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Abstract

This paper presents a new generalization of the weighted Exponential distribution using expo-
nentiated generalized class of distributions. The proposed model has the influence as special cases
the exponential, exponentiated exponential, exponentiated generalized exponential, and among other
distributions. An account of statistical characteristics for the generalized weighted exponential dis-
tribution including; quantile function, moments, moment generating function, order statistics and
entropy is presented. The model parameters are estimated through method of maximum likelihood
and simulation study is performed to assess the stability of maximum likelihood estimates. Two
data sets from the field of reliability and medical sciences are considered to analyze the impact of
generalized weighted Exponential distribution in real life phenomena and results of selected crite-
rion are compared with some existing models which indicate the efficiency of generalized weighted
Exponential distribution.

Keywords: Maximum likelihood, moment, order statistics, quantile function, reliability analysis.

1. Introduction

Modeling the data is a delicate task in distribution theory. Classical distributions are extensively
used for this purpose. In some situations, the modified forms of these distributions are required. Re-
searchers are gradually developing the new method for generalizations of the classical distributions
by enhancing the numbers of parameters to make these models more flexible and adaptable in ap-
plied areas. The classical exponential (Ex) distribution is a very attractive model for modification
due to its interesting property known as “Lack of memory property”. Numerous extensions of the
Ex distribution are available in the literature. Some note able are mentioned as, Exponentaited Ex
distribution by Gupta and Kundu (1999), Extended Ex distribution by Afify et al. (2018), Extended
Exponentiated Ex distribution Abu-Youssef et al. (2015), Moment Ex distribution Dara and Ahmad
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(2012), and Generalized exponentiated moment Ex distribution Igbal et al. (2014). Gupta and Kundu
(1999) introduced a new method of adding parameter in the power of a function. The new family
of distributions is given the name as exponentiated family. Many generalizations of the classical
distributions are derived using this technique. Gupta and Kundu (2001) studied exponentiated ex-
ponential distribution. Nadarajah and Kotz (2006) presented generalizations of Gamma, Weibull,
Gumbel and Frechet distributions through exponentiated family. Silva et al. (2010) defined exponen-
tiated exponential-geometric distribution. Lemonte and Cordeiro (2011) proposed the exponentiated
generalized inverse Gaussian distribution. Flaih et al. (2012) provided the exponentiated inverted
Weibull distribution. Lemonte et al. (2013) obtained the exponentiated Kumaraswamy distribution.
Elbatal and Muhammed (2014) constructed the exponentiated generalized inverse Weibull distribu-
tion. Chukwu (2014) derived statistical properties of the exponentiated Nakagami distribution. De
Andrade et al. (2016)established exponentiated generalized extended distribution.

Cordeiro et al. (2013) proposed a new exponentiated generalized class of distributions. The
distribution function (cdf) of the proposed class is given as

b

G(z) = (1 - (H'(z))?)", (1)

where @ and b are two additional shape parameters. Here, H'(z) = 1 — H(z) where H () is the
cdf of any baseline distribution. The cdf of the exponentiated generalized model has great advantage
over the beta family of distributions because it does not contain any special function like incomplete
beta function. The model in (1) has also attractive characteristics for simulation studies due to simple
form of quantile function. The corresponding density function (pdf) for this class is given by

g(x) = abh(z)H'(x)"~'[1 — H'(z)"]""". 2)

Cordeiro et al. (2013) provided that if the baseline pdf g(x) with a symmetric model, then the
resulting model will not be a symmetric model because the two additional parameters a and b can con-
trol the tail weights and possibly add entropy to the center of the exponentiated generalized family of
distributions. Several distributions, exponentiated generalized extended distribution by Cordeiro et
al. (2017), exponentiated generalized Weibull-Gompertz distribution by El-Bassiouny et al. (2017),
exponentiated generalized inverted exponential distribution by Oguntunde et al. (2014), and expo-
nentiated generalized Weibull distribution by Oguntunde et al. (2015) are derived. In literature, many
weighted distributions are available. For this see, Kim (2008) , Kersey (2010), Shahbaz et al. (2010),
Essam and Mohamed (2013), Alqallaf et al. (2015), and Hussian (2013). Oguntunde et al. (2016)
provided a new weighted exponential distribution motivated by Nasiru (2015). The CDF of the dis-
tribution is given by

Glx)=1- 6_a$(1+>\), x>0, a,A>0, 3)
and the pdf is given as
g(z) = (14 Nae N 250, a, A > 0. 4)
The survival function of the weighted exponential distribution is given by
S(z) = e+ 250, a, >0, (5)

where « is the shape parameter and ) is the scale parameter.

