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Abstract 

This paper considers the problem of constructing simultaneous confidence intervals (SCIs) for all 

pairwise differences of coefficients of variation from several normal distributions. The proposed 

approaches are based on the generalized confidence interval (GCI) approach, the method of variance 

estimates recovery (MOVER) approach, and the computational approach. The performances of these 

approaches, using the biased estimator of the coefficient of variation, are compared with the 

performances of those approaches using the shrinkage estimator. A simulation study based comparison 

of these SCIs in terms of the coverage probability, average length, and standard error. The simulation 

results indicated that the GCI approach and the MOVER approach can provide the SCIs with satisfying 

coverage probabilities regardless of sample sizes. Furthermore, the performances of the biased 

estimator are better than the performances of the shrinkage estimator. Finally, an application to PM2.5 

dispersion in the Northern Thailand is given to illustrate the proposed simultaneous confidence 

intervals. 

______________________________ 
Keywords: Simultaneous confidence intervals, coefficient of variation, simulation, coverage probability, average 

length. 

 

1. Introduction 

For a random sample of sample size n  from a normal distribution with mean   and variance 

2 ,  let 
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    be the sample mean and the sample variance, 

respectively. The normal distribution is the most important distribution in statistics. It fits many 

phenomena such as height, weight, blood pressure, and intelligence quotient (IQ) scores. Furthermore, 

this distribution is widely used in many areas. For instance, in hydrology, the distribution of rainfall 

is thought to be the normal distribution according to the central limit theorem, see Waylen et al. (1996) 

and Abdullah and Al-Mazroui (1998). In real-life situations, the amount of rainfall is used to assess 
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the amount of water available to meet the various demands of agriculture, industry, and other human 

activities. In climatology, the coefficient of variation is used to analyze the rainfall data 

(Ananthakrishnan and Soman 1989). Estimation of the coefficient of variation received interest in 

several researchers such as Ahmed (1994), Ahmed (1995), Ahmed et al. (2012), and Hayter (2015). 

Furthermore, the multiple comparisons of several treatments are corresponding to the simultaneous 

confidence intervals. The simultaneous confidence intervals for coefficients of variation of normal 

distributions are useful and important problem in real life. For instance, the simultaneous confidence 

intervals for coefficients of variation are used to compare rainfall variability in different regions. In 

demography, the differences of coefficients of variation of numbers of birth on various days can 

estimate using the simultaneous confidence intervals. Moreover, in clinical trials, the simultaneous 

confidence intervals of coefficients of variation are used to study the patient-level cost in different 

groups. 

It is well known that if X  is a sample taken from a normal distribution with mean   and variance 

2 ,  then exp( )Y X  is a log-normal distribution with mean Y  and variance 2 .Y  The log-normal 

distribution is used to describe the natural phenomena. Application of log-normal distribution can be 

found in biology, medicine, hydrology, economics, and environment. For example, the log-normal 

distribution is used to estimate annual maximum values of daily rainfall.  Moreover, the log-normal 

distribution is used to analyze air pollution level. Air pollution is a risk factor for a number of 

pollution-related diseases such as heart disease and lung cancer. Air pollution is a mixture of gaseous 

pollutants and particulate matter (PM). PM2.5 is particle that has a diameter of less than 2.5 

micrometers, while PM10 has a diameter of less than 10 micrometers. The World Health Organization 

sets 25 micrograms as World Health Organization’s safe level, while Pollution Control Department 

sets 50 micrograms as Thailand’s safe level. PM2.5 has been a common problem in North of Thailand. 

It mainly occurs from January to April, but peaks in March. Air quality monitoring stations in North 

of Thailand found levels higher than 50 micrograms. According to an air pollution report of Pollution 

Control Department, the PM2.5 level in North of Thailand reached peaked at more than 350 

micrograms, a level considered very unhealthy. In statistic, the air quality can be described by the 

coefficient of variation (Zhao et al. 2019). Real data set from the PM2.5 level in regions of northern 

Thailand; see Section 4. 

In many fields, testing the equality of coefficients of variation in several populations is of interest. 

As a result, the problem of testing the equality of coefficients of variation of several normal 

populations has been widely studied. For example, Miller and Karson (1977) proposed testing equality 

of coefficients of variation in two normal distributions. Doornbos and Dijkstra (1983) proposed a multi 

sample test for the equality of coefficients of variation in k  normal populations. Gupta and Ma (1996) 

proposed bisection method to obtain the estimator of parameters for testing the equality of the 

coefficients of variation in k  normal populations. Fung and Tsang (1998) presented parametric and 

nonparametric tests for the equality of coefficients of variation in k  normal populations. Ahmed 

(2002) developed simultaneous estimation of coefficients of variation of normal distributions. 

Recently, Hayter and Kim (2015) studied small-sample tests for the equality of coefficients of 

variation of two normal distributions. 

Simultaneous confidence intervals (SCIs) provide the confidence regions for multivariate 

parameter, comprising individual intervals for the separate components of the parameter. The SCIs is 

useful for multiple comparisons of treatments such as treatment means, treatment variances, and 

treatment coefficients of variation. For example, Thangjai et al. (2018) constructed the SCIs for all 

differences of means of two-parameter exponential distributions. In addition, Thangjai and Niwitpong 
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(2020) proposed the SCIs for all differences of coefficients of variation of two-parameter exponential 

distributions. In this paper, we proposed three approaches to construct the SCIs for all differences of 

coefficients of variation from k  normal populations. Firstly, the concepts of generalized pivotal 

quantity (GPQ) and generalized confidence interval (GCI) were introduced by Weerahandi (1993). 

Several researchers have used the concept of the GCI approach for constructing the confidence interval 

for coefficient of variation of normal distribution, i.e., see Tian (2005) and Thangjai et al. (2018). 

