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Abstract 

A new mixed model depending on mixing the dynamic conditional correlation model (DCC-

GARCH) with a bootstrap mean bias corrected estimator method (BMBCE) is suggested and studied 

to obtain an efficient model to predict the volatilities of stock prices in Egypt. Moreover, this model 

is studied the conditional correlation and interactions between variables. It also made a comparison 

between that model and a Grey GARCH model (1,1) over the period of 26/4/2016 to 22/1/2019. The 

study found the results of the applied study on EGX30 and EGX70 indices of Egypt stock market 

showed that the DCC-GARCH-BMBCE model has much better performances in volatility forecasting 

than the GM-GARCH model. This is proved by analyzing the errors for these models by estimating 

the difference between the actual values and the estimated values in order to measure the accuracy of 

the models, involving root mean square error (RMSE) and mean absolute error (MAE). 

______________________________ 
Keywords: DCC-GARCH, bootstrap mean bias corrected estimator method, Grey model, stock market in Egypt, 

root mean square error, mean absolute error. 

 

1. Introduction 

Stock markets are considered to be the most important tools for supporting the economy, 

especially in countries that suffer from a lack of financial resources, so they always seek to activate 

their stock market. There are more techniques to address the problem of estimating volatilities of 

financial assets, such as ARCH generalized model is identified as autoregressive conditioned 

heteroscedasticity (ARCH), along with alternate associated models to a type of the prevalent models. 

Existent multivariate methods considering the GARCH models, as Engle’s dynamic conditioned 

correlation GARCH (DCC-GARCH) permits the evaluation of fluctuation and covariances in 

connection with several financial resources. Nevertheless, the DCC-GARCH model’s factors are 

regularly obtained according to the maximum likelihood estimation (MLE) that is highly influenced 

by outliers (Aric 2010). For a DCC-GARCH model, the outliers influence a consequent evaluation of 

fluctuation by the setup of the model. It is also potential that these outliners influence a fluctuation of 

evaluation of alternate financial resources inside the range of the equivalent set of resources on account 

of the correlated nature of the financial resource evaluation. Besides, Grey forecasting (GM(1,1)) 
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model projected by Deng is principally aimed at a system with undetermined information (Liu and 

Xie 2014; Li-Yan and Zhan 2015). It indicates benefits like a high short-term forecasting accuracy, 

fewer samples, and uncomplicated calculations (Samvedi and Jain 2013). Chih et al. (2008) employed 

the forecasting property of Grey model (1,1) model to amend the error terms of GARCH model and 

suggested GM-GARCH model (Chih et al. 2009). 

Both of dynamic conditional correlation model (the DCC-GARCH model) and the bootstrap mean 

bias corrected estimator model were discussed separately in many type of research. Robert and Kevin 

(2001) developed the empirical and theoretical properties of a new class of multivariate GARCH 

model to estimate large time-varying covariance matrices, DCC-GARCH. They reached that the new 

estimator has a very strong performance especially considering the ease of implementation of the 

estimator. Paramita (2008) made a comparison between the two methods regression quantile-Kalman 

Filter method and regression quantile method of moments. Risk evaluation test results illustrated the 

desirable statistical properties of the quantile estimates obtained from these methods. Aric (2010) 

presented the consistency of the robust method of the DCC-GARCH method estimation and examined 

the distribution of the structure of exchange rate data. In addition, Christian and Jean (2014) 

investigated the estimation of a wide class of multivariate volatility model by establishing a strong 

consistency and asymptotic normality of the equation by equation estimator including DCC models. 

Phong et al. 2017 suggested a new method to estimate the minimum variance hedge ratio (MVHR) 

based on the wild bootstrap. They found that the wild bootstrap percentiles-based hedging outperforms 

its alternatives overall, on the other hand, hedging effectiveness, downside risk, and the return 

variability. Chia and Michael (2018) presented that the univariate GARCH is not a special case of M-

GARCH especially the full BEKK model which in practice is almost estimated exclusively, has no 

underlying stochastic process, regularity conditions, or asymptotic properties. Shaoya et al. (2017) 

used two models, GARCH-MIDAS-X and DCC-MIDAS-X, to examine the effect of Chain’s business 

cycle on volatilities and correlations related to the Baltic dry index and chain’s stock market. They 

concluded that the significant determinants of macroeconomic variables of the long-term component 

of the index. 

