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Abstract

Many authors made their remarkable study on estimating missing observations. When an
observation is missing in a randomized block design, resulting data is incomplete to carry out the
analysis as per the original plan of the experiment. In this paper an attempt is made to estimate the
missing observations using Bayesian approach to estimate the missing values in randomized block
design and illustrated with a suitable example.
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1. Introduction

In well-planned experiments, in some situations, the responses may not be available due to natural
or manmade causes like washed away by floods, destroyed by animals; birds etc., or failed to note the
response or missed due to theft etc. If an observation is missing the resulting data is incomplete to
carry out the analysis as per the original plan of the experiment, due to affecting the orthogonality in
the data.

Randomized block design is one of the complete block design in which the experimental material
is divided into ‘ b > homogeneous groups called blocks, B, B,,..., B, so that each block contains ‘v’

experimental units, 7;,7,,...,7, be ‘v’ treatments applied randomly to the experimental units within

the blocks i.e. the treatments are assigned to each block at random. It is flexible with respect to any
number of treatments and blocks and provides more accurately than completely randomized design.

Let Y. is the observation corresponding to the i" treatment in the ;™ block, s is the overall

i
mean of a randomized block design, ¢, is effect due to i" treatment, B, is effect due to j™ block.
&; 1s the random error corresponding to Y. Let the number of observations be N =vb. The general
linear model for a randomized block design is

Y=Xp+e,
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where X:[YH Yy, ... L\, Y, .. Y2b| Y, .. va] vector of observations,

vl

X is the design matrix of order (N x1+v+b),

1 1 0 0 0 0]
1 1 0 0 0 0
1 0 0 0 O
1 0 0 0 0
1 0 1 0 0 0
X=
1 0 1 0 0 O 1
1 0 0 .. 1 1 0 .. 0
1 00 ..1 01 .. 0
|1 00 .. 1.0 0 .. 1]
éz[,u|oc1 a, ... al|B P, ... B.] vectorof parameters, ¢ =[g, 612...€1b|€21 Ey o Eyp
e, &, ... &,] vector of random errors. Assume ¢ follows N(0,6°1). The least square

estimate of the vector of parameters is ﬁ’ =(XX)"' XY and the variance of the estimated vector of

parameters is V(é’) =(XX)"'o*, where

N v‘]lxv lexb
XX =|v,, VI J

1297

bexl bev b]bxb

vxb

2. Bayes Method for Estimation of Missing

The classical definition of probability can be extended to continuous space based on the Bayes
concept as the probability of any event is the ratio between the probability value at which parameter
could impact on and the chance of the value would happen alone. It can express geometrically as the
ratio of two areas as, measure of specified part of the region to measure of the whole region.

Let y= (»,¥,5--»,) be the observed sample drawn from a population whose density is P( X’H)
where the parameter 6 follows a certain probability P(¢) then the probability of & given y is
POP([0)  POPO)

P(y) [P@O)P(y|0)do°

P(9]y)=

2.1. Posterior distribution of parameters in design model

Let Y = X +¢ be the general linear model for a complete block design where Y., be the vector

of observations corresponding to the design matrix X of size (Nx p), Let S be the vector of
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(1+v+b) parameters, and & be the vector of random error follows N(0,5°7). Assume the elements
of X be 0 or 1 based on the absence or presence of particular effect in the observation.

In any complete block design if an observation is missing the resulting data is incomplete to carry
out the analysis as per the original plan of the experiment, due to effect of orthogonality in the data.
So, it is necessary to estimate the missing values to carry out the analysis by proper placing the
observation.

Arrange the vector of observations Y as [Y, ,, Y 1 where ¥, , be the vector of (N —m) known

and Y is the vector of m missing values. Then the resulting partitioned general linear model be

ZN—m XN—m §N—m
= B+ , (1)
Xm an gm
where X is part of the design matrix corresponding to Y,

N-m

and X, is the part of the design

matrix corresponding to Y . If ¥ follows N(X é,az), then the density of the sample observation Y,
is

1
207

The likelihood function of known observed sample vector Y, in terms of unknown vector of

m

f.B.0%) = 2ro*)"” eXp{— [ -Xxp) (¥, —Xﬂ)]}-

parameters is

L(ZM | /_3,02) =2rc?) " exp {— 2;2 [(ZH Xy, B Xy, — Xy, é)]} 2)