Secondly, the concept of MOVER approach, was introduced by Zou and Donner (2008) and Zou et 

al. (2009), was proposed to construct the confidence interval for the sum of two parameters. Moreover, 

the confidence interval for the difference parameters of two populations based on MOVER approach 

was proposed by Donner and Zou (2010). Recently, the MOVER approach has been successfully used 

to construct confidence interval, such as see Zou et al. (2009), Donner and Zou (2010), Suwan and 

Niwitpong (2013), Niwitpong (2015), Wongkhao et al. (2015), Niwitpong and Wongkhao (2016), 

Sangnawakij et al. (2015), and Sangnawakij and Niwitpong (2017). Finally, the computational 

approach was provided by Pal et al. (2007). The computational approach based on simulation and 

numerical computation uses the maximum likelihood estimates (MLEs). The computational approach 

was used to test equality of several populations; see Gokpinar et al. (2013), Jafari and Abdollahnezhad 

(2015), and Gokpinar and Gokpinar (2015). The daily PM2.5 levels at different areas are important 

aspects of air quality. The coefficients of variation of the PM2.5 data in different areas are different 

values. The coefficients of variation in the different areas are used to compare the PM2.5 level 

variability. To our knowledge there is no previous research paper on SCIs for all differences of 

coefficients of variation from k  normal populations. Therefore, this paper will propose the GCI 

approach, the MOVER approach, and the computational approach for constructing the SCIs for all 

differences of coefficients of variation of PM2.5 levels in different areas of northern Thailand. 

 

2. Simultaneous Confidence Intervals 

Assume initially a single sample 1 2( , , , )nX X X X   from the normal distribution with mean 

  and variance 2.  The coefficient of variation is / .    

Let n  and k  be sample size and sample case, respectively. For k  sample case, let ijX  be random 

sample from normal distribution based on the thi  sample. The coefficient of variation based on the thi  

sample is defined by 
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normal data for the thi  sample and let ix  and 2
is  be observed sample mean and observed sample 

variance, respectively. The maximum likelihood estimator (MLE) of i  is a biased estimator. It is 

defined by 
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Ahmed (2002) proposed the shrinkage estimators for .i  In this paper, the Stein-type shrinkage 

estimator is used for i  because the Stein-type shrinkage estimator is the best estimator. The shrinkage 

estimator is defined as 
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According to Feltz and Miller (1996) and Tian (2005), the asymptotic variance of ˆ
i  is defined 

by 
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The interest of this paper is constructing SCIs for all differences of coefficients of variation 

,i l   where , 1,2, ,i l k   and .i l  

 

2.1. Generalized confidence interval approach 

 

Definition 1 Let 1 2( , , , )nX X X X   be the random sample from a distribution ( ; , ),XF x    where 

  is a scalar parameter of interest and   is a vector of nuisance parameters. Let 1 2( , , , )nx x x x   

be the observed value of 1 2( , , , ).nX X X X   The random quantity ( ; , , )R X x    is called the 

generalized pivotal quantity if it has the following two properties; see Weerahandi (1993): 

(i) The distribution of ( ; , , ),R X x    ,X x  is free of all unknown parameters. 

(ii) The observed value of ( ; , , ),R X x    ,X x  is the quantity. 

Let ( )R   be the th( )  quantile of ( ; , , ).R X x    Therefore,  ( / 2), (1 / 2)R R   becomes the 

100(1 )%  two-sided generalized confidence interval for parameter of interest. It is well known that 

iX  and 2
iS  are independent and  
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where 2
1in   denotes the chi-squared distribution with 1in   degrees of freedom. The generalized 

pivotal quantity of i  based on the thi  sample is defined by 
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where iZ  denotes the standard normal distribution and iU  denotes the chi-squared distribution with 

1in   degrees of freedom. Furthermore, the generalized pivotal quantity of 2
i  based on the thi  

sample is defined by 
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where iV  denotes the chi-squared distribution with 1in   degrees of freedom. Therefore, the 

generalized pivotal quantity of i  based on the thi  sample is defined by 
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generalized pivotal quantity of ii i l     is defined by 
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Therefore, the 100(1 )%  two-sided simultaneous confidence intervals for all differences of 

coefficients of variation il  based on GCI approach are defined by 

 ( ) ( / 2), (1 / 2) ,
il ilil GCISCI R R                    (10) 

where ( / 2)
il
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R   denote the th( / 2)  and the (1 / 2) -th quantiles of 
il

R , 

respectively. The values of ( / 2)
il

R   and (1 / 2)
il

R   are easily obtained by Monte Carlo method. 

The values of ( / 2)
il

R   and (1 / 2)
il

R   can be estimated using Monte Carlo procedure as 

follows: 

 

Algorithm 1  

Step 1 Calculate the values of ,ix  ,lx  2 ,is  and 2 ,ls  the observed values of ,iX  ,lX  2 ,iS  and 

2 ,lS  respectively, where , 1,2, ,i l k   and .i l  

Step 2 Generate iZ  and lZ  from the standard normal distributions and generate iU  and lU  from 

the chi-squared distributions with 1in   and 1ln   degrees of freedom. Compute 
i

R  and ,
l

R  

where , 1,2, ,i l k   and .i l  

Step 3 Generate iV  and lV  from the chi-squared distributions with 1in   and 1ln   degrees of 

freedom. Compute 2
i

R


 and 2 .
l

R


 

Step 4 Compute 
i

R , 
l

R , and .
ll

R  

Step 5 Repeat Step 1 to Step 4 a large number of times (say, m  1000 times). From these m  

values, obtained the 1000
il

R  and its th( / 2) and th(1 / 2) quantiles as ( / 2)
ll

R   and

(1 / 2).
ll

R   

 

Theorem 1 Let ijX  be the random sample from the normal distribution with mean i  and variance 

2 ,i  where 1,2, ,i k  and 1, 2, , .ij n   The coefficients of variation are /i i i    and 

/ ,l l l    where , 1,2, ,i l k   and .i l  Let ˆ /i i iS X   and ˆ /l l lS X   be the estimators of i  

and ,l  respectively. Also, let il  be the difference between i  and .l  Let in  be the sample size 

based on the thi  sample. Assume that the ratio / (0,1)i in N r   as ,N    where 

1 2 .kN n n n     Then the joint coverage probability is 

 ( / 2) (1 / 2), 1 .
il ililP R R i l                                                     (11)  
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Proof: Let ˆ
il  be the difference between ˆ

i  and ˆ ,l  where , 1,2, ,i l k   and .i l  The mean and 

variance of 
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 ( / 2) (1 / 2), 1 .
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Hence, Theorem 1 is proved. 

