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Abstract

The main purpose of the present paper is to discuss the problem of estimating the unknown cu-
mulative density function F'(x) of X when only corrupted observations Y = X + ¢ are present,
where X and ¢ are independent unobservable random variables and € is a measurement error with a
known distribution. For a sequence of strictly stationary and positively associated random variables
and assuming that the tail of the characteristic function of € behaves either as super smooth or or-
dinary smooth errors, we obtain the precise asymptotic expressions, the bounds on the mean-square
estimation error and the asymptotic normality.

Keywords: Deconvolution of cumulative densities, positively associated processes, quadratic-mean
convergence, asymptotic normality.

1. Introduction

We consider the problem of estimation from observations that are contaminated by additive noise
{ei};_|. Due to the nature of the experimental environment or the measuring tools, the random
process {Xi}?zl is not available for direct observation. Instead of X;, we observe the random
variables Y; given by

V2 X;+e, i=1,..,n. (1)

In the present paper, the focus is to estimate nonparametrically the unknown common cumulative
density function (c.d.f.) F'(x) of a process {Xi}?zl which is assumed to be strictly stationary and
positively associated. In addition, we assume that the density function (p.d.f.) f(.) of the process
{X;};", exists. Furthermore, the noise process {¢;};"_; consists of independent and identically
distributed (i.i.d.) random variables, and independent from {Xi}?zl, with known density function
7(.). Thus the common probability density function g(.) of the random variables Y; is given by:

400
o(z) = / Fa — tyr(t)dt. @)

Model (1) is called a convolution and the problem of estimating f with this model occurs in
various domains. This model has been studied in Experimental Sciences. For example, Biological
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Organisms (see Medgyessy, 1977; Rice and Rosenblatt, 1976); communication theory (see Wise et
al., 1977, Snyder et al., 1988) and applied physics (see Jones and Misell, 1967).

The literature abounds of work devoted to the study of the p.d.f. in convolution problems. Zhang
(1990) proposed a consistent estimator for the density based on grouped data for some cases of er-
ror density. Masry (1993) considered the estimation of the multivariate probability density functions
under some structures of dependence. Lejeune and Sarda (1992) used the Moving Polynomial Re-
gression (MPR) to smooth the empirical distribution function estimator. Fan (1990) considered the
asymptotic uniform confidence bands.

The c.d.f. deconvolution has not attracted as many research. Ioannides and Papanastassiou
(2001) developed the approach to examining the estimation of the c.d.f. and treated its correspond-
ing asymptotic normality in the case where the joint random process { X, 51‘}?:1 is stationary and
satisfies the p-mixing condition and fulfilling some additional assumptions. Furthermore, the con-
taminated noises {¢; };__, are assumed to have a dependence structure and are either ordinary smooth
or super smooth. Dattner et al. (2011) studied the minimax complexity of this problem when the
unknown distribution has a density belonging to the Sobolev class and the error density is ordinary
smooth. Cordy and Thomas (1997) considered the deconvolution when the unknown distribution is
modeled as a mixture of p known distributions. Gaffey and William (1959) studied a consistent esti-
mator of a distribution function from observations contaminated with additive Gaussian errors. Fan
(1991) considered the estimate based on integration of the density deconvolution estimator. Wang et
al. (2010) developed the estimation of the c.d.f. in the case where data are corrupted by heteroscedas-
tic errors.

We study the quadratic mean convergence and deduce the mean-square convergence rate for the
deconvolving cumulative density estimator under various assumptions on the characteristic function
¢, of the measurement error. The following two cases are generally distinguished:

e ¢, decays algebraically at infinity

t|? |¢.(t)] — 1 for some 8 > 0and B; > 0.
[t| =400

In this case, the error is called ordinary smooth.
e ¢, decays exponentially fast at infinity
Bae™ ™" 1t < 16, (8)] < Bae™ ™" |7
for some positive constants « , m, real 3, and positive constants 35 and 3.

This is called supersmooth error.

The parameter (3 is called the order of the noise density r (x). Actually, it has a direct impact
on the rate of convergence of the estimate F), (x). Particular examples of supersmooth distribution
are Normal, Mixture Normal, Cauchy densities 7’(3:) The ordinary smooth distribution covers in
particular the case of Gamma, Double Exponential, and Symmetric Gamma densities 7 ().

Next, it is of practical interest to show that the deconvolution difficulties are heavily related
to the smoothness of the error distribution. Indeed, super smooth distributions are more difficult to
deconvolve than ordinary smooth distributions, see for example the proofs in Masry (2003).

The infinite random process { X' z}j:of is positively associated (PA for short), or just associated,
if every finite subcollection {XZ-}?’ZI, n > 1 satisfies the property given in the following definition.

Definition 1 A finite family of random variables { X}, is said to be positively associated if
Cov [(I)l(X“Z S Al), (I)Q(Xj,j S Ag)} >0,

for every pair of disjoint subsets A; and A5 of {1, 2, ...,n}, and ®; are coordinatewise increasing
functions and this covariance exists for l = 1, 2.
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Definition 1, which was introduced by Esary et al. (1967), includes several mixing process
classes. Note that associated processes have attracted a lot of research attention since they arise in a
variety of contexts. For instance, in Finance (see (Jiazhu 2002)), and in Applied physics (see Fortuin
etal. (1971)), and even in Percolation theory. We may also cite the homogeneous Markov chains as
a direct example of the association property and normal random vectors with nonnegative covariance
sequences.

It is worthy to note that, if the underlying process {X;}_; is associated, then the process
{Y;}?_, involving the convolution model in (1) is a corrupted-associated random process. Actually,
from Property P2 of Esary et al. (1967) (mentioned later), the independence between the processes
{X;}7 and {e;}]_, ensures the association of the union {X;}?_; U {¢;}]—,. Fortunately, all deal-
ing here is with a strictly stationary process. In fact, and as mentioned above, {¢;}""_; consists of i.i.d.
rvs. Since {X;}!"_, are independent from {&;}?"_, , itis clear that {Y; = X, + &;}."_, is a strictly sta-
tionary random process. Indeed, the best-known example of a strictly stationary process is the white
noise process (i.i.d.). On the other hand, Hj,, (H) (defined in (11)) is a measurable mapping, and so

n
we deduce that {H B ( Y;’;“C )} is a stationary process in a strict sense.
n ) i=1

To the best of our knowledge, there are no papers dealing with the nonparametric estimation
of the c.d.f. from corrupted-associated random variables, and this motivates the study in the present
work. The layout of this paper is organized as follow. In Section 2, we develop the estimator and give
some properties. In Section 3, we establish the mean-square error of our estimate. The asymptotic
normality is shown in Section 4. In Section 5, we evaluate the performance of the estimator via
simulated data, while Section 6 gives some additional proofs.

2. Estimation
First we denote by ¢4(-), ¢7(-), and ¢, (-) the characteristic functions of g(-), f(-), and r(-)

respectively, and let ¢,, (¢) be the empirical characteristic function of {Yj}?:l, defined by

. 1
on(t) = ~ Zeztyj . (3)
j=1

Since the Y; observations are identically distributed, it follows that ngﬁn (t) is an unbiased estimator

of ¢4(t)
E (60(t)) = 04(1). )

In practice, the noise density 7(-) is usually unknown. In order to reduce the complexity of the
statistical analysis, we assume as in all the literature mentioned earlier that r(-) is known, then we
choose the kernel &(-) as a bounded even probability density function, and call ¢ (-) its corresponding
Fourier Transform.

