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Abstract 

Many authors made their remarkable study on estimating missing observations. When an 

observation is missing in a randomized block design, resulting data is incomplete to carry out the 

analysis as per the original plan of the experiment. In this paper an attempt is made to estimate the 

missing observations using Bayesian approach to estimate the missing values in randomized block 

design and illustrated with a suitable example. 

______________________________ 
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1. Introduction 

In well-planned experiments, in some situations, the responses may not be available due to natural 

or manmade causes like washed away by floods, destroyed by animals; birds etc., or failed to note the 

response or missed due to theft etc. If an observation is missing the resulting data is incomplete to 

carry out the analysis as per the original plan of the experiment, due to affecting the orthogonality in 

the data. 

 Randomized block design is one of the complete block design in which the experimental material 

is divided into ‘ b ’ homogeneous groups called blocks, 1 2, , , bB B B  so that each block contains ‘ v ’ 

experimental units, 1 2, , , vT T T  be ‘ v ’ treatments applied randomly to the experimental units within 

the blocks i.e. the treatments are assigned to each block at random. It is flexible with respect to any 

number of treatments and blocks and provides more accurately than completely randomized design. 

 Let ijY  is the observation corresponding to the thi  treatment in the thj  block,   is the overall 

mean of a randomized block design, i  is effect due to thi  treatment, j  is effect due to thj  block. 

ij  is the random error corresponding to .ijY  Let the number of observations be .N vb  The general 

linear model for a randomized block design is    

 ,Y X     
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where 11 12 1 21 22 2 1 2b b v v vbY Y Y Y Y Y Y Y Y Y
      

 
vector of observations,  

X  is the design matrix of order ( 1 ),N v b    
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 1 2 1 2[ ]v k            vector of parameters, 11 12 1 21 22 2[ b b           

1 2 ]v v vb      vector of random errors. Assume   follows 2(0, ).N I  The least square 

estimate of the vector of parameters is 1ˆ ( )X X X Y    and the variance of the estimated vector of 

parameters is 1 2ˆ( ) ( ) ,V X X   where  

1 1

1

1

.
v b

v v v v b

b b v b b

N vJ bJ
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bJ J bI
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2. Bayes Method for Estimation of Missing 

The classical definition of probability can be extended to continuous space based on the Bayes 

concept as the probability of any event is the ratio between the probability value at which parameter 

could impact on and the chance of the value would happen alone. It can express geometrically as the 

ratio of two areas as, measure of specified part of the region to measure of the whole region.  

Let 1 2( , ,..., )ny y y y  be the observed sample drawn from a population whose density is (  )P y

where the parameter   follows a certain probability ( )P   then the probability of   given y  is 

( ) ( |  ) ( ) ( | )
( | ) .

( ) ( ) ( | )

P P y P P y
P y

P y P P y d

   


  
 


 

 

2.1. Posterior distribution of parameters in design model 

Let Y X     be the general linear model for a complete block design where 1NY   be the vector 

of observations corresponding to the design matrix X  of size ( ),N p  Let   be the vector of 
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(1 )v b   parameters, and   be the vector of random error follows 2(0, ).N I  Assume the elements 

of X  be 0 or 1 based on the absence or presence of particular effect in the observation. 

In any complete block design if an observation is missing the resulting data is incomplete to carry 

out the analysis as per the original plan of the experiment, due to effect of orthogonality in the data. 

So, it is necessary to estimate the missing values to carry out the analysis by proper placing the 

observation. 

Arrange the vector of observations Y  as [ ]N m mY Y
  where N mY   be the vector of ( )N m  known 

and mY  is the vector of m  missing values. Then the resulting partitioned general linear model be  

,
N m N m N m

m m m

XY

XY





      

     
     

               (1) 

where N mX   is part of the design matrix corresponding to N mY   and mX  is the part of the design 

matrix corresponding to mY . If Y  follows 2( , ),N X    then the density of the sample observation iY  

is  

 2 2 1/ 2

2

1
( , ,  )  (2  ) exp ( )  ( ) .

