)LO)+ [ L) f (z +a-y Yz, ©)

for v €[0,4] is UCL of CUSUM chart.

Let ¢,t=12,.., be a sequence of continuous i.i.d random variables with an exponential

distribution. Therefore, in (9) becomes

P . d -1)
—/I(a -y —ﬂ_Z[(ﬁiYH —-d ¢th—(i+1) "'(T?jzyt—mz) _]
i=1 :

Ly)=1+|1—exp L(0)

¢ : o d'(d -1
&+ 206, - kZﬂka +[d Y, _TYt—Z + j
j=1 =1 .

Vi . d(d -1
ﬂ(l//_a+y+2(¢i}lti —-d ¢fYr—(i+1) +%¢in70+2) _]
i=1 :

< | exp jL(z) expi-Azidz.  (10)

¢ : wd(d -1
+e, - 0, +;/3ka —[d TR +j

Jj=1
3.1. The ARL based on explicit formulas

Theorem 3.1 Let L(y) be the ARL of the IE in (9) corresponding to the long-memory
ARFIMAX(p,d*,q,r) process on a CUSUM control chart, then

Z . d(d -1
ﬁ,(a —H _Z[¢1er —-d ¢th—(i+l) +T¢th—(i+2) _j

L(y) =exp{Ah}| 1+exp —Ah

; : o, di(d =)
o206, - 3%, +[d -y +j
j= = !

—exp{iy}; v 20.

h
Proof: First, by introducing the IE and defining c:J'L(z)exp{—/lz}dz, Equation (10) can be
0

simplified as follows
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P . d'(d -1
_ﬂ’(a_‘//_ﬂ_z(éyt—i -d ¢th-0+1) +¥¢th-@+2) _\J
i=1

2!
Liy)=1+|1-exp , ) i@ D L(0)
—&,+ .06 - BX, +(ar"1/,_1 —Tx_z +]
j=1 k=1 .
2 . d(d -1
/7«('//_‘1"‘/4"'2 ¢Y_ —d ¢Y ., +¥¢th—(i+2) R
il 2!
+cA| exp , ) I D (11)
+&, — Zﬁjg,ﬁ. + Zﬁka —(al*Y,1 —TYH +j
Jj=1 k=1 :
By replacing i =0 in (11), we obtain
L . d(d -1
—l(a —H _Z[QYH -d ¢in7(1+1) +T¢in—(i+2) _\J
L(0)=1+| 1-exp . ! r d*(éf‘ ) L(0)
—&,+ Y. 06 - BX, +(ar*1/,1 —TYH +)
Jj=1 k=1 .
Z . d(d -1
l(_a +,U+Z(¢,Yr-i -d ¢th—(i+1) +%¢in-0+2) _]
+cA| exp - .
Z . . dd -1
+e,- Y 06+ BX, —[d Y, _(TY"Z +]
Jj=1 k=1 .
z . d"(d -1)
/1(“ _ﬂ_Z£¢thi -d ¢th—(i+1) +T¢th—(i+2) _]
- L(0) = exp q i=1 r d*'(d* ) +cA. (12)
w0, Sarafen, Ly )
Jj=1 k=1 :
Subsequently, by substituting L(0) from (12) into (11), it follows that

d'(d" -1)

P
ﬂ(a _/U_Z£¢1th -d ¢in‘—(i+l) + ¢th—(i+2) _]
i=1

2!
L(y) = lscA+exp L —exp{dy}. (13)
d . . d(d -1
=& +Zejgr—j _Zﬂka +(d Yr—l _(T)thz + ]
Jj=1 k=1 .
Constant ¢ can be formed as
h
c= jL(z) exp{—Az}dz
0
2 . dd -1
/At(a —H—Z(W’,_i -d ¢iY;—(i+1) +T¢ix-(i+2) T

h
= I 1+cA +exp —exp{Az} |exp{-Az}dz
0

¢ . . d'(d -1
—& + Z;ejg,,‘, —;ﬂka +{d Y, —TYH + J
<= - !