As mentioned previously, only Y; r.v.’s are available to observe. The usual non-parametric
method for estimating the probability density for this case is the kernel estimation or the so called
Parzen-Rosenblatt method (see Parzen (1962)). This method, which is based on a sample of the
statistical population, allows one to estimate the density at any point of the support:

gn(@) = —— S k(E2D, 5)

where {hy,},~, is a bandwith sequence of positive numbers converging to 0. Hence the cumulative
density can be written as:

1 — z-—Y;
=-Y'K J
Gn($> n j:1 ( h'n, )’

(6)
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where

To simplify the problem, we assume the independence between {X }?:1 and {¢; };.l:l , and
assume |¢,(t)| > 0 for all ¢ € R. Then the convolution equation (2) leads to ¢4 (t) = ¢ (t)¢,(t). On
the other hand, if we assume that the chosen kernel & is bounded, even, and in L (R) N L? (R) , then
also the kernel type estimate g,,(+) lies in L* (R) N L? (R). Hence, its Fourier transform exists, and

the calculations show that

b (t) = On(t) b1 (thyy).

4
If we assume that % € L' (R), then by the inverse Fourier Transform, the proposed estimate
fu(x) for f(x)is
1 /+°O L On(O)n(th)
n(x) = — exp(—ity) ——————=dt. @)
fule) = 5= [ exp(-ita) P

We follow the same procedure as in Masry (1991), and using equation (3) we get the following
alternative expression for f(x):
) ; ®)

_ 1 e its ¢k(t)
'thn(S) = %[m € Wﬁ)dt (9)

Remark 1 Notice that the expression of f,,(x) in (8) has a classical kernel form. However, for
technical reasons (used in the proofs), we choose to apply the deconvolving kernel wy,, (.) on the term

1 < Y, —x

where

(%) instead of (GC;—YJ) which is usually used in kernel estimation. This explains the presence of

the term e?'® instead of e ~%*® in the expression (9).

We consider an estimator of the c.d.f. via integration of the density estimator. This approach
was introduced by Zhang (1990). Fan (1991) proved that this type of estimator is minimax optimal
for i.i.d. observations and the case of supersmooth noise destribution.

Using the assumptions on ¢,.(¢) and ’if:’((tt)) used to derive equation (7), we obtain the following

deconvolving cumulative density estimator

I, (Yime
Fo(@) = H;th ( - ) ! (10)
where N
Hp, (z) = / wp,, (s)ds. (11)

Recall the c.d.f estimator in (10) was suggested by loannides and Papanastassiou (2001) to decon-
volve the c.d.f for p-mixing stochastic processes and the noise process {;}-_; is assumed to have a
dependence structure.

Next, using Fubini’s theorem, we obtain

1 oo itz Tha (t)
th (I) = %/ (& Tdt, (12)

— 00



244 Thailand Statistician, 2022; 20(2): 240-270

Table 1 H}, , (x) nature changes

r(x) Th, ()/ (it) Hy, (x)
real and even purely imaginary and odd real and odd
real and odd real and even real and even
purely imaginary and even real and odd purely imaginary and odd
purely imaginary and odd purely imaginary and even purely imaginary and odd
where bu(t)
a ol
Vho (1) = ——=- (13)
(i)
In the derivation of equations (12) and (13), we need to have
oi(t) 1
e L' (R)ynL>*(R). (14)
tor(7)

For this end, we assume that

or(t) =o(t) ast — 0.

Also we note that ¢ (t) is real-valued and even since k(x) is even. Via a simple calculation,
we obtain the results in Tablel, which shows the changes in the nature of H},, () with respect to a
general function r(x). Hence, we restrict ourselves to the two first lines of Tablel since the function
r(x) in our case is the error density.

2.1. Notation and assumptions
2.1.1 Notation

Some notations and reasonable assumptions are needed in what follows.

a1 e e 2
@_%w&/ww k(1) dt, (15)

where $ is the order of the contaminating density r (), and 37 is the positive quantity that the noise
characteristic function ¢, (.) decays algebraically at infinity (ie the ordinary smooth case).

i, (z) 2 [BEH,, ()] (16)
2.1.2 Assumptions

Al The density k (x) satisfies
o i) fjoooo sk(s)ds = 0.
o ii) fj-;o s2k(s)ds < oo.
e iii) ¢ (t) = o(t) ast — 0.

A2
o i) TPV w0 di < oo

o i) 727 [t]7 |on(t)] dt < oo,
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o i) [ 177 on (1)]7 dt < oo
A3
o f+°°t—(3—j)hﬁ

— o n

‘yfi)(t)’ dt < oo forj =0,1,2.
A4

e i) ¢ (t) has a finite support [—7, 7| for some positive constant 7.
o ii) [¢(t)| < ar(r — t)P for 7 — d < t < 7 for some positive constants p, d, and a;.
e iii) ¢ (t) > ag(7 —t)? for 7 —d < t < 7 and a3 is a positive constant.

e iv) If we note Ry (+)(t) and I4 (1) (t) the real and imaginary parts of ¢,.(t) respectively, then
when t — oo either I, (4)(t) = 0 (R, (1)(t)) or Ry, 1y (t) = o (1.1 (1)) .

A5

e i) The common univariate probability density g (x) of the observed random process {Y;};_;
exists and is bounded for all z € R.

e ii) The 2—dimensional density gy, v, (z,y) of the random variables Y; and Y, with ¢ > 0,
exists and is bounded for all z,y € R.

e iii) The random process { X}, , is positively associated. Moreover,

—+oo
Zj"cov(Xl, X;) < oo for some constant 7 > 0.
J=0

Remark 2 To simplify the problem and under the light of conditions Al1-A4, we choose to make
use a kernel k («) in which its Fourier transform ¢y, is compactly supported. Namely, the following
kernel k(z) = 48cos (z) (1 —15272)/(mx?) —144sin (x) (2 — 5z ~2)/(7x®), with the characteristic
function ¢y (t) = t1[_1,1)(t) where 1p () stands for the indicator function on a set B. Notice that
this kernel is used in the calculation of our simulated estimator in Section 5, since it satisfies the basic
assumptions in which our main results are stated.

Under the assumption that {¢; };;1 and {X; };L:l are independent and that the ' s are indepen-

dent among themselves, we can state that cov(Y1,Y;) = cov(X1, X;). To simplify the notation we

write )
1 n
Fn (J:) = E Z thvj (x)7

j=1

where Hy,, () = Hy, (X=2) and v, £ E(H,,, ;) forall j and Hy,, ; 2 Hy, j— vn.

As shown before, {f[ B, ](x)} is a strictly stationary process. Now, we use Properties (P2
j=1

n

and P4) established by Esary et al. (1967), to show the positive association of {ﬁ [ (z)} .
j=1
P2: The union of two independent associated random processes is associated.
P4: Any non-decreasing functions applied on associated random variables are associated (ie
non-decreasing functions remain the association).
In fact, the case of i.i.d. random variables represents one extreme of association, thus {Ei}?zl

is associated. Further, it is independent from the process { X, };’Zl . Then we note that from P2, the
union {X;}"_, U {e;};_, is associated.
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From P4 and by choosing p; ({u;}1, U {v;}},) = u; + v; forany j = 1,..., N, the random
process {Y;}7_, is associated. In our case, Y; = p; ({X;};_, U {e:};_,) and
As reported by Rao (2012), if {Z;}]_, is a sequence of associated rv’s and «; are positive

n
numbers and 7; € R for 1< ¢ < n then the rv’s Z%O‘ are associated. Thus the process {Y-;:I}
k2 n J::l

is associated. Since Hp(z) = [ ws(t)dt is a nondecreasing function and by P4, the process
{Hp, i(x)};_, is associated.
The following lemma gives an important transformation used in Section 6.

Lemma 1 Assume that m(x) and d(z) are two bounded densities and ¢, (t) and ¢4(t) are their
Fourier transforms respectively, then
1 [t (myp xd) (z)

e Gm(th)pa(t)dt = —————, (17)

21 J oo

where "
mp(z) = m(ﬁ)for any h € R,

To compute the exact asymptotic bias value, we first need to establish an approximation on the
identity (see chapter 9 in Wheeden and Zygmund (1977)) and see what conditions should be imposed
on the kernel k(.). To this end, we make use of the following lemma due to Bochner (1959).