In this article, we propose a new generalized weighted exponential (GWEX) distribution. The
addition of two additional shape parameters make this model more compatible and flexible. These
induction of shape parameters is also enhance its applicability to handle the complicated situations
appeared during applied analysis. Many existing distributions are the special case of the proposed
model. We hope this generalization will attract the researcher for modeling the real data problems.
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The article is arranged as follow. We proposed the new model and studied its properties in
Section 2. The Rényi entropy is given in Section 3. Estimation of the model parameters is derived in
Section 4. Simulation study is performed in Section 5. Regression Model is discussed in Section 6.
Application is provided in Section 7. Finally, conclusion is stated in Section 8.

2. GWEXx Distribution and Its Properties

In this section, we derive a four parameter GWEXx distribution. The cdf of the proposed model
is obtained using (1) and (5) and given as

Fz)=[1—e@HNozb 050 o, X a,b> 0. (6)
The corresponding pdf is obtained by differentiating (6) and given as follow
f(z) = aab(1 + )\)(e—a$(1+>\))(e—am(l—l-/\))a—l[1 _ e—a(l-l-/\)aw]b—l’
alternatively, we can write
f(x) = aba(l + AeoHNaz[y _ gma(l+Nazb=1 "0 5 0 o X a,b > 0. (7)

Here a, o, b are shape parameters and A is scale parameter.

It is worth seen that the proposed model reduces to exponentiated weighted exponential distribu-
tion when ¢ = 1 and it reduces to exponentiated generalized exponential distribution when A = 0.
For a = 1 and A = 0, it reduces to exponentiated exponential distribution and fora = 1,b = 1 and
A = 0, the distribution reduces to exponential distribution. If @ = 2, the proposed model reduces
to Topp-Leone weighted exponential distribution and if @ = 2 and A = 0, the proposed model
reduces to Topp-Leone exponential distribution. Many statistical characteristics can be derived using
exponentiated form of the pdf and the cdf. For this, we use the series representation of (1986) given
as

—1)F ok
‘F b—l

Mg

(1—z)°
k=0
Using (6), the exponentiated form of CDF of the proposed distribution is obtained as

o0

CE) _ Zﬂ-j (e—cxm(l—l-)\))j’ (8)

Jj=0

. 00 (=) I+ (0+1)D(ka+1)D(G+1) 1 —a(14N ;
where m; = Y 5, TR PTG (e a( )az)z.

Similarly, the pdf of the GWEX distribution is explained in weighted sum as

Zt] —a(1+X) a:ﬁ)j+1 9)

J=0
_abti(j+1)
where tj = T k+1 "
x _ (=1)Th oo (D™ *I((k+1)a)(P(i+1))
and £ = “—r— > kim0 AT Ta— TG T1=)
(9) expresses the pdf of the GWEx distribution in linear combination of Exponentiated G-Class
by Gupta and Kundu (1999). Several mathematical characteristics are derived through this expression.
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Figure 1 Density plot of GWEX for the several values of the parameters

The survival function of the GWEXx distribution is given as
S(.%') -1_ [1 - efa(lJr)\)ax]b,
and the hazard rate function (hr f) is provided as

h _aba(l+ N)eo1+Naz]] _ gma(l+A)az]b-1
(=)= 1— [1 — e—a(l+Naz]b :

Figure 2 Hazard rate graph for GWEX distribution on several values of parameters

2.1. Quantile function

Theorem 1 If a random variable X follows the GWEx distribution than its quantile function is

obtained

o=

oo [n(—g?)
a(l+A) )

Proof: Quantile function is generally explained as

Using (6), we have

9= [1 _ e—a(l—l—)\)ax]b !