Wilasinee Peerajit 151

2 . d(d -1
Z(a —H _Z[¢1Yr; —-d ¢th—(i+l) +(—¢th—(i+2) _]
i1

2!
c=ZPUR | exp o (1-exp{-Ah})
z - . dd -1)
=& +Zej‘9t—j _Zﬂka +(d Yt—l _TYFZ +]
j=1 k=1 :
—hexp{Ah}.
(14)
Finally, substituting constant . from (14) into (13) results in
Z . d(d -1
i(a _,U_Z[QYH —-d ¢th—(i+l) +T¢th—(i+2) _]
L(y) =exp{Ah}| 1+exp - 4 . - Ah
g : . d"(d" -1) (15)
—¢, +26’j5ﬁ/ —Z,Bka +|dY —TYH +...
j=1 k=1 :

—exp{Ay}; v =0.
Therefore, the proof is complete.

As was shown in the preceding equation, a process in the in-control state depends on the
exponential parameter (1 = A;). For this reason, ARLy of the CUSUM control chart is then
determined by

L * d* d* _1
A (a _,U_Z%(Q'Yri —-d ¢th—(i+1) +%¢th70+2) _\J

ARL, =exp{A,h}| 1+exp —Ah

¢ r . d(d -1
=<, +Zgj‘c“t—j _Zﬁka +|d Yt—l _¥er2 to.
j=1 k=1 2!
—exp{Ay}; v 20.
(16)
On the other hand, a process in the out-of-control state depends on the exponential parameter
(4 = 4,), which represents a shift in the process level (5) by 4, = A, +06, where 4; =1. Therefore,
ARL; of the CUSUM control chart is then determined by detecting the change in the process mean.
p « d'(d -1
A (a _ﬂ_;[ﬁyz—i -d ¢th—(i+1) +T¢th—(i+2) _j
ARL, =exp{Ah}| 1+exp ) L —Ah
a r . dd -1
—&+2.0¢._; —kZ,Bka +(d Y, _(TYH +]
j=1 =1 :

—exp{dy}; w=0.
(17)
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3.2. The NIE method

h
The quadrature method is usually based on Equation (9). The integral j f(z)dz can be

approximated by summing the areas of the rectangles with the integral f value. It is chosen by base
h/m with heights at the midpoints of the intervals of length #/m beginning at zero. There are
division points g, <...<aq, within the interval [0,%], and w, are the weights defined for different

quadrature rules for which #/m >0 can be written in the following form

m

[ f @)z =3 w1 (a),

where W(z) is a weight function and a; is a set of points for a; = h(2j —1) 2m, j=1,2,...m.

Let I:(l//) be the approximated ARL of the NIE method using the Gauss-Legendre quadrature
rule. Consequently, the NIE method for the ARL of the CUSUM control chart in detecting a shift in

the process mean for a long-memory ARFIMAX(p,d*,q,r) process can be written as

s . 2 . d'(d -1
Ly)= 1+L(“1)F[a_'//_/1_2(¢fyt_,- —-d ¢iY;—(i+l) +(—)

— X ¢th—(i+2) _"‘)_gt

\ ’ o, d'd -1
+Z; 0,6, + ;ﬂka + (d Y, _¥Y,_2 +)j
j= = !

LU z 5 d"(d -1
+Z w;L(a; )f[aj ta-y—-pu _Z(ﬁy,_, —d Y ., +%¢th-0+2) _"’)_gt
=] i=l :
I C . d'(d -1
+23/51_1 + :Bka +(d Y;—l _%Y;—z +)j (18)
= k=1 :

4. The Existence and Uniqueness of the IE for the ARL Based on Explicit Formulas

The derivation of the ARL through an IE for an upper-sided CUSUM control chart was
discussed by Venkateshwara et al. (2001). Based on this, Banach’s fixed-point theorem was applied
as the source for the existence and uniqueness theorem (Wilasinee et al. 2019). The theoretical proof
for its existence and uniqueness ensures that solving the IE results in the ARL based on explicit
formulas has the same accuracy as the ARL based on the NIE method.