Lemma 2 (Bochner) Suppose that k € L' (R) is a bounded Borel function on R, then, at every point
x of continuity of g(.), we have

7}320}3”/%0/{(:ﬁ)g(x—u)du:g(m)/mk(u)du.

— oo —00
The density in this expression does not depend on the bandwidth {h,, }, ;. Thus the kernel k(.)
must satisfy the regularity conditions of ordinary density estimation. -

Proposition 1 1) For all x € R, we have

lim E[F,(x)] = F(x).
n— oo
2) Assume that the kernel k(.) satisfies Al-i) and Al-ii), we also assume that F' € C5(R) then
we have
o 1 oo
lim (hy,) " bias[F,(z)] = §F”(z)/ s%k(s)ds.
n—o0 PN
Remark 3 The correction of estimation bias plays a fundamental role in the measurement error
model. Another interpretation of the results of Proposition 1 is that the biases of the estimator F}, ()
either in the presence or the absence of the contaminating noise are the same and converge to zero

regardless of the error smoothness type.

Notice that conditions A1-A4 have nothing to do with the dependence of the process { X; }j:lo .
Moreover the result of Proposition 2 is standard and it is valid even for an i.i.d. case.

3. Quadratic-Mean Convergence

This section is divided into two parts. In the first part we assume that the characteristic function
¢, (t) of the contaminated errors € decays algebrically at infinity, while in the second part we as-
sume expononcial decay. In both cases we look for exact asymptotic expressions of the mean-square
estimation error of F,(z). To this end we use the following bias-variance decomposition:

E [(Fy(z) — F(z))*] = var(F,(z)) + [bias (F,(2))]?. (18)

For the expononcial decay case, we only provide tight bounds because the precise asymptotic
expression of || Hp,, ||, is not available in this case.
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3.1. Ordinary smooth noise distribution

Let us first assume that ¢,.(¢) fulfills the following assumption:

Assumption B1 :

i) |¢.(t)] > 0forallt € R,

ii) |t|” |¢r(t)| — By as |t| — 400, for some positive constants 3 and f3;.

The exact asymptotic bias given in Section 2 relied primarily on the identity approximation for
the classical kernel-type density estimation with the help of lemma 2. For the asymptotic variance,
an extra approximation for which the underlying function (H7 (.)) depends on the bandwidth h,, is
required. This may cause difficulties since the condition ([t¢,.(¢)| > 0) is not necessarily met.

Generally, Hy,, (.) is non-negative and strictly monotone. Under Assumption B1, Parsevals
theorem and conditions A 1-iii) and A2-i) ensure that Hj, (.)is alwaysin L?(RR). The next proposition
gives a precise Lo-norm asymptotic expression for Hj, (.) and its proof is relegated to the last section.

Proposition 2 If we suppose that condition B1 is satisfied and

1) If conditions Al-iii) and A2-i) hold then

+oo
lim h2/3/ |Hp, (s))? ds = Qo ,

n—-+o0o s

where Q2 defined in (15).

2) If A2-i) holds, we have
hy |

<C < o,
o0

where Hj, is the first derivative of Hj,, .

3) If A3 holds, then we have

+oo
hg/ \Hy, (5)|ds < C < oo.

— 00

The following lemma gives an approximation of the identity under the smoothness assumptions
on the characteristic functions ¢y (t) and ¢,.(¢). This lemma is needed to obtain the precise asymptotic
variance of the estimator F,(x).

Lemma 3 Under conditions Bl, Al-iii), A2-i), A3 and A5-i), then

+o0 _
/ i}(hn (xhnu> g(u)du = g(x)Qs.

— 00

at all points x of continuity of g, and the quantity Qs is defined in (15).
The next Lemma proposed by Birkel (1988) is crucial for what follows.

Lemma 4 (Birkel) If we suppose that {Y]}j <1 I8 a finite random process of positively associated
random variables and let A and B be subsets of I. Let ®1(.) and ®5(.) be bounded first order partial
derivatives, then we have

8@1

lcov [@,(Yi,i € A),4(Yj,5 € B)]| < ZZ

i€cAjeB

.

cov(Y;,Y5).

H 0P,

T,

where

(o131

0~
Otj
(o]

—
oo
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Now, we are ready to treat the quadratic-mean convergence of F,,(z).

Theorem 1 Under conditions Bl, A1-A3, and A5 we have

lim nh2°~Yvar(F,(x)) = o2 (x) at the points x of continuity of g,

n— oo

where 0%(z) = Qa29(x) .
For quadratic-mean convergence rates, we have the next corollary.

Corollary 1 Combining the bias given in Proposition 1 with the asymptotic variance found in The-
orem 1 we find the quadratic-mean convergence of the c.d.f estimator. Next, by selecting an optimal
value of the bandwidth parameter, h,, ~ n~1/(28+3) i e. that minimizes this asymptotic mean-square
error. Then, we have a mean-square convergence rate of:

E|F,(x) = F(z)|* = O(n~*/#0%9),

in the absence of contaminating noise and taking h,, ~ n~'/3, the mean square convergence
rate is
2 2
E|Fy(z) — F(z)]* = O(n=?/3).

Note that the presence of contaminating noise reduces the mean-square convergence rate of
F,,(z) by a factor that depends on the rate of decay of the tail characteristic function ¢, (t) of e.

3.2. Supersmooth noise distribution

We now consider the quadratic mean convergence of F,,(x) when the charateristic function ¢,.(¢)
of the noise processes {511}?:1 has an exponential decay as ¢ — oo namely the super smooth case,
and in particular when the following assumptions are met

Assumption B2

i) |¢-(t)| > 0forall t € R,

i) Boe ™1 |t < |6, (t)| < Bse ™" |t|’for some B real, and positive constants a, m, s
and [3.

Super smooth errors are much harder to deconvolve than ordinary smooth errors, this may be
due to the fact that impossible to find a simple expression and the exact order for the function Hy,, (z)
(evenini.i.d. case). As a consequence, the precise asymptotic rates and constants of var(F,,(z)) and
var(Hyp, 1(z)) can not be obtained in this case.

We first derive a lower bound for var(Hy, 1(x)) and then use it to establish the following
asymptotic relationship

var(F,(z)) = %var(Hhml(:v))(l +o(1)).

Lemma 5 1) Under conditions B2, Al-ii), A4-i), and A4-ii), we have

I, L = O (5 os ) exptm( L) ).

1 T
I, = O iy 2%+ tog( ) explin(E)®)).

and
|11, =0 (2ot p exntalio).

n n

2) In addition if A4-iii) and A4-iv) hold, we have
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[, ()] 2 Ca |G(a)] AP 4P explm(5-))),

n

foraconstant Cy and G(x) = cos(1x)1 (I¢(%) = O(R(b(%)))—ksin(rm)l (RM}L) = O(I¢(}L))) )

where 1(.) is an indicator function.

Lemma 6 Under conditions B2 and A4, and as n — oo

var(Hy, 1(2)) = Coh2 D45 1/2) exp(2m (1)),

and )
P
var (i, 1(0) < G5 (tog(L) ) explzm(;D)e)

for a positive constants C's and C.

Theorem 2 Under conditions B2, A4, and A5 we have

var(F,(z)) = %var(Hhml(:U))(l + 0(1)).

4. Asymptotic Normality

To discuss the asymptotic normality of the cumulative density estimate F,(x) in Eq. (10), we
recall that {H,, ; (x)}j:f is a positively associated random process as well as a strictly stationary
sequence, since it involves monotonic transformations Hy, (.) of positively associated r.v.’s. Thus,
following the same approach as used in Oliveira (2012), we will show that:

L N(0,1). 19
var [F,(x)] + N1 19

It was shown in Section 3 that, under suitable smoothness assumptions for the ordinary smooth case,
we have

lim nh?’~lvar(F,(z)) = o?(z).
n—r 00

Hence, the asymptotic distribution in (19) becomes

n2pE=V2 [y (2) — B [Fu(2)]] 5 N (0,02 ().
On the other hand, when the noise characteristic function ¢, decays exponentially fast, it is
found that: )
var(F,(z) = 5var(th_,1)(:v))(1 +o(1)).

