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Abstract
The main purpose of the present paper is to discuss the problem of estimating the unknown cu-

mulative density function F (x) of X when only corrupted observations Y = X + ε are present,
where X and ε are independent unobservable random variables and ε is a measurement error with a
known distribution. For a sequence of strictly stationary and positively associated random variables
and assuming that the tail of the characteristic function of ε behaves either as super smooth or or-
dinary smooth errors, we obtain the precise asymptotic expressions, the bounds on the mean-square
estimation error and the asymptotic normality.

Keywords: Deconvolution of cumulative densities, positively associated processes, quadratic-mean
convergence, asymptotic normality.

1. Introduction
We consider the problem of estimation from observations that are contaminated by additive noise

{εi}ni=1. Due to the nature of the experimental environment or the measuring tools, the random
process {Xi}ni=1 is not available for direct observation. Instead of Xi, we observe the random
variables Yi given by

Yi
△
= Xi + εi, i = 1, ..., n. (1)

In the present paper, the focus is to estimate nonparametrically the unknown common cumulative
density function (c.d.f.) F (x) of a process {Xi}ni=1 which is assumed to be strictly stationary and
positively associated. In addition, we assume that the density function (p.d.f.) f(.) of the process
{Xi}ni=1 exists. Furthermore, the noise process {εi}ni=1 consists of independent and identically
distributed (i.i.d.) random variables, and independent from {Xi}ni=1, with known density function
r(.). Thus the common probability density function g(.) of the random variables Yi is given by:

g(x) =

∫ +∞

−∞
f(x− t)r(t)dt. (2)

Model (1) is called a convolution and the problem of estimating f with this model occurs in
various domains. This model has been studied in Experimental Sciences. For example, Biological
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Organisms (see Medgyessy, 1977; Rice and Rosenblatt, 1976); communication theory (see Wise et
al., 1977, Snyder et al., 1988) and applied physics (see Jones and Misell, 1967).

The literature abounds of work devoted to the study of the p.d.f. in convolution problems. Zhang
(1990) proposed a consistent estimator for the density based on grouped data for some cases of er-
ror density. Masry (1993) considered the estimation of the multivariate probability density functions
under some structures of dependence. Lejeune and Sarda (1992) used the Moving Polynomial Re-
gression (MPR) to smooth the empirical distribution function estimator. Fan (1990) considered the
asymptotic uniform confidence bands.

The c.d.f. deconvolution has not attracted as many research. Ioannides and Papanastassiou
(2001) developed the approach to examining the estimation of the c.d.f. and treated its correspond-
ing asymptotic normality in the case where the joint random process {Xi, εi}ni=1 is stationary and
satisfies the ρ-mixing condition and fulfilling some additional assumptions. Furthermore, the con-
taminated noises {εi}ni=1 are assumed to have a dependence structure and are either ordinary smooth
or super smooth. Dattner et al. (2011) studied the minimax complexity of this problem when the
unknown distribution has a density belonging to the Sobolev class and the error density is ordinary
smooth. Cordy and Thomas (1997) considered the deconvolution when the unknown distribution is
modeled as a mixture of p known distributions. Gaffey and William (1959) studied a consistent esti-
mator of a distribution function from observations contaminated with additive Gaussian errors. Fan
(1991) considered the estimate based on integration of the density deconvolution estimator. Wang et
al. (2010) developed the estimation of the c.d.f. in the case where data are corrupted by heteroscedas-
tic errors.

We study the quadratic mean convergence and deduce the mean-square convergence rate for the
deconvolving cumulative density estimator under various assumptions on the characteristic function
ϕr of the measurement error. The following two cases are generally distinguished:

• ϕr decays algebraically at infinity

|t|β |ϕr(t)| →
|t|→+∞

β1 for some β > 0 and β1 > 0.

In this case, the error is called ordinary smooth.

• ϕr decays exponentially fast at infinity

β2e
−m|t|α |t|β ≤ |ϕr(t)| ≤ β3e

−m|t|α |t|β ,

for some positive constants α , m, real β, and positive constants β2 and β3.

This is called supersmooth error.
The parameter β is called the order of the noise density r (x). Actually, it has a direct impact

on the rate of convergence of the estimate Fn (x). Particular examples of supersmooth distribution
are Normal, Mixture Normal, Cauchy densities r(x). The ordinary smooth distribution covers in
particular the case of Gamma, Double Exponential, and Symmetric Gamma densities r(x).

Next, it is of practical interest to show that the deconvolution difficulties are heavily related
to the smoothness of the error distribution. Indeed, super smooth distributions are more difficult to
deconvolve than ordinary smooth distributions, see for example the proofs in Masry (2003).

The infinite random process {Xi}+∞
i=1 is positively associated (PA for short), or just associated,

if every finite subcollection {Xi}ni=1, n ≥ 1 satisfies the property given in the following definition.

Definition 1 A finite family of random variables {Xi}ni=1 is said to be positively associated if

Cov [Φ1(Xi, i ∈ A1),Φ2(Xj , j ∈ A2)] ≥ 0,

for every pair of disjoint subsets A1 and A2 of {1, 2, ..., n}, and Φl are coordinatewise increasing
functions and this covariance exists for l = 1, 2.
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Definition 1, which was introduced by Esary et al. (1967), includes several mixing process
classes. Note that associated processes have attracted a lot of research attention since they arise in a
variety of contexts. For instance, in Finance (see (Jiazhu 2002)), and in Applied physics (see Fortuin
et al. (1971)), and even in Percolation theory. We may also cite the homogeneous Markov chains as
a direct example of the association property and normal random vectors with nonnegative covariance
sequences.

It is worthy to note that, if the underlying process {Xi}ni=1 is associated, then the process
{Yi}ni=1 involving the convolution model in (1) is a corrupted-associated random process. Actually,
from Property P2 of Esary et al. (1967) (mentioned later), the independence between the processes
{Xi}ni=1 and {εi}ni=1 ensures the association of the union {Xi}ni=1 ∪ {εi}ni=1. Fortunately, all deal-
ing here is with a strictly stationary process. In fact, and as mentioned above, {εi}ni=1 consists of i.i.d.
rvs. Since {Xi}ni=1 are independent from {εi}ni=1 , it is clear that {Yi = Xi + εi}ni=1 is a strictly sta-
tionary random process. Indeed, the best-known example of a strictly stationary process is the white
noise process (i.i.d.). On the other hand, Hhn(

.
hn

) (defined in (11)) is a measurable mapping, and so

we deduce that
{
Hhn(

Yi−x
hn

)
}n

i=1
is a stationary process in a strict sense.

To the best of our knowledge, there are no papers dealing with the nonparametric estimation
of the c.d.f. from corrupted-associated random variables, and this motivates the study in the present
work. The layout of this paper is organized as follow. In Section 2, we develop the estimator and give
some properties. In Section 3, we establish the mean-square error of our estimate. The asymptotic
normality is shown in Section 4. In Section 5, we evaluate the performance of the estimator via
simulated data, while Section 6 gives some additional proofs.

2. Estimation
First we denote by ϕg(·), ϕf (·), and ϕr(·) the characteristic functions of g(·), f(·), and r(·)

respectively, and let ϕ̂n(t) be the empirical characteristic function of {Yj}nj=1, defined by

ϕ̂n(t) =
1

n

n∑
j=1

eitYj . (3)

Since the Yi observations are identically distributed, it follows that ϕ̂n(t) is an unbiased estimator
of ϕg(t)

E
(
ϕ̂n(t)

)
= ϕg(t). (4)

In practice, the noise density r(·) is usually unknown. In order to reduce the complexity of the
statistical analysis, we assume as in all the literature mentioned earlier that r(·) is known, then we
choose the kernel k(·) as a bounded even probability density function, and call ϕk(·) its corresponding
Fourier Transform.

As mentioned previously, only Yi r.v.’s are available to observe. The usual non-parametric
method for estimating the probability density for this case is the kernel estimation or the so called
Parzen-Rosenblatt method (see Parzen (1962)). This method, which is based on a sample of the
statistical population, allows one to estimate the density at any point of the support:

gn(x) =
1

nhn

n∑
j=1

k(
x− Yj

hn
), (5)

where {hn}n≥1 is a bandwith sequence of positive numbers converging to 0. Hence the cumulative
density can be written as:

Gn(x) =
1

n

n∑
j=1

K(
x− Yj

hn
), (6)
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where

K(x) =

∫ x

−∞
k(t)dt.

To simplify the problem, we assume the independence between {Xj}nj=1 and {εj}nj=1 , and
assume |ϕr(t)| > 0 for all t ∈ R. Then the convolution equation (2) leads to ϕg(t) = ϕf (t)ϕr(t). On
the other hand, if we assume that the chosen kernel k is bounded, even, and in L1 (R)∩L2 (R) , then
also the kernel type estimate gn(·) lies in L1 (R) ∩ L2 (R). Hence, its Fourier transform exists, and
the calculations show that

ϕgn(t) = ϕ̂n(t)ϕk(thn).