 

From Equation (3) , using the generalized pivotal quantities of i  and 2
i  in (5) and (6), the 

100(1 )%  two-sided simultaneous confidence intervals for all differences of coefficients of 

variation il  based on GCI approach using the shrinkage estimator are similar to (10) defined by 

 ( . ) [ ( / 2), (1 / 2)],
il il

A A
il A GCISCI R R                  (12) 

where ( / 2)
il

AR  and (1 / 2)
il

AR   denote the th( / 2) and the th(1 / 2) quantiles of ,
il

AR

respectively. 

 

2.2. Method of variance estimates recovery approach 

According to Donner and Zou (2010), the 100(1 )%  two-sided confidence interval for 

coefficient of variation of normal distribution is given by 

2max{0, ( 2)} /i i i i i i i il x x a c a s c                                            (13) 

and 

2max{0, ( 2)} / ,i i i i i i i iu x x b c b s c                                             (14) 

where 2
1 / 2, 1( 1) / ,

ii i na n      2
/ 2, 1( 1) / ,

ii i nb n     2 2 2
/ 2 / ,i i i ic x z s n   and 1,2, , .i k   

For 1, 2,i   Donner and Zou (2010) introduced the MOVER approach to construct a 100(1 )%  

two-sided confidence interval 12 12[ , ]L U  of 1 2 ,   where 1  and 2  denote the parameters of 

interest and 12L  and 12U  denote the lower limit and the upper limit of the confidence interval. The 

[ , ]i il u  contains the parameter values for ,i  where 1, 2.i   The lower limit 12L  is defined by  
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 2 2
12 1 2 1 1 2 2

ˆ ˆ ˆ ˆ( ) ( ) .L l u                       (15) 

The upper limit 12U  is defined by 

 2 2
12 1 2 1 1 2 2

ˆ ˆ ˆ ˆ( ) ( ) .U u l                       (16) 

For , 1, 2, ,i l k   and i l , the lower limit ilL  and the upper limit ilU  are defined by  

 2 2ˆ ˆ ˆ ˆ( ) ( )il i l i i l lL l u                       (17) 

and  

 2 2ˆ ˆ ˆ ˆ( ) ( ) ,il i l i i l lU u l                       (18) 

where ˆ /p p ps x  , 2max{0, ( 2)} / ,p p p p p p p pl x x a c a s c       

2max{0, ( 2)} / ,p p p p p p p pu x x b c b s c       2
1 / 2, 1( 1) / ,

pp p na n      2
/ 2, 1( 1) / ,

pp p nb n     

and 2 2 2
/ 2 / .p p p pc x z s n   

Therefore, the 100(1 )%  two-sided simultaneous confidence intervals for all differences of 

coefficients of variation il  based on MOVER approach are defined by 

 2 2 2 2
( )
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Theorem 2 Suppose that 2( , ),ij i iX N    where 1,2, ,i k   and 1, 2, , .ij n   Let i  and 

2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) , ( ) ( )i l i i l l i l i i l ll u u l                  be the coefficients of variation based 

on the thi  sample and thl  sample, respectively. And let ˆ
i  and ˆ

l  be the estimators of i  and ,l  

respectively. Let il  be a difference between i  and ,l  where , 1,2, ,i l k   and .i l  Let ilL  and 

ilU  be the lower limit and the upper limit of the confidence interval for .il  Then the joint coverage 

probability is 

  , 1 .il il ilP L U i l                     (20) 

 

Proof: For , 1,2, ,i l k   and ,i l  the lower limit ilL  and the upper limit ilU  of the confidence 

interval for il i l     are obtained by  
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l  at l ll   are 


2

2
/ 2

ˆ( )ˆ( ) i i
i

l
Var

z





  and 

2

2
/ 2

ˆ( )ˆ( ) l l
l

l
Var

z





 , 

where / 2z  denotes the th( / 2)  quantile of the standard normal distribution. The variance estimates 

for ˆ
i  at i iu   and ˆ

l  at l lu   are 
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
2

2
/ 2

ˆ( )ˆ( ) i i
i

u
Var

z





  and 

2

2
/ 2

ˆ( )ˆ( ) .l l
l

u
Var

z





  

Hence, the lower limit and the upper limit are 

 
2 2

/ 2 / 22 2
/ 2 / 2

ˆ ˆ( ) ( )ˆ ˆ ˆ ˆ( ) ( )i i l l
il il il i l

l u
L z z Var Var

z z
 

 

 
   

 
       

and 

 
2 2

/ 2 / 22 2
/ 2 / 2

ˆ ˆ( ) ( )ˆ ˆ ˆ ˆ( ) ( ).i i l l
il il il i l

u l
U z z Var Var

z z
 

 

 
   

 
       

Following Zhang (2014) and Kharrati-Kopaei and Eftekhar (2017), then  

    / 2 / 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )il il il il i l il il i lP L U P z Var Var z Var Var                  

                                        / 2
ˆ ˆ ˆ( ( ) ( ) ), ,il il i lP z Var Var i l          

where / 2z  denotes the th( / 2)  quantile of the standard normal distribution of 

 

ˆ
max .

ˆ ˆ( ) ( )

il il
n

i l

i l

Q
Var Var

 

 



 


 

Then  

  / 2
ˆ ˆ ˆ( ( ) ( ) ), 1 ,il il i lP z Var Var i l            

implies that 

 , 1 .il il ilP L U i l        

Hence, Theorem 2 is proved. 