As already shown, the main problem with this type of measurement errors that it is difficult
(or impossible) to find the limit of E {H ,2%1(:6)} and the corresponding convergence rate. As a
consequence, the central limit theorem (CLT) is not available in this case. Instead, we will prove that:

nFn(x) — E[F,(2)]

L N(0,1).
var(Hp, 1(z))

It should be mentioned that, in the ordinary smooth case, the CLT for associated random vari-
ables is available only for a random process which is strictly stationary sequence and not a weakly
stationary one.
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Theorem 3 7) Under conditions Bl, AI-A3, and A5 we have
n'2hB12 F (2) — E[F,(2)] & N(0,02(z)). (20)
2)Under Assumption B2 and condition A4 we have that

L
var (. 2(2)) = N(0,1), 21

asn — oo.
More precisely, the next corollary gives a better centering.

Corollary 2 If we consider that all assumptions provided in Theorem 3 hold in addition to F'(¢t) €
C3(R), we have

1) For the ordinary smooth case:

n'2RBV2(F, (2) — F(2)] 5 N(0,0%(2)).

2) For the supersmooth case:

var(Hp, 1(z))

s

L N(0,1).

Remark 4 In the ordinary smooth case, we estimate the asymptotic variance o%(z) by a plug-in-type
estimator defined by

(%) = gn(2)Q2,

where g,,(x) is a kernel estimator of g(z) drawn from a sample of size n of Y;. Thus, in the light of
the results of the above Corollary, and for an asymptotic level 1 — o, we can establish an asymptotic
confidence interval of F'(x) given by:

[Fo(@) = 21— 0200 (@) (b2’ 1) 70 Fy (@) + 21- 0200 (@) (nh2 1) =07

where 21 _, /5 presents a quantile of order 1 — a/2 of N(0,1).

5. Numerical Experiments

This section is divided into two parts (subsections). In the first part, we mention an example
of a convolution model and compare the performance of our simulated estimator from both direct
and contaminated observations. This is for the goal of displaying the influence of ignoring the mea-
surement errors. In the second part, we examine the behavior over finite samples of our conducted
estimator via simulation experiments.

5.1. Example and comparisons

Convolution examples are extensive. But due to space restriction, we only mention one interest-
ing example here which is in Communication Theory and more specifically in Signal Processing. Let
Y; stand for the voice heard when the i—th individual speaks and X; be its pure voice (real) and ¢;
some noise. In this example, we recognize two different cases:

(i) direct communication: where the audible sound is the spoken sound itself (¥; = X;)

(ii) communication through the phone: where (Y; = X; + ¢;), &; being here some perturbation
due to a confusion of the phone-network.
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For more details on the impact of the presence of measurement error in signal processing, we refer
the interested reader to monographs by Mendelsohn and Rice (1982).

Our goal now is to compare the performance of the cumulative density estimators under different
models and show the influence of ignoring the measurement errors. For that purpose, we conduct a
simulated example in which the observations are contaminated by homoscedastic errors. We generate
a pure random process {X i}zg(io from an exponential distribution with parameter A = 0.25 and the
measurement errors from N (0, 2). We consider the following two situations:

Presence’s Impact: The goal in this situation is to examine the performance of the general
estimation. For that purpose, we compare the classical kernel-type estimator (see (6)) under direct
observations (Y; = X;) and the deconvolution estimator under convolution model (1). This will allow
us to explain the effect of measurement errors in nonparametric estimation. The results obtained are
displayed in Figure 1.

Ignoring’s Impact: Consider the convolution model (1). In this situation, we compare the
performance of the classical kernel c.d.f. estimator (neglecting the measurement errors) with the
deconvolution-type estimator (which takes into account the noise). This is done in order to explain
the impact of neglecting measurement errors.

From the outcome of our simulations, it is possible to see that the performance of estimating un-
der the convolution model is very much inferior to that under the error-free model, ie no contaminated
observations are present. The curves in Figure 2 reveal that the deconvolving estimator outperforms
the usual kernel method. This is due to the fact that the latter procedure neglects the measurement
errors and thus gives a biased estimator and may lead to wrong results.

3 2 -1 0 1

Figure 1 The blue line represents the true distribution function, the dashed line corresponds to the
kernel estimates from uncorrupted observations, the dotted line to the deconvolving estimate
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Figure 2 The blue line corresponds to the true distribution function, the red circled line to the kernel
estimates from corrupted observations, the dotted line to the deconvolving estimate

5.2. Simulation study

In this subsection, we conducted the simulations using different sample sizes to quantify the
performance of our estimator via the Global Mean Square Error (GM SE) criterion computed using
N Monte Carlo trials as below

N ¢
1
GMSE(h = e SO [Fnj(@m) - Fa))?,
Jj=11=1

where F), ;(z;) is the estimated value of F'(x;) at the j-th iteration, and ¢ is the number of equidistant
points z; belonging to a given set.

Remark 5 The numerical implementations in this section illustrate the strong and weak points of the
deconvolving approach related to the target c.d.f. and the measurement error classes.

5.2.1 Description and models

The next set-ups are used to generate our numerical experiments. We provide elaborated re-
sults correspond to four distinct target c.d.f.’s F'(X') which are supposed to come from the following
models:

Unimodal Distributions:

e X ~ N(0,1),
o X ~ x?(3).

Bimodal Distributions: We chose here the target c.d.f.’s to have distinctly separated modes.
e X~ 0.6N(—2,1)+0.4N(3,1),

e X ~ 0.5Gamma(4) + 0.5Gamma(14), where Gamma(m) stands for I' (o, 8) with shape
parameter « = m and scale parameter 5 = 1.

The target distributions have been considered as they satisfy a special features that can be found
in practice, and they present an increasing order of deconvolving difficulty.
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We control the variance of the errors var(e) to have particular values for the so-called noise to
signal ratio (NSR) o./ox, where ox and o, stand for the standard deviations of X and ¢ respec-
tively. Particularly, we choose to have NSR= 0.1, 0.2 and 0.5 which is equivalent to 10%, 20% and
50% contaminating errors, respectively. Thus, for a better comparison, we define the next two error
distribution scenarios:

1) Normal distribution N (m,c?) withm = 0 and 0. = 1/10,1/5,1/2
2) Laplace distribution L(y,02) with 4 = 0 and 0. = 27°5(1/10,1/5,1/2)

These have been chosen because they belong to the ordinary smooth and super smooth classes re-
spectively. Thus, we have 8 combinations of convolution models. As shown through simulations in
subsection 1, deconvolution recovers slowly the target distribution, thus we need large sample sizes
in order to have an estimator that works well. For this end, we used sample sizes n = 200, 500
and 1000, and N = 500 replications for each model. Consequently, we have 24 different simulation
set-ups.

Typically, measurement errors are supposed to have zero expectation; however, several cases
violate this assumption. Nevertheless, numerous papers considered cases with non-zero expectation
as a measurement error model. The general idea here is based on relocating these distributions to
have zero expectation.

To simulate convolution sequences after a positive association, we generate the data as follows:

e Simulate (n + 1) iid rv’s W; from the distribution of the desired c.d.f.
e Simulate n iid rv’s €; from the distribution of the considered errors.
oV, =X, +¢gfori=1,..,n, where X; = (W;_1 + W;_3)/2.

