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Abstract 

The zero-inflated Poisson distribution is the most widely applied model for count data with 

excessive zeros. In this paper, confidence intervals for the Poisson parameter are derived by using 

score statistics. The resulting intervals are compared to the Wald confidence interval (WCI), which 

stems from properties of the asymptotic normal distribution. For interval constructions, a Bernoulli 

parameter, known as a nuisance parameter, is eliminated by the profile likelihood approach. The Wald-

type intervals can be formulated explicitly, while the score intervals have no closed forms. 

Furthermore, the observed and expected Fisher information matrices are shown to be the same. Using 

a simulation study, the confidence intervals are compared in many situations where the Poisson and 

Bernoulli parameters and sample sizes are varied. The coverage probability (CP), average length, and 

coverage per unit length (CPUL) are obtained from Monte Carlo methods. The results reveal that the 

score confidence intervals are superior to the WCIs in an aspect of CP with small sample sizes, but all 

of these intervals are comparable in terms of CPUL. 

______________________________ 
Keywords: Score interval, Wald interval, profile likelihood, Monte Carlo simulations. 

 

1. Introduction 

The Poisson random variable is a discrete variable with a probability mass function (p.m.f.) that 

is defined as  ; !,xf x e x   where 0,1, 2, ...x   and 0.   The p.m.f. expresses the 

probability of the number of interesting events occurring in a certain period or space, presuming that 

these events occur at a certain rate   and independently of the time (Cameron and Trivedi 2013). The 

Poisson random variable can be found in many fields related to counting, such as the number of 

mutations on a strand of DNA per unit length (Balin and Cascalho 2010), the number of auto insurance 

claims occurring in a given period of time (David and Jemna 2015), and the total number of calls made 

in a given time interval (Ibrahim et al. 2016). The Poisson distribution can also be used to approximate 

the binomial distribution when the number of observations is large and the probability of the event of 

interest is small. Thus, it can be seen that this distribution is widely used for counting data that is 

commonly found in real-life situations. 
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As is well-known, the expected value and variance of a Poisson distribution are equal, which is 

described as “equi-dispersed”. The data that is Poisson-like but with a more excessive number of zeros 

will lack the equidispersion property as its variance exceeds the expected value. Thus, this reduces the 

usefulness of the Poisson distribution. In this case, the zero-inflated Poisson (ZIP) distribution, which 

is a modification of the regular Poisson distribution, becomes beneficial. Ridout et al. (1998) pointed 

out that it is, in practice, possible to have fewer zero counts than expected, but this is a much less 

common occurrence. Note that not every data set with many zeros will lead to the ZIP distribution, as 

the regular Poisson distribution with an exceptionally low value of mean can also produce many zeros. 

Regarding such a case, Tlhaloganyang and Sakia (2020) showed that the standard Poisson process 

performed better than the ZIP distribution; so conducting the overdispersion testing before selecting 

the fitted distribution is suggested.  

The ZIP distribution is considered as a convex combination of two subpopulations: a degenerating 

distribution at zero and a regular Poisson distribution. Its p.m.f. is defined as (1). 
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where ( )AI x  is an indicator function whose value equals 1 if x A  and 0 otherwise. The mean and 

variance of the distribution with the p.m.f. in (1) are (1 )   and    1 1 ,     respectively 

(Tlhaloganyang and Sakia 2020). Suppose that 1, ..., nX X  are a random sample of size n  from the 

ZIP, 0N  denotes the number of zeros, which is also a random variable, and 0( )E N  is equal to 

 1 .n e        The mixing parameter   is usually unknown and is referred to as the inflation 

parameter at zero, giving the ZIP model more flexibility than the regular Poisson distribution 

(Unhapipat 2018). Many publications have employed the ZIP model for fitting data with many zeros. 

Xu et al. (2014) showed that the ZIP model gave a higher accuracy than the Poisson model for urinary 

tract infection (UTI) data. Beckett et al. (2014) modeled data regarding several natural calamities. 

Sarul and Sahin (2015) applied the ZIP distribution to claim frequencies for the automobile portfolios 

of a Turkish insurance company that occurred between 2012 and 2014, and the ZIP model was found 

to be superior to the standard Poisson model. 