This paper is meant to have a deeper understanding of the DCC-GARCH model, and bootstrap 

mean bias corrected estimator. Moreover, it checked the application of a new method “the mixed 

models” suggested in the study DCC-BMBCE and compared the results of this model to Grey GARCH 

model. Since the general index of the Egyptian stock exchange reflects changes in various prices of 

shares traded on a given day in the figure number one can reach a judgment on the direction of prices 

in the capital market, providing accurate forecasts of the values of that index and volatility during the 

future period benefit many who invest in the Egyptian stock market and applied it on Egyptian stock 

indicators (EGX30 and EGX70). 

The main purpose of this study is to suggest the mixed model (DCC-GARCH with BMBCE) 

eliminate the outlier values in the data also improves the estimation and prediction of time series with 

extreme volatilities. 

In the next section, we will introduce DCC-GARCH model with bootstrap mean corrected bias 

corrected estimator and the variances of A hybrid the GM(1,1)-GARCH  model. Section 3 will discuss 

the variables which we used and the sample selection. Section 4 will discuss the methodology of this 

study in detail. Finally, we will show the conclusion of the study. 

 

2. Methodology 

Time series are important models that deal with volatilities in the stock market; they are divided 

into univariate time series and multivariate time series. It is known that multivariate GARCH models 
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have the ability to predict the movements of returns in financial assets. There are many models that 

belong to them. 

 

2.1. DCC-GARCH-BMBCE model 

The multivariate GARCH model takes the form of the following equation:  

 1/ 2( ) ,t t t tE C Z                    (1) 

where tZ  is errors with mean equal (zero) and variance equal (1), 1 / 2
tC  is conditional variance matrix, 

( )tE   is the expected value of the conditional return .t  

To construct the suggested model, we will begin to explain ARMA( , )p q  and GARCH( , )r s  

models. Assume that is generated by the following: 

0
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To estimate the parameters, we used quasi maximum likelihood because of the errors not 

distributed as a normal distribution like the time series with extreme volatility. The quasi maximum 

likelihood is as following: 
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So 

 ˆ arg max .tL                                                             (6) 

As we have N  time series variance of the model A( , ),p q  GARCH( , ),r s  then each time series 

will be estimated. Now, we can get a non-linear combination of univarite GARCH, then as (Bollerslv 

1990) shown the DCC-GARCH model is represented as: 

 ,t t t tH D R D                (7) 

where tH  is positive value (i.e. less than or equal (1)). 

 ,Diagt i jD h  of time varying standard deviations from univariate GARCH model with 

 , ,i jh  
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and tR  is the time varying correlation matrix. 

Now, we obtained DCC-GARCH model that depends on the division of the matrix of conditional 

correlations into two main parts. t  is a covariance matrix which represented as following: 

1 2 1 1 3 1t t t t        
    and * 1

t
  is a diagonal matrix constructed with the diagonal elements of 

,t  
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And the residual is written as following: 1/ 2 ,t t tH Z   then 1/ 2 .t t tZ H   From these equations, 

we can get the prediction by using the next equation: 

    1 1 11 ,t r t r t r t r             
                (11) 

where 

 * 1 * 1
1t r t r t r t rR    

      and    1 1 1 .t t r t t r t rE R E       
            (12) 

To construct the value of 1,t   firstly we will find 
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where  1,..., .i r  From this equation, 
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                  (14) 

we can conclude that ( ),R   ( R  ), Then the purposed structure of DCC-GARCH model is  
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and the estimate will be using quasi-likelihood, but it assumed that the time series is stationary and 

this is not consistent with the stock market. Also, it will affect estimators because of the existence of 

the outliers. 

There are many methods to bias corrected parameter estimators, for instance; bootstrap mean bias 

corrected estimator, Andrews-Chen estimator, Roy-fuller estimator, and bootstrap median bias 

estimator. In this study, we suggested mixing bootstrap mean bias corrected with DCC-GARCH; 

DCC-GARCH-BMBCE to eliminate the outliers and estimate the corrected estimator. 