Definition 4.1 (Metric space) 4 metric space is a pair (K ,d ) where K is a non-empty set and
distance function on P, (or metric on K ). If a function d :K x K — R satisfied, for all P,Q,R e K,

the following properties:
1) d(P,Q) =0 implies P = Q,

2) d(P,0)=d(Q,P); (Symmetry),
3) d(P, Q) < d(P,R) + d(R,Q) (Triangle inequality),
where d is called distance function, which associates a distance d (P, Q)z ||P - Q" with every pair

of points P,Q € R, and the pair (K,d) is said to be a metric space.
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Note: The definition for a metric is always positive, for all P,Q € K.
0= d(P,P) < d(P,Q)+d(Q,P) = 2d(P,Q).

Now, the author recalls the definition of Cauchy sequence, which is the formalization of the concept
of a sequence.

Definition 4.2 4 sequence {P }nzo elements in metric space K is a Cauchy sequence if for each

n

& >0, there exists N such that all n,m> N, then d(Pn,Pm)S .

Definition 4.3 The metric space is complete if each Cauchy sequence {Pn}"20 converges, i.e. there

exists P e K so that d(Pn,Pm)—>0 as n— o,

Definition 4.4 (Fixed points of mappings) Let T: K — K, then P € K is called a fixed point of T
if T(P)=P.

Theorem 4.1 (Banach’s fixed-point theorem or the contraction theorem) Let K = (K,d ) be a
complete metric space, then mapping T : K — K is said to be a contraction (or a contraction
mapping) on K if there exists real number p; p €[0,1) such that

d(T(P),T(Q)) < pd(P,Q) forevery P,QeK,
Thus, T has a precisely unique fixed point (e.g. unique P € K such that P=T(P)).

Theorem 4.2 Suppose that L(y)in Theorem 4.1, the ARL based on explicit formulas corresponding
to the CUSUM control chart for a long-memory ARFIMAX process exists and is unique.

Proof: To prove the existence of the ARL derived from explicit formulas, let 7 be a contraction in

complete metric space (K,d), C([0,%]) be a set of continuous functions of the ARL on interval
[0,4] and ARL, be an arbitrary but fixed element in K. Define a sequence of iterates {ARLn}
in K by

nz0

ARL,,, = T(ARL)), forall n>1.

Since T is a contraction, then

d(ARL,,ARL,) = d(T(ARL,),T(ARL,)) < pd (ARL,,ARL, ), for some p & (0,1).
Continuing inductively, we obtain
d(ARL,,,,ARL,) < pd(ARL,,ARL, )< p°d(ARL, ,,ARL, ,)<..< p"d(ARL,ARL,).

Repeatedly applying the triangle inequality into this formula when n <m implies that
d(ARL,,ARL, )< d(ARL,ARL, )+..+d(ARL, ,ARL,),

and from above, it follows that

d(ARL,,ARL, ) < (p" + p"" +...+ p")d(ARL,,ARL,).

n+l

Using the property of sum is a geometric series in p, we obtain
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d(ARL,,ARL,) < l'o—d(ARLl,ARLO).
-p

From above, |p| <1 implies that p"/(1-p) -0 as n—>oo. Hence, {ARL,} _is a Cauchy

n=0
sequence. There is a limit point of ARL in K because (K' ,d ) is complete metric space. Hence, there

exists a unique point ARL € K such that
T(ARL) = 1imT(ARLn) = limARL, , =ARL.

n—0 n—>0

Therefore, the ARL has a fixed point.