If we assume that
ϕgn(t)

ϕr(t)
∈ L1(R), then by the inverse Fourier Transform, the proposed estimate

f̂n(x) for f(x) is

fn(x) =
1

2π

∫ +∞

−∞
exp(−itx)

ϕ̂n(t)ϕk(thn)

ϕr(t)
dt. (7)

We follow the same procedure as in Masry (1991), and using equation (3) we get the following
alternative expression for f(x):

fn(x) =
1

nhn

n∑
j=1

whn

(
Yj − x

hn

)
, (8)

where

whn
(s) =

1

2π

∫ +∞

−∞
eits

ϕk(t)

ϕr(
t
hn

)
dt. (9)

Remark 1 Notice that the expression of fn(x) in (8) has a classical kernel form. However, for
technical reasons (used in the proofs), we choose to apply the deconvolving kernel whn(.) on the term(

Yj−x
hn

)
instead of

(
x−Yj

hn

)
which is usually used in kernel estimation. This explains the presence of

the term eits instead of e−its in the expression (9).

We consider an estimator of the c.d.f. via integration of the density estimator. This approach
was introduced by Zhang (1990). Fan (1991) proved that this type of estimator is minimax optimal
for i.i.d. observations and the case of supersmooth noise destribution.

Using the assumptions on ϕr(t) and ϕgn (t)
ϕr(t)

used to derive equation (7), we obtain the following
deconvolving cumulative density estimator

Fn(x) =
1

n

n∑
j=1

Hhn

(
Yj − x

hn

)
, (10)

where

Hhn
(x) =

∫ x

−∞
whn

(s)ds. (11)

Recall the c.d.f estimator in (10) was suggested by Ioannides and Papanastassiou (2001) to decon-
volve the c.d.f for ρ-mixing stochastic processes and the noise process {εi}ni=1 is assumed to have a
dependence structure.

Next, using Fubini’s theorem, we obtain

Hhn
(x) =

1

2π

∫ +∞

−∞
eitx

γhn(t)

it
dt, (12)
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Table 1 Hhn(x) nature changes

r(x) γhn
(t)/ (it) Hhn

(x)
real and even purely imaginary and odd real and odd
real and odd real and even real and even

purely imaginary and even real and odd purely imaginary and odd
purely imaginary and odd purely imaginary and even purely imaginary and odd

where

γhn
(t)

∆
=

ϕk(t)

ϕr(
t
hn

)
. (13)

In the derivation of equations (12) and (13), we need to have

ϕk(t)

tϕr(
t
hn

)
∈ L1 (R) ∩ L∞ (R) . (14)

For this end, we assume that

ϕk(t) = o (t) as t → 0.

Also we note that ϕk(t) is real-valued and even since k(x) is even. Via a simple calculation,
we obtain the results in Table1, which shows the changes in the nature of Hhn

(x) with respect to a
general function r(x). Hence, we restrict ourselves to the two first lines of Table1 since the function
r(x) in our case is the error density.

2.1. Notation and assumptions

2.1.1 Notation

Some notations and reasonable assumptions are needed in what follows.

Q2
∆
=

1

2π (β1)
2

∫ +∞

−∞
|t|2(β−1) |ϕk(t)|2 dt, (15)

where β is the order of the contaminating density r (x), and β1 is the positive quantity that the noise
characteristic function ϕr (.) decays algebraically at infinity (ie the ordinary smooth case).

χhn
(x)

∆
=
[
hβ
nHhn

(x)
]2

. (16)

2.1.2 Assumptions

A1 The density k (x) satisfies

• i)
∫ +∞
−∞ sk(s)ds = 0.

• ii)
∫ +∞
−∞ s2k(s)ds < ∞.

• iii) ϕk(t) = o (t) as t → 0.

A2

• i)
∫ +∞
−∞ |t|2(β−1) |ϕk(t)|2 dt < ∞.

• ii)
∫ +∞
−∞ |t|β |ϕk(t)| dt < ∞.
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• iii)
∫ +∞
−∞ |t|β−1 |ϕk(t)|2 dt < ∞.

A3

•
∫ +∞
−∞ t−(3−j)hβ

n

∣∣∣γ(j)
hn

(t)
∣∣∣ dt < ∞ for j = 0, 1, 2.

A4

• i) ϕk(t) has a finite support [−τ, τ ] for some positive constant τ .

• ii) |ϕk(t)| ≤ a1(τ − t)p for τ − d ≤ t ≤ τ for some positive constants p, d, and a1.

• iii) ϕk(t) > a2(τ − t)p for τ − d ≤ t ≤ τ and a2 is a positive constant.

• iv) If we note Rϕr(t)(t) and Iϕr(t)(t) the real and imaginary parts of ϕr(t) respectively, then
when t → ∞ either Iϕr(t)(t) = o

(
Rϕr(t)(t)

)
or Rϕr(t)(t) = o

(
Iϕr(t)(t)

)
.

A5

• i) The common univariate probability density g (x) of the observed random process {Yi}ni=1

exists and is bounded for all x ∈ R.

• ii) The 2−dimensional density gY1,Yq
(x, y) of the random variables Y1 and Yq with q > 0,

exists and is bounded for all x, y ∈ R.

• iii) The random process {Xi}i≥1 is positively associated. Moreover,

+∞∑
j=0

jηcov(X1, Xj) < ∞ for some constant η > 0.

Remark 2 To simplify the problem and under the light of conditions A1-A4, we choose to make
use a kernel k (x) in which its Fourier transform ϕk is compactly supported. Namely, the following
kernel k(x) = 48cos (x) (1−15x−2)/(πx4)−144sin (x) (2−5x−2)/(πx5), with the characteristic
function ϕk(t) = t1[−1,1](t) where 1B (t) stands for the indicator function on a set B. Notice that
this kernel is used in the calculation of our simulated estimator in Section 5, since it satisfies the basic
assumptions in which our main results are stated.

Under the assumption that {εj}nj=1 and {Xj}nj=1 are independent and that the ε′js are indepen-
dent among themselves, we can state that cov(Y1, Yj) = cov(X1, Xj). To simplify the notation we
write

Fn(x) =
1

n

n∑
j=1

Hhn,j(x),

where Hhn,j(x) = Hhn
(
Yj−x
hn

) and υn
∆
= E(Hhn,j) for all j and H̃hn,j

∆
= Hhn,j− υn.

As shown before,
{
H̃hn,j(x)

}n

j=1
is a strictly stationary process. Now, we use Properties (P2

and P4) established by Esary et al. (1967), to show the positive association of
{
H̃hn,j(x)

}n

j=1
.

P2: The union of two independent associated random processes is associated.
P4: Any non-decreasing functions applied on associated random variables are associated (ie

non-decreasing functions remain the association).
In fact, the case of i.i.d. random variables represents one extreme of association, thus {εi}ni=1

is associated. Further, it is independent from the process {Xj}nj=1 . Then we note that from P2, the
union {Xi}ni=1 ∪ {εi}ni=1 is associated.
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From P4 and by choosing pj({ui}Ni=1 ∪ {vi}Ni=1) = uj + vj for any j = 1, ..., N , the random
process {Yj}nj=1 is associated. In our case, Yj = pj({Xi}ni=1 ∪ {εi}ni=1) and

As reported by Rao (2012), if {Zi}ni=1 is a sequence of associated rv’s and αi are positive

numbers and τi ∈ R for 1≤ i ≤ n then the rv’s Zi−αi

τi
are associated. Thus the process

{
Yj−x
hn

}n

j=1

is associated. Since Hh(x) =
∫ x

−∞ ωh(t)dt is a nondecreasing function and by P4, the process
{Hhn,i(x)}

n
i=1 is associated.

The following lemma gives an important transformation used in Section 6.

Lemma 1 Assume that m(x) and d(x) are two bounded densities and ϕm(t) and ϕd(t) are their
Fourier transforms respectively, then

1

2π

∫ +∞

−∞
e−itxϕm(th)ϕd(t)dt =

(mh ∗ d) (x)
h

, (17)

where
mh(x) = m(

x

h
) for any h ∈ R∗

+.

To compute the exact asymptotic bias value, we first need to establish an approximation on the
identity (see chapter 9 in Wheeden and Zygmund (1977)) and see what conditions should be imposed
on the kernel k(.). To this end, we make use of the following lemma due to Bochner (1959).

Lemma 2 (Bochner) Suppose that k ∈ L1 (R) is a bounded Borel function on R, then, at every point
x of continuity of g(.), we have

lim
n→∞

1

hn

∫ +∞

−∞
k

(
u

hn

)
g (x− u) du = g(x)

∫ +∞

−∞
k (u) du.

The density in this expression does not depend on the bandwidth {hn}n≥1. Thus the kernel k(.)
must satisfy the regularity conditions of ordinary density estimation.

Proposition 1 1) For all x ∈ R, we have

lim
n→∞

E [Fn(x)] = F (x).

2) Assume that the kernel k(.) satisfies A1-i) and A1-ii), we also assume that F ∈ C2(R) then
we have

lim
n→∞

(hn)
−2

bias [Fn(x)] =
1

2
F ′′(x)

∫ +∞

−∞
s2k(s)ds.

Remark 3 The correction of estimation bias plays a fundamental role in the measurement error
model. Another interpretation of the results of Proposition 1 is that the biases of the estimator Fn(x)
either in the presence or the absence of the contaminating noise are the same and converge to zero
regardless of the error smoothness type.