Generally, X; are positively associated r.v.’s. and have the same distribution as that of W.
At the end of this procedure, we selected the bandwidth h,, in the grid of values in the set © =
{1/n'/*, k =1,...,10}. Finally, the estimator F), () is calculated by varying x in the grid of points
inA={ze[-8:0.01:8]}.

5.2.2 Simulation results

In this part, detailed results (Tables 2 and 3, and Figures 3-6) are presented for the purpose of
illustrating the influence of the sample size, the distribution of the errors and the N SR rate on the
performance quality of our estimator.

We report only on the results obtained using the standard normal unimodal (Table 2) and Gaus-
sian mixture of bimodal (Table 3) cases, since they are similar to that of the other settings. Table 2 and
3 summarize the optimal global bandwidth h,,; = arg min,ce GMSE(h) together with its corre-
sponding GM ES = minpco GM SE(h) for the different experimental scenarios mentioned above.
For each model, we display the estimation when the distribution of the errors is either Gaussian or
Laplacian.

In Table 2, we see that GM SE and h,); values change in the same direction. First, note that our
estimators work quite well irrespective the different scenarios. As one could expect, the deconvolution
referring to a Gaussian noise provide very poor quality of estimation. In particular, the convergence
rate in this situation is only O ((Inn)~°) for a positive constant c¢. Conversely, when the error is a
Laplace distributed, we see a substantially improved performance.

Furthermore, we note however that as the sample size raised, the performance quality increase
and becomes quite well whatever the error distributions. By contrast, the deconvolving estimation
from small contamination (10%) provides much better quality and become slightly deteriorates as the
contamination level increases, but still improved along with n increase.

For bimodal target c.d.f.’s, Table 3 illustrates the difficulty of recovering a distribution of two
modes. We see that the effects of sample sizes and contamination levels on the performance quality
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Table 2 Simulation results for unimodal distributions (standard normal): GMSE with its correspond-

ing optimal bandwidth

Error NSR 10% 25% 50%

distributions n GMSE hopt GMSE Ropt GMSE hopt
200 2.04x1072 0.5157 3.11x1072 0.5179 4.11x1072 0.8441

Normal 500 1.44x1072 0.4495 2.05x1072  0.4537 3.39x1072  0.5179
1000 1.08x1072 0.3976 1.64x1072  0.4097 1.83x1072  0.4599
200 1.35x1072 0.5174 1.89x1072 0.5157 2.45x1072  0.5303

Laplace 500 1.05x1072  0.4599 1.13x1072 0.4578 1.80x1072 0.3589
1000 0.64x1072 0.4217 0.89x1072 0.4217 1.34x1072 0.4217

Table 3 Simulation results for bimodal distributions (Gaussian mixture): GMSE with its correspond-

ing optimal bandwidth

Error NSR 10% 25% 50%
distributions n GMSE hopt GMSE Nopt GMSE hopt
200 833x10~% 0.1303 10.5x10~2  0.1243 11.8x10°2 0.0447
Normal 500  8.04x1072 0.0794 8.24x1072 0.0791 8.27x1072  0.0240
1000 7.89x10~2 0.0467 791x1072  0.0538 8.22x1072  0.0790
200 1.64x1072  0.4902 2.79x10~%  0.5157 3.98x1072  0.5257
Laplace 500 0.86x1072 0.4596 1.99x1072  0.4639 2.98x10~2 0.4549
1000 0.33x1072  0.4293 1.27x10~2 04217 2.09x1072  0.4013

are similar to the unimodal setting. That being said, the overall performances have deteriorated
compared to the unimodal case albeit less so for the Laplace errors.

Figures 3-6 display the quality of fit of our estimators, relatively to the results gathered from
previous Tables. In each Figure, we plot side by side the c.d.f. estimates from different scenarios. For
comparison purposes, we also plot the true X distributions, which we present on these Figures by a
solid line.

From Figure 3, note that in terms of the rate of convergence, our estimator performs well under
small contamination (10%) and has the same quality regardless of the distribution errors. This is
essentially due to the small variance of the errors. Consequently, the estimation is comparable to a
usual kernel approach when the errors are not considered.

As it widely known, the deconvolution with supersmooth errors provides estimators with very
poor convergence rates compared to the ordinary smooth errors. Thus for a reasonable contamination
rate at 25%, the estimation from Laplace errors gives better results compared to Gaussian errors as
shown in Figure 4.

Summarizing the simulation results from the previous Tables and Figures. The rate of conver-
gence depends directly on the smoothness of the distribution of the errors: the smoother the distribu-
tion is, the slower rate of convergence will be. On the other hand the larger the sample size and the
lower the V.S R, the better the quality of performance will be. Furthermore, the quality of fit declines

substantially from unimodal to bimodal distributions but it increases with a sufficiently smaller NSR
value and a higher sample size.
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(a) n =200 (b) n = 500 (c) n = 1000

Figure 3 Estimation of the normal c.d.f. for n = 200, 500 and 1000, and contaminating errors
with NSR = 10%. The solid line corresponds to the true distribution function, the dashed line
to deconvolving cdf estimator for Normal errors, the dotted line to deconvolving cdf estimator for
Laplace errors

(a) n =200 (b) n = 500 (c) n = 1000

Figure 4 Estimation of the normal c.d.f. for n = 200, 500 and 1000, and contaminating errors
with NSR = 25%. The solid line corresponds to the true distribution function, the dashed line
to deconvolving cdf estimator for Normal errors, the dotted line to deconvolving cdf estimator for
Laplace errors

(a) n =200 (b) n = 500 (c) n = 1000

Figure 5 Estimation of the normal c.d.f. for n = 200, 500 and 1000, and contaminating errors
with NSR = 50%. The solid line corresponds to the true distribution function, the dashed line
to deconvolving cdf estimator for Normal errors, the dotted line to deconvolving cdf estimator for
Laplace errors
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(a) n = 200 () n = 500

(¢) n = 1000

Figure 6 Estimation of the mixed normal c.d.f. for n = 200, 500 and 1000, and contaminating
errors with NSR = 25%. The solid line corresponds to the true distribution function, the dashed
line corresponds to deconvolving cdf estimator for Normal errors, the dotted line corresponds to
deconvolving cdf estimator for Laplace errors

5.2.3 Asymptotic normality and confidence intervals

In this part, we study the asymptotic normality of the c.d.f. estimator through normal-probability
plots. For this goal, we only examine the unimodal distribution from a Laplacian errors case. The
deconvolving c.d.f estimation was implemented here for NSR = 25%, N = 1000 replications, and
n = 200, 500 and 1000. This N.SR value was preferred since it gives a distinct and reasonable
performance for different distribution of the errors, encountered in previous simulations. The results
of this practical implementation are summarized on Figure 7.

QQ Plot of Sample Data versus Standard Normal QQ Plot of Sample Data versus Standard Normal QQ Plot of Sample Data versus Standard Normal
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(b) n = 500

1 1 2 3
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(¢) n = 1000

Figure 7 The normal-probability plots of the gaussian c.d.f. estimator for n = 200, 500 and 1000,
and contaminating errors with NSR = 25%.

From Figure 7, we see again that for the asymptotic normality, the estimator provides good
performance for a Laplacian error distribution with a chosen /NS R rate. Fortunately, these optimistic
results become more visible for a large sample size. This indicates that the impact of the NSR on
the convergence on distribution becomes fast and faster along with n — oco.

To present the results of confidence intervals of our estimator F,,(x) for different values of x
in A, we propose simulated examples implementaing the results of Remark 4 in Section 4. For this
end, we give a 95% confidence interval for the c.d.f. estimator when the distribution of the errors is
Laplacian and we consider n = 200, 500 and 1000 for comparison purposes.

