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Abstract

The generalization of the probability distribution has gained great attention in statistical field. In
this study, a new Kumaraswamy Lehmann-2 power function distribution (KL2PFD) is proposed. We
suggest a new generator that will modify the power function distribution called Kumaraswamy
Lehmann-2 generator (KL2-G). The various properties of the new distribution have been discussed in
detail such as moments, vitality function, conditional moments and order statistics etc. We have also
characterized the KL2PFD based on, conditional moments (Right and Left Truncated mean) and
doubly truncated mean. The shape of the new distribution has been studied for applied sciences. The
aim of the study is to increase the application of the Power function distribution. This distribution can
be used for approximately symmetric data (normal data), positive and negative skewed data. For this,
we have studied the real life application of the distribution by using four different data sets. After
analyzing data, we conclude that the proposed model KL2PFD perform better in all the data sets while
compared to different competitor models. It is hoped that the findings of this paper will be useful for
researchers in different field of applied sciences.

Keywords: Characterization of truncated distribution, entropies, Kumaraswamy Lehmann-2 power function
distribution, Lehmann alternatives, power function distribution.

1. Introduction

The researchers in engineering sciences mostly study the reliability of different components by
taking the help from probability distributions that are simple in mathematical expression instead of
using mathematically complex probability distributions. Dallas (1976) introduced the power function
as the inverse of Pareto distribution. Meniconi and Barry (1996) showed that power function
distribution is better to fit for failure data over exponential, lognormal and Weibull because it provides
a better fit.

More studies about the application of this distribution and its applications can be found in
Ahsanullah (2013), Dorp et al. (2002) and Chang (2007). For modeling heterogeneous population,
Saleem et al. (2010) talked about the two component mixture of one-parameter power function
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distribution. Estimation of the parameters of the two-parameter power function distribution was
studied by Zaka and Akhter (2013) through the methods of least squares, relative least squares and
ridge regression. According to its applicability in real life situations for modeling survival data, Tahir
et al. (2014) proposed the modification of the power function distribution as Weibull-power function
distribution. By using the Bayesian inference, Hanif, et al. (2015) estimated the parameter of the one-
parameter power function distribution. Shahzad and Asghar (2016) introduced the transmuted power
function distribution by following Shaw and Buckley (2009). Okorie et al. (2017) proposed the
modification of the power function distribution by using Marshall and Olkin (1997) technique. Haq et
al. (2018) introduced the McDonald power function distribution. Jabeen and Zaka (2019) discussed
the parameters estimation for continuous uniform distribution using modified percentile estimators.
Zaka et al. (2020) proposed the reflected and exponentiated class of power function distribution. Zaka
et al. (2020) introduced the beta Lehmann 2 power function distribution.
The cumulative distribution function (cdf) and probability density function (pdf) of the power
function distribution is given below
4
X
(3]

yx!
g(x)= R )
Lehmann alternatives were introduced by Lehmann (1953) in the two-sample hypothesis testing
context and are useful in survival analysis. The cumulative density function for Lehmann 2

relationship is given as

[
F(x)=1- {l - G(x)} - (Lehmann 2 relationship)
Cordeiro et al. (2011) introduced the Kumaraswamy generator. Then, the mixture of these two
techniques is known as Kumaraswamy Lehmann-2 generator (KL2-G). The cdf and pdf of the Kw-
Leh2-generator are given as

F(x):1—{1—{1—{1—G(x)}9}a}¢, 3)

and
1 ¢-1

f(x)= a¢9{1—{1—G(x)}9}a 1-G(x)}"" {l—{l—{l—G(x)}H}a} (%), )

where G(x) is the cdfand g(x) is the pdf of any probability distribution.

In this paper, we suggest a new distribution that will generalize the power function distribution
(PFD) by using the above mentioned technique. We have derived some of the main structural
properties of this distribution. The application of this distribution is illustrated by an application to
real life data sets. It is hoped that the findings of this study will be useful for researchers in different
field of applied sciences.