The DCC-GARCH-BMBCE are summarized as follow:  

Step 1. Estimate the parameters by using quasi maximum likelihood which is explained in (5)-

(6). 
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Step 2. Estimate the heteroscedasticity of GARCH models for each time series by applying (2) 

and estimated it’s parameters. 

Step 3 Calculating the time varying correlation matrix. 

Step 4 From (7) we calculate the residuals which written as following: 1/ 2 ,t t tH Z   then 

1/ 2 .t t tZ H   

Step 5. After the previous four steps, the prediction equation is as following: Now, the estimation 

process will be using bootstrap mean bias corrected estimator method  

Step 6. Compute the parameters of autoregressive model. 

Step 7. Fitting AR equation. 

Step 8. Calculate errors ˆ .t i iy y    

Step 9. Draw a n  sized bootstrap random sample with replacement ( ) ( ) ( )
1 2( , ,..., )b b b

n    from the 

values calculating from previous step (Dervis and Suat 2007). 

Step 10. Calculate bootstrap of Y values by adding the resampled errors, then we will obtain 

bootstrap estimators by using ordinary least square (OLS) as the following equation: 

1 1
ˆˆ ˆ ˆ ˆˆ ˆ ˆ .t t t p t p ty y y                                                      (16) 

Step 11. Repeat Steps 8, 9 and 10 for 1,2,...,r b  and proceed as in resampling with replacement. 

Step 12. Compute the bootstrap bias by using OLS as following: 

  *ˆ ˆ,Bias                                                              (17) 

where *  is the mean estimator’s parameter of the sample. 

 

2.2. GARCH and Grey model (1, 1) 

According to the models acquired from GARCH-type, the current conditional variance 2
t  is 

fundamentally dependent on the preceding error terms ( )t t    yet this is variable with the realistic 

situation. In the actual financial market, given the circumstances of the exception of the prior price, 

the error terms are also affected by the undetermined parameters, such as the economic, political, 

ecological plus other intricate factors. Such factors produce a continuous change of errors (Geng and 

Zhang 2015). So, we discussed how to forecasting the variances of the hybrid the GM(1,1)-GARCH 

Model. 

It can be said that the random error contains a mixture of known and unknown information that 

is based on a set of information in the past at time t  (Chih et al. 2008). The GM(1,1)-GARCH model 

provides a way to modify errors in the GM model, The successive amendments are as follows: 

1. The original sequence of errors (0) ,  where (0) (0)
( ) ,i    (0)

( ) ,i   2,3,...,i n  are as follows 

 (0) (0) (0) (0)
(1) (2) ( ), ,..., .n                                                         (18) 

Move sequential errors by adding minimum value in original sequence. Then the new sequence is 

 (0) (0) (0) (0)
(1) (2) ( ), ,..., ,nX x x x  

where  (0) (0) (0) (0) (0)
( ) ( ) (1) (2) ( )min , ,...,t t nx       and (0)

( )tx   for 2,3,..., .t n  

2. Obtaining first-order cumulative sum sequence by using AGO  (1) (1) (1) (1)
(1) (2) ( ), ,..., nX x x x so we 

can express generating series for the cumulative summation as follows 
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3. From the 3 steps, we can write the Grey model (1,1) as  
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By using the differential equations: 
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then the original differential equation will be written 
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4. Finally, placing back a  and b  derived from Grey’s differential equation into the general 

equation with (1) (0) (1)
(1) (1)

ˆ ˆ ˆ .x x x   Since the forecast model is not formed using an authentic sequence, 

but rather modes from a distinct cumulative addition, as a mean to reclaim the forecasted sequence 

reversed addition is to be demanded (Yi-Hsien and Chin 2008) 
(0) (1) (1)

( 1) ( )
ˆ ˆ ˆ ,i ix x x   
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Finally, forecasted original error at time 1t   is given by 
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After the predicted time inaccuracy 1t   is obtained by GM(1,1) model, this value is then put in 

the GARCH model to evaluate conditioned variance at time 1.t   Thus, the production of the one-

step-ahead variance predictions is rendered by the above-mentioned processes, and by repeating this 

procedure the multiple conditioned variance predictions for estimation interval can be acquired. (Yi-

Hsien 2009). 