—(N - 1
=(Trn)10g2”0-2 _F[ZN Y _ZN-mXN-mé__’X]'meYme +_’X]’\/7mXN7m£:|'

—-m=—N-m

The maximum likelihood estimates of parameters £ and ¢ from observed sample is

OlogL - , O,
g :ODEZ(XNﬂnXN—m) IXmeZmes (3)
op
Olog L “N-m 1 ,
oo? 0= 20° i 20* {(XN'" _XN*’"E) (ZN*'" _XNWE)}ZO’
Lo 1 '
= & X P W, X B @

The likelihood function of observed sample Y, , with the estimated parameters ,5’, 67 is

—-m

LY, 367) = @as™y O exp {—% (=X ) O, - X Nmé)}}

=26y Y exp {_ [(N —m-— k)gz T (é—é)'X;"*mXN”” (é—é)}}

257

((N=m=k)o? = (¥ =Xy B =Xy 1 B))

2{2[(N—m—k)&z+(é—£),X]'v_mXN_m(é_£)J} )
(o}

Wehave P{Y,B,0°1=P[Y | f,0°]. P[#|Y].P[c” | Y], where P(B)ocland P(c*)=1/c. (Refer

_ (2”)7(1\/77»)/2 (6‘2 )—((N—m)+1)/2 exp{—

Bayesian parametric inference by Bansal (2007)).
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Then the posterior distribution of [3 and &7 can be obtained as

f(é) _ (27[)*(1‘/*”1)/2 (6'2 )*((N—m)+l)/2 exp{_ 1 —— (é_é)’(é_é)} (6)
Z(X]I\/—mXN—m) e}
f(&Z) — (&2 )7((N-m)fk+1)/2 eXp {_ {2 (N—m —k)O-z}' (7)
20

ie, B~MVN(B, (X}, ,X,.,)'6") and 6* ~ [G(N -m —k,%(N—m —k)o? )
The mean of the known observed sample Y follows N(Y,o?/N —m). The precession of
randomized  block  design  follows Gamma(a,b), where a=(wb-m—-v-b-1)/2,
b=2/(vb-m—-v—-b-1)". Posterior distribution can be evaluated using
P(Y,.,18) P(B)
[P, 1) P(Brap’

sample values as possible with initial values for the parameters é =(X,_ Xy, X, Y, and

P(p ’Xme) = by generating a sequence of samples, as more and more
m~-N-m
(N-m)é*> =Y, — X\, BV (X y_,, —Xy_, B), such that the distribution of sample values more

closely approximates the desired distribution and is used to evaluate the normalized constant

P(y)=[P(p).P(y pydp.

3. Bayesian Estimation of Parameters and Estimation of Missing Response in RBD Model

The posterior estimate of parameters can be obtained using Win-BUG software by writing the
program for the implementation of following procedure.

Let Y =(Y,,Y,,....Y,_,) be the vector of known observations. Evaluate the Mean and Precision
of the known observations. The sample mean (Y) follows N(Y, o> /N —m). The precession of
randomized block design follows Gamma(a,b), where a = (vb—m—k)/2, b=2/(vb—m—k)é&* and
k is number of parameters. i.e., k = (v+b+1). Set the values for the parameters for gamma distribution

(a,b). Then evaluate the initial estimate for the vector of parameters from known partitioned using

é =X}, Xx.,) Xy, Yy . Setthe values for the parameters for normal distribution based on the
design. Generate a large sample (repeatedly) from the distribution using Win-BUG program Hastings
(1970). Estimate the vector of parameter each time and compute the average of parameter é Estimate

the 'm' missing observations using the normal equation
ZAWZ = Xm ﬂ"'

The method of implementation is illustrated with suitable examples for RBD in the following
example.

Example. Graham (2004) studied the problem of cost of legitimate music representation prices on
five albums/artists (D12 world, Damita-JO, 30 number1Hits, Feels like home, Up-Shania Twan) with
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five digital music services (I-tunes, Watmart, Musicnow, Music match, Napster) were examined are
presented in Table 1 with two missing values y, and y,.