1.1. Model identification for KL2PFD
The pdf and cdf of power function distribution are given as follows:

g(x):y;—yl;0<x<ﬂ,y>0, (5)

7
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and G(x) = [%J s (6)

where y and f are the shape and scale parameters. Following the generator (3), the KL2PFD is
obtained by putting (5) and (6) in (4) and simplifying, we get

a-1 0-1 AR -
_apoli-dio[ 2] 1- ijy 1-41- 1—[1j 0 :
f(x)=ap { [ﬁ]} { [,5 } { ; Va <x<p

(7

<

and associated cdf is obtained by putting (5) and (6) in (3) as

a

F(x)=1-{1- 1—{1—(%)1}9 : (®)

We may observe o, f and y as the shape and f as scale parameters.
1.2. Expansion of cdf
Considered the expansion of power series for any real non-integer as follows

(1-z)" = z%. )

We may see that for |z| <1, the expression in (9) may be used. The cdf of the distribution may be

written as by using the binomial expansion as

where

|- 6]

] (=Y I ¢_ 2 2& (1) (g1 (a)j+1)T(6i+1) x 7t
ak {1 (ﬂj} };;;F(¢+lj)j!1“(aj+li)i!l“(@i+1k)k![ﬁj |

(-1)7" T (¢+1)0(aj +1)I(6i+1)

8
8

and
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0

Also, f(x) = ;}:r,hh1 (x) where
ooz (<) agy (1+1)T ()T (¢)T (i +1)T(0(j+k+1))

=222

DTS T (a— /)T (¢—i)T(ai+1-k)T(0(j+k+1)) jlktit(1+1)

and
Y (1+1) x/

By (x ) = ﬂy(m)

By definition, the survival function is §(x)=1-F(x). We know that F(x)=1 —iwka (x).
k=0

So, S (x) = ZWk H, (x) By definition, the hazard rate function (HRF) of probability distribution is
k=0

Zzotlhm (x)

. That may be generated for KL2PFD as H (x) ==

$(x) Z::oWka (x)

givenas H(x)=

1.3. Shapes of KL2PFD
The KL2PFD can be approximately normal curve, whereas the HRF can be bathtub,
monotonically increasing and decreasing shapes. (See Figures 1-3).
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Figure 1 Plots of PDF of KL2PFD

2. Some Basic Properties of KL2PFD
2.1. Moments about zero
The "™ moments about zero of any distribution is described below

uo= Joﬂx’f(x) dx.
By solving we get
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where

Figure 2 Plots of cdf of KL2PFD
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Figure 3 Plots of HRF of KL2PFD

2.2. Moment generating functions
Apart from generating functions, the moment generating function can be utilized to describe the

characteristic of the random variable. The moment generating function may be defined as the linear

. . . .. . B e
combination of exponential generalized univariate distributions as M, (1) = joet Dt (x).
1=0
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If X follows KL2PFD, the moment generating function may be derived as

¢a a,a,f’
MO(I):Z’,| kl >
=0T 4+ —+1
a

S (4= J) : ECE o A PR "‘Ol"[i-i-l—kjk!
y 0

2.3. Random number generator
The random number may be obtained from

]

After simplifying, we get

where R =F(x).

3. Inverse Moments

» . Y - .
By definition Inverse moments may be obtained as u', = jox D 4k, (x)dx. We get inverse
1=0

moments for KL2PFD as
. Paaaf”

TR
j+—+1
o

o (T T ) (—1)"r(i+1j
Wt =3 Z%fj] . Zm

3.1. Mean residual function
The mean residual function tells us the time to be expected for survival of an individual provided