 

3. Sample Selection and Data Collection 

The current study depended on Egyptian stock market indicators (EGX30 and EGX70) from the 

Egyptian stock exchange, after exclusion cross holding. The bonds are not included. This data is 

divided into two parts; firstly, data for the estimation process during the period (26/4/2016) to 

22/1/2019. Secondly, data for the forecasting process during the period 23/1/2019 to 20/2/2019. 
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4. Applied Study 

 

4.1. Appling DCC-GARCH-BMBCE model 

4.1.1 Estimate the dynamic conditional correlation model 

1) Descriptive study of series to indexes 

This study depended on EGX30 index; this indicator is not focused on a particular industry but 

provides a good representation of the various industries and sectors within the Egyptian economy. 

Also, it depends on EGX70 index which measures the performance of seventy of the most active 

companies after the companies listed in the EGX30 index. It aims to measure the change in closing 

prices of companies without weighing the market capital. 

 

 
Figure 1 Graph representation of the EGX30 and EGX70 indexes 

 

The figure clearly states that the period 4/2016–10/2016 witnessed low stock prices in both 

indices. On the other hand, the period 12/2016–4/2018 illustrates that there were fluctuations between 

a rise and fall, but in general, these fluctuations had a general trend is the rise in stock prices. Finally, 

from 5/2018–1/2019 there was another decline in stock prices in both series which shows that the 

indicators are of no consistency in the values of any fluctuations. Also, to decline the fluctuations we 

compute the daily return from the indexes generated from the following function 

,

,

, 1

100ln .i t

i t

i t

P
r

P 

 
   
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Figure 2 The log return of EGX30 and EGX70 

 

From Figure 2, the series appear to fluctuate around a sample average of zero. After that, we must 

study the stability of the time series that will be illustrated in the next section. 

 

2) Stability of time series 

There are many different ways to check the stability of series, such as autocorrelations, partial 

autocorrelations and Dickey-Fuller test which consider the most popular one. This study depends on 

Dickey-Fuller test. The approach used is quite straightforward. Also, there are three variations of 

Dickey-Fuller test designed to take account of the role of the constant term and the trend. So, we will 

use Dickey-Fuller test (Carter et al. 2011). 

 

Table 1 Dickey-fuller test for both indexes (EGX30 and EGX70) during period 2016-2019 

EGX30 index 

 t-statistic p-value 

Augmented Dickey-Fuller test −20.14254 0.0000* 

Test critical values 1% level −3.439925  

5% level −2.865656  

10% level −2.569019  

EGX70 index 

 t-statistic p-value 

Augmented Dickey-Fuller test −20.30589 0.0000* 

Test critical values 1% level −3.439925  

5% level −2.865656  

10% level −2.569019  

 

From previous table we noticed that the value of Dickey-Fuller is smaller than the critical values 

for both of indexes. Then, it means that the two indexes are stable. 

 

3) Studying the univariate GARCH model for both indexes 

Before we start to estimate the model, we must make a test to emphasize that GARCH model will 

be suitable for forecasting; we will use the Ljung-Box Q statistic (LBQ). The following table shows 

the results of test (Carter et al. 2011). 
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Table 2 Ljung-Box Q statistic results 

 EGX30 index EGX70 index 

Q-statistic p-value Q-statistic p-value 

Q (5) 41.822 0.0000000** 57.566 0.0000000** 

Q (10) 45.392 0.0000000** 62.195 0.0000000** 

Q (20) 52.523 0.0000000** 71.282 0.0000000** 

Q (35) 62.851 0.0000000** 85.082 0.0000000** 

 

From this table, we noticed that the lag values are 5, 10, 20, 35 and the calculated Q-statistic for 

both indexes are more than critical values at a significant level 5%, which means the GARCH model 

is suitable for data used. The second step is to estimate the univariate GARCH model of the stock 

market. Using the Marquardt maximum likelihood estimation method, we got the following estimation 

function, and the result in detail is shown in Table 3. 