2
i i iY Y Y Xf X     



 
    

 
 

The likelihood function of known observed sample vector N mY   in terms of unknown vector of 

parameters is 

 2 2 ( ) / 2

2

1
| ,  (2 ) exp ( )  ( )

2

N m
N m N mN m N m N mL Y Y X Y X    


 

   

        
              (2) 
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 
              

The maximum likelihood estimates of parameters   and 2  from observed sample is 

  
1log ˆ0 ,N mN m N m N m

L
X X X Y


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                                                     (4) 

The likelihood function of observed sample N mY   with the estimated parameters 
2ˆ ˆ,   is 

2ˆ ˆ( , )N mL Y     2 ( ) / 2

2

1 ˆ ˆˆ(2 ) exp ( ) ( )
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               (5) 

We have 2 2 2[ , , ] [ | , ]. [ | ]. [ | ],P Y P Y P Y P Y       where ( ) 1P    and 2( ) 1/ .P    (Refer 

Bayesian parametric inference by Bansal (2007)).  
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Then the posterior distribution of ̂  and 2̂  can be obtained as 

  
 
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The mean of the known observed sample Y  follows 2( , / ).N Y N m   The precession of 

randomized block design follows Gamma( , ),a b  where ( 1) / 2,vb m v b    a

2ˆ2 /( 1) .vb m v b     b  Posterior distribution can be evaluated using 

( ) ( )
(  ) ,
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
 by generating a sequence of samples, as more and more 

sample values as possible with initial values for the parameters 1ˆ ( )N m N m N m N mX X X Y 
   
  and 

2ˆ( ) ( ) ( ),N m N mN m N mN m Y X Y X    
     such that the distribution of sample values more 

closely approximates the desired distribution and is used to evaluate the normalized constant 

(  ) ( ). (  ) .P y P P y d     

 

3.    Bayesian Estimation of Parameters and Estimation of Missing Response in RBD Model 

The posterior estimate of parameters can be obtained using Win-BUG software by writing the 

program for the implementation of following procedure. 

Let 1 2( , , , )N mY Y Y Y    be the vector of known observations. Evaluate the Mean and Precision 

of the known observations. The sample mean ( )Y follows 2( , / ).N Y N m   The precession of 

randomized block design follows Gamma( , ),a b where  = ( ) / 2,vb m k a  2ˆ2 /( )vb m k   b  and 

k  is number of parameters. i.e., ( 1).k v b    Set the values for the parameters for gamma distribution 

( , ).a b  Then evaluate the initial estimate for the vector of parameters from known partitioned using 

1ˆ ( ) .N m N m N m N mX X X Y 
   
   Set the values for the parameters for normal distribution based on the 

design. Generate a large sample (repeatedly) from the distribution using Win-BUG program Hastings 

(1970). Estimate the vector of parameter each time and compute the average of parameter ˆ.  Estimate 

the 'm'  missing observations using the normal equation  

ˆˆ .m mY X   

The method of implementation is illustrated with suitable examples for RBD in the following 

example. 

 

Example. Graham (2004) studied the problem of cost of legitimate music representation prices on 

five albums/artists (D12 world, Damita-J0, 30 number1Hits, Feels like home, Up-Shania Twan) with 
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five digital music services (I-tunes, Watmart, Musicnow, Music match, Napster) were examined are 

presented in Table 1 with two missing values 1y  and 2 .y  

 

Table 1 Prices on five albums/artists with five digital music services 

Album 
Music services 

I-tunes Watmart Musicnow Musicmatch Napster 

D12 World 11.99   9.44 13.99 20.79   9.95 

Damita J0 13.99 
1y  13.99 12.49 13.95 

30#1 Hits   9.99 27.28 
2y    9.99   9.95 

Feels like home 12.87   9.44   9.99 11.99 13.95 

Up-Shania Twan   9.99 17.44 13.99   9.99 18.81 

 

The partitioned design matrix corresponding missing observations is  

1 0 1 0 0 0 0 1 0 0 0
.