Most papers have focused on the inference in regression models, but some studies were devoted 

to parameter estimations of the ZIP distribution. Lambert (1992) demonstrated the log-likelihood 

function of the ZIP regression and described the steps of the EM algorithm to estimate regression 

coefficients. Lee et al. (2001) added the individual exposure variable to the ZIP distribution and 

derived Fisher information (FI). DeGroot and Schervish (2018) mentioned only one kind of Fisher 

information. To distinguish it from the other kind, ( , )I    in this paper is called observed FI while 

the other is called expected FI. Beckett et al. (2014) used the method of moment (MME) to find the 

estimators of   and : 2ˆ 1MM X S X     and 2 2 2ˆ ( ) ,MM S X X S X            where 
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S X X n


    Defining 0n (the value of random variable 0 )N  as the 

number of ix ’s taking the value 0, the maximum likelihood estimators satisfy the following system 

of equations 

 
ˆ

0
ˆ ˆ1 ML

ML ML e n n      and   ˆˆ1 ML ML x                                             (2) 
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(Waguespack et al. 2020). Accordingly, there are no explicit forms of ˆ
ML  and ˆ .ML  Vandenbroek 

(1995) derived the score test statistic to conclude whether the number of zeros is too large for a 

standard Poisson distribution to fit the data, i.e., 0 : 0.H    Xie et al. (2001) discussed six test statistics 

for testing whether a parameter   is equal to zero, and one of these is the score test proposed by 

Vandenbroek (1995). Similarly, Numna (2009) developed a Wald statistic for testing .  Paneru et al. 

(2018) applied the bootstrap method to compute the confidence intervals of a zero-inflated population 

mean by giving an example of normal distribution. Schwartz and Giles (2016) provided the bias-

adjusted maximum likelihood estimators for both parameters of ZIP in the large-sample situations 

where the smallest sample is n = 50. The proposed estimators were compared to the parametric 

bootstrap bias-adjusted estimators. Schwartz and Giles (2016) also commented that when the sample 

size is equal to 10, some estimates are negative. Unhapipat et al. (2018) derived the predictive 

distributions of the ZIP distribution based on the generalized and Jeffrey’s noninformative priors. 

Wagh and Kamalja (2018) introduced a new estimator, referred to as a probability estimator (PE) of 

the inflation parameter of the ZIP distribution, i.e., parameter   based on a moment estimator (ME) 

of the mean parameter, and compared its performance with that of ME and the maximum likelihood 

estimator (MLE) through a simulation study. Sakthivel and Rajitha (2018) proposed the probability-

based inflation estimator (PBIE) for parameter ,  and the performance of the proposed estimator was 

assessed by means of a simulation approach. Through the simulation study, Srisuradetchai and 

Junnumtuam (2020) studied the Wald confidence intervals for parameter   of the ZIP and zero-

altered Poisson (ZAP) models and investigated the effects of the model choices between ZIP and ZAP 

with three different link functions: logit, probit, and complementary loglog. 

The other parameter of ZIP distribution is ,  but it has rarely been studied in the literature. It is 

known that the maximum likelihood is commonly used to find the point estimators for   and .  

However, interval estimations for   have not been identified. In this paper, the Wald confidence 

intervals using both observed and expected Fisher information matrices (FIMs) will be calculated. 

Furthermore, as   is assumed to be unknown, the profile likelihood approach is used to eliminate this 

nuisance parameter, and therefore, the score and Wald confidence intervals are also constructed from 

the profile likelihood. 

 

2. Wald intervals 

From the frequentist viewpoint, a 100(1 )%  confidence interval for   will satisfy the 

following property 

    1 ,L n U nP T T                                                         (3) 

where 1   is a confidence coefficient, the statistics ( )L nT  and ( )U nT  are the limits of the 

confidence interval, and ( ) ( ).L n U nT T   The interval in (3) is a random interval, and when an 

observed value, obs ,t  is substituted for ,nT  the resulting interval is no longer a random variable (Rohde 

2014). 

We will start with the log likelihood function in which  1 2, , , nX X X X   is a random sample 

of size n  from (1). This will have a form of 

 

       0 0 0
1, 0 1, 0

log , ;

log 1 log 1 log log !,
i i
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i i
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n e n n n n x x

 
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   


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     (4) 
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where 0 {0}
1

( )
n

i
i

n I x


   or the number of zeros, and  0 {1,2,...}
1

( )
n

i
i

n n I x


    or the number of ix

having a value that is a positive integer. The plot of the relative log likelihood, 

   log , ; max log , ; ,L x L x     is illustrated in Figure 1. It shows that the shapes of the likelihood 

contour can be noticeably different, depending upon the parameters. In the right figure, the contour 

shape largely differs from an ellipse, so it can severely affect the asymptotic normality assumption of 

an MLE in situations where a sample size is small. This can cause the Wald confidence interval (WCI) 

to have poor performance. 