 

Table 3 Estimating parameters of GARCH(1,1) model results 

EGX30 index  

 Coefficient Std. Error z-statistic p-value 

C 0.016931 0.007945 2.131163 0.0331 

Resid(-1)2 0.042593 0.009285 4.587306 0.0000 

RESID(-1)2*(RESID(-1)<0) 0.135644 0.040732 3.08847 0.0000 

GARCH(-1) 0.945080 0.011852 79.74026 0.0000 

No.observations: 66                 
Mean: 0.083939                            
Std.Dev: 1.197822  
Skewness: 0.182229                        
Kurtosis 5.874074  

EGX70 index 

 Coefficient Std. Error z-statistic p-value 

C 0.095897 0.025547 3.753736 0.0002 

Resid(-1)2 0.157269 0.031586 4.979008 0.0000 

RESID(-1)2*(RESID(-1)<0) 0.044018 0.015406 2.126221 0.0000 

GARCH(-1) 0.752192 0.045314 16.59968 0.0000 

No.observations: 669 
Mean: 0.089050 
Std.Dev: 0.0987474 
Skewness: 0.219043 
Kurtosis 4.822652 

 

As we can see from Table 3, EGX30 has a larger standard deviation compared to that of the EGX 

70. In addition, EGX30 has s smaller mean than EGX70. Also, skewness and kurtosis, we can notice 

that EGX70 is more right-skewed and with less leptokurtic. So, we can say that EGX70 is better than 

EGX30. The parameters of asymmetric innovation for both indexes are significantly different from 

zero based on normal standard errors. 
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4) Estimate the dynamic conditional correlation model 

To estimate the dynamic conditional correlation model, remember the DCC function shown as: 

   1 1 11 .t r t r t r t r             
      

 

Table 4 DCC estimation of EGX30 and EGX70 

 Coefficient Std. Error z-Statistic p-value 

  0.212650 0.015471 5.675 0.0000 
  0.670677 0.226205 3.847 0.0001 

 

Shown in Table 4 the result of DCC model estimation for EGX30 and EGX70. The coefficients 

are significant and we can notice that the persistence of conditional correlation is significant and the 

stability condition is met. Also, we noticed that the sum of    for both indexes are less than one 

which indicated the stability of the two indexes. Finally, by using Ox metrics program, we found the 

correlation between both indexes is 0.750487 and the conditional variance is 0.01916731 and 

0.10856342 for EGX30 and EGX70, respectively. By applying (8), we calculate the matrix and the 

result is 

 

 

The main aim of this matrix is to help us for estimating and forecasting processes. After we 

finished this part, now we go to the second part which is estimating the parameters by using the 

Bootstrap mean bias corrected estimator method. 

 

4.1.2 Bootstrap mean bias corrected estimator method 

In this part, we estimated the coefficient of the rank autoregressive of two indexes the performance 

of the bootstrap mean bias corrected estimators to two indexes by determining the rank of 

autoregressive model and extract the coefficients by an ordinary least square method. For that aim we 

will use Akaike information criterion (AIC), Bayesian information criterion (BIC) and Hannan Quinn 

criterion (HQC). The following table will show the results for both indexes. 

From the last table, we saw that regarding EGX30, the rank of AR was equal in the three criteria 

which equal (4). Secondly, for EGX70, the rank of AR for BIC equal (1) and for HQC equal (1). Then 

if we compare between three criteria, HQC is the same in both indexes which equal (1) then the AR 

model is AR(1) then, this is the best one comparing to the others. The following table will illustrate 

the results of coefficients of EGX30 and EGX70 by using bootstrap method for iteration 1000. 

As we can see from Table 6, by using the bootstrap method the trend in EGX30 is positive that 

means the prices will increase, this indicates that stock prices are in a profit trend. On the other hand, 

the trend in EGX70 is positive that means the prices will decrease, this indicates that stock prices are 

in a loss trend. 

 

 

 

 

 

 

0.01916731 0.08147544
.

0.01438482 0.10856342
tH
 

  
 
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Table 5 Results of criterions after calculating returns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Results of coefficients of EGX30 and EGX70 by using bootstrap method 

EGX30 index EGX70 index 

 Coefficients  Coefficients 

AR1 22.45603 10  AR1 35.222178 10  

Constant 33.897655 10  constant 22.190158 10  

Trend 64.826273 10  Trend 71.223959 10   

 

4.1.3 Mixing dynamic conditional correlation model with bootstrap mean bias corrected estimator 

model 

 As mentioned above, this paper suggested a new mixed model depends on mixing dynamic 

conditional correlation model (DCC-GARCH model) with the bootstrap mean bias corrected estimator 

model (BMBCE) to obtain an efficient model to predict the volatilities of stock prices. The following 

table will illustrate the trend of series in different sizes of samples. We used the R package to generate 

the model. 