Notice that conditions A1-A4 have nothing to do with the dependence of the process {Xi}+∞
i=1 .

Moreover the result of Proposition 2 is standard and it is valid even for an i.i.d. case.

3. Quadratic-Mean Convergence
This section is divided into two parts. In the first part we assume that the characteristic function

ϕr(t) of the contaminated errors ε decays algebrically at infinity, while in the second part we as-
sume expononcial decay. In both cases we look for exact asymptotic expressions of the mean-square
estimation error of Fn(x). To this end we use the following bias-variance decomposition:

E
[
(Fn(x)− F (x))2

]
= var(Fn(x)) + [bias (Fn(x))]

2
. (18)

For the expononcial decay case, we only provide tight bounds because the precise asymptotic
expression of ∥Hhn∥2 is not available in this case.
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3.1. Ordinary smooth noise distribution

Let us first assume that ϕr(t) fulfills the following assumption:
Assumption B1 :
i) |ϕr(t)| > 0 for all t ∈ R,
ii) |t|β |ϕr(t)| → β1 as |t| → +∞, for some positive constants β and β1.
The exact asymptotic bias given in Section 2 relied primarily on the identity approximation for

the classical kernel-type density estimation with the help of lemma 2. For the asymptotic variance,
an extra approximation for which the underlying function

(
H2

hn
(.)
)

depends on the bandwidth hn is
required. This may cause difficulties since the condition (|tϕr(t)| > 0) is not necessarily met.

Generally, Hhn
(.) is non-negative and strictly monotone. Under Assumption B1, Parsevals

theorem and conditions A1-iii) and A2-i) ensure that Hhn(.) is always in L2(R). The next proposition
gives a precise L2-norm asymptotic expression for Hhn(.) and its proof is relegated to the last section.

Proposition 2 If we suppose that condition B1 is satisfied and

1) If conditions A1-iii) and A2-i) hold then

lim
n→+∞

h2β
n

∫ +∞

−∞
|Hhn

(s)|2 ds = Q2 ,

where Q2 defined in (15).

2) If A2-i) holds, we have
hβ
n

∥∥H ′
hn

∥∥
∞ ≤ C < ∞,

where H ′
hn

is the first derivative of Hhn
.

3) If A3 holds, then we have

hβ
n

∫ +∞

−∞
|Hhn

(s)| ds ≤ C < ∞.

The following lemma gives an approximation of the identity under the smoothness assumptions
on the characteristic functions ϕk(t) and ϕr(t). This lemma is needed to obtain the precise asymptotic
variance of the estimator Fn(x).

Lemma 3 Under conditions B1, A1-iii), A2-i), A3 and A5-i), then∫ +∞

−∞

1

hn
χhn

(
x− u

hn

)
g(u)du → g(x)Q2.

at all points x of continuity of g, and the quantity Q2 is defined in (15).

The next Lemma proposed by Birkel (1988) is crucial for what follows.

Lemma 4 (Birkel) If we suppose that {Yj}j∈I is a finite random process of positively associated
random variables and let A and B be subsets of I . Let Φ1(.) and Φ2(.) be bounded first order partial
derivatives, then we have

|cov [Φ1(Yi, i ∈ A),Φ2(Yj , j ∈ B)]| ≤
∑
i∈A

∑
j∈B

∥∥∥∥∂Φ1

∂ti

∥∥∥∥
∞

.

∥∥∥∥∂Φ2

∂tj

∥∥∥∥
∞

cov(Yi, Yj).

where
∥∥∥∂Φ1

∂tj

∥∥∥
∞

= max
{∥∥∥∂+Φi

∂tj

∥∥∥
∞

,
∥∥∥∂−Φi

∂tj

∥∥∥
∞

}
.
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Now, we are ready to treat the quadratic-mean convergence of Fn(x).

Theorem 1 Under conditions B1, A1-A3, and A5 we have

lim
n→∞

nh2β−1
n var(Fn(x)) = σ2(x) at the points x of continuity of g,

where σ2(x) = Q2g(x) .

For quadratic-mean convergence rates, we have the next corollary.

Corollary 1 Combining the bias given in Proposition 1 with the asymptotic variance found in The-
orem 1 we find the quadratic-mean convergence of the c.d.f estimator. Next, by selecting an optimal
value of the bandwidth parameter, hn ≃ n−1/(2β+3), i.e. that minimizes this asymptotic mean-square
error. Then, we have a mean-square convergence rate of:

E |Fn(x)− F (x)|2 = O(n−2/(2β+3)),

in the absence of contaminating noise and taking hn ≃ n−1/3, the mean square convergence
rate is

E |Fn(x)− F (x)|2 = O(n−2/3).

Note that the presence of contaminating noise reduces the mean-square convergence rate of
Fn(x) by a factor that depends on the rate of decay of the tail characteristic function ϕr(t) of ε.

3.2. Supersmooth noise distribution

We now consider the quadratic mean convergence of Fn(x) when the charateristic function ϕr(t)
of the noise processes {εi}ni=1 has an exponential decay as t → ∞ namely the super smooth case,
and in particular when the following assumptions are met

Assumption B2
i) |ϕr(t)| > 0 for all t ∈ R,
ii) β2e

−m|t|α |t|β ≤ |ϕr(t)| ≤ β3e
−m|t|α |t|βfor some β real, and positive constants α,m, β2

and β3.
Super smooth errors are much harder to deconvolve than ordinary smooth errors, this may be

due to the fact that impossible to find a simple expression and the exact order for the function Hhn(x)
(even in i.i.d. case). As a consequence, the precise asymptotic rates and constants of var(Fn(x)) and
var(Hhn,1(x)) can not be obtained in this case.

We first derive a lower bound for var(Hhn,1(x)) and then use it to establish the following
asymptotic relationship

var(Fn(x)) =
1

n
var(Hhn,1(x))(1 + o(1)).

Lemma 5 1) Under conditions B2, A1-ii), A4-i), and A4-ii), we have

∥Hhn∥∞ = O

(
h(p+1)α+β
n (log(

1

hn
))p exp(m(

τ

hn
)α)

)
,

∥Hhn
∥2 = O

(
h(p+1/2)α+β
n (log(

1

hn
))p exp(m(

τ

hn
)α)

)
,

and ∥∥∥H ′

hn

∥∥∥
∞

= O

(
h(p+1)α+β
n (log(

1

hn
))p exp(a(

d

hn
)β)

)
.

2) In addition if A4-iii) and A4-iv) hold, we have
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|Hhn(u)| ≥ C2 |G(x)|h(p+1)α+β
n exp(m(

τ

hn
)α)),

for a constant C2 and G(x) = cos(τx)1
(
Iϕ( t

hn
) = o(Rϕ( t

hn
))
)
+sin(τx)1

(
Rϕ( t

hn
) = o(Iϕ( t

hn
))
)
,

where 1(.) is an indicator function.

Lemma 6 Under conditions B2 and A4, and as n → ∞

var(Hhn,1(x)) ≥ C3h
2((p+1)α+β+1/2)
n exp(2m(

τ

hn
)α),

and

var(Hhn,1(x)) ≤ C4h
2((p+1)α+β−1)
n

(
log(

1

hn
)

)2p

exp(2m(
τ

hn
)α),

for a positive constants C3 and C4.

Theorem 2 Under conditions B2, A4, and A5 we have

var(Fn(x)) =
1

n
var(Hhn,1(x))(1 + o(1)).

4. Asymptotic Normality
To discuss the asymptotic normality of the cumulative density estimate Fn(x) in Eq. (10), we

recall that {Hn,j(x)}+∞
j=1 is a positively associated random process as well as a strictly stationary

sequence, since it involves monotonic transformations Hhn
(.) of positively associated r.v.’s. Thus,

following the same approach as used in Oliveira (2012), we will show that:

Fn(x)− E [Fn(x)]√
var [Fn(x)]

L→ N(0, 1). (19)

It was shown in Section 3 that, under suitable smoothness assumptions for the ordinary smooth case,
we have

lim
n→∞

nh2β−1
n var(Fn(x)) = σ2(x).

Hence, the asymptotic distribution in (19) becomes

n1/2hβ−1/2
n [Fn(x)− E [Fn(x)]]

L→ N(0, σ2(x)).

On the other hand, when the noise characteristic function ϕr decays exponentially fast, it is
found that:

var(Fn(x) =
1

n
var(Hhn,1)(x))(1 + o(1)).

As already shown, the main problem with this type of measurement errors that it is difficult
(or impossible) to find the limit of E

[
H2

hn,1
(x)
]

and the corresponding convergence rate. As a
consequence, the central limit theorem (CLT) is not available in this case. Instead, we will prove that:

√
n
Fn(x)− E [Fn(x)]√

var(Hhn,1(x))

L→ N(0, 1).

It should be mentioned that, in the ordinary smooth case, the CLT for associated random vari-
ables is available only for a random process which is strictly stationary sequence and not a weakly
stationary one.
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Theorem 3 1) Under conditions B1, A1-A3, and A5 we have

n1/2hβ−1/2
n [Fn(x)− E [Fn(x)]]

L→ N(0, σ2(x)). (20)

2)Under Assumption B2 and condition A4 we have that

√
n
Fn(x)− E [Fn(x)]√

var(Hhn,1(x))

L→ N(0, 1), (21)

as n → ∞.