 

         
Figure 1 Contour plots of the relative likelihood functions of ( , )   based on a sample of size 

100 from (left) ZIP( 5, 0.5)    and (right) ZIP( 1, 0.9).    

 

2.1. Standard Wald confidence interval 

A key component of Wald intervals is Fisher information (FI), which will be described here. 

Given 1 2( , ,..., ),nx x x x  the observed FIM, ( , ),I    is a matrix with the element that is the negative 

second derivative of the likelihood. For the ZIP, ( , )I    is already known from Numna (2009) that 
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            (5) 

where 11 12,I I  and 22I  are calculated by taking the second derivative of the log likelihood function

   
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

 respectively. In our paper, the 

expected FIM is derived by taking the expectation to matrix ( , ),I    (5), resulting in 
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It is not difficult to show that ˆ ˆ( , )ML MLI    and ˆ ˆ( , )ML MLJ    have the same value. Firstly, consider 

the differences between 
ijI  and ,ijJ  , 1,2i j   in the following 

 

 
 

ˆ

1 0
11 11 2 2
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where  
ˆ

ˆ ˆ1 .ML

ML MLP e      
 

 From (2), it arrives at  
ˆ

0
ˆ1 ML

MLe n n nx     and 0 .P n n

Substitute them into ij ijI J  and they will all be zeros. Note that ( , )I    and ( , )J    are different, 

but the estimated FIMs are the same, i.e. ˆ ˆˆ ˆ( , ) ( , ).ML ML ML MLI J     

For testing the hypothesis 0 0:H    versus 1 0: ,H    the Wald statistic is the squared 

difference of 0
ˆ ,ML   which is weighed by the curvature of the log-likelihood function. It has the 

form of  
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The statistic W  follows an asymptotic standard normal distribution. The value of ˆvar( )ML  

will be estimated by 11 ˆ ˆ( , ),ML MLJ    which is the element in the first row and the first column of the 

inverse matrix of ˆ ˆ( , ).ML MLJ    Because  11 2
22 11 22 12( , ) ,J J J J J     consider 
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              (8) 

Subtracting 2
12J  from (8), the following is obtained.  
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Consequently, the (1 )100%  Wald confidence interval for   can be simplified as follows 
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where ˆ
ML  and ˆ

ML  are the maximum likelihood estimators. 

 

2.2. Wald confidence intervals using profile likelihood 

The profile likelihood functions behave like “ordinary” likelihoods in that they can be expanded 

in quadratic terms, but the profile likelihoods have only the parameters of interest because the nuisance 

parameters have been profiled out (Murphy and Van Der Vaart 2000). To find the profile likelihood 

function of ,  let parameter   be a fixed value and first find the   that maximizes  log , ; ,L x   

(4). The resulting   is 0 ,
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  and substitute   in (4) with P  to find the log profile 

likelihood as the following: 
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where 
1, 0

log !.
i

n

i
i x

c x
 

    With the same data that produced Figure 1, the corresponding relative 

profile likelihood functions are illustrated in Figure 2. If the shape of the contour likelihood does not 

appear to be a circle or an ellipse, the profile likelihood will present an asymmetrical curve (right panel 

in Figure 2). 

 

            
Figure 2 Relative profile likelihood functions of   given that 1 100( ,..., )x x x  is sampled from (left) 

ZIP( 5, 0.5)    and (right) ZIP( 1, 0.9).    
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The   that maximizes (11) can be acquired by solving the equation  log , ; 0P PL x 






  as 

the following 
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                                      (12) 

From the above equations, it can be further simplified and leads to a profile maximum likelihood 

estimator (PMLE) of   or ˆ ,P  which can be obtained from 

   ˆ

0
1

ˆ 1 0.P

n

P i
i

n n x e  



                                              (13)  

The root of this nonlinear equation, ˆ ,P can simply be solved by R program, using the uniroot 

function, based on the algorithm proposed by Brent (2013). In addition, it is observed that Equations 

(13) and (2) are equivalent, and thus ˆ ˆ .P ML   This leads to the fact that ˆ ˆ( , ; )ML MLL x  

ˆ( , ; )P PL x   as well as the corresponding FIs. Prior to arriving at a significant conclusion, it is 

necessary to identify both observed and expected FIs for future use. 

Consider the observed FI calculated from the profile likelihood 
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Accordingly, a (1 )100%  Wald confidence interval of   using the profile likelihood and observed 

FI will be 
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The expectation of  PI   in (13) will give the expected FI: 
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Substitute   in (15) with 0 ,P

n ne

n ne














  and ( )PJ   will be simplified to 
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Hence, a (1 )100%  Wald confidence interval using the profile likelihood and expected FI will 

be 
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Furthermore, it can be shown that the estimates of observed and expected FI are the same. 