 

In addition, the 100(1 )%  two-sided simultaneous confidence intervals for all differences of 

coefficients of variation il  based on MOVER approach using the shrinkage estimator are defined by 

 2 2 2 2
( . )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) , ( ) ( ) .A A A A A A A A
il A MOVER i l i i l l i l i i l lSCI l u u l                         (21) 

 

2.3. Computational approach 

Again, let /i i i    be the coefficient of variation of normal distribution, where 1,2, , .i k   

According to Doornbos and Dijkstra (1983) and Gokpinar and Gokpinar (2015), the restricted 

maximum likelihood estimator (RML) of i  is given by 

 
2 2

( ) 2

(1 2( / ) ) 1ˆ .
4(1 ( / ) )

i i
i RML

i i

S X

S X


 



              (22) 

The RML of i  is given by 

 
2

( )
2 2

( )

2(1 ( / ) )
ˆ .

ˆ1 1 4(1 ( / ) )

i i i
i RML

i i i RML

S X X

S X







  
              (23) 

Let ( )ij RMLX  be an artificial sample from the normal distribution with mean ( )
ˆ

i RML  and variance 

2 2 2
( ) ( ) ( )

ˆˆ ˆ ,i RML i RML i RML   where 1,2, ,i k   and 1, 2, , .ij n   Let ( )i RMLX  and 2
( )i RMLS  be sample 
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mean and sample variance for normal data for the thi  artificial sample and let ( )i RMLx  and 2
( )i RMLs  be 

observed values of ( )i RMLX  and 2
( ) ,i RMLS  respectively. The difference of coefficient of variation 

estimators based on the artificial sample is defined by 

 
( ) ( )

( ) ( ) ( )

( ) ( )

ˆ ˆ ˆ ,
i RML l RML

il RML i RML l RML

i RML l RML

S S

X X
                   (24) 

where .i l  Therefore, the 100(1 )%  two-sided simultaneous confidence intervals for all 

differences of coefficients of variation il  based on computational approach are defined by 

( ) ( ),( / 2) ( ),(1 / 2)
ˆ ˆ, ,il CA il RML il RMLSCI    

                                                (25) 

where ( ),( / 2)
ˆ
il RML   and ( ),(1 / 2)

ˆ
il RML    denote the th( / 2)  and the th(1 / 2) quantiles of ( )

ˆ ,il RML  

respectively. The computational approach is presented in Algorithm 2 and bellow: 

 

Algorithm 2 

Step 1. Obtain the MLE of the parameters as ˆ
i iX   and ˆ .i iS   Then ˆ ˆ ,i l

i l

i l

S S

X X
     

where 1,2, ,i k   and .i l  

Step 2. Calculate the value of ( )
ˆ
i RML  as given by (22) and calculate the value of ( )

ˆ
i RML  as given 

by (23). 

Step 3. Generate artificial sample ( )ij RMLX  from 2 2
( ) ( ) ( )

ˆˆ ˆ( , )i RML i RML i RMLN     a large number of times 

(say, m  1000 times), where 1,2, ,i k   and 1,2, , .ij n   For each of these replicated samples, 

recalculate the MLE of ( ) ,il RML  where , 1,2, ,i l k   and .i l  Let these recalculated MLE values 

of ( )il RML  be ( ),1 ( ),2 ( ),
ˆ ˆ ˆ, , , .il RML il RML il RML m    

Step 4. Let ( ),(1) ( ),(2) ( ),( )
ˆ ˆ ˆ
il RML il RML il RML m      be the ordered values of ( ),

ˆ ,il RML g  where

1,2, , ,g m   , 1,2, , ,i l k   and .i l  

Step 5. Find the lower bound is defined by ( ),(( / 2) )
ˆ
il RML m  and find the upper bound is defined by 

( ),((1 / 2) )
ˆ .il RML m    

 

Theorem 3 Suppose that 2( , )ij i iX N    and 2
( ) ( ) ( )

ˆ ˆ( , ),ij RML i RML i RMLX N    where 1,2, ,i k   and 

1,2, , .ij n   Let ( ),( / 2)
ˆ
il RML   and ( ),(1 / 2)

ˆ
il RML    be the lower limit and upper limit of the confidence 

interval for ( )
ˆ
il RML . Then 

 ( ),( / 2) ( ) ( ),(1 / 2)
ˆ ˆ ˆ , 1 .il RML il RML il RMLP i l                                           (26) 

 

Proof: Let ( ) ( ) ( )
ˆ ˆ ˆ ,il RML i RML l RML    where 1,2, ,i k   and .i l  The mean and variance of 

ˆ ˆ ˆ
il i l     are 

( )
ˆ ˆ( )il il RMLE    and ˆ ˆ ˆ( ) ( ) ( ).il i lVar Var Var     
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Using Pal et al. (2007), Zhang (2014), and Kharrati-Kopaei and Eftekhar (2017), then  

 ( ),( / 2) ( ) ( ),(1 / 2) ( ) 1 / 2
ˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( ( )), ,il RML il RML il RML il RML il ilP P t Var i l                

where 1 / 2t   denotes the th(1 / 2)  quantile of the Student’s t-distribution with 1in   degrees of 

freedom of  



( )
ˆ ˆ

max
ˆ( )

il il RML

i l

il

Q
Var

 





  . 

Therefore, 

 ( ) 1 / 2
ˆ ˆ ˆ( ( )), 1 ,il RML il ilP t Var i l          

implies that  

 ( ),( / 2) ( ) ( ),(1 / 2)
ˆ ˆ ˆ , 1 .il RML il RML il RMLP i l           

Hence, Theorem 3 is proved. 

 

By performing similar steps with the idea that the difference of coefficients of variation estimator 

based on the artificial sample using the shrinkage estimator is defined by 

( ) ( ) ( )
ˆ ˆ ˆ .A A A
il RML i RML l RML                                                          (27) 

It is easy to see that the 100(1 )%  two-sided simultaneous confidence intervals for all 

differences of coefficients of variation il  based on computational approach using the shrinkage 

estimator are defined by 

( . ) ( ),( / 2) ( ),(1 / 2)
ˆ ˆ, ,A A

il A CA il RML il RMLSCI    
    ,                                            (28) 

where ( ),( / 2)
ˆA
il RML   and ( ),(1 / 2)

ˆA
il RML    denote the th( / 2)  and the th(1 / 2)  quantiles of ( )

ˆ ,A
il RML  

respectively. 