More precisely, the next corollary gives a better centering.

Corollary 2 If we consider that all assumptions provided in Theorem 3 hold in addition to F (t) ∈
C2(R), we have

1) For the ordinary smooth case:

n1/2hβ−1/2
n [Fn(x)− F (x)]

L→ N(0, σ2(x)).

2) For the supersmooth case:

√
n

Fn(x)− F (x)√
var(Hhn,1(x))

L→ N(0, 1).

Remark 4 In the ordinary smooth case, we estimate the asymptotic variance σ2(x) by a plug-in-type
estimator defined by

σ2
n(x) = gn(x)Q2,

where gn(x) is a kernel estimator of g(x) drawn from a sample of size n of Yi. Thus, in the light of
the results of the above Corollary, and for an asymptotic level 1− α, we can establish an asymptotic
confidence interval of F (x) given by:[

Fn(x)− z1−α/2σ
2
n(x)(nh

2β−1
n )−0.5, Fn(x) + z1−α/2σ

2
n(x)(nh

2β−1
n )−0.5

]
where z1−α/2 presents a quantile of order 1− α/2 of N(0, 1).

5. Numerical Experiments
This section is divided into two parts (subsections). In the first part, we mention an example

of a convolution model and compare the performance of our simulated estimator from both direct
and contaminated observations. This is for the goal of displaying the influence of ignoring the mea-
surement errors. In the second part, we examine the behavior over finite samples of our conducted
estimator via simulation experiments.

5.1. Example and comparisons
Convolution examples are extensive. But due to space restriction, we only mention one interest-

ing example here which is in Communication Theory and more specifically in Signal Processing. Let
Yi stand for the voice heard when the i−th individual speaks and Xi be its pure voice (real) and εi
some noise. In this example, we recognize two different cases:

(i) direct communication: where the audible sound is the spoken sound itself (Yi = Xi)

(ii) communication through the phone: where (Yi = Xi + εi), εi being here some perturbation
due to a confusion of the phone-network.
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For more details on the impact of the presence of measurement error in signal processing, we refer
the interested reader to monographs by Mendelsohn and Rice (1982).

Our goal now is to compare the performance of the cumulative density estimators under different
models and show the influence of ignoring the measurement errors. For that purpose, we conduct a
simulated example in which the observations are contaminated by homoscedastic errors. We generate
a pure random process {Xi}1000i=1 from an exponential distribution with parameter λ = 0.25 and the
measurement errors from N(0, 2). We consider the following two situations:

Presence’s Impact: The goal in this situation is to examine the performance of the general
estimation. For that purpose, we compare the classical kernel-type estimator (see (6)) under direct
observations (Yi = Xi) and the deconvolution estimator under convolution model (1). This will allow
us to explain the effect of measurement errors in nonparametric estimation. The results obtained are
displayed in Figure 1.

Ignoring’s Impact: Consider the convolution model (1). In this situation, we compare the
performance of the classical kernel c.d.f. estimator (neglecting the measurement errors) with the
deconvolution-type estimator (which takes into account the noise). This is done in order to explain
the impact of neglecting measurement errors.

From the outcome of our simulations, it is possible to see that the performance of estimating un-
der the convolution model is very much inferior to that under the error-free model, ie no contaminated
observations are present. The curves in Figure 2 reveal that the deconvolving estimator outperforms
the usual kernel method. This is due to the fact that the latter procedure neglects the measurement
errors and thus gives a biased estimator and may lead to wrong results.

Figure 1 The blue line represents the true distribution function, the dashed line corresponds to the
kernel estimates from uncorrupted observations, the dotted line to the deconvolving estimate
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Figure 2 The blue line corresponds to the true distribution function, the red circled line to the kernel
estimates from corrupted observations, the dotted line to the deconvolving estimate

5.2. Simulation study
In this subsection, we conducted the simulations using different sample sizes to quantify the

performance of our estimator via the Global Mean Square Error (GMSE) criterion computed using
N Monte Carlo trials as below

GMSE(h) =
1

Nq

N∑
j=1

q∑
l=1

[Fn,j(xl)− F (xl)]
2
,

where Fn,j(xl) is the estimated value of F (xl) at the j-th iteration, and q is the number of equidistant
points xl belonging to a given set.

Remark 5 The numerical implementations in this section illustrate the strong and weak points of the
deconvolving approach related to the target c.d.f. and the measurement error classes.

5.2.1 Description and models
The next set-ups are used to generate our numerical experiments. We provide elaborated re-

sults correspond to four distinct target c.d.f.’s F (X) which are supposed to come from the following
models:

Unimodal Distributions:

• X ; N(0, 1),

• X ; χ2(3).

Bimodal Distributions: We chose here the target c.d.f.’s to have distinctly separated modes.

• X ; 0.6N(−2, 1) + 0.4N(3, 1),

• X ; 0.5Gamma(4) + 0.5Gamma(14), where Gamma(m) stands for Γ (α, β) with shape
parameter α = m and scale parameter β = 1.

The target distributions have been considered as they satisfy a special features that can be found
in practice, and they present an increasing order of deconvolving difficulty.
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We control the variance of the errors var(ε) to have particular values for the so-called noise to
signal ratio (NSR) σε/σX , where σX and σε stand for the standard deviations of X and ε respec-
tively. Particularly, we choose to have NSR= 0.1, 0.2 and 0.5 which is equivalent to 10%, 20% and
50% contaminating errors, respectively. Thus, for a better comparison, we define the next two error
distribution scenarios:

1) Normal distribution N(m,σ2
ε) with m = 0 and σε = 1/10, 1/5, 1/2

2) Laplace distribution L(µ, σ2
ε) with µ = 0 and σε = 2−0.5(1/10, 1/5, 1/2)

These have been chosen because they belong to the ordinary smooth and super smooth classes re-
spectively. Thus, we have 8 combinations of convolution models. As shown through simulations in
subsection 1, deconvolution recovers slowly the target distribution, thus we need large sample sizes
in order to have an estimator that works well. For this end, we used sample sizes n = 200, 500
and 1000, and N = 500 replications for each model. Consequently, we have 24 different simulation
set-ups.

Typically, measurement errors are supposed to have zero expectation; however, several cases
violate this assumption. Nevertheless, numerous papers considered cases with non-zero expectation
as a measurement error model. The general idea here is based on relocating these distributions to
have zero expectation.

To simulate convolution sequences after a positive association, we generate the data as follows:

• Simulate (n+ 1) iid rv’s Wi from the distribution of the desired c.d.f.

• Simulate n iid rv’s εi from the distribution of the considered errors.

• Yi = Xi + εi for i = 1, ..., n, where Xi = (Wi−1 +Wi−2)/2.

Generally, Xi are positively associated r.v.’s. and have the same distribution as that of Wi.
At the end of this procedure, we selected the bandwidth hn in the grid of values in the set Θ ={
1/n1/k, k = 1, ..., 10

}
. Finally, the estimator Fn(x) is calculated by varying x in the grid of points

in Λ = {x ∈ [−8 : 0.01 : 8]}.

5.2.2 Simulation results
In this part, detailed results (Tables 2 and 3, and Figures 3-6) are presented for the purpose of

illustrating the influence of the sample size, the distribution of the errors and the NSR rate on the
performance quality of our estimator.

We report only on the results obtained using the standard normal unimodal (Table 2) and Gaus-
sian mixture of bimodal (Table 3) cases, since they are similar to that of the other settings. Table 2 and
3 summarize the optimal global bandwidth hopt = argminh∈Θ GMSE(h) together with its corre-
sponding GMES = minh∈Θ GMSE(h) for the different experimental scenarios mentioned above.
For each model, we display the estimation when the distribution of the errors is either Gaussian or
Laplacian.

In Table 2, we see that GMSE and hopt values change in the same direction. First, note that our
estimators work quite well irrespective the different scenarios. As one could expect, the deconvolution
referring to a Gaussian noise provide very poor quality of estimation. In particular, the convergence
rate in this situation is only O ((lnn)−c) for a positive constant c. Conversely, when the error is a
Laplace distributed, we see a substantially improved performance.

Furthermore, we note however that as the sample size raised, the performance quality increase
and becomes quite well whatever the error distributions. By contrast, the deconvolving estimation
from small contamination (10%) provides much better quality and become slightly deteriorates as the
contamination level increases, but still improved along with n increase.