Consider the following: 

      
 

2ˆ ˆ ˆ2
0 01

2
ˆ

ˆ ˆ ˆ1 1
ˆ ˆ( ) ( )

ˆ 1

P P P

P

n

i P P Pi

P P P P

P

e x n n e n n e e
I J

e

  



  
 



  





      
 

 
 


 

 
     

 
   

 

2ˆ ˆ ˆ

0 01 1

2 ˆ2ˆ

ˆ1 1 1
.

ˆˆ 11

P P P

P
P

n n

i i Pi i

PP

e x n n e e x n n

ee

  



 



  

 



      
 

 
 

 
      (19) 

Because the nominator    
ˆ

01
ˆ1 P

n

i Pi
e x n n 


    in (19) equals (13), the observed and 

expected FI values which are evaluated at the MLE are the same, i.e. ˆ ˆ( ) ( ) 0.P P P PI J    This 

implies that the Wald confidence intervals using ( )PI   and ( )PJ   have the same upper and lower 

limits. It should be emphasized that ( )PI   and ( )PJ   are not the same function, but ˆ( )P PI   equals 

ˆ( ).P PJ   

In general, the estimated values of 1 ˆ( )PJ   in (18) and 11 ˆ ˆ( , )ML MLJ    in (10) are not necessarily 

equal; however, in this work, the estimated values are found to be the same. This leads to the fact that 

the following four values are equal: 1 1ˆ ˆ( ), ( ),P PJ I   11 ˆ ˆ( , ),ML MLJ   11 ˆ ˆ( , ).ML MLI   Consequently, 

WCIs using either the joint likelihood or profile likelihood are equivalent. However, the score intervals 

to be discussed in the next section do not employ the estimate of ( )J   or ( )I   like the WCIs. As a 

result, Wald and score intervals are different in both mathematical and simulation results.  

 

3.    Score Confidence Intervals Using Profile Likelihood 

The score function of , ( ),PS   is the first derivative of the log profile likelihood function or 

(11). Suppose the object of interest is the null hypothesis 0 0:H    with the two-sided alternative 

0: ,aH    and if the null hypothesis is true, in large samples the score test will follow the reference 

2
1  distribution. Let  1 2, , ..., nX X X X  be a random sample from ZIP( , ),   if the profile 

likelihood is employed, the score statistic will be 
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From (12), it can be further simplified as 
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From ( ),PI   (14), the score statistic defined in (20) will become 
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To construct the score confidence intervals using the profile and observed FI, from (21), inequality 

    1 / 2P PS I z     can be further simplified into the following 

                       
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these terms are free of parameter .  In this paper, this interval is named “SCI”. Likewise, if using 

 PJ   instead of   ,PI   the score statistic, or ( ) ( ) ,P PS J   will be 

 

 

   

  
 

     
0 01 1 1

2
0 0 0

1
.

1 1

n n n

i i iP i i i

P

x e n n n n x e xS

J n n e e e n n n n e

 

   

 

    

 

  

   

      
 

       

  
            (23) 

Additionally, the score confidence interval using the profile and expected FI is a set of   that 

achieves 
1 / 2( ) ( ) ,P PS J z     or is the root of the following equation 
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1 2 3 41 1 0,D e D e D e D                         (24) 
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i ii i
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           The 

interval corresponding to (24) is referred to as “SCJ”. 

 

4.    Simulation Study 

For the simulations, count data are generated from the R function “rzipois”, which is in the 

VGAM package. The characteristics of the data include the probability of zero ( = 0.1, 0.3, 0.5, 0.7 

and 0.9), the Poisson parameters ( =1, 3, 5, 7 and 9), and the sample sizes (n  = 10, 30, 60, 100, 200 

and 500). For fixed   and ,n  the proportion of zeros in data depends only on parameter .  As   

increases, the proportion of zeros, 0 0( ) (1 ) ,p E N n e          increases. It is also observed 

that 0 (1 )p e         is always less than 0; therefore, as the value of   increases, the proportion 

of zeros will mathematically decrease.  

The coverage probability (CP), average length (AL), and coverage per unit length (CPUL) of the 

confidence intervals (CIs) are estimated by Monte Carlo simulations with 10,000 repetitions. Figures 

3-5 illustrate CPs, ALs, and CPULs, respectively. The results corresponding to   = 7 and 9 are not 

presented because they are nearly identical to those with   = 5. Examination of the results reveals 

that the characteristics of the data greatly impact all criteria: CP, AL, and CPUL. 
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In Figure 3, the performance is examined through the CP and it is found that when   = 3 and 5, 

the WCI performs as well as the SCI and SCJ for most sample sizes (n  = 30, 60, 100, 200 and 500); 

the CPs are all close to 0.95. When   has a low value, such as 1, and the sample size is small, the 

WCI is inferior to the other two intervals. Also, for a small number of ,n  when   increases, the CP 

of WCIs tends to decrease whereas it slightly increases for SCJs. 