 

 

 

 

 

EGX30 index EGX70 index 

Critical values Critical values 

        AIC           BIC         HQC       AIC           BIC          HQC 

−8.850211 −8.877967 −8.902724 −9.237996 −9.264302 −9.282813 

−8.904664 −8.877724 −8.894228 −9.291243 −9.217791 −9.280807 

−8.905143 −8.871468 −8.892098 −9.290781 −9.257105 −9.277736 

−8.918377 −8.830006  −8.842384 −9.298466 −9.258056 −9.230169 

−8.916126 −8.868980 −8.897863 −9.299265 −9.252119 −9.281002 

−8.915158 −8.861278 −8.894287 −9.297028 −9.243147 −9.276157 

−8.913249 −8.852633 −8.889768 −9.295648 −9.235032 −9.272168 

−8.916607 −8.849256 −8.890518 −9.292742 −9.225391 −9.266653 

−8.914579 −8.840493 −8.885881 −9.291071 −9.216985 −9.262373 

−8.915196 −8.834375 −8.883889 −9.290479 −9.209658 −9.259172 

−8.913269 −8.825713 −8.879353 −9.288117 −9.200561 −9.254201 

−8.916246 −8.821955 −8.879721 −9.292316 −9.198024 −9.255790 

−8.913849 −8.812822 −8.874715 −9.289344 −9.188317 −9.250210 

−8.913120 −8.805359 −8.871377 −9.286419 −9.178657 −9.244676 

−8.910511 −8.796014 −8.866159 −9.286471 −9.171975 −9.242119 

−8.916114 −8.794882 −8.869153 −9.284566 −9.163334 −9.237605 

−8.913446 −8.785479 −8.863876 −9.290789 −9.162823 −9.241220 

−8.914655 −8.779953 −8.862476 −9.294304 −9.159602 −9.242126 

−8.914361 −8.772923 −8.859573 −9.295628 −9.154191 −9.240840 

−8.911686 −8.763514 -8.854289 −9.292845 −9.144673 −9.235448 

p*        4               1                1 p*        5                1                 1 
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Table 7 Results of coefficients of EGX30 by using mixed model 

 Iteration=1000 Iteration=5000 Iteration= 10000 

 Coefficients Coefficients Coefficients 

AR1 22.433034 10  22.438382 10  22.408012 10  

Constant 32.096019 10  32.097122 10  32.098227 10  

Trend 64.749976 10  64.752551 10  64.755136 10  

 

Table 8 Results of coefficients of EGX70 by using mixed model 

 Iteration=1000 Iteration=5000 Iteration= 10000 

 Coefficients Coefficients Coefficients 

AR1 35.866075 10  34.905698 10  35.442108 10  

Constant 31.744538 10  31.747990 10  31.746886 10  

Trend 63.570905 10  63.578185 10  63.575856 10  

 

As we can see from Tables 7 and 8, we can easily notice that the trend of series is positive and 

approximately equally in three different sizes (1000, 5000, 10000) iteration that mean the prices of 

stocks will increase.  
 

 

Figure 3 Time plot and prediction intervals of the EGX30 and EGX70 indexes 

 

In Figure 3, the time point of forecasts and the prediction interval for EGX30 and EGX70. Where, 

the red lines indicate to prediction quantiles and the blue line is point forecast. 