=S (x)

function distribution (KL2PFD), we get mean residual function as

that one already has reached this time point e(x) = J dt. For Kumaraswamy Lehmann-2 power
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aj ai ak ﬂykﬂ _x;/k+1
(x)= B 7k +1

e\x

> wH,(x)
= (-1) T (¢+1) = (-1) (a]+l = (-1)'T(6i+1)
h =y —a T 7
whete 4 Z1“(¢+1 7V “ Zr(aj+l 1)1' ;F(91+1 k)k‘
3.2. Vitality function
The vitality function is obtained for KL2PFD as V I f . That may be
obtained as
o [j+§+1j
x
Poa,a.a,|1- 1—{1 {1 ﬁj }}
]+k+1j
a

3.3. Information function
. . L. B s . . .
The information function is given as IF = jo { f (x)} dx. For KL2PFD the information function

is given as

7(s-1) J
IF = B
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4. Reverse Hazard Function

The reverse hazard function may be written as r(x)= /(%) that may be simplify for KL2PFD

F(x)
S ()
I_Zk:owk P (x)

4.1. Mills ratio

as F(X)Z

S(x) — Z: owk ( )
SO Xt ()

We may write mills ratio as m (x) =

4.2. Order statistics
The pdf of the order statistic may be written as

fin (%) ZW(F(?C))I {1=F(x)}" f(x).

For KL2PFD, we may write the order statistics as

)= S ) - S 0] (S0,

1=0

4.3. Shanon entropy and Renyi entropy
The Shanon entropy may be defined as H (x)=—E {1og f (x)},

- a'a'aﬂ—zy+a—aa._—1+
a¢97]+ ' l){/ | ky("“)} = (p/{(a(jﬂ))z}
(9—1)a(pajaiak{ -1 ))2}+(1_¢)

(6’(j+k+l

H(x)=- log[

and Renyi entropy H, (x)= li log('[:(f(x))’)dx,
e,
Hr(x)= )
R .
a

where a ;=
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o

"ir[(’"l)(y"l)nk]k! ZI_OW'

5. Incomplete Moments

The incomplete moments are given as Hi(a oy, M);r( p):‘.‘:x’ f (x)dx. By simplifying for

T
¢a}a,akﬂ’{ —{I‘EZ] } ]

'uX‘(ﬂ’:ﬁJﬁ,”);r (p) = k B
Jj+—+1
a

KL2PFD, we get

. (1Y ()T L i} (—1)kr L

5.1. Conditional moments

The conditional moments may be obtained as E [X "X > t] Gl )j Zt B, (x)dx. The

conditional moments for KL2PFD may be obtained by using above expression as

o)
ba a,a, 1{1{1(/’3] } ]

.k
j+—+1
a

yre ) m(_l)kr(.ﬂj

5.2. Lorenz and Bonferroni curve
The Lorenz and Bonferroni curve may be obtained as
1

, 9 a[j+§+l)
da,a,a, B {1{1@ } ]
L p) = %jszw:t,hm (x) dx =—

H j+£+1
a
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.k
Jj+—+1
o

- ~1)T| —+1 1 L
R L S R
=0 J) I i=0 r[ +1- l]l' OF[ +1- kjk'
1% 0
6. Characterization of KL2PFD

Let X be KL2PF variable with probability density function

sl G I T e

and let F (x) be the survival function respectively. Then, the random variable X has KL2PFD if and

only if
¢

e b1
- % (1) 1{1{1&}” +a./;;-kak {lt:;kk}

& (1) T(g+1) i(—) I(aj+1)

»,:OF(¢+1—j)j‘ = F(aj+l l)l'

where V(X |x < t) is conditional variance a; =

and a, :i(—l)k T (6i+1)

= T(Oi+1-k)k!

Proof: Necessary part:

aereat-gateesf 3| | 16 6] 5
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Y
Al
¢ B B" \r+rk

i}) (¢+1) i):( 1) (a]+1) i_ I'(6i+1)

(p+1- J)J' T(aj+1- z)z' ST (0i+1-k)k!