 

3.    Simulation Studies 

In this section, simulation studies are carried out to evaluate the performance of the simultaneous 

confidence intervals based on GCI approach ( GCISCI  and . ),A GCISCI  MOVER approach ( MOVERSCI

and . ),A MOVERSCI  and computational approach ( CASCI and . )A CASCI  for differences of coefficients of 

variation of several normal distributions. The performance of these three approaches was evaluated 

through the coverage probabilities, average lengths, and standard errors of the simultaneous 

confidence intervals. 

In simulations, four configuration factors are considered to evaluate the performance of the three 

simultaneous confidence interval approaches: (1) sample cases: k  5; (2) population means: 

1 2 5 1;       (3) population coefficients of variation: 1 2 5, , , ;    (4) sample sizes: 

1 2 5, , , .n n n  The specific combinations are given in the following table. The nominal confidence level 

was chosen to be 0.95. 

The following algorithm was used to estimate the coverage probabilities of six simultaneous 

confidence intervals. 
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Algorithm 3 

Step 1. Generate ,ijX  a random sample of sample size 
in  from normal population with 

parameters i  and 2 ,i  where 1,2,i k   and 1,2, , .ij n   Calculate ix  and is  (the observed 

values of iX  and iS ). 

Step 2. Construct two-sided simultaneous confidence intervals based on GCI approach ( )( il GCISCI

and ( . ) )il A GCISCI  and record whether or not all the values of il  fall in their corresponding 

simultaneous confidence intervals. 

Step 3. Construct two-sided simultaneous confidence intervals based on MOVER approach 

( )( il MOVERSCI  and ( . ) )il A MOVERSCI  and record whether or not all the values of il  fall in their 

corresponding simultaneous confidence intervals. 

Step 4. Construct two-sided simultaneous confidence intervals based on computational approach 

( )( il CASCI  and ( . ) )il A CASCI  and record whether or not all the values of il  fall in their corresponding 

simultaneous confidence intervals. 

Step 5. Repeat Step 1 to Step 4 a large number of times, M  5000. Then, the fraction of times 

that all il  are in their corresponding SCIs provides an estimate of the coverage probability.  

The simulation results from k  5 are presented in the Table 1. From Table 1, the results show 

that the coverage probabilities of GCISCI  and .A GCISCI  are close to nominal confidence level 0.95. 

However, the average lengths and standard errors of .A GCISCI  are smaller than those of GCISCI  for all 

cases. The coverage probabilities of MOVERSCI  performs satisfactorily for all cases. For 50in  , it is 

seen that ,GCISCI  . ,A GCISCI  and MOVERSCI  have similar coverage probabilities but the average 

lengths of .A GCISCI are smaller than the average lengths of GCISCI  and .MOVERSCI  For 50,in   

.A GCISCI  performs as well as GCISCI  and .MOVERSCI  In addition, .A CASCI  is better than the other 

simultaneous confidence intervals in terms of average lengths when sample sizes are large ( 50)in   

and the coefficients of variation are same value. Moreover, Figures 1-4 present the line graphs of these 

simulation results. 

 

4.    Example 

PM2.5 level data is given by Pollution Control Department. The PM2.5 level data from 1 March 

2020 to 15 April 2020 are presented in Table 2. Area 1, area 2, area 3, area 4, and area 5 are Mae Moh 

district of Lampang, Mueang Chiang Rai district of Chiang Rai, Mueang Phayao district of Phayao, 

Mae Chaem district of Chiang Mai, and Mueang Chiang Mai district of Chiang Mai, respectively. The 

Shapiro-Wilk normality test indicated that the log-PM2.5 level data of five areas follow normal 

distributions with p-values 0.8978, 0.9448, 0.9345, 0.8291, and 0.9943 for area 1, area 2, area 3, area 

4, and area 5, respectively. Table 3 presents the sample statistics of five areas. Using three approaches, 

the 95% simultaneous confidence intervals for the differences of coefficients of variation are presented 

in Table 4. The computational approach is the shortest lengths. Hence, the result confirms the 

simulation study in the previous section for five sample cases. 
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Table 1 The coverage probabilities (CP), average lengths (AL) and standard errors (s.e.) of 95% of 

two-sided simultaneous confidence intervals for all differences of coefficients of variation 

of normal distributions: 5 sample cases 

(5)n  (5)  
GCISCI  .A GCISCI  MOVERSCI  .A MOVERSCI  

CP 
AL 

(s.e.) 
CP 

AL 
(s.e.) 

CP 
AL 

(s.e.) 
CP 

AL 
(s.e.) 

10(5) 
0.1(5) 0.9493 

0.1694 
(0.0074) 

0.9485 
0.1520 

(0.0066) 
0.9545 

0.1751 
(0.0074) 

0.9880 
0.1705 

(0.0126) 

0.1(2),0.3,0.5(2) 0.9594 
0.7603 

(0.1268) 
0.9469 

0.6419 
(0.1023) 

0.9549 
0.7150 

(0.1125) 
0.9235 

0.8740 
(0.1418) 

20(5) 
0.1(5) 0.9491 

0.1019 
(0.0031) 

0.9485 
0.0968 

(0.0030) 
0.9520 

0.1038 
(0.0030) 

0.9886 
0.1077 

(0.0065) 

0.1(2),0.3,0.5(2) 0.9518 
0.4126 

(0.0575) 
0.9466 

0.3844 
(0.0529) 

0.9510 
0.4081 

(0.0562) 
0.8975 

0.7151 
(0.1173) 

10(2),20,30(2) 
0.1(5) 0.9511 

0.1226 
(0.0099) 

0.9494 
0.1129 

(0.0084) 
0.9531 

0.1248 
(0.0101) 

0.9859 
0.1254 

(0.0116) 

0.1(2),0.3,0.5(2) 0.9494 
0.3521 

(0.0343) 
0.9459 

0.3322 
(0.0334) 

0.9500 
0.3539 

(0.0335) 
0.8910 

0.7038 
(0.1133) 