Table 1 Prices on five albums/artists with five digital music services

Music services

Album
I-tunes  Watmart Musicnow  Musicmatch Napster
D> World 11.99 9.44 13.99 20.79 9.95
Damita JO 13.99 " 13.99 12.49 13.95
30#1 Hits 9.99 27.28 v, 9.99 9.95
Feels like home 12.87 9.44 9.99 11.99 13.95
Up-Shania Twan 9.99 17.44 13.99 9.99 18.81

The partitioned design matrix corresponding missing observations is
10100O0O0T1TTO0TO0O0
[10010000100}'

The parameters of normal population are 13.31522, and 18.77646. The precision follows Gamma
distribution with parameters 11 and 0.004841. The estimated pairs of mean and variances for vector
of parameter are [(9.62974, 0.81636), (1.6763, 3.75529), (2.7024, 3.75529), (2.6704, 3.75529),
(0.0923, 3.75529), (2.4883, 3.75529), (0.2103, 3.75529), (4.5384, 3.75529), (1.6204, 3.75529),
(1.4943, 3.75529), (1.766, 3.75529)]. A sample is simulated using Win-BUG program.

The estimated é and missing responses as [8.769, 1.489, 2.589, 2.598, 0.2481, 2.209, 0.379,

4.178,1.79, 1.44, 1.711, 13.33, 0.08022]" and [15.527, 13.157]".

m

Remarks:

1. Win-BUG Code:
model
{
for(i in 1:23)
{
mu.y[i]<-

betaO+betal *x[1,i]+beta2*x[2,i]+beta3*x[3,i]+betad*x[4,i]+beta5*x[5,i]tbeta6*x[6,1]+beta7*x

[7,1]+beta8*x[8,i]+beta9*x[9,i]+betal 0*x[10,i]
y[i]~dnorm(mu.y[i], prec)
}
beta0~dnorm(9.62974,0.81636)
betal~dnorm(1.6763,3.75529)
beta2~dnorm(2.7024,4.69411)
beta3~dnorm(2.6704,4.69411)
betad~dnorm(0.0923,3.75529)
beta5~dnorm(2.4883,3.75529)
beta6~dnorm(0.2103,3.75529)
beta7~dnorm(4.5384,4.69411)
beta8~dnorm(1.6204,4.69411)
beta9~dnorm(1.4943,3.75529)
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betal0~dnorm(1.766,3.75529)

prec~dgamma(11,0.004841)

mu~dnorm(13.31522,0.81636)

s2<-1/prec

}

list(y=c(11.99,9.44,13.99,20.79,9.95,13.99,13.99,12.49,13.95,9.99,27.28,9.99,9.95,12.87,9.
44,9.99,11.99,13.95,9.99,17.44,13.99,9.99,18.81), x=structure(.Data= c¢(1,1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1, 0,0,0,0, 0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 1,1,1,1, 0,0,0,0, 0,0,0,0,0,
0,0,0,0,0, 0,0,0,0,0, 0,0,0,0, 1,1,1,1, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0, 0,0,0,0, 1,1,1,1,1, 0,0,0,0,0,
0,0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,0, 1,1,1,1,1, 1,0,0,0,0, 1,0,0,0, 1,0,0,0, 1,0,0,0,0, 1,0,0,0,0, 0,1,0,0,0,
0,0,0,0, 0,1,0,0, 0,1,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,1,0,0, 0,0,0,0, 0,0,1,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,1,0,
0,0,1,0, 0,0,0,1,0, 0,0,0,1,0, 0,0,0,0,1, 0,0,0,1, 0,0,0,1, 0,0,0,0,1, 0,0,0,0,1), .Dim= c(11,23)))

list(mu=13.31522,prec=0.81636,beta0=9.62974,betal=1.6763,beta2=2.7024,beta3=2.6704,
beta4=0.0923,beta5=2.4883,beta6=0.2103,beta7=4.5384,beta8=1.6204,beta9=1.4943 betal 0=1.766)

2. Bayesian is a simulated posterior estimate uses large sample generated from the distribution
whereas least square only depends on the small sample used.

3. Bayesian approach depends on the prior distribution of the parameter and likelihood of
observed sample, whereas least estimate is depends on normality and does not plays its distribution
function in estimation of missing observations.

4. Comparison of least square and Bayesian methods is presented below.

Table 2 Comparison of least square and Bayesian methods

Before Estimated After
Approach Ty can (¥Y)  Variance y Mean (y)  Variance MSE
Least Square  13.31522  17.83938 &1?38;(2)329 13.48165 17.72487  25.03850
Bayesian 13.31522  17.83938 8:?35?2280 13.39736 17.40960  25.15370
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