We first note that in this case, we have 3; = # and 8 = 2. The simulations here are done for
NSR = 25% and their corresponding optimal globasl bandwidths h,,: found in Table 2 and z = 0.5.
The results are displayed in Figure 8.
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(a) n = 200 () n = 500 (¢) n = 1000

Figure 8 The 95% confidence intervals of the gaussian c.d.f. for n = 200, 500 and 1000, and
contaminating errors with NSR = 25%. The solid line corresponds to the true distribution function,
the dashed line to deconvolving cdf estimator, the 4+ line to upper bound, the *x line to lower bound.

6. Proofs
Proof: [Proof of Lemma 1]

Let ¢(x) = (my, * d) (x) be the convolution between the defined functions my,(.) and d(.). It is
easily found that ¢, (t) = he,, (th). Thus, applying the forward Fourier Transform gives the next
equality

¢q(t) = bm, ()da(t)
hum (th)da(t).

On the one hand, we have

q(x) = (mpxd)(z)

_ / " B — ) ()
_ / e - um(})du.

On the other hand, we get

+o00o
0@) = 5 [ ew(-itad

2 —00
+oo
- % /_ exp(—ita)pm,, (t)pa(t)dt
h

+oo
= / exp(—itx) Py, (th)dq(t)dt.

21 J o

The desired conclusion is obtained by identification.
Proof: [Proof of Proposition 1] We start by proving the point 1. By Fubini’s theorem

E[F,(z)] = /OOE[;W /—:Oexp(its)%én(t)dt} ds

/; [2177 /:o exp(it5)¢1;5t(;b;L)E {J)n(t)} dt} ds |
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It is clear from (4) that £ [d;n (t)} = ¢(t).¢-(t), and by Lemma 1, it follows that

pine) - [ |5 +°°exp(—itsm<thn><;sf<t>dt] ds

LA I Y e !
= /_OO |:hn /_0O k‘(hn)f(s—u)du} ds
Again by Fubini’s theorem
oo U
E[F,(z)] = / h—k(h—)F(x —u)du .

The first part is obtained by Bochner’s identity in Lemma 2.
Now, from the last expression, and considering the variable change y = hi, we can see that

+oo
E[Fo(z)] = / k(y)F(z — yhy)dy |

Then, we write F'(x — yh,,) as a Taylor series
1
F(z = yhn) = F(2) = yhn F' (@) + 5y*hp F (2) + o(hy).

Point 2 follows directly by using the conditions A1-i) and A1-ii), and the fact that F'(t) € C2(R).

Proof: [Proof of Proposition 2]
By Parseval’s theorem we have

283 e 2 1 e 2
0 [l o ds = o [ e, @

where
=1 (t)

() o)

Indeed, 7~ — +oo if and only if n — +oc for some |t| > 0 or t — oo for some h,, > 0.
By condition B1-ii) we have

@n, (t) =

n—oo

. 2 1 92081 2
lim_fen, (O = 214 E=D g (0)) .
1

Furthermore, condition B1 means that for a large R we have

|t|ﬂ | (2)| > % for any t > R.

Thus, we have
2

1
()

on, (0 < |20

4 2 2
31 [jt]<hnr] + 7 t1" P& (O] Lje)>h, R)-
1

By conditions Al-iii) and B1 it might be clear to see

2 4 o 2
lon, O < =5 [t 106 O] Lje>h, R
1
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Finally, the first conclusion follows by dominated convergence. For part 2), we use the fact that

15, || o = leon,, Nl -

Hence, the second assertion follows using similar arguments as that used for Lemma 4-b) in
Masry (2003). Thus, we omit the details.
+o0
Now we deal with the last conclusion, for this we put Hy, (z) = [ 5= exp (itz){y, (t)dt
where ¢, (t) £ %;‘7@ Then, if we suppose that
lp, € C2(R) N LY(R) then Hy,, € Ly (R). In fact, we repeat integration by parts twice to find

“+oo

1
~aH, ()= 5 [ e Gita) 2 (0) dt,
= n
where Eﬁ) (t) = Zt%’y,(i) (t) — n%’y;bn (t) + £, (t). Thus, condition A3 assure that
+oo
1 8(2)
5 | |nae? (t)‘ dt < C < oo.
—0o0

Then, we deduce that o
hin | H, (2)] < —5. 22)

Hence, the upper bound on the L;— norm of h¥ Hj, (x) follows immediately by applying Rie-
mann’s Theorem (with o = 2).

Proof: [Proof of Lemma 3] Write the quantity g(z)Q2 as a limit

+oo
9@)Qe = lm [ [WiHL, 0] gl
+oo
= JHm [ X (Mg(w)dt
O AR
n—+oo J_ hy, " hy,

It remains to show that

+oo
i [ o (o) e = 0 = gl =

n—=oo J_ oo n I,

Then, we split appropriately the interval of integration as follow:

— 00 n n

“+oo
/ hinXh(hi) l9(x —t) —g(x)]dt = /|t>9 ith(hi) lg(a — 1) — g()] dt
+/|t<a iXh"(hin) l9(z —t) — g(x)] dt,

Since x is a point of continuity of g(.), then for every b > 0 and fixed positive 6, we have
lg(x —t) — g(z)| < bforany —6 < ¢ < 6. Thus, we can see that

+oo
/t<a hilnXh"(%) lg(z 1) — g(x)]dt < b[ Xh,, (t)dt.
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For any chosen value of b, the fixed constant 6 remains positive. Hence, letting b go to zero,
leads to i, - xn, (;5) [o(z — 1) — ga)] dt = 0.

n

Next, by condition A5-i), we get |g(x — t) — g(z)| < 2¢. Thus

/t|>9 iXh"L(htn) l9(w 1) —g(@)]dt < 20/ Xh,, (t)dt.

[¢]> 52

In the proof of the third part in Proposition 2, we find |Hy,, (t)] < &. This means that xy,,, () <

8
Cht%. Then, using the fact % — +00 as n — 00, we can conclude that

1 t 1
/ hthn(h*) lg(x —t) —g(x)]dt < Chiﬁ/ —dt
[t]>0 "tn n It

Proof: [Proof of Theorem 1]

As seen before, {Hj,, ; (x)}?zlis a strictly stationary random process for all n > 1, thus

1 2 & j
var(F(z)) = e ORI > - E)I"J’
j=2

where I, ; = cov(Hp,, 1(x), Hp, j(z)). We first need to demonstrate the following results:
o lim,, oo K271, 1 = 02(1),
o WY, sl = o(1), for alarge n.
Firstly, we deal with the first point. On the one hand, we have
E(Hp, (z)) = E(F, (2)),

since the data are identically distributed. On the other hand, using the results of Proposition 1-2),
we find

E (Hp, (x)) = O (hy).

o u—2x
In,lz/ H}%w( B

Then, Lemma 3 leads to

Thus

Yg(u)du + O(R).

- 2
hP . = / h [thhn(uh Jﬁ)} g(u)du + O(h7+?)

<1 u—x .
= [ o Dgtadu + 002 < o*(a).

n

For the second part and for more simplicity, we consider the next decomposition

n (725 n
S sl =Y gl + Y. Iy
j=2 =2

j=0n+1

b
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where 6,, — oo and 0,h,, — 0 asn — oo. For 2 < j < 6,, we have

Foo oo -z u—x
I, = / o, (5 i () [y () — g()g(a)] dedu,

oo oo hy hn

Conditions A5-i), A5-ii) and Proposition 2-3) show that

[,

IN

Ch2 +oo ‘H +oo
" h, (w)| du |Hp,, (t)| dt

— 00 — 00

+oo 2
= Ch? ( / |th(u)|du>

= O(hZ%).