For bimodal target c.d.f.’s, Table 3 illustrates the difficulty of recovering a distribution of two
modes. We see that the effects of sample sizes and contamination levels on the performance quality
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Table 2 Simulation results for unimodal distributions (standard normal): GMSE with its correspond-
ing optimal bandwidth

Error
distributions

NSR
n

10%
GMSE hopt

25%
GMSE hopt

50%
GMSE hopt

200 2.04×10−2 0.5157 3.11×10−2 0.5179 4.11×10−2 0.8441
Normal 500 1.44×10−2 0.4495 2.05×10−2 0.4537 3.39×10−2 0.5179

1000 1.08×10−2 0.3976 1.64×10−2 0.4097 1.83×10−2 0.4599
200 1.35×10−2 0.5174 1.89×10−2 0.5157 2.45×10−2 0.5303

Laplace 500 1.05×10−2 0.4599 1.13×10−2 0.4578 1.80×10−2 0.3589
1000 0.64×10−2 0.4217 0.89×10−2 0.4217 1.34×10−2 0.4217

Table 3 Simulation results for bimodal distributions (Gaussian mixture): GMSE with its correspond-
ing optimal bandwidth

Error
distributions

NSR
n

10%
GMSE hopt

25%
GMSE hopt

50%
GMSE hopt

200 8.33×10−2 0.1303 10.5×10−2 0.1243 11.8×10−2 0.0447
Normal 500 8.04×10−2 0.0794 8.24×10−2 0.0791 8.27×10−2 0.0240

1000 7.89×10−2 0.0467 7.91×10−2 0.0538 8.22×10−2 0.0790
200 1.64×10−2 0.4902 2.79×10−2 0.5157 3.98×10−2 0.5257

Laplace 500 0.86×10−2 0.4596 1.99×10−2 0.4639 2.98×10−2 0.4549
1000 0.33×10−2 0.4293 1.27×10−2 0.4217 2.09×10−2 0.4013

are similar to the unimodal setting. That being said, the overall performances have deteriorated
compared to the unimodal case albeit less so for the Laplace errors.

Figures 3-6 display the quality of fit of our estimators, relatively to the results gathered from
previous Tables. In each Figure, we plot side by side the c.d.f. estimates from different scenarios. For
comparison purposes, we also plot the true X distributions, which we present on these Figures by a
solid line.

From Figure 3, note that in terms of the rate of convergence, our estimator performs well under
small contamination (10%) and has the same quality regardless of the distribution errors. This is
essentially due to the small variance of the errors. Consequently, the estimation is comparable to a
usual kernel approach when the errors are not considered.

As it widely known, the deconvolution with supersmooth errors provides estimators with very
poor convergence rates compared to the ordinary smooth errors. Thus for a reasonable contamination
rate at 25%, the estimation from Laplace errors gives better results compared to Gaussian errors as
shown in Figure 4.

Summarizing the simulation results from the previous Tables and Figures. The rate of conver-
gence depends directly on the smoothness of the distribution of the errors: the smoother the distribu-
tion is, the slower rate of convergence will be. On the other hand the larger the sample size and the
lower the NSR, the better the quality of performance will be. Furthermore, the quality of fit declines
substantially from unimodal to bimodal distributions but it increases with a sufficiently smaller NSR
value and a higher sample size.
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Figure 3 Estimation of the normal c.d.f. for n = 200, 500 and 1000, and contaminating errors
with NSR = 10%. The solid line corresponds to the true distribution function, the dashed line
to deconvolving cdf estimator for Normal errors, the dotted line to deconvolving cdf estimator for
Laplace errors
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Figure 4 Estimation of the normal c.d.f. for n = 200, 500 and 1000, and contaminating errors
with NSR = 25%. The solid line corresponds to the true distribution function, the dashed line
to deconvolving cdf estimator for Normal errors, the dotted line to deconvolving cdf estimator for
Laplace errors
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Figure 5 Estimation of the normal c.d.f. for n = 200, 500 and 1000, and contaminating errors
with NSR = 50%. The solid line corresponds to the true distribution function, the dashed line
to deconvolving cdf estimator for Normal errors, the dotted line to deconvolving cdf estimator for
Laplace errors
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Figure 6 Estimation of the mixed normal c.d.f. for n = 200, 500 and 1000, and contaminating
errors with NSR = 25%. The solid line corresponds to the true distribution function, the dashed
line corresponds to deconvolving cdf estimator for Normal errors, the dotted line corresponds to
deconvolving cdf estimator for Laplace errors

5.2.3 Asymptotic normality and confidence intervals
In this part, we study the asymptotic normality of the c.d.f. estimator through normal-probability

plots. For this goal, we only examine the unimodal distribution from a Laplacian errors case. The
deconvolving c.d.f estimation was implemented here for NSR = 25%, N = 1000 replications, and
n = 200, 500 and 1000. This NSR value was preferred since it gives a distinct and reasonable
performance for different distribution of the errors, encountered in previous simulations. The results
of this practical implementation are summarized on Figure 7.
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Figure 7 The normal-probability plots of the gaussian c.d.f. estimator for n = 200, 500 and 1000,
and contaminating errors with NSR = 25%.

From Figure 7, we see again that for the asymptotic normality, the estimator provides good
performance for a Laplacian error distribution with a chosen NSR rate. Fortunately, these optimistic
results become more visible for a large sample size. This indicates that the impact of the NSR on
the convergence on distribution becomes fast and faster along with n → ∞.

To present the results of confidence intervals of our estimator Fn(x) for different values of x
in Λ, we propose simulated examples implementaing the results of Remark 4 in Section 4. For this
end, we give a 95% confidence interval for the c.d.f. estimator when the distribution of the errors is
Laplacian and we consider n = 200, 500 and 1000 for comparison purposes.

We first note that in this case, we have β1 = 1
σ2
ε

and β = 2. The simulations here are done for
NSR = 25% and their corresponding optimal global bandwidths hopt found in Table 2 and x = 0.5.
The results are displayed in Figure 8.
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Figure 8 The 95% confidence intervals of the gaussian c.d.f. for n = 200, 500 and 1000, and
contaminating errors with NSR = 25%. The solid line corresponds to the true distribution function,
the dashed line to deconvolving cdf estimator, the ++ line to upper bound, the ∗∗ line to lower bound.

6. Proofs
Proof: [Proof of Lemma 1]

Let q(x) = (mh ∗ d) (x) be the convolution between the defined functions mh(.) and d(.). It is
easily found that ϕmh

(t) = hϕm(th). Thus, applying the forward Fourier Transform gives the next
equality

ϕq(t) = ϕmh
(t)ϕd(t)

= hϕm(th)ϕd(t).

On the one hand, we have

q (x) = (mh ∗ d) (x)

=

∫ +∞

−∞
d(x− u)mh(u)du

=

∫ +∞

−∞
d(x− u)m(

u

h
)du.

On the other hand, we get

q (x) =
1

2π

∫ +∞

−∞
exp(−itx)ϕq(t)dt

=
1

2π

∫ +∞

−∞
exp(−itx)ϕmh

(t)ϕd(t)dt

=
h

2π

∫ +∞

−∞
exp(−itx)ϕm(th)ϕd(t)dt.

The desired conclusion is obtained by identification.

Proof: [Proof of Proposition 1] We start by proving the point 1. By Fubini’s theorem

E [Fn(x)] =

∫ x

−∞
E

[
1

2π

∫ +∞

−∞
exp(−its)

ϕk(thn)

ϕr(t)
ϕ̂n(t)dt

]
ds

=

∫ x

−∞

[
1

2π

∫ +∞

−∞
exp(−its)

ϕk(thn)

ϕr(t)
E
[
ϕ̂n(t)

]
dt

]
ds .
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It is clear from (4) that E
[
ϕ̂n(t)

]
= ϕf (t).ϕr(t), and by Lemma 1, it follows that

E [Fn(x)] =

∫ x

−∞

[
1

2π

∫ +∞

−∞
exp(−its)ϕk(thn)ϕf (t)dt

]
ds

=

∫ x

−∞

[
1

hn

∫ +∞

−∞
k(

u

hn
)f(s− u)du

]
ds .

Again by Fubini’s theorem

E [Fn(x)] =

∫ +∞

−∞

1

hn
k(

u

hn
)F (x− u)du .

The first part is obtained by Bochner’s identity in Lemma 2.
Now, from the last expression, and considering the variable change y = u

hn
, we can see that

E [Fn(x)] =

∫ +∞

−∞
k(y)F (x− yhn)dy .

Then, we write F (x− yhn) as a Taylor series

F (x− yhn) = F (x)− yhnF
′(x) +

1

2
y2h2

nF
′′(x) + o(h2

n).

Point 2 follows directly by using the conditions A1-i) and A1-ii), and the fact that F (t) ∈ C2(R).

Proof: [Proof of Proposition 2]
By Parseval’s theorem we have

h2β
n

∫ +∞

−∞
|Hhn

(s)|2 ds = 1

2π

∫ +∞

−∞
|φhn

(t)|2 dt,

where

φhn
(t) =

tβ−1ϕk(t)(
t
hn

)β
ϕr(

t
hn

)

.

Indeed, t
hn

→ +∞ if and only if n → +∞ for some |t| > 0 or t → ∞ for some hn > 0.
By condition B1-ii) we have

lim
n→∞

|φhn
(t)|2 =

1

β2
1

|t|2(β−1) |ϕk(t)|2 .

Furthermore, condition B1 means that for a large R we have

|t|β |ϕr(t)| >
β1

2
for any t ≥ R.

Thus, we have

|φhn(t)|
2 ≤

∣∣∣∣ϕk(t)

t

∣∣∣∣2 1∣∣∣ϕr(
t
hn

)
∣∣∣2 1[|t|<hnR] +

4

β2
1

|t|2 |ϕk(t)|2 1[|t|≥hnR].