(10)
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After some simplifications, the quantile function of the GWEx distribution is derived as

In(1 — g7)
r=———"-—"51.
a(l+X)
The median of the proposed distribution is obtained by inserting ¢ = 0.5 in (10).

2.2. Moments

Theorem 2 If a random variable X follows the GWEx distribution than its moments are obtained
/ 1 T
= ti|l —m———— r 1 =1,2,3,.... 11
Hr jzoj<oz(i+1)(1+)\)a> (r+1), r=123 (b

Proof: The general method to find the ordinary moments for any distribution is given by

[, = / 2" dF(x).

— 00

Using (9), the above express reduces to
Jo%) [e%e)
L o—a(l+N) oz j+1
Ly —/ x" g ti(e™® )T
-0 50

Assuming a(1 + N)ax)(j + 1) = z, the moment of the GWEX distribution is derived as

, 1 s
e =Yt (a(z+1)(1+A)a> T(r+1).

Jj=0

Corollary 1 The coefficient of variation (C'V'), coefficient of skewness (CS), and coefficient of kur-
tosis (CK) of the GWEXx distribution are obtained as follows

ov =" 1,
M1

-3 2u3
CS — U3 Hapn + 205

)

(42 — )
CcK - dpizp + Gpopd
(2 — p7)?

The incomplete moments are used to derive the mean deviation, Bonferroni, and Lorenz curves.

Theorem 3 If a random variable X follows the GWEXx distribution than its incomplete moments are
obtained

1 r+1
ds(t) = th <a(i+1)(1—|—)\)a) v(r+1,a(l 4+ Nax). (12)

Jj=0

Proof: The incomplete moment of any probability distribution is obtained as

0s(t) :/0 2*dF(x).
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Using (9), the above expression shapes as

t 00
_ 8 tj(e—a(l-i-/\)ax)j-i-l.
9>

After solving the above expression, the incomplete moment of GWEXx distribution is given as
1 r+1
0s(t) = ti| ———————— 1a(l+ A =1,2,3,....
9() j;o J(a(2+1)(1+>\)a> FY(T_F 7(1( + )ax), S )y Sy Yy
Here y is upper incomplete gamma function.

Theorem 4 [f a random variable X follows the GWEXx distribution than its moment generating func-
tion is obtained

N oy PTG+ 1) ( 1 )"( 1 )”“ _
Mx(t)fabJ;p:Ot]( 1) WG T\ va Pt I(p+1),p=1,23,.... (13)

Proof: Generally, the moment generating function (mgf) of any probability distribution is explained
as

My (1) = /0 e AP ().

Using (9), the above expression shapes as

t [eS)
t) _ /0 et th(efa(bk)\)aac)j«#l.
7=0

. tx)P .
Since ef® = " (t2)” the above expression converts to

o=/ >

p=0

Zt —a 1+>\)aw)j+1.

|
b =0

Solution of above expression lead us to mgf of GWEXx distribution as

S, PTG AR T e
fH=ab > t(-1) i!p!P(j+1i)((1+)\)a) <i+1) Flp+1).

Js5,p=0

2.3. Order Statistics

Order statistics is widely use in both reliability and life testing. In reliability, X ;. is used to
model the lifetime of an (ni + 1)-out-of-n system which consists of n independent and identically
distributed components.

Theorem 5 If a random variable X follows the GWEx distribution than the expression of the order
statistics is given as

ab Yoz 0 s y I'n—i+1
fm(;,;):m(y Mafe (Ve ;)(1)kk!(n(_i+1_)k)