 

4.2. Applying GARCH and Grey model (1,1) 

4.2.1 Descriptive statistics and estimation result 

We examined the variance forecasting ability of GM(1,1)-GARCH model among two indexes 

EGX30 and EGX70. As we have shown above in table (3) the descriptive statistics. Now, we will 

show the estimation results of GM(1,1)-GARCH(1,1). 
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Table 9 Estimation results GARCH(1,1) of GM(1,1)-GARCH(1,1) model 

GARCH(1,1)   

Parameter EGX30 EGX70 

  0.000002 0.000009 
  0.050992 0.150992 

  0.933342 0.765751 

Log-Likelihood 2041.118 2170.467 
2Q  4.671 26.640 

GM(1,1)-GARCH(1,1)   

  0.000004 0.000015 

Α 0.0524354 0.154862 

Β 0.942132 0.785961 

Log-Likelihood 2034.204 2087.532 
2Q  5.818 29.870 

 

Table 9 illustrated the estimation results of GARCH(1,1) and GM(1,1)-GARCH(1,1) model for 

two indices. For both models are all statistically significant at   = 1%, which indicates that volatilities 

during the period do not stable.  

In both models, the sums of parameters   and   are less than one and, thus, enclose that the 

conditions for stationary covariance constant. In addition, the parameters   of both models reveal 

that there are substantial memory effects in volatility.  

 

4.3. Criteria to evaluate the forecasting performance 

In order to compare the models we presented in this paper, we will analyze the errors for these 

models by estimating the difference between the actual values and the estimated values in order to 

measure the accuracy of the models, Involving root mean square error (RMSE) and mean absolute 

error (MAE). The following table shows the results for two mixed models. 

 

Table 10 RMSE, MAE of two types of volatility models for EGX30 and EGX70 

Indices Model RMSE MAE 

EGX30 

DCC-GARCH-BMBCE 

For iteration 1000 0.165772607 0.099916304 

For iteration 5000 0.165776816 0.09991757 

For iteration 10000 0.165776062 0.099917472 

GM-GARCH 0.455606031 0.82873164 

EGX70 
 

DCC-GARCH-BMBCE 

For iteration 1000 0.103829659 0.064719543 

For iteration 5000 0.103828219 0.064714644 

For iteration 10000 0.103829297 0.064715221 

GM-GARCH 0.327606839 0.699010164 

 

The above table showed that RMSE and MAE values by using DCC-GARCH-BMBCE model is 

less than by using GM-GARCH  they means the first model is more efficient comparing to the other 

model to predict stock prices. 
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5.    Conclusions 

This study suggests a new mixed model depending on mixing dynamic conditional correlation 

model (DCC-GARCH) with bootstrap mean bias corrected estimator method (BMBCE) to predict the 

volatilities of stock prices in Egypt over the period from 26/4/2016 to 22/1/2019. Particularly, the 

study uses the daily stock prices of indicators (EGX30 and EGX70) to obtain an efficient model to 

predict the volatilities of stock prices in Egypt. To check the stability of the series we use Dickey-

fuller test, we noticed that the value of Dickey-Fuller is smaller than the critical values for both 

indexes. However, after estimating parameters of GARCH(1,1) model results we found that EGX70 

is better than EGX30. The parameters of asymmetric innovation for both indexes are significantly 

different from zero based on normal standard errors. Further, the result of DCC model estimation for 

EGX30 and EGX70. The coefficients are significant and we can notice that the persistence of 

conditional correlation is significant and the stability condition is met. Also, by using the bootstrap 

method the trend in EGX30 is positive that mean the prices will increase. On the other hand, the trend 

in EGX70 is positive that means the prices will decrease. After applying mixing dynamic conditional 

correlation model with bootstrap mean bias corrected estimator model, we noticed that the trend of 

the series is positive and approximately equally in three different sizes (1000, 5000, 10000) iteration 

that mean the prices of stocks will increase. Further, the study uses a Grey GARCH model (1,1) in the 

same period and same indicators. The results illustrate the estimation results of GARCH(1,1) and 

GM(1,1)-GARCH(1,1) model for two indices. For both models are all statistically significant at  = 

1%, which indicate that volatilities during the period do not stable. In addition, the parameters   of 

both models reveal that there are substantial memory effects in volatility. Finally, to compare the 

models we presented in this paper, we will analyze the errors for these models by estimating the 

difference between the actual values and the estimated values in order to measure the accuracy of the 

models, Involving root mean square error (RMSE) and mean absolute error (MAE). The following 

table shows the results for two mixed model. The results of the applied study on EGX30 and EGX70 

indices of Egypt stock market shows that the DCC-GARCH-BMBCE model has superior 

performances in volatility forecasting than the GM-GARCH model. 
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