By conditions A1-iii) and B1 it might be clear to see

|φhn
(t)|2 ≤ 4

β2
1

|t|2 |ϕk(t)|2 1[|t|≥hnR].
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Finally, the first conclusion follows by dominated convergence. For part 2), we use the fact that∥∥H ′
hn

∥∥
∞ = ∥ωhn

∥∞ .

Hence, the second assertion follows using similar arguments as that used for Lemma 4-b) in
Masry (2003). Thus, we omit the details.

Now we deal with the last conclusion, for this we put Hhn
(x) =

+∞∫
−∞

1
2π exp (itx) ℓhn

(t) dt

where ℓhn
(t)

∆
=

γhn (t)
it . Then, if we suppose that

ℓhn
∈ C2(R) ∩ L1(R) then Hhn

∈ L1 (R) . In fact, we repeat integration by parts twice to find

−x2Hhn
(x) =

1

2π

+∞∫
−∞

exp (itx) ℓ
(2)
hn

(t) dt,

where ℓ
(2)
hn

(t) = 2
it3 γ

(2)
hn

(t)− 2
it2 γ

′
hn

(t) + 1
itγhn

(t) . Thus, condition A3 assure that

1

2π

+∞∫
−∞

∣∣∣hβ
nℓ

(2)
hn

(t)
∣∣∣ dt ≤ C < ∞.

Then, we deduce that

hβ
n |Hhn(x)| ≤

C

x2
. (22)

Hence, the upper bound on the L1− norm of hβ
nHhn

(x) follows immediately by applying Rie-
mann’s Theorem (with α = 2).

Proof: [Proof of Lemma 3] Write the quantity g(x)Q2 as a limit

g(x)Q2 = lim
n→+∞

∫ +∞

−∞

[
hβ
nHhn

(t)
]2

g(x)dt

= lim
n→+∞

∫ +∞

−∞
χhn

(t)g(x)dt

= lim
n→+∞

∫ +∞

−∞

1

hn
χhn

(
t

hn
)g(x)dt.

It remains to show that

lim
n→∞

∫ +∞

−∞

1

hn
χh

(
t

hn

)
[g(x− t)− g(x)] dt = 0.

Then, we split appropriately the interval of integration as follow:

∫ +∞

−∞

1

hn
χh(

t

hn
) [g(x− t)− g(x)] dt =

∫
|t|>θ

1

hn
χhn(

t

hn
) [g(x− t)− g(x)] dt

+

∫
|t|≤θ

1

hn
χhn(

t

hn
) [g(x− t)− g(x)] dt,

Since x is a point of continuity of g(.), then for every b > 0 and fixed positive θ, we have
|g(x− t)− g(x)| ≤ b for any −θ ≤ t ≤ θ. Thus, we can see that∫

|t|≤θ

1

hn
χhn

(
t

hn
) [g(x− t)− g(x)] dt ≤ b

∫ +∞

−∞
χhn

(t)dt.
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For any chosen value of b, the fixed constant θ remains positive. Hence, letting b go to zero,
leads to

∫
|t|≤θ

1
hn

χhn(
t
hn

) [g(x− t)− g(x)] dt = 0.

Next, by condition A5-i), we get |g(x− t)− g(x)| ≤ 2c. Thus∫
|t|>θ

1

hn
χhn(

t

hn
) [g(x− t)− g(x)] dt ≤ 2c

∫
|t|> θ

hn

χhn(t)dt.

In the proof of the third part in Proposition 2, we find |Hhn
(t)| ≤ C

t2 . This means that χhn
(t) ≤

C
h2β
n

t4 . Then, using the fact θ
hn

→ +∞ as n → ∞, we can conclude that∫
|t|>θ

1

hn
χhn(

t

hn
) [g(x− t)− g(x)] dt ≤ Ch2β

n

∫
|t|> θ

hn

1

t4
dt

= Ch2β
n

{
1

t3

∣∣∣∣
|t|> θ

hn

}
→ 0 as n → ∞.

Proof: [Proof of Theorem 1]
As seen before, {Hhn,j(x)}

n
j=1is a strictly stationary random process for all n > 1, thus

var(Fn(x)) =
1

n
In,1 +

2

n

n∑
j=2

(1− j

n
)In,j ,

where In,j = cov(Hhn,1(x),Hhn,j(x)). We first need to demonstrate the following results:

• limn→∞ h2β−1
n In,1 = σ2(x),

• h2β−1
n

∑n
j=2 |In,j | = o(1), for a large n.

Firstly, we deal with the first point. On the one hand, we have

E (Hhn
(x)) = E (Fn (x)) ,

since the data are identically distributed. On the other hand, using the results of Proposition 1-2),
we find

E (Hhn
(x)) = O

(
h2
n

)
.

Thus

In,1 =

∫ ∞

−∞
H2

hn
(
u− x

hn
)g(u)du+O(h4

n).

Then, Lemma 3 leads to

h2β−1
n In,1 =

∫ ∞

−∞

1

hn

[
hβ
nHhn

(
u− x

hn
)

]2
g(u)du+O(h2β+3

n )

=

∫ ∞

−∞

1

hn
χhn

(
u− x

hn
)g(u)du+O(h2β+3

n ) → σ2(x).

For the second part and for more simplicity, we consider the next decomposition

n∑
j=2

|In,j | =
θn∑
j=2

|In,j |+
n∑

j=θn+1

|In,j | ,
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where θn → ∞ and θnhn → 0 as n → ∞. For 2 ≤ j ≤ θn we have

In,j =

∫ +∞

−∞

∫ +∞

−∞
Hhn

(
t− x

hn
)Hhn

(
u− x

hn
)
[
gY1,Yj

(t, u)− g(t)g(u)
]
dtdu.

Conditions A5-i), A5-ii) and Proposition 2-3) show that

|In,j | ≤ Ch2
n

∫ +∞

−∞
|Hhn

(u)| du
∫ +∞

−∞
|Hhn

(t)| dt

= Ch2
n

(∫ +∞

−∞
|Hhn(u)| du

)2

= O(h2−2β
n ).

Thus, uniformly for 2 ≤ j ≤ θn we can conclude that

h2β−1
n

θn∑
j=2

|In,j | = O(θnhn)

= o (1) .

Next, we consider the contribution when θn + 1 ≤ j ≤ n. Actually the process {Hhn,j(x)}
+∞
j=1 is

positively associated, and its covariance sequence is obtained by using Lemma 4. In our case Φ1(.)
and Φ2(.) are identical and equal to Hhn

( .−x
hn

), and the subsets A and B consist of a single random
variable 1 and j respectively, thus

|cov(Hhn,1(x),Hhn,j(x))| ≤
∥∥H ′

hn,1

∥∥2
∞ cov(Y1, Yj).

From the definition of Hhn,1(x), we can see that∥∥H ′
hn,1

∥∥
∞ =

1

hn

∥∥H ′
hn

∥∥
∞ .

Next, by Proposition 2, and the fact that {Xj}nj=1and {εj}nj=1 are independent, we can see

|cov(Hhn,1(x),Hhn,j(x))| ≤
C

h2β+2
n

cov(X1, Xj).

We see evidently that
(

j
θn

)η
≥ 1 for all j ∈ [θn + 1, n] and a positive constant η. Then, it follows

that

h2β−1
n

n∑
j=θn+1

|In,j | ≤
C

h3
nθ

η
n

n∑
j=1

jηcov(X1, Xj).

From condition A5-iii), and by choosing θn = h
−α
η

n for some α > 3, we have

h2β−1
n

n∑
j=θn+1

|In,j | → 0 as n → ∞.

Proof: [Proof of Lemma 5] Most arguments and procedures here are inspired by the proof of Lemma
3.1 in Fan and Masry (1992). For a positive constant c we consider

δn = chα
n log(

1

hn
). (23)
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By symmetry and condition A4-i)

∥Hhn
∥∞ ≤ 1

2π

∫ +∞

−∞

|ϕk(t)|

|t|
∣∣∣ϕr(

t
hn

)
∣∣∣dt

=

(∫ τ−δn

0

+

∫ τ

τ−δn

)
|ϕk(t)|

|t|
∣∣∣ϕr(

t
hn

)
∣∣∣dt

= L1 + L2.

First, we deal with L1. For this we choose D as a large enough but fixed number. Then,

L1 =

(∫ Dhn

0

+

∫ τ−δn

Dhn

)∣∣∣∣ϕk(t)

t

∣∣∣∣ .
∣∣∣∣∣ 1

ϕr(
t
hn

)

∣∣∣∣∣ dt
= L1,1 + L1,2.

Firstly, we use condition A1-iii) to get

L1,1 =

∫ Dhn

0

∣∣∣∣ϕk(t)

t

∣∣∣∣ .
∣∣∣∣∣ 1

ϕr(
t
hn

)

∣∣∣∣∣ dt
≤ 1

min0≤u≤D ϕr(u)

∫ Dhn

0

∣∣∣∣ϕk(t)

t

∣∣∣∣ .dt
= o (1) . (24)

Concerning L1,2, condition B2 with β2 = β3 leads to

L1,2 =

∫ τ−δn

Dhn

|ϕk(t)| .