- {e—(1+z\)o¢x}a]b(i+k‘)—1. (14)
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Proof: Let X, Xo,...,X,, be a simple random sample from GWEX distribution (a, b, o, A) with
distribution and density functions given in (6) and (7) respectively. Let X(1.,) < X(g.) < -++ <
X (n:n) denote the order statistics obtained from this sample. Than The density function of X ;.,,y, 1 <
k < nis given as follows:

n! . )
in(1) = ————=[F(@)]" [l = F(z)]"~
fin®) = Gy F @ = P /@)
Using (6) and (7), the density of the order statistics of GWEx distribution is extracted as
ab _ = Fn—i+1)
. — 1—\ (I+MN)aza -1 k
fin(@) =g =y (1= Nade ' kzzo( T ——
[1 _ {e—(1+A)az}a]b(i+k)—l.
The first order statistic is given by X ;) = min(X1, Xo, ..., X,,) and the last order statistics is given

by X () = maz (X1, Xa,..., Xp).

3. Renyi Entropy
The amount of uncertainty in a random variable shows through entropy. The Reényi entropy has
broader application in the field of statistics, mathematics, computer science, and economics.

Theorem 6 If a random variable X follows the GWEXx distribution than the expression of Renyi
entropy is given as

1

(b—1)+1) |
+§:l (b — 1) + 1) aﬂ+Aﬂp+ﬁ)' ()

I-p)(z) :% <p{log(a) + log(b) + loga + log(1 + )}

Proof: We can obtain Reényi entropy as

Inlp) = 1= llogl (o)

where
p
I(p) = / (aba(l + N)e~ e+ Naz]y e_“(1+)‘)a“’]b_1> dx, p>0.

Using (7), we have

I(p) = a’b’a”(1 4+ /\)p/ (emali+Naz)p() _ gmall+Naz)p(b=1) gy
0
Therefore, the Ré’nyi entropy of the GWEX distribution is obtained as

I-p)(z) :1% <p{log(a) + log(b) + loga + log(1 + )}

(b—1)+1) |
+§:l (b — 1) + 1) aﬂ+Aﬂp+ﬁ)'
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4. Estimation
Let X1, Xo, ..., X,, be the random samples drawn from the GWEXx distribution with parameter
a,b,a, and A. Using the method of Maximum Likelihood (ML), likelihood function L is given by

L(a,b,a, A :x;) = Hf(gcz)

The log-likelihood [ of above expression is given by

I =nlog(a) + nlog(b) + nlog(a) + nlog(l + A) — a(l + N« Z x;
i=1
+(b-1) Z log (1 - e_“(Hk)wi) .
i=1

Differentiating [ w.r.t all parameters (a, b, o, & A) and equating them zero, we have

n e—a(1+)\)o¢x,;axi(1 +)\)
——ozl—i—)\ sz b—12 ——etan =0 (16)
n n
e a1+ N)ax; |
b+;10g<1 e )_0 (17
"L emaHNaTig (14 \)
,falJr/\ Zx -1 e =0 (18)
=1
n e_a(1+)‘)omla04$i _ (19)

1+)\ aale +(b-1) EW—
i—

The estimates are obtained by solving (16), (17), (18), and (19) numerically. The fisher information
matrix can be obtained by taking the minus expectation of the second derivatives of the estimates. The
variance and covariance of the maximum likelihood estimates can be obtained by taking the inverse

of fisher information matrix.

0%l 0% 0%l 0%l 0% 0%l
Vaa—@a ‘/bb—@7 Vaa—Wa V/\)\—W7 Vab—M7 Vaa—Ma
02 02 _ o, oM
A A7 JadA

Var = gaan V% = Bada DbOX
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The entries of the fisher information matrix are given follows

" [ e—2amia(l+N)ata’ (14X e—azia(l+N)aa® (1+X)

~ n
Vaa = — 2 (b—1) Z ( (1— efaxia(lJr/\))? + 1 — e—azia(l+A) ) ’

i=1
"L emami M) g (1 + N)

Vab = - 11— efaza(1+)\) )
n e—aTic 1+)\)x (1 + )\) 672axa(1+/\)ax742a(1 + )\)2
V 1 + )\ Z:CZ b o 1 Z{ — e—azia(l+X) o (1 _ e—a.’ri(x(l-&-)\))Z
=1
e‘““o‘(l“‘)axia(l + )2
- 1— efaa:-a(1+/\) }’

e~ AT 0‘(1""\)3; o e—awia(1+)\)am72a2(1 + )\)