30(5) 
0.1(5) 0.9486 

0.0794 
(0.0020) 

0.9477 
0.0767 

(0.0019) 
0.9503 

0.0804 
(0.0019) 

0.9883 
0.0874 

(0.0054) 

0.1(2),0.3,0.5(2) 0.9541 
0.3166 

(0.0423) 
0.9508 

0.3026 
(0.0401) 

0.9541 
0.3151 

(0.0418) 
0.8795 

0.6650 
(0.1118) 

50(5) 
0.1(5) 0.9492 

0.0593 
(0.0012) 

0.9494 
0.0581 

(0.0012) 
0.9512 

0.0597 
(0.0011) 

0.9891 
0.0666 

(0.0040) 

0.1(2),0.3,0.5(2) 0.9505 
0.2326 

(0.0299) 
0.9476 

0.2266 
(0.0290) 

0.9508 
0.2322 

(0.0297) 
0.8405 

0.6214 
(0.1095) 

30(2),50,100(2) 
0.1(5) 0.9486 

0.0611 
(0.0038) 

0.9481 
0.0595 

(0.0036) 
0.9504 

0.0615 
(0.0038) 

0.9864 
0.0668 

(0.0056) 

0.1(2),0.3,0.5(2) 0.9497 
0.1805 

(0.0160) 
0.9492 

0.1772 
(0.0159) 

0.9512 
0.1809 

(0.0159) 
0.8000 

0.6199 
(0.1129) 

100(5) 
0.1(5) 0.9495 

0.0408 
(0.0006) 

0.9494 
0.0404 

(0.0006) 
0.9501 

0.0409 
(0.0005) 

0.9889 
0.0452 

(0.0021) 

0.1(2),0.3,0.5(2) 0.9509 
0.1596 

(0.0200) 
0.9499 

0.1575 
(0.0197) 

0.9513 
0.1593 

(0.0199) 
0.7808 

0.5825 
(0.1071) 

200(5) 
0.1(5) 0.9504 

0.0284 
(0.0004) 

0.9493 
0.0282 

(0.0004) 
0.9512 

0.0284 
(0.0003) 

0.9890 
0.0319 

(0.0015) 

0.1(2),0.3,0.5(2) 0.9499 
0.1108 

(0.0137) 
0.9487 

0.1101 
(0.0136) 

0.9509 
0.1107 

(0.0137) 
0.7115 

0.5720 
(0.1119) 

500(5) 
0.1(5) 0.9494 

0.0178 
(0.0002) 

0.9493 
0.0178 

(0.0002) 
0.9502 

0.0178 
(0.0001) 

0.9886 
0.0202 

(0.0009) 

0.1(2),0.3,0.5(2) 0.9503 
0.0694 

(0.0085) 
0.9497 

0.0693 
(0.0085) 

0.9506 
0.0694 

(0.0085) 
0.6244 

0.5734 
(0.1156) 

100(2),200,500(2) 
0.1(5) 0.9505 

0.0301 
(0.0022) 

0.9502 
0.0299 

(0.0021) 
0.9518 

0.0302 
(0.0022) 

0.9853 
0.0337 

(0.0032) 

0.1(2),0.3,0.5(2) 0.9510 
0.0818 

(0.0062) 
0.9512 

0.0815 
(0.0062) 

0.9517 
0.0818 

(0.0061) 
0.6265 

0.6179 
(0.1297) 

500(3),1000(2) 
0.1(5) 0.9483 

0.0158 
(0.0005) 

0.9479 
0.0158 

(0.0005) 
0.9495 

0.0158 
(0.0005) 

0.9875 
0.0178 

(0.0011) 

0.1(2),0.3,0.5(2) 0.9491 
0.0535 

(0.0052) 
0.9484 

0.0535 
(0.0052) 

0.9494 
0.0535 

(0.0052) 
0.5382 

0.5654 
(0.1108) 

1000(5) 
0.1(5) 0.9500 

0.0126 
(0.0001) 

0.9500 
0.0126 

(0.0001) 
0.9506 

0.0126 
(0.0000) 

0.9887 
0.0141 

(0.0006) 

0.1(2),0.3,0.5(2) 0.9480 
0.0489 

(0.0060) 
0.9477 

0.0489 
(0.0060) 

0.9487 
0.0489 

(0.0060) 
0.5831 

0.5455 
(0.1066) 

200(2),500,1000(2) 
0.1(5) 0.9471 

0.0207 
(0.0015) 

0.9474 
0.0206 

(0.0015) 
0.9479 

0.0207 
(0.0015) 

0.9844 
0.0231 

(0.0022) 

0.1(2),0.3,0.5(2) 0.9497 
0.0560 

(0.0044) 
0.9499 

0.0559 
(0.0044) 

0.9506 
0.0560 

(0.0043) 
0.5316 

0.6036 
(0.1256) 
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Table 1 (Continued) 

(5)n  (5)  
CASCI  .A CASCI  

CP 
AL 

(s.e.) 
CP 

AL 
(s.e.) 

10(5) 
0.1(5) 0.9486 

0.1290 
(0.0055) 

0.9012 
0.0870 

(0.0163) 

0.1(2),0.3,0.5(2) 0.9218 
0.5720 

(0.0921) 
0.2914 

0.3400 
(0.0807) 

20(5) 
0.1(5) 0.9489 

0.0897 
(0.0027) 

0.9341 
0.0673 

(0.0122) 

0.1(2),0.3,0.5(2) 0.9353 
0.3663 

(0.0507) 
0.2123 

0.2653 
(0.0624) 

10(2),20,30(2) 
0.1(5) 0.9392 

0.1006 
(0.0065) 

0.8884 
0.0719 

(0.0136) 

0.1(2),0.3,0.5(2) 0.9405 
0.3160 

(0.0338) 
0.2239 

0.2279 
(0.0493) 

30(5) 
0.1(5) 0.9478 

0.0730 
(0.0018) 

0.9433 
0.0591 

(0.0113) 

0.1(2),0.3,0.5(2) 0.9429 
0.2936 

(0.0390) 
0.1796 

0.2268 
(0.0534) 