Thus, uniformly for 2 < j < 6, we can conclude that

071
hiﬁ71 Z il = O(Onhs)
j=2
= o(1).
Next, we consider the contribution when 0,, + 1 < j < n. Actually the process {H,, ;(x) j:‘f is

positively associated, and its covariance sequence is obtained by using Lemma 4. In our case ¥ (.)
and ®,(.) are identical and equal to Hy,, (%), and the subsets A and B consist of a single random
variable 1 and j respectively, thus

2
|cov(Hnp, 1 (), Hp, j(x))] < ||Hj, 1| cov(Y1,Y5).
From the definition of H},, 1(z), we can see that

1
HH}/LvulHoo = E HH]/'ML

oo’

are independent, we can see

Next, by Proposition 2, and the fact that { X ; };.L:land {e; }?:1

C
|cov(Hp,, 1(x), Hp, j(2))] < WCOU(XMXJ‘)

Y
We see evidently that (#) > 1forall j € [f, + 1,n] and a positive constant 7). Then, it follows
that

o C .
[ W ST v > jcov(Xy, X;).
=bn+1 =1

From condition A5-iii), and by choosing 6,, = h,;T for some o > 3, we have

n
h2A=1 Z |I, ;| = 0asn — oo.
Jj=0n+1

Proof: [Proof of Lemma 5] Most arguments and procedures here are inspired by the proof of Lemma
3.1 in Fan and Masry (1992). For a positive constant ¢ we consider

1
On = chy log(h—). (23)

n
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By symmetry and condition A4-i)

1 e

|Hp, |l < dt
27 J—oo [t] |n (1)
_ (/ / ) ol
r(7)
h
= L1+ Lo.

First, we deal with L;. For this we choose D as a large enough but fixed number. Then,

Dh, T—0
n n t 1
0 Dh, t or(5)
= L1+ Lo
Firstly, we use condition Al-iii) to get
Dh
n t 1
P i T N
0 t or(52)
1 Dh
v / W‘ it
ming<u<p ¢r(u) Jo t
= o(1). 24)
Concerning L1 2, condition B2 with 8 = B3 leads to
T—0n 1
L = / o (t dt
1,2 Dhn | ( )| t¢r(hi)
T—0. -B
n 11 t t
< C || — exp(m(-—)%)dt
<cf () ewtmtore)

T—96
no t
= Cn’ / 1t~ B exp(m(—))dt.
Dh,, h

n
Next, by considering the derivative of the function W (t)=|t|7(ﬁ + exp(m(;=)*) with respect
to ¢, we can clearly see that the integrand in the latter inequality is an increasing function in the
interval Dh,, <t < 7 — §,. Hence, it achieves its top when ¢t = 7 — §,,. This together with (24) give
the following:

Ly < C(r— (5n)_(6+1) b exp(m(%)a)-
= Ol explm(1) (1 2)°))

By applying a Taylor expansion, we have (1 — ) =1- a‘s?" + O (62) . Thus, a simple
calculation using the quantity of §,, defined in (23) g 1ves

qr® ! T \a
Ly = O™ exp(m(;-)").

n
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Next, we consider Lo. We note that (7 — t) < 4, for any 7 — 6, < ¢t < 7, then by condition
Ad-ii) we find |¢y ()| < a10E. Thus

5 7 t
Ly < chgaléﬁ/ =D exp(m(—))dt.
T—6n h"
With the same argument, we finish this bound by founding
1
Ly = O( 47 (log(+—))? exp(m(;-)°):

We note that L; is dominated by L,. Hence, we obtain the first conclusion.
Next, symmetry and Parseval’s theorem lead to

2:;[ (RG]
n 112 7 Jo 9 ‘ 27
|0 (75)

Then, the second conclusion is attained by a similar treatment. Concerning the third assertion,
we can see that

[Hy,, ()] = llwn,, ()]l

The proceedings here are identical to those used for the first point in Lemma 3.1 of Fan and
Masry (1992). Thus, we omit the details. Now, we deal the last conclusion. We write

1 —(17=8,) T—8n T
Hh" (l‘) 27 / +/ +/
a -7 —(7—68n) T—3

= J1+ Jo+ Js.

: k(1)
>eXp(th)zt¢r(,t) dt

n

Notice that

o] < O (1) = O™ exp(m(-)")).

It is clear that exp(itz) = cos(tx) + isin(t ) and ¢, (7 =) = R¢r( -) + zI¢T( —). Note that
under condition A4 -iv), we have gi)r( -) = Ry, (7= =) (1+io(1 ))or or(7- ) —I¢T( )( (1)+1). As

a consequence, Ry, (7 —) and Iy (7 ) can’t change their signs, otherwise it will be a contradiction
with Assumption B2. By symmetry we find

Jit gy = 1 / " 10 {sin(tx)Rd)r(t) - cos(tx)Lbr(t)] dt. (25)
T—0n ¢ ¢T(ht ) hy, hy,

We only treat the case where Ry, (5-) = o (I o (ﬁ)) - The case where Iy, (7-) = (R(m (7 ))

can be obtained by the same steps. Now, from the fact that tan (0) = 0 we can deduce that
sin(x) = o(cos(x)) for x — 0. Thus, (25) becomes

_L T ) T, (L (o1 —
Tty = [%t%%w2<w@&ﬁ<m 1)

Ifz = M and ¢ € N, then the situation becomes evident since cos(tz) = 0. If we consider

T # M, then

Ji+J3 = (/ / ) igx () ‘2 Cos(tx)I¢T(hi) (o(1) — 1) dt (26)
) n

= Jy1+ Japo.
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The function cos(tx) has the same sign in [T — d,,, 7] . Moreover it can be written as
cos(tz) = cos(tx) + o(cos(Tx)),
Consequently Jy 1 and Jy 2 have the same sign. Then (26) leads to
|J1 4+ J3| > |Ja2].

By Assumption B2 and condition A4-iii)

|J1 4 J3| > agh? |cos(t) (1 + o(1))] / (1 — t)pt=(F+1) eXp(m(hi)o‘)dt.

T—h n

It might be clear to see that t(*+1) exp(m(;L-)® is an increasing function. Then

Ty + Js| > aghf |cos(rz)(1 + o(1))] (r — k&)~ P+ exp(m (g) (1- h%)) / (1 —t)Pdt.
n T—h&
@7

By simple calculation we find

T 1
/ (1 — t)Pdt = ~h2P+1),
T—h& p

n

and ho
- 2)<1.
(1-") <
Then, (27) becomes

|Jy + J3| > CRET®HY) |cos(72))| exp(m(hl)a).

We finish this conclusion by choosing c as a large enough number to be Jo dominated by .J; +.J3.

Proof: [Proof of Lemma 6]
By Proposition 1, we see that

var(Hp, 1(z)) = E (Hﬁn(ylh; “””)) +0(1)

+oo
b Hjy (w)g(uhy + z)du + O(1).

— 00

By condition A4-iii), A4-iv) and the result of Lemma 5-2), we can write

var(Hy, 1(x)) > C2p2((pH1)a+f+1/2) exp(Qm(hl)a)/ g(uhy + ) |G(w))* du+ O(1).

n —00

Recall that h,, — 0 as n — oo. This together with fact that g (.) is a continuous function lead to

var(H, () 2 Gl exp(am () (o) [ G du(1+0(1)

n —1
> CohPED ) exp(2m(-)”).

n

Thus the first part is obtained. The second part is obtained by using the upper bound on the
L -norm found in Lemma 5.



Mohammed Es-salih Benjrada and Khedidja Djaballah 265

Proof: [Proof of Theorem 2] The stationarity of the process { Hp,, ; (ac)}?:1 implies that

Uar(Fn( )): nlJr Z n,js

with I,, ; = cov( Hp, 1(x), Hp, j(x)). Thus the main task in this proof is to show that
Z?:z I, j = o(I, 1), or by equivalent way: m Z;LQ I, ; = o(1). To this end, we write

Pn

Y L= anﬁ Z Lnj, 28)
j=2

Jj=pn+1
where p, — 00 as n — 0o. Next, we set

Y| —x Y, —=x
H J
™ JHp,, ( ™

In; = E(Hp,(

“+o0 “+o0 o t—
/ H, O H (D gy v, (1, 8)dtds + O(1).

o J-oo hn hn

Condition A5 leads to

+oo +oo
I.;| < Ch? / Hy,, (t)Hy, (t)dtds
< Ch? 2
O(h?).