Therefore, E (X |x < t) becomes

E(Xf|x3t)=$ (-1)¢ 1{1{1(%}7}7 +ra-’;;kak{::y;k} .

and

J

Put r =1,

Put r=2,

el T 52
¢ - (10)
e st
Also, sufficient part _
i)t j;dex_{ﬁt) j;xdx}z o] 2 dx_{t_ o d}
(11)

Equate (10) and (11), we get



"
Also, a,a,a, 5
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7. Comparison between Maximum Likelihood and Percentile Estimation Methods of the
Parameters of KL2PFD
7.1. Maximum likelihood method (MLM)

Let x,,...,x, be a random sample of size n from the KL2PFD. The log-likelihood function for

the KL2PFD is given by
L(7aﬂ,a,¢,9):nln(a2?7] (a- )Zln 1- [1 ( ] J +(9—l)ln£l—(%j ]
The score vector are

U, (7. foct.$.6) = aﬂ(%ﬁwﬁé’) U, (7.f.0.4.0)= ay(%ﬂwﬁﬁ)

S |~><

+(7/—1)1nxi +(¢—l)ln 1- 1—[1—(

= | =

U, (1. .:$.0) ==L (7. f.0.4.0). U¢(7,ﬂ,a,¢,9)=%L(7,ﬁ,a,¢ﬁ),

U, (7.food. 0)=%L(7,ﬂ 0.4.6).

The parameters of KL2PFD can be obtained by solving the above equations resulting from setting
the five partial derivatives of L(y,8,a,4,6) equals to zero.

7.2. Estimation of KL2PFD parameters from common percentiles

Dubey (1967) proposed a percentile estimator of the shape parameter, based on any two sample
percentiles. After Marks (2005) also discussed it, in which he estimated the parameters of Weibull
distribution using percentiles. Marks (2005) called it common percentile method.

Let x,,...,x, be a random sample of size n drawn from the probability density function of

KL2PFD. The cumulative distribution function of a KL2PFD with shape and scale parameters y and

f, respectively is

By solving, we get

x= _1—{1—(1—(1%)%)““}WT, (12)

where R =F(x). Let P, and P, are the 75" and 25" percentiles, therefore (12) becomes

1/y

,B_l—{1—(1—(0.75)1/"’)”&}1/1 , (13)

B
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by =ﬂ{1—{1—(1—(0-25)w)l/a}mr. (14)

Solving the above equations, we get

i7={1—{1—(1—(0.75)1/0))“&}”1 AR
[PJ {1—{1—(1—(0.25)””’)”&}”1’ ' [ J

T

?ln {1—{1—(1—(0.25)l/¢)w}1/1 d A= (Bs) _
h{gj 1—{1—(1—(0.75)“’)W}mr
generally
) {1—{1—(1—(}1)“”’) } }

/0

P

{1—{1—(1—@)%)”“}1
y= ,and g = H —,
A e

where H is the maximum percentage, L is the minimum percentage and P is the percentile.
A simulation study is used in order to compare the performance of the proposed estimation
methods. We carry out this comparison taking the samples of sizes as » =40 and 150 with pairs of

(/7 ,7) ={(1,2),(2, 1) and (1.5, 1.5)}. We generated random samples of different sizes by observing

1a v 1
that if R, is random number taking (0,1), then X, ={1—{1—(1—(R)W) } } is the

random number generation from KL2PFD with ( v, p,0,a and ¢) parameters. All results are based

on 5,000 replications.

Such generated data have been used to obtain estimates of the unknown parameters. The results
obtained from parameters estimation of KL2PFD using different sample sizes and different values of
parameters with mean square error MSE.