Proof: To prove the uniqueness of the ARL derived from explicit formulas, it must be shown that the

operator 7' is a contraction mapping. Let ARL, and ARL, be two arbitrary functions in C([O,h]).
The common term for complete metric space is ((C[O,h]), || . ||00 ) That is to say, a set of continuous

functions of the ARL defined on [0, 4], and C([O,h]) becomes norm space if we define

>

h
" ARL ||oo =SUPy, 10,1 Ik(Wa z)dz
0

for all functions k(y,z) € C([0,4]), where k(y,z) is a kernel function of the IE for the ARL based
on explicit formulas obtained by using Theorem 4.1:
| T(ARL,)-T(ARL,)|,

L . d'd -1
A l(l//_a*'/”'Z(@Ym_d ¢th4+1) +2|¢,X4i+2)_---}
= supy o |14 0 ) - o '1 |ARL,(z) ~ ARL, (z)| dz
0 +6,-.0&, +> BX,—|dY, - @ - )1:,2+...
j= k=1 2!
a . d'(d -1
B ﬂ('// —at+tu +Z(¢1YH -d ¢in—(i+l) + (2' )¢[Yt—(i+2) _J
< sup, o [|4| exp - o7 |ARL,(2) - ARL, (2)| dz
q r —
’ +51_29/5r—/+Zﬂka_[d*YH—d (0;, D Yz—2+"'J
Jj=1 k=1 .
2 . d'(d -1
i ﬂ,(l// —atpu +Z[¢,YH‘ —d @Y i+ ( Y )¢thf(i+2] _]
< sup, o [|A] exp . - o ' 1 dy|ARL,(z)~ ARL,(2)], .
! +8/_zej‘c"/fj_*'zﬁka_[d*Yl—l_ (2'_ )Y,,z-%—...]
j=1 k=1 :

Hence, we have
|T(ARL)) ~T(ARL,)| .= p|ARL,(2) - ARL, (2)],

h
where 0 < p=sup, j|k(l//,Z)| dz <1 is a positive constant,
0

Thus,
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v * d'(d -1
l('//_a+ﬂ+2(¢in—i —-d ¢in-(1+1) +T)¢1Yr—(i+z> _]
=1 !

k(y,z)= Aexp
Y, +j

+8, - iejgf—j + iﬂka - [d*Yr—l _JL*'_D
J=1 k=1
|ARL, (0) - ARL, (0)| < sup, 4., |ARL, (¥) — ARL, ()| =||ARL,— ARL, | .

The triangular inequality is used for the supremum norm as follows:

That is to say, 7T C([O,h]) - C([O,h]) is a contraction mapping in complete metric space
((C[O, h]), || . ||w ) Hence, by Theorem 4.2, the uniqueness of the ARL based on explicit formulas such
that T(ARL) = ARL is confirmed. This completes the proof.

Therefore, the ARL based on explicit formulas for the CUSUM control chart for a long-memory
ARFIMAX(p,d*,q,r) process exists and is unique.

5. Numerical Results
The performances of the ARLs from the derived explicit formulas and the NIE method were
compared for detecting changes in the process mean on a CUSUM control chart for a long-memory

ARFIMAX( p,d*,q,r) process. Two in-control ARL values, ARLy = 370 and ARL, = 500, were
considered. The number of division points m = 800 nods was used for the NIE method. The out-of-
control process is referred to as ARL;. For the in-control state, exponential parameter A, =1, while
for the out-of-control state, 4, = 1.01, 1.02, 1.03, 1.05, 1.10, 1.20, and 1.40. The non-stationary
ARFIMAX(1,0.25,1,1), ARFIMAX(1,0.35,1,1), ARFIMAX(2,0.25,1,1), and ARFIMAX(2,0.35,1,1)
models were applied to attain a comprehensive view of the long-memory process.

The other model parameters were set as follows:

(i) Autoregressive (AR) coefficient: ¢ == 0.01 and ¢, =0.02.

(i) Moving-average (MA) coefficient: 6, =0.01.

(iii) Fraction order: d*=0.25, 0.35.

(iv) Exogenous coefficient: 5 =0.5.

Definition 5.1 The percentage error (PE) used to compare the performance of the explicit formulas
and NIE ARLs across a range of changes in the process mean from 1.01 to 1.40 is defined as

Ly)-L(y)

Percentage error (PE) = x100%, (19)

where L(y) is ARL derived from the explicit formulas, and L(y) is approximated ARL of NIE
method.