Now, select p,, = exp(m(;-)®). Then, by using the bounds on var(Hp,,,;(x)) established in
Lemma 6, we get

< —2((p+1)a+B+1/2) 2
— Hh ; ZII gl 5 by exp(— 2m(hn) )onh

ny

= O(h 2((p+Da+p=1/2) exp(—m(hl)“)). (29)

n
Consider now the second contribution of I,, ;. Note that the choice of p, is the same and

N
(pi) > 1 for any j in [p, + 1,n]. Next, from the third point of Lemma 5-1) we can deduce
(&

.

that that: )
= O(h 040 log ;)" exp(m(;-)"))-
Now, we use Lemma 4 to get

‘ e n n

_ 1 T \a
|1 5] < CR(PHDFS 1)(1<>g;(,7))21”exp@?ﬂ(;) Jeov(Y1,Y5).

n n

As mentioned early, cov(Y1,Y;) = cov(X1,X,), and using the lower bound established in Lemma
6, we find

1 - 1 -
| < =3(log(—))2P )
var(Hhml(x)) j:pz+1 |In,j| > Chn ( Og( h, )) j:pz+1 CO’U(Xh Xj)
<

_ T \a 1 .
ChnSGXP(—Um(}T) )(10g(h*>)2p ZJWCOU(Xl,Xj) — 0.
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Then, the final result follows from (28) and (29) . The proof of Theorem 2 is finish.

The next Lemma which was introduced by Newman and Wright (1981), is considered as a key
element for the CLT when estimating under associated concepts. Thus, it is essential in the proof of
Theorem 3.

Lemma 7 (Newman) Let X;, X5, ..., Xy be a sequence of positively associated random variables,
then for all (¢y,...,tx) € R we have

N N
Sx, X0 xw) (0 = [T 0, (8)| < D [tstal |eov(Xs, X5)]
j=1

i<j
where ¢(x, x,,...x,)(t) is the characteristic function of the subset (X1, Xo, ..., X;) fori > 1.

Proof: [Proof of Theorem 3]
First, we deal with assertion (20). To this end, we set H,, ;(z) := hg_l/QHmj(x) and S,, :=

n A
>~ H,_ j(z). The previous analysis indicates that
i=1

nlgrc}O var(j%) = o?(z) < oo. (30)
Hence it suffices to confirm that
\S/% — N(O,JQ(CL')).

The procedure used here is based on decomposing the sum S,, into appropriate blocks and dealing
with these blocks as if they were independent. Typically, this requires controlling the approximation
between the real associated blocks and its counterpart independent blocks. This approximation is
essentially established using characteristic functions and Lemma 7.

4 Sy
We define the characteristic function of % as W, (t) = E(e"" Vi) forallt € Randlet s € N
and k = [2]. Hence, ks < n < ks + s. The blocks are defined as follows:

k+1

Sn = Z Z',s:
j=1

where
Js n
Zjs= Z H, ;(z) forall j =1,...,k and Zj 1, = Z H,i(x). 31
i=(j—1)s+1 i=sk+1

Thus, we need to have

2( )42
lim ‘\pn(t) —exp <" (z) )‘ —0. (32)
n—00 2
Now, we divide our proof into four main steps. In the first three steps we consider s to be a fixed
finite number. To get the conclusion in our last step, we will let s go to infinity.

Step 1: As a first step, we take n to be a multiple of s. If this is not the case, then:

|\Iln(t) — \Ilks(t)| — ‘E(e“\/ﬁ) _ E(e”J%)

IA
&=
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Using Cauchy-Schwarzs inequality and the fact that ’e” - 1’ < ¢

(-2

o (- 3)"

Now, let us define I'(m) 2 var ( \Sﬁ) for any m > 1. From the positive association and
equation (30), we see that I'(m) < co. Then

(G ) (- )

Thus, by positive association, we can write

var(& _ Br ) < l”Um” (Sn—sk) + (W) I'(sk).

|len (t) — Wy (t) |

IN

v Vks' T on vn

Again by association, and since 0 < n — sk < s

1 1
—var (Sp—sp) < —var(Ss)
n

We may note that \/n — Vsk < \/n — sk. Thus
(5 5)
v ks

im0, (1) — Wi (1)] = 0. (33)

Step 2: This step is devoted to controlling the approximation of the joint distribution of the
underlying blocks and see what we get if we assume that we have independent blocks.

Notice that, for a fixed s we can write Z;5 = S;5 — S(j_l)s. The latter is a sum of s strictly
stationary r.v.’s. Then, the distribution of Z;, and S are the same. Thus, we can consider ¥, as a
characteristic function of ﬁZ js- Actually, only monotone transformations of the original variables

can keep the association, which is the case with Z;,. Then, we can apply Newman’s inequality (see
Lemma 7) to show that

IN

(' (Ss) + T'(sk)].

S
n

Finally, we get

k

‘%() w(})‘ <L con(Z2,0).

J,j'=1
FE M

Due to the stationarity again, we get

& k 1

. Z cov(Zjs, Zjs) = fvar Z %Z
G'=1 =1 =1
2!

= %var (Sks) — var (S5)
= s[[(ks) =T (s)].



268 Thailand Statistician, 2022; 20(2): 240-270

By simple algebra and using the stationarity, we can conclude that

‘\I/ks (t) — u* (\2)’ — 0. (34)

Step 3: In this step, we suppose the independence between the blocs Z; ;. Applying the usual
CLT for i.i.d. parts, and the fact n — oo (and so kK — oo) we see that

ok (%) —exp (—tQFQ(S))‘ 0. 35)

Step 4: The limits in equations (33), (34) and (35) imply that

oo (22 (25 - (252

where 0% = lim,,_, », I'(s). Using the inequality |exp () — exp (¢')| < |t — /| forany ¢, ' € R,
we have

, 202 2
nh_)rrgo sup ’\I/n (t) — exp (—2> ’ < 0 ‘O’ - F(s)‘ .

We complete this step by letting s — oco. The proof of the first point is finished.

For the second conclusion we normalize our r.v.’s by considering H n.; () £ %:‘(;(f)) Here,
we need the same arguments to show that

j% — N(0,1)
Thus, we would like to have
12
nh_}n;O “l/n(t) — exp (—2> ‘ =0. (36)

It is note worthy that, regardless of the type of errors, whether ordinary smooth or super smooth,
positive association and strict stationarity properties stay unaltered. Therefore, only a few modifica-
tions are required to adapt the previous steps to the current proof. Indeed, it is easy to see that

lim I'(n) = 1.

n—oo

We follow the same steps as before and start modifications at Eq. (34) in Step 2. We notice that

i=m

var(\/% 2:1 &)~ var(%) = o02,,, and by using the fact that {&; };_" is associated and identically

distributed we have - ; var(&;) < var(¢é1) = o2. Then

) - (02 | < St -

by letting n — oo and s — oo (and so m — o0), we get

t m 2,2
li U, (—— — e ot /2,
miléo< ‘(\/ﬁ)) c

lim ‘\Ilms(t) - e*”2t2/2’ —0.

n—roo

Then it comes out that
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Proof: [Proof of Corollary 2]
We consider the following decomposition:

F,(xz) — E(F,(x)) = F,(z) — F(z) — bias [F,(2)] .

Theorem 3 ensures distribution convergence for F,,(z) — F'(x). Then, the second conclusion in
Proposition 1 shows that
lim h,, bias [F,(z)] = C < occ.

n— oo

Hence, we only have to show that — 0and h2n'/2 — 0 for the ordinary
n— oo

h’!L
n1/2h£71/2 n—o0
smooth and super-smooth cases respectively. But this is clearly latent in the assumptions of Theorem
3.
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