1 0 0 1 0 0 0 0 1 0 0
mX

 
  
 

 

The parameters of normal population are 13.31522, and 18.77646. The precision follows Gamma 

distribution with parameters 11 and 0.004841. The estimated pairs of mean and variances for vector 

of parameter are [(9.62974, 0.81636), (1.6763, 3.75529), (2.7024, 3.75529), (2.6704, 3.75529), 

(0.0923, 3.75529), (2.4883, 3.75529), (0.2103, 3.75529), (4.5384, 3.75529), (1.6204, 3.75529), 

(1.4943, 3.75529), (1.766, 3.75529)]. A sample is simulated using Win-BUG program. 

The estimated   and missing responses as [8.769, 1.489, 2.589, 2.598, 0.2481, 2.209, 0.379, 

4.178, 1.79, 1.44, 1.711, 13.33, 0.08022] and [15.527, 13.157]. 

 

Remarks:  

1. Win-BUG Code: 

model 

{ 

for(i in 1:23) 

{ 

mu.y[i]<-

beta0+beta1*x[1,i]+beta2*x[2,i]+beta3*x[3,i]+beta4*x[4,i]+beta5*x[5,i]+beta6*x[6,i]+beta7*x

[7,i]+beta8*x[8,i]+beta9*x[9,i]+beta10*x[10,i] 

y[i]~dnorm(mu.y[i], prec) 

} 

beta0~dnorm(9.62974,0.81636) 

beta1~dnorm(1.6763,3.75529) 

beta2~dnorm(2.7024,4.69411) 

beta3~dnorm(2.6704,4.69411) 

beta4~dnorm(0.0923,3.75529) 

beta5~dnorm(2.4883,3.75529) 

beta6~dnorm(0.2103,3.75529) 

beta7~dnorm(4.5384,4.69411) 

beta8~dnorm(1.6204,4.69411) 

beta9~dnorm(1.4943,3.75529) 
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beta10~dnorm(1.766,3.75529) 

prec~dgamma(11,0.004841) 

mu~dnorm(13.31522,0.81636) 

s2<-1/prec 

} 

list(y=c(11.99,9.44,13.99,20.79,9.95,13.99,13.99,12.49,13.95,9.99,27.28,9.99,9.95,12.87,9.

44,9.99,11.99,13.95,9.99,17.44,13.99,9.99,18.81), x=structure(.Data= c(1,1,1,1,1, 1,1,1,1, 1,1,1,1, 

1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1, 0,0,0,0, 0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 1,1,1,1, 0,0,0,0, 0,0,0,0,0, 

0,0,0,0,0, 0,0,0,0,0, 0,0,0,0, 1,1,1,1, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0, 0,0,0,0, 1,1,1,1,1, 0,0,0,0,0, 

0,0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,0, 1,1,1,1,1, 1,0,0,0,0, 1,0,0,0, 1,0,0,0, 1,0,0,0,0, 1,0,0,0,0, 0,1,0,0,0, 

0,0,0,0, 0,1,0,0, 0,1,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,1,0,0, 0,0,0,0, 0,0,1,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,1,0, 

0,0,1,0, 0,0,0,1,0, 0,0,0,1,0, 0,0,0,0,1, 0,0,0,1, 0,0,0,1, 0,0,0,0,1, 0,0,0,0,1), .Dim= c(11,23))) 

list(mu=13.31522,prec=0.81636,beta0=9.62974,beta1=1.6763,beta2=2.7024,beta3=2.6704,

beta4=0.0923,beta5=2.4883,beta6=0.2103,beta7=4.5384,beta8=1.6204,beta9=1.4943,beta10=1.766) 

 

2. Bayesian is a simulated posterior estimate uses large sample generated from the distribution 

whereas least square only depends on the small sample used.  

3. Bayesian approach depends on the prior distribution of the parameter and likelihood of 

observed sample, whereas least estimate is depends on normality and does not plays its distribution 

function in estimation of missing observations. 

4. Comparison of least square and Bayesian methods is presented below. 

 

Table 2 Comparison of least square and Bayesian methods 

Approach 
Before Estimated After 

Mean ( y ) Variance ŷ  Mean ( y ) Variance MSE 

Least Square 13.31522 17.83938 
16.87059  

& 13.92059 
13.48165 17.72487 25.03850 

Bayesian 13.31522 17.83938 
15.52700  

& 13.15400 
13.39736 17.40960 25.15370 
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