The following observations are evident in the numerical results reported in Tables 1 and 2:

1. In the out-of-control cases when A > 1, the ARL, results tended to decrease rapidly as the A,
level increased.

2. There are two ARL, values and the ARL, values are affected by the UCL because the out-of-
control signals are obtained from the computation in Equation (16). Small ARL; values are obtained

with small / values for different shifts in the process mean.
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3. For all processes, ARL; for the explicit formulas and the NIE method were similar. In
determining the computed performances for ARL; of the explicit formulas and the NIE method in
terms of PE were less than 0.25%.

4. For all processes, the computational time of the ARL with explicit formulas was substantially
less than that of the NIE method (less than 1 second compared to between 1.23 to 2 hours,
respectively).

Figures 1 and 2 show bar graphs of different values of 4 (shifts in the process mean) versus their

respective ARL,; value using the explicit formulas. ARL,; values were derived for each mean shift
scenario in different long-memory processes. These graphs exhibit various characteristics of the long-
memory ARFIMAX(p,d*,q,r) processes on a CUSUM chart with coefficients ¢ =0.1, ¢, =0.2,

6,=0.1, and B =0.5 in Figure 1 and ¢ =-0.1, ¢, =02, 6, =0.1, and B =0.5 in Figure 2. A

downward trend can be observed as the shift in the process mean increases, i.e. ARL; is reduced by
an increase in A,. In addition, the ARL of ARFIMAX(1,0.25,1,1) was slightly lower than that of

ARFIMAX(1,0.15,1,1), while the process that provided the lowest ARL is ARFIMAX(2,0.25,1,1)

for both short-(ARLy = 370) and long-term (ARLo = 500) detection.

It is evident from the results that the ARL using explicit formulas is a good alternative to the NIE
method for evaluating shifts in the process mean on a CUSUM control chart for a long-memory
ARFIMAX(p,d*,q,r) process with exponential white noise because of the substantially reduced

computational time along with similarly low PE values (less than 0.25%).

6. Practical Applications

The explicit formulas and the NIE method were applied to evaluate their ARLs using real data to
illustrate their practical application on a CUSUM control chart. The real data are the stock prices for
Airports of Thailand Public Company Limited (AOT: Bangkok) with the exogenous variable (X) as
the exchange rate of Thai baht (THB) per USD (unit: the THB rate). The observations were collected
daily (5 days per week) from 8 January 2020 to 4 June 2020 and consist of 101 observations (source:
https://th.investing.com).

The dataset was diagnosed and fitted to a long-memory ARFIMAX(1,0.499999,1,1) process with
coefficients ¢ =0.857998, 6, =-0.658997, and p =-7.048698, and significantly distributed

exponential white noise. Using the Kolmogorov-Smirnov test, we determined that the white noise
followed an exponential distribution with mean A, = 1.3919. Hence, we treated 1.3919 as the

exponential parameter for the in-control state. For the CUSUM chart parameters, ¢ = 1.5 and 4 (the
CUSUM control limit) was selected to give the desired in-control ARLo =370 and 500, for which 4
=1.304021 and 1.724015, respectively, as calculated using Equation (16). The ARLs on the CUSUM
control chart were derived using the two methods, the results of which are summarized in Table 3; it
can be seen that the results are obviously in agreement with those in Tables 1 and 2. The numerical
results obtained from the explicit formulas and the NIE method were similar for all cases when
detecting small-to-moderate-sized changes in the process mean. However, the computational time of
the ARL with explicit formulas was substantially less than that of the NIE method (less than 1 second
compared to between 1.3 to 1.4 hours, respectively). To sum up, the explicit formula approach is a
good alternative for practical applications in detecting changes process mean on a CUSUM control
chart.
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Figure 1 ARL results of the explicit formulas in the out-of-control case on the CUSUM control
chart for a long-memory ARFIMAX(p, d*, g, r) process with ¢ =0.1, ¢,=0.2, 6, =0.1 and