The ALs are investigated in Figure 4. From all three intervals, when the sample size increases 

or/and   decreases, the range of ALs will decrease. For instance, at   = 3 and n  = 10, the AL 

increases from 2.5 to 6.8; at   = 3 and n  = 200, AL rises from 0.55 to 1.67. In addition, if n  and   

are fixed, the larger   is, the higher AL values are in any intervals. For example, at n  = 30 and   = 

0.5, the ALs of SCIs for   = 1, 3 and 5 are approximately 3, 3.5, and 4.2, respectively. Generally, 

SCJs tend to have the highest AL followed by SCIs and WCIs for a combination of ( , , ).n   

Unhapipat et al. (2016) suggested adopting a single criterion incorporating the AL and CP. This 

is called a coverage per unit length (CPUL) which is defined as CP AL. It is useful for comparisons 

of CIs with different CPs and ALs but the same sample size. The CPULs of three confidence intervals 

are shown in Figure 5. Provided that values of ,   and n  are fixed, all intervals are noticeably 

indifferent. Nevertheless, the parameters of the ZIP still affect the CPUL such that as   increases 

and/or   increases, the CPUL will decrease. 

 

5.    Real data Analysis 

To demonstrate the calculation of three confidence intervals, the yearly numbers of meteorite falls 

in the United States are presented from 1995 to 2020, and the dataset is shown in Figure 6 (left). A 

meteorite fall is defined as a collected meteorite after it was observed by people or automated devices. 

The other type of meteorites is called “find” and it is not included to our analysis. The data used in 

this paper is obtained from The Meteoritical Bulletin Database (MBD), available online at 

http://www.lpi.usra.edu/meteor/.  

The maximum likelihood estimates of   and   are 1.48 and 0.35, respectively, and estimated 

and empirical probabilities are shown in Figure 6 (right). The p-values for the goodness-of-fit test 

using  ˆ ˆZIP 1.48, 0.35ML ML    and  ˆPoisson 0.96ML  are 0.5704 and 0.1395, respectively. 

Thus, the ZIP model is far better than the Poisson model for this dataset. (18), (22), and (24) yield 

intervals of (0.7072, 2.2556) for WCI, (0.6987, 2.2726) for SCI, and (0.8913, 2.4845) for SCJ, 

respectively. The corresponding interval lengths are 1.548, 1.574, and 1.593; this agrees with our 

simulation study that SCJ has the highest AL followed by SCI and WCI for small values of n  and .

The observed sample size is 26, ˆ
ML  is 0.35, and ˆ

ML  is 1.48. Our closest setting has a sample size of 

30,   of 0.3, and  of 1 or  of 3. In Figure 3, simulations suggest that CPs for all three methods are 

nearly equal at a value of 0.95.  
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Figure 3 Coverage probabilities of three types of intervals obtained from the samples under
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Figure 4 Average length of three types of intervals obtained from the samples under
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Figure 5 Coverage per unit length of three types of intervals obtained from the samples under

 ZIP , , 0.1,0.3,0.5,0.7,0.9, and 1,3,5.      
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Figure 6 Frequency distribution of the number of meteorite falls (left) and fitted and observed 

proportions of meteorite falls (right). 

 

6.    Conclusions 

In this paper, three interval estimations were derived for the Poisson parameter in a zero–inflated 

Poisson distribution, in which parameter   is unknown. The formulae of WCIs using either the joint 

likelihood or profile likelihood were mathematically derived and proved to be equivalent because
1 1 11 11ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( , ) ( , ).P P ML ML ML MLJ I J I          Also, the formulae of two score intervals using 

profile likelihood were derived in terms of inequalities. 

The comprehensive simulation study was conducted. Three criteria involving the coverage 

probability and average length of confidence intervals estimated by the Monte Carlo method were to 

compare their performances. In conclusion, two score intervals employing either observed or expected 

Fisher information were found to be comparable but they both outperformed the Wald confidence 

interval, especially in a small sample size with a low value of   and a high value of ;  however, a 

shorter average length is a good compensation for WCIs. Overall, if   is low, the score intervals are 

preferable for all  ’s, and if   is high (not less than 5), all confidence intervals are equally advisable. 
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