∣∣∣∣∣ 1

tϕr(
t
hn

)

∣∣∣∣∣ dt
≤ C

∫ τ−δn

Dhn

∣∣∣∣1t
∣∣∣∣ ( t

hn

)−β

exp(m(
t

hn
)α)dt

= Chβ
n

∫ τ−δn

Dhn

|t|−(β+1)
exp(m(

t

hn
)α)dt.

Next, by considering the derivative of the function W (t)=|t|−(β+1)
exp(m( t

hn
)α) with respect

to t, we can clearly see that the integrand in the latter inequality is an increasing function in the
interval Dhn ≤ t ≤ τ − δn. Hence, it achieves its top when t = τ − δn. This together with (24) give
the following:

L1 ≤ C (τ − δn)
−(β+1)

hβ
n exp(m(

τ − δn
hn

)α).

= O(hβ
n exp(m(

τ

hn
)α(1− δn

τ
)α)).

By applying a Taylor expansion, we have (1 − δn
τ )α = 1 − α δn

τ + O
(
δ2n
)
. Thus, a simple

calculation using the quantity of δn defined in (23) gives

L1 = O(hβ+mcατα−1

n exp(m(
τ

hn
)α)).
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Next, we consider L2. We note that (τ − t) ≤ δn for any τ − δn ≤ t ≤ τ, then by condition
A4-ii) we find |ϕk(t)| ≤ a1δ

p
n. Thus

L2 ≤ chβ
na1δ

p
n

∫ τ

τ−δn

t−(β+1) exp(m(
t

hn
)α)dt.

With the same argument, we finish this bound by founding

L2 = O(hβ+α(1+p)
n (log(

1

hn
))p exp(m(

τ

hn
)α).

We note that L1 is dominated by L2. Hence, we obtain the first conclusion.
Next, symmetry and Parseval’s theorem lead to

∥Hhn
∥22 =

1

π

∫ τ

0

|ϕk(t)|2

|t|2
∣∣∣ϕr(

t
hn

)
∣∣∣2 dt.

Then, the second conclusion is attained by a similar treatment. Concerning the third assertion,
we can see that ∥∥H ′

hn
(u)
∥∥
∞ = ∥ωhn

(u)∥∞ .

The proceedings here are identical to those used for the first point in Lemma 3.1 of Fan and
Masry (1992). Thus, we omit the details. Now, we deal the last conclusion. We write

Hhn(x) =
1

2π

(∫ −(τ−δn)

−τ

+

∫ τ−δn

−(τ−δn)

+

∫ τ

τ−δn

)
exp(itx)

ϕk(t)

itϕr(
t
hn

)
dt

= J1 + J2 + J3.

Notice that
|J2| ≤ O (L1) = O(hβ+mcατα−1

n exp(m(
τ

hn
)α)).

It is clear that exp(itx) = cos(tx) + i sin(tx) and ϕr(
t
hn

) = Rϕr
( t
hn

) + iIϕr
( t
hn

). Note that
under condition A4 -iv), we have ϕr(

t
hn

) =Rϕr (
t
hn

)(1+ io(1)) or ϕr(
t
hn

) = Iϕr (
t
hn

)(o(1)+ i). As
a consequence, Rϕr (

t
hn

) and Iϕr (
t
hn

) can’t change their signs, otherwise it will be a contradiction
with Assumption B2. By symmetry we find

J1 + J3 =
1

π

∫ τ

τ−δn

iϕk(t)

t
∣∣∣ϕr(

t
hn

)
∣∣∣2
[
sin(tx)Rϕr

(
t

hn
)− cos(tx)Iϕr

(
t

hn
)

]
dt. (25)

We only treat the case where Rϕr (
t
hn

) = o
(
Iϕr (

t
hn

)
)

. The case where Iϕr (
t
hn

) = o
(
Rϕr (

t
hn

)
)

can be obtained by the same steps. Now, from the fact that tan (0) = 0 we can deduce that
sin(x) = o(cos(x)) for x → 0. Thus, (25) becomes

J1 + J3 =
1

π

∫ τ

τ−δn

iϕk(t)

t
∣∣∣ϕr(

t
hn

)
∣∣∣2 cos(tx)Iϕr (

t

hn
) (o(1)− 1) dt.

If x = (q+0.5)π
τ and q ∈ N, then the situation becomes evident since cos(τx) = 0. If we consider

x ̸= (q+0.5)π
τ , then

J1 + J3 =
1

π

(∫ τ−hα
n

τ−δn

+

∫ τ

τ−hα
n

)
iϕk(t)

t
∣∣∣ϕr(

t
hn

)
∣∣∣2 cos(tx)Iϕr

(
t

hn
) (o(1)− 1) dt (26)

= J4,1 + J4,2.
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The function cos(tx) has the same sign in [τ − δn, τ ] . Moreover it can be written as

cos(tx) = cos(τx) + o(cos(τx)),

Consequently J4,1 and J4,2 have the same sign. Then (26) leads to

|J1 + J3| ≥ |J4,2| .

By Assumption B2 and condition A4-iii)

|J1 + J3| ≥ a2h
β
n |cos(τx)(1 + o(1))|

∫ τ

τ−hα
n

(τ − t)pt−(β+1) exp(m(
t

hn
)α)dt.

It might be clear to see that t(β+1) exp(m( t
hn

)α is an increasing function. Then

|J1 + J3| ≥ a2h
β
n |cos(τx)(1 + o(1))| (τ − hα

n)
−(β+1)

exp(m

(
τ

hn

)α

(1− hα
n

τ
))

∫ τ

τ−hα
n

(τ − t)pdt.

(27)
By simple calculation we find∫ τ

τ−hα
n

(τ − t)pdt =
1

p
hα(p+1)
n ,

and
(1− hα

n

τ
) ≤ 1.

Then, (27) becomes

|J1 + J3| ≥ Chβ+α(p+1)
n |cos(τx)| exp(m(

τ

hn
)α).

We finish this conclusion by choosing c as a large enough number to be J2 dominated by J1+J3.

Proof: [Proof of Lemma 6]
By Proposition 1, we see that

var(Hhn,1(x)) = E

(
H2

hn
(
Y1 − x

hn
)

)
+O(1)

= hn

∫ +∞

−∞
H2

hn
(u)g(uhn + x)du+O(1).

By condition A4-iii), A4-iv) and the result of Lemma 5-2), we can write

var(Hhn,1(x)) ≥ C2
2h

2((p+1)α+β+1/2)
n exp(2m(

τ

hn
)α)

∫ ∞

−∞
g(uhn + x) |G(u)|2 du+O(1).

Recall that hn → 0 as n → ∞. This together with fact that g (.) is a continuous function lead to

var(Hhn,1(x)) ≥ C3h
2((p+1)α+β+1/2)
n exp(2m(

τ

hn
)α)g(x)

∫ 1

−1

|G(u)|2 du (1 + o (1))

≥ C3h
2((p+1)α+β+1/2)
n exp(2m(

τ

hn
)α).

Thus the first part is obtained. The second part is obtained by using the upper bound on the
L∞-norm found in Lemma 5.
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Proof: [Proof of Theorem 2] The stationarity of the process {Hhn,j(x)}
n
j=1 implies that

var(Fn(x)) =
1

n
In,1 +

2

n

n∑
j=2

(1− j

n
)In,j ,

with In,j = cov( Hhn,1(x),Hhn,j(x)). Thus the main task in this proof is to show that∑n
j=2 In,j = o(In,1), or by equivalent way: 1

var(Hhn,1(x))

∑n
j=2 In,j = o(1). To this end, we write

n∑
j=2

In,j =

ρn∑
j=2

In,j +

n∑
j=ρn+1

In,j , (28)

where ρn → ∞ as n → ∞. Next, we set

In,j = E(Hhn
(
Y1 − x

hn
)Hhn

(
Yj − x

hn
)) +O(1)

=

∫ +∞

−∞

∫ +∞

−∞
Hhn

(
s− x

hn
)Hhn

(
t− x

hn
)gY1,Yj

(t, s)dtds+O(1).

Condition A5 leads to

|In,j | ≤ Ch2
n

∫ +∞

−∞

∫ +∞

−∞
Hhn

(t)Hhn
(t)dtds

≤ Ch2
n ∥Hhn

∥21
= O(h2

n).

Now, select ρn = exp(m( τ
hn

)α). Then, by using the bounds on var(Hhn,j(x)) established in
Lemma 6, we get

1

var(Hhn,1(x))

ρn∑
j=2

|In,j | . h−2((p+1)α+β+1/2)
n exp(−2m(

τ

hn
)α)ρnh

2
n

= O(h−2((p+1)α+β−1/2)
n exp(−m(

τ

hn
)α)). (29)

Consider now the second contribution of In,j . Note that the choice of ρn is the same and(
j
ρn

)η
≥ 1 for any j in [ρn + 1, n]. Next, from the third point of Lemma 5-1) we can deduce

that that: ∥∥∥∥H ′
hn

(
.

hn
)

∥∥∥∥
∞

= O(h(p+1)α+β−1
n (log(

1

hn
))p exp(m(

τ

hn
)α)).