MSE() :E{(ﬁ’ ﬁ)z} and MSE(}) =E[(;§ —y)z}



386 Thailand Statistician, 2022; 20(2): 372-394

Table 1 Estimates for the parameters of Kw-Leh2 power function distribution with different
estimation methods under the sample size 40 when =1, ¢ =2 and ¢=3

True Values Estimated Values MSE
Methods P ¥ [} P [} 7

MLM 1 2 0.9392683 2.6823127 0.0228598 0.3413591
2 1 2.0233855 0.9402877 0.1368475 0.1182024

1.5 1.5 1.5500040 1.2956750 0.0796184 0.1662227

PE 1 2 0.9876744 2.1523000 0.0046620 0.2404506

2 1 1.9638820 1.0783290 0.0723532 0.0594456

1.5 1.5 1.4803110 1.6134530 0.0185282 0.1367111

Table 2 Estimates for the parameters of Kw-Leh2 power function distribution with different
estimation methods under the sample size 150 when =1, ¢ =2 and ¢=3

True Values Estimated Values MSE

Method ~ N - N

ethods 3 y F 5 F 5
MLM 1 2 1.0000880 2.0857430 0.0148897 0.13281223
2 1 2.0655667 0.9422703 0.0703308 0.06061753
1.5 1.5 1.4887550 1.5887790 0.0309661 0.10352545
PE 1 2 0.9968213 2.0430360 0.0013130 0.05096839
2 1 1.9924040 1.0188100 0.0211052 0.01256001
1.5 1.5 1.4933580 1.5292180 0.0052700 0.02862667

Table 3 Estimates for the parameters of Kw-Leh2 power function distribution with different
estimation methods under the sample size 40 whenand =3, ¢ =2 and ¢=1

True Values Estimated Values MSE
Methods P y [} 7 B P
MLM 1 2 0.9753603 2.4580265 0.0327993 0.2748554
2 1 2.1779746 0.9633238 0.2371783 0.1196290
1.5 1.5 1.5324380 1.4151410 0.0991182 0.1647704
PE 1 2 0.9834422 2.162290 0.0090098 0.2321259
2 1 1.9624570 1.0742530 0.1437567 0.0547915
1.5 1.5 1.4698180 1.6188390 0.0361879 0.1287172

Table 4 Estimates for the parameters of Kw-Leh2 power function distribution with different
estimation methods under the sample size 150 when =3, « =2 and ¢ =1

True Values Estimated Values MSE
Methods A N A -
s r yij Y B 4
MLM 1 2 1.0402820 1.9212690 0.0272471 0.1188129
2 1 1.9357860 1.1052690 0.0910156 0.0696257
1.5 1.5 1.5384420 1.4183290 0.0524595 0.0863524
PE 1 2 0.9972467 2.0340660 0.0025526 0.0466708
2 1 1.9902580 1.0195430 0.0402431 0.0117741
1.5 1.5 1.4935130 1.5276010 0.0103143 0.0258056
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8. Applications

In this section, we have analyzed four real life data sets to demonstrate the performance of
KL2PFD. The comparison of the probability distributions has been made in all the data sets on the
basis of Akaike information criterion (AIC), the correct Akaike information criterion (CAIC),
Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC). Finally, using
the above mentioned criteria’s, our proposed KL2PFD is better than the different competitor models
for the same data sets.

Data Set 1

We have adopted the data set given by Bader and Priest (1982) to demonstrate the performance
of our proposed model. The data shows the measure of strength measured for single carbon fibers and
soak at gauge lengths of 1.0, 10.0, 20.0 and 50.0 millimeter. The soaked tows of 100 fibers were tested
at gauge lengths (in mm) of 20.0, 50.0, 150.0 and 300.0 mm. Here, we consider that the data set of
single fibers of 20 mm in gauge with a sample of size 63. The data are: 1.901, 2.132, 2.203, 2.228,
2.257,2.350,2.361,2.396,2.397,2.445,2.454,2.474,2.518,2.522,2.525,2.532,2.575,2.614,2.616,
2.618,2.624,2.659,2.675,2.738,2.740,2.856,2.917,2.928,2.937,2.937,2.977,2.996, 3.030, 3.125,
3.139,3.145,3.220,3.223, 3.235,3.243,3.264, 3.272,3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493,
3.501, 3.537,3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

1.0

08
1

06
L

T(ifn)