B=05
ARL, =370 ARL, = 500
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Figure 2 ARL results of the explicit formulas in the out-of-control case on the CUSUM control
chart for a long-memory ARFIMAX(p,d*,q,r) process with ¢ =-0.1, ,=0.2, 6, =0.1 and

B,=05

7. Discussion and Conclusions

ARLs based on explicit formulas and the NIE method to detect shifts in the process mean of a
long-memory ARFIMAX process with exponential white noise on a CUSUM control chart were
derived and evaluated. Furthermore, the existence and uniqueness of the ARL based on explicit
formulas were proved. In a numerical study, the in-control ARL was established with different
parameter settings and levels of process mean shift with which a comparison of the ARL with explicit
formulas and the NIE method in monitoring the mean shifts was demonstrated. In conclusion, the PEs
of the ARLs based on explicit formulas and the NIE method were similar, but the former consumed
much less computational time than the latter. Herein, the ARL is derived using explicit formulas for a
long-memory ARFIMAX process on a CUSUM control chart. The focus of the study was on the
exogenous variable in an ARFIMAX process, which affects econometric models when forecasting
since a forecasting model including an exogenous variable is usually more accurate than one without
it. In future studies, it would be interesting to determine more than one criterion can be used for
measuring control chart performance. This approach could be extended to other performance measures
such as the average extra quadratic loss (AEQL), the average ratio of ARL (ARARL), and the
probability of a false alarm (PFA) (see Abujiya et al. 2015, Abujiya et al. 2016).



158 Thailand Statistician, 2022; 20(1): 144-161

Table 1 ARL results for the explicit formulas and the NIE method in the out-of-control case on
the CUSUM control chart for a long-memory ARFIMAX(p,d*,q,r) process with @ =3 and

ARLy =370

Models h Parameters ARL 4
1.01 1.02 1.03 1.05 1.10 1.20 1.40
4262875 4=0.1, Explicit 3453398 3227642 302.0659 2655874 196.6006 1164961 51.9757
6=0.1, (Sec.) ©O01)  (001)  (001)  (001)  (0O0)  (001)  (0.01)
£=05 NIE 3445824 3220689 3014267 2650449 1962324 1163118 519162
V= (Hrs.) (124) (124  (123)  (123)  (123)  (123) (1.23)
§ : PE(%) 022 022 021 0.20 0.19 0.16 0.11
£ d 4039879 401,  Explicit 3459915 3239673 303734 2679719 1999146 1199389 542965
<= 6=01,  (Sec) ©01)  (001)  (001)  (001)  (001)  (001)  (0.01)
£i=05 NIE 3452445 3232789 303.0989 2674290 199.5397 119.7452 54.2305
(Hrs.) (123)  (123)  (123)  (124)  (123)  (123) (1.23)
PE(%) 022 021 021 0.20 0.19 0.16 0.12
451753  $=01,  Explicit 3444419 321.1091 299.7754 2623266 1921142 1119209 48.9882
6=01,  (Sec) ©O01)  (001)  (001)  (001)  (001)  (001)  (0.01)
£=05 NIE 3436858 3204190 299.1447 261.7973 191.7647 1117548 48.9395
< = (Hrs.) (124)  (123)  (123)  (124)  (124)  (124) (1249
§ = PE(%) 022 021 021 0.20 0.18 0.15 0.10
5 Z 4304278 4-0.1, Explicit 3452064 3225176 3017242 2650997 1959261 115802 515157
< 6=0.1,  (Sec.) 0O0l)  (001)  (001)  (©O1) (00D  (001)  (0.01)
£=0.5 NIE 3444481 3218221 301.0852 2645583 1955601 1156201 514577
(Hrs.) (124) (124 (124 (1240 (1249  (129) (129
PE(%) 022 022 021 0.20 0.19 0.16 0.11
45305238 4 =0.1, Explicit 3443906 321.0149 299.6455 262.1422 191.8621 111.6666 48.8251
$=02,  (Sec.) ©01)  (001)  (001)  (001)  (00)  (001)  (0.01)
6,=0.1, NIE 343635 3203256 299.0156 261.6141 191514 1115017 48777
< = £=05 (Hrs.) (157 (157 (157 (158) (158)  (158)  (1.58)
§ = PE(%) 022 021 021 0.20 0.18 0.15 0.10
D 426877 ¢=-01, Explicit 3453404 3227647 3020664 2655878 1966009 1164962 51.9758
<o $=02,  (Sec.) ©O0l)  (001)  (001)  (©O1) (00D  (001)  (0.01)
6,=0.1, NIE 3445820 3220694 3014271 265.0453 1962327 1163119 519162
B =05  (Hrs) (157 (157 (157 (157 (158)  (159)  (1.58)
PE(%) 022 022 021 0.20 0.19 0.16 0.11
47842064 4 =0.1,  Explicit 3432759 3189664 2968182 2581376 186418 106.2342 454075
$=02,  (Sec.) ©O01)  (001)  (001)  (001)  (0O0)  (001)  (0.01)
6,=0.1, NIE 3425413 3183019 2962161 257.6413 186.1043 106098 453746
V= B =05 (Hrs) (158) (157  (158)  (158)  (159)  (159)  (1.58)
S : PE(%) 021 021 0.20 0.19 0.17 013 007
S Q451753 g=-01, Explicit 3444419 3211091 2997754 2623266 192.1142 1119209 489882
<d $=02,  (Sec.) ©0O0l)  (001)  (001)  (©O1) (00D  (001)  (0.01)
6,=0.1, NIE 3436858 3204190 299.1447 261.7973 191.7647 111.7548 48.9395
B =05  (Hrs) (157 (157 (1570 (157 (158)  (158)  (1.57)
PE(%) 022 021 021 0.20 0.18 0.15 0.10