Now, we use Lemma 4 to get

|In,j | ≤ Ch2((p+1)α+β−1)
n (log(

1

hn
))2p exp(2m(

τ

hn
)α)cov(Y1, Yj).

As mentioned early, cov(Y1, Yj) = cov(X1, Xj), and using the lower bound established in Lemma
6, we find

1

var(Hhn,1(x))

n∑
j=ρn+1

|In,j | ≤ Ch−3
n (log(

1

hn
))2p

n∑
j=ρn+1

cov(X1, Xj)

≤ Ch−3
n exp(−ηm(

τ

hn
)α)(log(

1

hn
))2p

n∑
j=1

jηcov(X1, Xj) → 0.
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Then, the final result follows from (28) and (29) . The proof of Theorem 2 is finish.
The next Lemma which was introduced by Newman and Wright (1981), is considered as a key

element for the CLT when estimating under associated concepts. Thus, it is essential in the proof of
Theorem 3.

Lemma 7 (Newman) Let X1, X2, ..., XN be a sequence of positively associated random variables,
then for all (t1, ..., tN ) ∈ RN we have∣∣∣∣∣∣ϕ(X1,X2,...,XN )(t)−

N∏
j=1

ϕXj (tj)

∣∣∣∣∣∣ ≤
N∑
i<j

|tjti| |cov(Xi, Xj)| ,

where ϕ(X1,X2,...,Xi)(t) is the characteristic function of the subset (X1, X2, ..., Xi) for i ≥ 1.

Proof: [Proof of Theorem 3]
First, we deal with assertion (20). To this end, we set Ĥn,j(x) := h

β−1/2
n H̃n,j(x) and Sn :=

n∑
j=1

Ĥn,j(x). The previous analysis indicates that

lim
n→∞

var(
Sn√
n
) = σ2(x) < ∞. (30)

Hence it suffices to confirm that
Sn√
n
→ N(0, σ2(x)).

The procedure used here is based on decomposing the sum Sn into appropriate blocks and dealing
with these blocks as if they were independent. Typically, this requires controlling the approximation
between the real associated blocks and its counterpart independent blocks. This approximation is
essentially established using characteristic functions and Lemma 7.

We define the characteristic function of Sn√
n

as Ψn(t) = E(e
it Sn√

n ) for all t ∈ R and let s ∈ N
and k =

[
n
s

]
. Hence, ks ≤ n ≤ ks+ s. The blocks are defined as follows:

Sn =

k+1∑
j=1

Zj,s,

where

Zj,s =

js∑
i=(j−1)s+1

Ĥn,i (x) for all j = 1, ..., k and Zk+1,s =

n∑
i=sk+1

Ĥn,i (x) . (31)

Thus, we need to have

lim
n→∞

∣∣∣∣Ψn(t)− exp

(
−σ2(x)t2

2

)∣∣∣∣ = 0. (32)

Now, we divide our proof into four main steps. In the first three steps we consider s to be a fixed
finite number. To get the conclusion in our last step, we will let s go to infinity.

Step 1: As a first step, we take n to be a multiple of s. If this is not the case, then:

|Ψn(t)−Ψks(t)| =

∣∣∣∣E(e
it Sn√

n )− E(e
it

Sks√
ks )

∣∣∣∣
=

∣∣∣∣E [eit Sks√
ks (e

it
(

Sn√
n
− Sks√

ks

)
− 1)

]∣∣∣∣
≤ E

∣∣∣∣eit( Sn√
n
− Sks√

ks

)
− 1

∣∣∣∣ .
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Using Cauchy-Schwarzs inequality and the fact that
∣∣eit − 1

∣∣ ≤ |t|

|Ψn(t)−Ψks(t)| ≤

∣∣∣∣∣E1/2

[
|t|
(
Sn√
n
− Sks√

ks

)]2∣∣∣∣∣ .
= |t| var

(
Sn√
n
− Sks√

ks

)1/2

.

Now, let us define Γ(m)
∆
= var

(
Sm√
m

)
for any m ≥ 1. From the positive association and

equation (30), we see that Γ(m) < ∞. Then

var

(
Sn√
n
− Sks√

ks

)
= var

(
Sn − Ssk√

n
−

√
n−

√
sk√

nsk
Ssk

)
.

Thus, by positive association, we can write

var(
Sn√
n
− Sks√

ks
) ≤ 1

n
var (Sn−sk) +

(√
n−

√
sk√

n

)2

Γ(sk).

Again by association, and since 0 < n− sk < s

1

n
var (Sn−sk) <

1

n
var (Ss)

=
s

n
Γ (Ss) .

We may note that
√
n−

√
sk <

√
n− sk. Thus

var

(
Sn√
n
− Sks√

ks

)
≤ s

n
[Γ (Ss) + Γ(sk)] .

Finally, we get
lim

n→∞
|Ψn(t)−Ψks(t)| = 0. (33)

Step 2: This step is devoted to controlling the approximation of the joint distribution of the
underlying blocks and see what we get if we assume that we have independent blocks.

Notice that, for a fixed s we can write Zjs = Sjs − S(j−1)s. The latter is a sum of s strictly
stationary r.v.’s. Then, the distribution of Zjs and Ss are the same. Thus, we can consider Ψs as a
characteristic function of 1√

s
Zjs. Actually, only monotone transformations of the original variables

can keep the association, which is the case with Zjs. Then, we can apply Newman’s inequality (see
Lemma 7) to show that ∣∣∣∣Ψks (t)−Ψk

s

(
t√
s

)∣∣∣∣ ≤ t2

2k

k∑
j,j′=1
j ̸=j′

cov (Zjs, Zjs) .

Due to the stationarity again, we get

1

k

k∑
j,j′=1
j ̸=j′

cov (Zjs, Zjs) =
1

k
var

 k∑
j=1

Zj,s

− 1

k

k∑
j=1

var (Zj,s)

=
1

k
var (Sks)− var (Ss)

= s [Γ (ks)− Γ (s)] .
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By simple algebra and using the stationarity, we can conclude that∣∣∣∣Ψks (t)−Ψk
s

(
t√
s

)∣∣∣∣→ 0. (34)

Step 3: In this step, we suppose the independence between the blocs Zj,s. Applying the usual
CLT for i.i.d. parts, and the fact n → ∞ (and so k → ∞) we see that∣∣∣∣Ψk

s

(
t√
k

)
− exp

(
− t2Γ (s)

2

)∣∣∣∣→ 0. (35)

Step 4: The limits in equations (33), (34) and (35) imply that∣∣∣∣Ψn (t)− exp

(
− t2σ2

2

)∣∣∣∣→ ∣∣∣∣exp(− t2σ2

2

)
− exp

(
− t2Γ(s)

2

)∣∣∣∣ ,
where σ2 = limn→∞ Γ(s). Using the inequality |exp (t)− exp (t′)| ≤ |t− t′| for any t, t′ ∈ R,

we have

lim
n→∞

sup

∣∣∣∣Ψn (t)− exp

(
− t2σ2

2

)∣∣∣∣ ≤ t2

2

∣∣σ2 − Γ(s)
∣∣ .

We complete this step by letting s → ∞. The proof of the first point is finished.
For the second conclusion we normalize our r.v.’s by considering Ĥn,j(x)

∆
=

var(H̃n,j(x))

H̃n,j(x)
. Here,

we need the same arguments to show that

Sn√
n
→ N(0, 1).

Thus, we would like to have

lim
n→∞

∣∣∣∣Ψn(t)− exp

(
− t2

2

)∣∣∣∣ = 0. (36)

It is note worthy that, regardless of the type of errors, whether ordinary smooth or super smooth,
positive association and strict stationarity properties stay unaltered. Therefore, only a few modifica-
tions are required to adapt the previous steps to the current proof. Indeed, it is easy to see that

lim
n→∞

Γ(n) = 1.

We follow the same steps as before and start modifications at Eq. (34) in Step 2. We notice that

var( 1√
m

m∑
i=1

ξi) ≃ var(Sms

ms ) = σ2
ms, and by using the fact that {ξi}i=m

i=1 is associated and identically

distributed we have 1
m

m∑
i=1

var(ξi) ≍ var(ξ1) = σ2
s . Then

∣∣∣∣Ψms(t)−
(
Ψs(

t√
m
)

)m∣∣∣∣ ≤ t2

m
(σ2

ms − σ2
s),

by letting n → ∞ and s → ∞ (and so m → ∞), we get

lim
m→∞

(
Ψs(

t√
m
)

)m

→ e−σ2
st

2/2.

Then it comes out that
lim

n→∞

∣∣∣Ψms(t)− e−σ2t2/2
∣∣∣ = 0.
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Proof: [Proof of Corollary 2]
We consider the following decomposition:

Fn(x)− E(Fn(x)) = Fn(x)− F (x)− bias [Fn(x)] .

Theorem 3 ensures distribution convergence for Fn(x)− F (x). Then, the second conclusion in
Proposition 1 shows that

lim
n→∞

h−2
n bias [Fn(x)] = C < ∞.

Hence, we only have to show that h2
n

n1/2h
β−1/2
n

→
n→∞

0 and h2
nn

1/2 →
n→∞

0 for the ordinary
smooth and super-smooth cases respectively. But this is clearly latent in the assumptions of Theorem
3.
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