50(5) 
0.1(5) 0.9491 

0.0564 
(0.0011) 

0.9507 
0.0471 

(0.0089) 

0.1(2),0.3,0.5(2) 0.9431 
0.2227 

(0.0286) 
0.1386 

0.1696 
(0.0383) 

30(2),50,100(2) 
0.1(5) 0.9444 

0.0575 
(0.0033) 

0.9351 
0.0450 

(0.0084) 

0.1(2),0.3,0.5(2) 0.9475 
0.1746 

(0.0160) 
0.1200 

0.1342 
(0.0274) 

100(5) 
0.1(5) 0.9491 

0.0398 
(0.0006) 

0.9582 
0.0329 

(0.0060) 

0.1(2),0.3,0.5(2) 0.9479 
0.15621 
(0.0196) 

0.0941 
0.1214 

(0.0271) 

200(5) 
0.1(5) 0.9499 

0.0281 
(0.0004) 

0.9626 
0.0243 

(0.0046) 

0.1(2),0.3,0.5(2) 0.9477 
0.1096 

(0.0136) 
0.0655 

0.0901 
(0.0206) 

500(5) 
0.1(5) 0.9490 

0.0177 
(0.0002) 

0.9632 
0.0153 

(0.0029) 

0.1(2),0.3,0.5(2) 0.9492 
0.0691 

(0.0085) 
0.0340 

0.0556 
(0.0126) 

100(2),200,500(2) 
0.1(5) 0.9489 

0.0296 
(0.0021) 

0.9536 
0.0239 

(0.0047) 

0.1(2),0.3,0.5(2) 0.9506 
0.0811 

(0.0062) 
0.0597 

0.0642 
(0.0127) 

500(3),1000(2) 
0.1(5) 0.9472 

0.0158 
(0.0005) 

0.9634 
0.0129 

(0.0023) 

0.1(2),0.3,0.5(2) 0.9495 
0.0534 

(0.0052) 
0.0316 

0.0412 
(0.0084) 

1000(5) 
0.1(5) 0.9494 

0.0125 
(0.0001) 

0.9643 
0.0103 

(0.0018) 

0.1(2),0.3,0.5(2) 0.9479 
0.0488 

(0.0060) 
0.0215 

0.0376 
(0.0081) 

200(2),500,1000(2) 
0.1(5) 0.9465 

0.0205 
(0.0015) 

0.9555 
0.0166 

(0.0032) 

0.1(2),0.3,0.5(2) 0.9496 
0.0558 

(0.0044) 
0.0393 

0.0452 
(0.0090) 
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Figure 1 The CP of 95% of two-sided simultaneous confidence intervals for all differences of 

coefficients of variation of normal distributions: 5 sample cases and  

1 2 3 4 5( , , , , )      (0.1,0.1,0.1,0.1,0.1) 

 

 
 

Figure 2 The AL of 95% of two-sided simultaneous confidence intervals for all differences of 

coefficients of variation of normal distributions: 5 sample cases and  

1 2 3 4 5( , , , , )      (0.1,0.1,0.1,0.1,0.1) 
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Figure 3 The CP of 95% of two-sided simultaneous confidence intervals for all differences of 

coefficients of variation of normal distributions: 5 sample cases and 

1 2 3 4 5( , , , , )      (0.1,0.1,0.3,0.5,0.5) 

 

 
 

Figure 4 The AL of 95% of two-sided simultaneous confidence intervals for all differences of 

coefficients of variation of normal distributions: 5 sample cases and 

1 2 3 4 5( , , , , )      (0.1,0.1,0.3,0.5,0.5) 
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Table 2 PM2.5 level data of five areas ( 3/g m ) 

Source: Pollution Control Department (http://aqmthai.com/aqi.php) 

 
Table 3 Sample statistics 

Sample statistics 
Areas 

Area 1 Area 2 Area 3 Area 4 Area 5 

in  46 41 46 41 35 

iy  58.1522 111.0488 88.5870 65.2927 68.4000 
2

iYs  383.0208 2164.2480 1829.5810 550.3622 1345.6590 

ix  4.0079 4.6246 4.3819 4.1182 4.0999 
2

iXs  0.1143 0.1806 0.2068 0.1246 0.2584 

ˆ
i  0.0843 0.0919 0.1038 0.0857 0.1240 

 

 

 

 

 

 

 

 

 

 

 

Area 1 Area 2 Area 3 Area 4 Area 5 
46 48 65 67 63 63 67 58 48 40 
42 35 53 52 60 46 50 41 34 31 
31 26 43 40 37 32 32 30 22 20 
30 36 62 74 41 51 33 43 31 43 
42 49 73 115 69 131 50 52 45 59 
52 57 105 85 112 95 36 65 41 36 
80 81 134 212 182 246 77 104 75 97 
71 42 251 169 185 56 126 81 90 57 
44 46 66 94 52 61 45 44 69 53 
56 53 129 150 102 78 60 58 48 52 
45 56 91 84 64 92 54 51 64 189 
59 69 101 100 118 98 52 43 145 73 
67 59 109 111 91 79 56 58 141 110 
53 88 132 175 95 141 65 107 80 68 
95 104 182 149 137 135 96 76 63 62 
92 103 119 112 117 115 74 59 66 83 
84 76 124 113 108 92 75 80 117 58 
65 68 181 141 92 89 81 125 84  
73 63 138 83 94 75 93 66   
62 52 100 104 85 60 80 79   
37 43 65  48 69 55    
66 48   82 57     