04

0.2
L

00
L

Figure 4 TTT plot for carbon fibers data

The TTT plot is displayed in Figure 4, which indicates that the HRF associated with the data set
has an increasing shape, since the plot shows a first concave curvature. So, we can easily fit KL2PFD
on the carbon fibers data. We have compared KL2PFD with the Kumarswamy Marshall-Olkin family
of distribution (Kw-MO) (see Morad et al. (2015)) and other comparative models: the Beta-Frechet
(BFr) (Barreto et al. 2011), the exponentiated Fréchet (EFr) (Nadarajah and Kotz 2003), the Marshall-
Olkin extended Fréchet (MO-Fr) (Krishna and Ristic 2013). The proposed model KL2PFD is showing
better results as compare to the other competitive models by providing smallest AIC, BIC, CAIC and
HQIC for the given data.
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Table 5 Statistics of carbon fibers data

Models AIC BIC CAIC HQIC
KL2PFD 110.8663 117.2477 111.2801 113.3718
KwMO-Fr 121.867 132.583 122.920 126.082

BFr 120.594 129.166 121.283 123.965
EFr 118.700 125.130 119.107 121.229
MO-Fr 119.746 126.175 120.153 122.275
Fr 121.804 126.091 122.004 123.490

From Table 5, it is clear that the KL2PFD provides better fit for the above data set as it provides
minimum AIC, BIC, CAIC and HQIC.

KL2PFD
KwMO-Fr
BFr

EFr
MO-Fr

Fr

\ <

T T T T T T 1
15 20 25 30 35 40 45

P
[T

04 05
1
s

Density
03

02
I

01

00

Carbon Fiber Data

Figure 5 Estimated density plot for carbon fibers data

Data Set 2

We have adopted the data set consisting the remission time of 128 bladder cancer patients to
demonstrate the performance of our proposed KL2PFD. These data were also studied by Tahir et al.
(2014), Lemonte (2014), Zea et al. (2012), Lee and Wang (2003) and Lemonte and Cordeiro (2013).
The remission times in month are given below: 0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19,
1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75,
2.83,2.87,3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33,
4.34,4.40,4.50,4.51, 4.87,4.98, 5.06, 5.09, 5.17, 5.32,5.32,5.34, 541, 541, 5.49, 5.62, 5.71, 5.85,
6.25,6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26,
8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98,
12.02,12.03,12.07,12.63,13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14,
17.36,18.10, 19.13,20.28,21.73, 22.69, 23.63, 25.74, 25.82,26.31,32.15, 34.26, 36.66, 43.01, 46.12,
79.05.
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Figure 6 TTT Plot for bladder cancer data
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The TTT plot of the remission time (in month) for bladder cancer patients is exhibited in Figure
6, we may see that the hazard rate function has little bit bathtub shape, so we may easily fit KL2PFD

on the bladder cancer data.

Table 6 Statistics of Bladder Cancer Data

Models AIC BIC CAIC HQIC
KL2PFD 810.1383 810.4661 821.515 814.7605
WP 818.9331 819.0298 824.6214 821.2442
KwP 824.4200 832.9525 824.6151 827.8866
BEP 826.1318 837.5085 826.4596 830.7540
BP 843.8620 852.3946 844.0571 847.3287
Pareto 1081.1820 1084.0260 1081.2140 1082.3380

S KL2PFD
WP

Density
0.04
1

0.00
L

KwP
BEP
BP
— Pareto

Bladder Cancer Data

40 50

Figure 7 Estimated density plot for bladder cancer data

From Table 6, we may see that KL2PFD provides better fit for the above data set as it provides

minimum AIC, BIC, CAIC, HQIC.
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Data Set 3