The results are expressed as percentage errors (PE%) with the computational times in parentheses for the explicit
formulas (seconds) and the NIE method (hours).
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Table 2 ARL results for the explicit formulas and the NIE method in the out-of-control case on
the CUSUM control chart for a long-memory ARFIMAX(p,d*,q,r) process with @ =3 and

ARLy =500

Models h Parameters ARL 4
1.01 1.02 1.03 1.05 1.10 1.20 1.40
4.635784 ¢ =0.1, Explicit 4644004 4319796 4023839 350.5727 254.0075 144.9958 61.1589
=01, (Sec.) (0.01) (0.01) (0.01) (0.01) (0.01) 0.01)  (0.01)
Bi=05 NIE 4632989 4309671 4014592 349.7979 2534975 144.7543 61.0880
= (Hrs.) (1.39) (1.40) (1.39) (1.39) (1.39) (140) (140
§ : PE(%) 024 023 023 022 020 0.17 0.12
Eg 4394693  $=-0.1, Explicit 4655070 433.9997 4051757 3545372 2594316 1504777 64.6975
< = 6=0.1, (Sec.) (0.01) (0.01) (0.01) (0.01) (0.01) 0.01)  (0.01)
£i=05 NIE 4644093 4329938 4042526 353.7563 2589057 1502177 64.6150
(Hrs.) (1.42) (142) (142) (142) (142) (142)  (143)
PE(%) 024 023 023 022 020 0.17 0.13
4921236 ¢ =0.1, Explicit 4627985 429.0229 3983079 344.8123 2462152 137.2809 563496
6=0.1, (Sec.) (0.01) (0.01) (0.01) (0.01) (0.01) 0.01)  (0.01)
£i=05 NIE 461.6955 4280255 3974047 344.0678 2457445 137.0750 56.2982
M= (Hrs.) (143) (142) (142) (143) (142) (143)  (143)
§ = PE(%) 024 023 023 022 0.19 0.15 0.09
Eg 4681308 ¢ =-0.1, Explicit 464.1772 4315529 401.7949 349.7384 252.8727 1438612 60.4398
<= 6=0.1, (Sec.) (0.01) (0.01) (0.01) (0.01) (0.01) 0.01)  (0.01)
£i=0.5 NIE 463.0661 4305409 400.8718 3489666 2523674 143.6243 603715
(Hrs.) (1.43) (142) (142) (142) (142) (146)  (143)
PE(%) 0.24 023 023 022 0.20 0.16 0.11
4936225 4 =0.1,  Explicit 4627028 4288476 3980666 3444721 2457578 136.8332 56.0760
$=02 (Sec.) (0.01) (0.01) (0.01) (0.01) (0.01) 0.01)  (0.01)
6,=0.1, NIE 461.6010 427.8518 397.1652 3437299 2452899 136.6297 56.0258
< = Bi=05 (Hrs.) (1.99) (2.02) (1.99) (1.99) (1.99) (199  (1.99)
§ - PE(%) 024 023 023 022 0.19 0.15 0.09
Eg 4635785 ¢ =-0.1, Explicit 4644097 4319800 4023842 3505729 254.0076 144.9959 61.1589
<o $=02,  (Sec) (0.01) (0.01) (0.01) (0.01) (0.01) 0.01)  (0.01)
6,=0.1, NIE 4632992 4309674 4014595 349.7982 2534977 1447544 61.0880