32 49   32 48     
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Table 4 The 95% simultaneous confidence intervals for all pairwise differences of coefficients of 

variation of log-PM2.5 level data 

Comparison 
GCICI  .A GCICI  MOVERCI  .A MOVERCI  

Lower Upper Lower Upper Lower Upper Lower Upper 

Area 2 / 
Area 1 

-0.0187 0.0406 -0.0194 0.0356 -0.0200 0.0372 -0.0201 0.0349 

Area 3 / 
Area 1 

-0.0097 0.0510 -0.0086 0.0525 -0.0089 0.0503 -0.0126 0.0466 

Area 4 / 
Area 1 

-0.0261 0.0314 -0.0264 0.0291 -0.0255 0.0295 -0.0234 0.0294 

Area 5 / 
Area 1 

0.0080 0.0854 0.0059 0.0787 0.0070 0.0813 0.0028 0.0759 

Area 3 / 
Area 2 

-0.0214 0.0414 -0.0182 0.0425 -0.0196 0.0438 -0.0229 0.0414 

Area 4 / 
Area 2 

-0.0386 0.0238 -0.0354 0.0229 -0.0363 0.0231 -0.0325 0.0242 

Area 5 / 
Area 2 

-0.0065 0.0763 -0.0030 0.0737 -0.0032 0.0745 -0.0070 0.0706 

Area 4 / 
Area 3 

-0.0496 0.0120 -0.0479 0.0105 -0.0494 0.0120 -0.0434 0.0161 

Area 5 / 
Area 3 

-0.0179 0.0645 -0.0176 0.0611 -0.0161 0.0632 -0.0190 0.0654 

Area 5 / 
Area 4 

0.0043 0.0819 0.0046 0.0799 0.0042 0.0803 -0.0011 0.0720 

 

Table 4 (Continued) 

Comparison 
CACI  .A CACI  

Lower Upper Lower Upper 

Area 2 / 
Area 1 

-0.0196 0.0340 -0.0133 0.0232 

Area 3 / 
Area 1 

-0.0075 0.0465 -0.0023 0.0227 

Area 4 / 
Area 1 

-0.0227 0.0256 -0.0060 0.0206 

Area 5 / 
Area 1 

0.0037 0.0727 0.0037 0.0487 

Area 3 / 
Area 2 

-0.0175 0.0408 -0.0087 0.0189 

Area 4 / 
Area 2 

-0.0339 0.0217 -0.0121 0.0173 

Area 5 / 
Area 2 

-0.0044 0.0652 -0.0019 0.0451 

Area 4 / 
Area 3 

-0.0472 0.0109 -0.0074 0.0017 

Area 5 / 
Area 3 

-0.0165 0.0563 -0.0035 0.0344 

Area 5 / 
Area 4 

0.0032 0.0717 0.0005 0.0382 

 

From above examples, the numerical results from the data confirm the simulation results in the 

previous section in term of the average length. In simulation, the computational confidence interval 

has the shortest average lengths because the coverage probabilities provide less than the nominal 

confidence level 0.95. The coverage probability and length of each approach in two examples are 

computed by using only 1 sample, whereas the coverage probability and average length in the 

simulation are computed by repeating 5000 random samples. Moreover, the coverage probability and 

average length are considered to compare the confidence intervals. First, the coverage probability is 
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considered that whether or not the 95% confidence interval have the coverage probability in a range 

of between / 2 / 2

(1 ) (1 )
,

c c c c
c z c z

M M
 

  
   

 
[0.9440, 0.9560], where c  is the nominal 

confidence level and M  is a number of simulation runs. Second, the average length is considered 

when the coverage probability is in the range of [0.9440, 0.9560]. Therefore, the computational 

approach is not recommended to construct the simultaneous confidence intervals for all differences of 

coefficients of variation when the sample sizes are small. The GCI and MOVER approaches are 

recommended to construct the simultaneous confidence intervals. 

Furthermore, computation of confidence interval for all pairwise differences of coefficients of 

variation is useful to help assess the variability between groups of observations. 

 

5.    Discussion 

In this paper, the generalized confidence interval (GCI) approach, the method of variance 

estimates recovery (MOVER) approach, and the computational approach were constructed for 

simultaneous confidence intervals for all differences of coefficients of variation. These three 

approaches are applied using two estimators: the biased estimator and the shrinkage estimator. The 

coverage probabilities, average lengths and standard errors of the proposed simultaneous confidence 

intervals were evaluated via Monte Carlo simulations. The simulation results indicated that the 

coverage probabilities of simultaneous confidence interval based on the GCI approach are close to 

nominal confidence level 0.95. The GCI approach can be considered as an alternative to estimate the 

simultaneous confidence intervals for differences of coefficients of variation. The MOVER approach 

performs satisfactorily: its coverage probability is close to the nominal confidence level 0.95. It was 

similar to the results of Donner and Zou (2010) and Niwitpong (2015). Moreover, the MOVER 

approach can be used to construct the simultaneous confidence intervals for all pairwise differences 

of coefficients of variation from several normal distributions for all sample sizes. Additionally, the 

computational approach can be used for estimating the simultaneous confidence intervals when sample 

sizes are large. For Stein-type shrinkage estimator, the coverage probabilities of .A CASCI  

underestimate the nominal confidence level 0.95 when sample sizes are small and coefficients of 

variation are same value, whereas the coverage probabilities of .A CASCI  are close to nominal 

confidence level 0.95 when sample sizes are large and coefficients of variation are same value. 

Furthermore, the coverage probabilities of .A CASCI  underestimate the nominal confidence level 0.95 

when coefficients of variation are different values for all cases. 

Finally, the GCI approach is based on the concept of generalized pivotal quantities, whereas the 

computational approach is based on the maximum likelihood estimates. Both the GCI approach and 

the computational approach are based on simulated data. The MOVER approach uses exact formula. 

Therefore, the MOVER approach may be more useful than other approaches. 

 

6.    Conclusions 

Based on simulation results of Ahmed (2002), we chose the Stein-type shrinkage estimator in 

Ahmed (2002) which was one of the best estimator. The performance of three approaches of the 

coefficient of variation is compared with the performance of three approaches using the shrinkage 

estimator of Ahmed (2002). From the simulation results, coverage probabilities of the coefficients of 

variation estimator are better than the coverage probabilities of the shrinkage estimator of Ahmed 

(2002) for some cases. In general, the average lengths of confidence intervals based on the shrinkage 
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estimator are slightly shorter than the average lengths of proposed approaches, especially, .A CASCI  is 

recommended when the sample sizes are large ( 50)in   and coefficients of variation are same value. 
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