G‘)‘ - ale b - 1 Z{ — e—amic (14X) (1 _ efawia/(1+)\))2

e"” (14N g2 (1 + )
o 1 — e—azia(l+X) }’

A " —az;a(l+N) ,(1 +>\)
e ax;
Vbo‘ = Z 1— e—ax,yoz(l—i-k) ’

=1
V n e—ama(l—‘—)\)al. o
bA = Z 1—e¢ —az;a(l+A) "’

=1

5. Simulation

In the part, we evaluate the performance of the MLEs of the GWEXx distribution through sim-
ulation study. For this purpose, we generate 1000 samples for different sizes. The examination of
estimates is done by the mean and mean square error (MSE) of the MLEs of the GWEXx distribution.
We use R programing for this study and obtained results are given in table 1. The results in table
1 clearly indicating that the values of the mean and MSE decreases as n increases which justifies
the fact that the method of maximum likelihood is suitable for the estimation of model parameters.
Further, we see that the MSE tend to be closest to the true values of the parameters. This fact sup-
ports that the asymptotic normal distribution provides an adequate approximation to the finite sample
distribution of the MLEs. The adjustment of bias can be used for the improvement of the normal
approximation. We use the small values of the parameters because the values of MSE are higher for
large values and the program could not generate suitable random data.

6. The Log-GWEx Regression Model

It is noted that lifetime models are affected by explanatory variable such as the cholesterol level,
blood pressure and many others. So, it is very much important to explain the relationship between
lifetime and independent variables. For this purpose, a new regression model is obtained from the log
exponentiated generalized weighted Exponential (LEGWE) distribution.

Theorem 7 If a random variable X follows the GWEx distribution than the log GWEX regression
model is given as

f(y) = aba(l + Nexp{—a(l + X)aexp (%)} [1 —exp{—a(l+ N)aezxp (%)}] " . (20)
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Table 1 Mean and MSE for the of the MLEs of the parameters of the EGWE model

Mean MSE
« a b A n & a b A & a b A
05 05 1 0.5 20 0.524 0.672 1,460 0.758 0.763 0.310 1,326 1,149
50 0.516 0.648 1.218 0.643 0.740 0.264 1.318 1.136
100 0.511 0.514 1.162 0.528 0.729 0.136 1.288 1.273
500 0.508 0.501 0.093 0.501 0.711 0.122 1.147 0.969
1 05 05 1 20  1.370 0.578 0428 1.046 0.572 0.259 0.807 0.562
50 1.153 0.561 0.459 1.058 0.550 0.241 0.791 0.533
100 1.142 0.554 0.467 1.007 0.519 0.227 0.667 0.529
500 1.122 0.502 0.508 1.002 0.502 0.016 0.009 0.515
1 1 1 1 20 1.068 1.240 1.341 1.179 0.169 0.245 0.036 0.214
50 1.044 1.171 1.292 1.136 0.148 0.122 0.548 0.208
100 1.036 1.063 1.165 1.117 0.137 0.095 0.983 0.201
500 1.009 1.009 1.002 1.003 0.018 0.027 0.427 0.200
1 0.5 1 3 20 1.028 1.028 1.068 3.514 0.012 0.215 0.554 0.119
50 1.016 1.016 1.054 3.129 0.086 0.109 0.213 0.102
100  1.008 1.008 1.032  3.095 0.004 0.045 0.109 0.097
500 0.967 0.967 1.016 3.001 0.012 0.003 0.015 0.082
1 1 2 400 20 0.877 1.126 2.374 4359 0.102 0.145 0.241 0.019
50  0.772 1.099 2.565 4.213 0.105 0.112 0.080 0.008
100 0.718 1.078 2.142 4.196 0.100 0.085 0.052 0.006
500 0.656 0.996 2.046 4.005 0.010 0.055 0.026  0.005

Proof: If X has the GWEx distribution given in (7), the random variable Y = o log(X,~y) defines
the density function of Log-GWEXx distribution, parameterized in term of v = exp(u). The density
function of Y using transformation is given as

F(y) = aba(l + Neaxp{—a(l + Naezp (y;”>} [1 — exp{—a(l + Naexp (i“) }} o

wherey € R, p € R, a > 0, b > 0, and A > 0. Where p is a location parameter, o is a scale and
a, b, « are shape parameters.