Bi=05 (Hrs.) (1.99) (1.99) (1.99) (1.99) (1.99) (199 (1.98)
PE(%) 0.24 023 023 022 0.20 0.17 0.12
5242483 4 =0.1, Explicit 4604471 4247189 3923917 3364982 2351194 1265613 49.9393
$=02,  (Sec) (0.01) (0.01) (0.01) (0.01) (0.01) 0.01)  (0.01)
6,=0.1, NIE 4593926 4237797 3915538 335.8286 234.7285 1264189 499195
= B =05  (Hrs) (1.98) (1.99) (1.99) (1.99) (1.98) (198)  (1.98)
S : PE(%) 023 022 021 020 0.17 0.11 0.04
Eg 4921236 ¢ =-0.1, Explicit 4627985 429.0229 3983079 344.8123 2462152 137.2809 563496
<d $=02,  (Sec) (0.01) (0.02) (0.01) (0.01) (0.01) 0.01)  (0.01)
6,=0.1, NIE 461.6955 4280255 3974047 344.0678 245.7445 137.0750 56.2982
B =05 (Hrs) (1.99) (1.99) (2.00) (1.99) (2.00) (.00) (201
PE(%) 024 023 023 022 0.19 0.15 0.09

The results are expressed as percentage errors (PE%) with the computational times in parentheses for the explicit
formulas (seconds) and the NIE method (hours).
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Table 3 ARL results for the explicit formulas and the NIE method in the out-of-control case for a
long-memory ARFIMAX(1,0.499999,1,1) process on a CUSUM control chart under data

on USD exchange rate with in-control case 1, =1.3919
A

ARL, a  h
14019 14119 14219 14419 14919 15019 17919 23919
370 1.5 1304021 Bxplicit 3546527 340.1446 3264205 3011234 2484526 1753344 980433 305826
(Sec) 0.01) 0.01) 0.01) 0.01) 0.01) 001)  (001)  (0.01)
NIE  354.4193 339.9224 3262084 300.9305 2482989 175233 97.9933 30.5714
(Hrs) (135 (135 (135 (135 (135 (135  (1.33)  (1.33)
PE(%) 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.04
500 1.5 1724015 Bxplicit 478.2225 457.6806 438.2898 402.6578 328.9754 228.0561 123.7877 363935
(Sec) 0.01) 0.01) 0.01) 0.01) 0.01) 001y  (001) (001
NE 4778065 4572843 4379130 4023174 3287071 227.8820 1237042  36.3658
(Hrs) (137 (137 (137 (1.36)  (1.36)  (1.36)  (1.36)  (1.36)
PE(%) 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07

The results are expressed as percentage errors (PE%) with the computational times in parentheses for the
explicit formulas (seconds) and the NIE method (hours). Coefficients ¢ =0.857998, §=-0.658997,and f,

=-7.048698.
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