The 3™ data set is reported by Bekker et al. (2000), which corresponds to the survival times (in
years) of a group of patients given chemotherapy treatment alone. The data consisting of survival
times (in years) for 46 patients are: 0.047,0.115, 0.121,0.132,0.164,0.197,0.203,0.260,0.282,0.296,
0.334,0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099,
1.219,1.271,1.326, 1.447,1.485, 1.553, 1.581, 1.589, 2.178, 2.343,2.416, 2.444, 2.825, 2.830, 3.578,
3.658, 3.743, 3.978, 4.033. We have compared KL2PFD with the Kumarswamy Marshall-Olkin
family of distribution (Kw-MO) (see Morad et al. 2015).
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Figure 8 TTT plot for chemotherapy treatment
The TTT plot is displayed in Figure 8 which indicates that the HRF associated with the data set
has a bathtub shape, so we can easily fit KL2PFD on the Chemotherapy data. The proposed model

KL2PFD is showing better results as compared to the (Morad et al. 2015) and the other competitive
models by providing smallest AIC, BIC, CAIC and HQIC for the given data.

Table 7 Statistics of chemotherapy treatment data

Models AIC BIC CAIC HQIC
KL2PFD 105.5555 106.6081 112.6003 108.1534
KwMO-W 119.134 120.672 128.167 122.501
BW 123.995 124.995 131.222 126.689
KwW 124.189 125.189 131.416 126.884
EwW 122.087 122.673 127.507 124.108

MOW 121.716 122.301 127.136 123.736
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Figure 9 Estimated density plot for chemotherapy data

Data Set 4

The data have 63 observations about the strengths of 1.5 cm glass fiber. It was obtained from
workers at the UK National Physical Laboratory. The same data have also been examined by (Smith
and Naylor 1987). The data are: 0.550, 0.740, 0.770, 0.811, 0.841, 0.932, 1.040, 1.111, 1.130, 1.240,
1.251,1.270, 1.281, 1.290, 1.301, 1.360, 1.390, 1.420, 1.480, 1.480, 1.490, 1.490, 1.500, 1.500, 1.510,
1.520, 1.530, 1.540, 1.550, 1.550, 1.580, 1.590, 1.600, 1.610, 1.610, 1.610, 1.610, 1.621, 1.621, 1.630,
1.640, 1.660, 1.660, 1.660, 1.670, 1.680, 1.680, 1.690, 1.701, 1.701, 1.730, 1.760, 1.760, 1.770, 1.780,
1.810, 1.820, 1.840, 1.840, 1.890, 2.000, 2.010, 2.240.

We have compared KL2PFD with the modified Burr III Weibull distribution by Arifa et al.
(2017), modified Burr III and Weibull models.
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Figure 10 TTT plot for glass fiber data

The TTT plot is displayed in Figure 10, which indicates that the HRF associated with the data set
has an increasing shape, since the plot shows a first concave curvature. So, we can easily fit KL2PFD
on the carbon fibers data. The proposed model KL2PFD is showing better results as compare to the
other competitive models by providing smallest AIC, BIC, CAIC and HQIC for the given data.
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Table 8 Statistics of glass fiber data

Models AIC BIC CAIC HQIC
KL2PFD 23.57246 29.95387 23.98626 26.07796
MBIII Weibull 32.6 433 33.7 28.432
MBIII 30.0 36.4 30.4 31.249
Weibull 34.4 38.7 34.6 33.1565

Table 8 provides minimum values of AIC, BIC, CAIC and HQIC for KL2PFD which means that
proposed model provides better fit for the data.

KL2PFD
MBIl Weibull
MBIl

Weibull

15
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1
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|

00
1

1.5 Fiber Glass Data

Figure 11 Estimated density plot for glass fiber data

9. Conclusions

We have proposed a new distribution called Kumaraswamy Lehmann-2 power function
distribution (KL2PFD). This distribution can have applications in the fields of reliability, economics,
actuaries and survival analysis. We have studied the properties of the new distribution including
moments, survival function, hazard function, inverse moments, Shanon entropy, conditional moments,
Lorenz curve, incomplete moments and order Statistics. We have also characterized the distribution
by conditional moments (right and left truncated mean) and doubly truncated mean (DTM). Four
different data sets from different scenarios of applied sciences are used to show the efficiency of the
proposed model over the already available models. It is hoped that the findings of this paper will be
useful for researchers in different field of applied sciences.
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