Corollary 2 The corresponding survival function is given by

Sy)=1- [1 — exp{—a(l + Naezp (t“) }} b,

and the hazard rate function can be obtained using f(y) = J; ((53 We represent the density in standard

y—
o

normal form using standard normal random variable 7 = Y= as

fly) = aba(l + Nexp{—a(l + Naexp(z)} [1 — exp{—a(l + )\)ae;vp(z)}]bfl .

7. Application

In this section, we study the application of the GWEXx distribution in real life. For this purpose,
we consider two data sets. We estimate the model parameters, LogLikelihood (LL), and Akaiki
Information criterion (AIC'). These results are compared with some well know existing model and
they are listed below in Table 2.
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Table 2 Fitted distributions and their abbreviations

Model Abbrevation Reference
Generalized Weighted Exponential GWEXx Proposed
Nadarajah Haghighi NH Nadarajah and Kotz (2006),
Exponential Ex Nadarajah and Kotz (2006),
Momemt Exponential MEx Dara and Ahmad (2012),
Inverse Weibull w Keller et al. (1982),
Weighted Exponential WEx Oguntunde et al. (2016),
Weighted Weibull WW Oguntunde et al. (2015),

7.1. Datal

First data set consist of the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant
pressure at the 90% stress level until all had failed, so we have complete data with the exact times of
failure by Andrews and Herzberg (2012).

Table 3 Estimated model parameters, L L, and AIC for Data |

Model Parameters LL AIC
a b « A

GWEx 0.3972 1.7094 0.6882 1.5710 122.244 250.487
NH 0.1948 2.0078 124.738  253.475
Ex 0.5103 127.114  256.229
MEx  0.6248 163.101  328.203
Iw 0.7321 154.278 310.556
WEx 03149 0.6210 127.114  258.229
WW  0.2987 0.3261 1.3256 122.525 251.049

Table 3 reports the values of model parameters, LL and AIC for first data set. It is observe from
table 3 that the proposed model has lowest values of LL and AIC which clearly justifies the fitness of
the GWEX distribution.

— GWEX

- GWEx

0 2 4 6 8 10 okt 4 0 2 4 6 B
00 02 04 06 08 10

Figure 3 Fitted density, probability plot, and empirical CDF of GWEXx distribution for Data I

Figure 3 demonstrates that the proposed model adequately explain the data through density plot,
probability plot, and empirical CDF.
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7.2. Datall
The second data set contains n = 128 measures on the remission times in months of bladder
cancer patients Lee and Wang (2003).

Table 4 Estimated model parameters, —2L L, and AIC for Data set II

Model Parameters LL AIC
a b « A
GWEx  0.0966 1.2347 0.4861 1.64579  410.75  827.508
NH 0.1233  0.9243 412.074  828.147
MEx  2.47892 457.826  959.687
W 0.6762 478.844  959.687
WW 0.0537 0.7714 1.0512 411.892 829.785

From Table 4, it is worth seen that the proposed model is explaining the data in good manner on
the lowest of LL and AIC.

008 — GWEX L

0 20 40 60 80 ooLe” 0 20 40 60 80
00 02 04 06 08 10

Figure 4 Fitted density, probability plot, and empirical CDF of GWEXx distribution for Data II
Figure 4 exhibits that GWEX distribution is better for the fitting of considered data.

8. Conclusions

In this article, a new generalized weighted exponential distribution is developed. Several impor-
tant mathematical characteristics of the new model are derived and discussed. Entropy measure is
also provided. Estimation of the model parameters is done through method of maximum likelihood.
The assessment of the model parameters are testified with the help of simulation study. We provide
the log-GWEXx regression model. The applicability of the proposed model is justified by mean of two
real data sets. The discussion ends with some concluding remarks.
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