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Abstract 

The generalization of the probability distribution has gained great attention in statistical field. In 

this study, a new Kumaraswamy Lehmann-2 power function distribution (KL2PFD) is proposed. We 

suggest  a  new  generator  that  will  modify  the  power  function  distribution  called  Kumaraswamy 

Lehmann-2 generator (KL2-G). The various properties of the new distribution have been discussed in 

detail such as moments, vitality function, conditional moments and order statistics etc. We have also 

characterized  the  KL2PFD  based  on,  conditional  moments  (Right  and  Left  Truncated  mean)  and 

doubly truncated mean. The shape of the new distribution has been studied for applied sciences. The 

aim of the study is to increase the application of the Power function distribution. This distribution can 

be used for approximately symmetric data (normal data), positive and negative skewed data. For this, 

we  have studied  the  real  life application of  the distribution by using  four different data sets. After 

analyzing data, we conclude that the proposed model KL2PFD perform better in all the data sets while 

compared to different competitor models. It is hoped that the findings of this paper will be useful for 

researchers in different field of applied sciences. 

______________________________ 
Keywords:   Characterization  of  truncated  distribution,  entropies,  Kumaraswamy  Lehmann-2  power  function 

distribution, Lehmann alternatives, power function distribution. 

 

1. Introduction 

The researchers in engineering sciences mostly  study  the reliability of different components by 

taking  the help from probability distributions that are simple  in mathematical  expression  instead of 

using mathematically complex probability distributions. Dallas (1976) introduced the power function 

as  the  inverse  of  Pareto  distribution.  Meniconi  and  Barry  (1996)  showed  that  power  function 

distribution is better to fit for failure data over exponential, lognormal and Weibull because it provides 

a better fit. 

More  studies  about  the  application  of  this  distribution  and  its  applications  can  be  found  in 

Ahsanullah  (2013), Dorp et al.  (2002) and Chang  (2007). For modeling  heterogeneous population, 

Saleem  et  al.  (2010)  talked  about  the  two  component  mixture  of  one-parameter  power  function 
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distribution.  Estimation  of  the  parameters  of  the  two-parameter  power  function  distribution  was 

studied by Zaka and Akhter  (2013) through  the methods of least squares, relative least squares and 

ridge regression. According to its applicability in real life situations for modeling survival data, Tahir 

et al. (2014) proposed the modification of the power function distribution as Weibull-power function 

distribution. By using the Bayesian inference, Hanif, et al. (2015) estimated the parameter of the one-

parameter power function distribution. Shahzad and Asghar (2016) introduced the transmuted power 

function  distribution  by  following  Shaw  and  Buckley  (2009).  Okorie  et  al.  (2017)  proposed  the 

modification of the power function distribution by using Marshall and Olkin (1997) technique. Haq et 

al. (2018) introduced the McDonald power function distribution. Jabeen and Zaka (2019) discussed 

the parameters estimation  for continuous uniform distribution using modified percentile estimators. 

Zaka et al. (2020) proposed the reflected and exponentiated class of power function distribution. Zaka 

et al. (2020) introduced the beta Lehmann 2 power function distribution. 

  The cumulative  distribution  function  (cdf) and probability density  function  (pdf) of  the power 

function distribution is given below 

    ,
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Lehmann alternatives were introduced by Lehmann (1953) in the two-sample hypothesis testing 

context  and  are  useful  in  survival  analysis.  The  cumulative  density  function  for  Lehmann  2 

relationship is given as 

    1 1  .F x G x


    (Lehmann 2 relationship) 

Cordeiro et al. (2011) introduced the Kumaraswamy  generator. Then, the mixture of these two 

techniques is known as Kumaraswamy Lehmann-2 generator (KL2-G). The cdf and pdf of the Kw-

Leh2-generator are given as 
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where  ( )G x  is the cdf and  ( )g x  is the pdf of any probability distribution. 

In this paper, we suggest a new distribution that will generalize the power function distribution 

(PFD)  by  using  the  above  mentioned  technique.  We  have  derived  some  of  the  main  structural 

properties of this distribution. The application of this distribution is illustrated by an application to 

real life data sets. It is hoped that the findings of this study will be useful for researchers in different 

field of applied sciences. 

 

1.1. Model identification for KL2PFD 

The pdf and cdf of power function distribution are given as follows: 
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and    ,
x
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where    and    are the shape and scale parameters. Following the generator (3),  the KL2PFD is 

obtained by putting (5) and (6) in (4) and simplifying, we get 
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(7) 

and associated cdf is obtained by putting (5) and (6) in (3) as 
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We may observe  ,   and    as the shape and    as scale parameters. 

 

1.2. Expansion of cdf 

Considered the expansion of power series for any real non-integer as follows 

   
   

 
1 1

1 .
!

k

b b
z

b k k

  
  

 
                   (9) 

We may see that for  z 1,   the expression in (9) may be used. The cdf of the distribution may be 

written as by using the binomial expansion as 
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Also,     1
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1.3. Shapes of KL2PFD 

The  KL2PFD  can  be  approximately  normal  curve,  whereas  the  HRF  can  be  bathtub, 

monotonically increasing and decreasing shapes. (See Figures 1-3). 

 

 
Figure 1 Plots of PDF of KL2PFD 

 
2. Some Basic Properties of KL2PFD 

2.1. Moments about zero 

The  thr  moments about zero of any distribution is described below 
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Figure 2 Plots of cdf of KL2PFD 

 

 
Figure 3 Plots of HRF of KL2PFD 

 

2.2. Moment generating functions 

Apart from generating functions, the moment generating function can be utilized to describe the 

characteristic of the random variable. The moment generating function may be defined as the linear 

combination of exponential generalized univariate distributions as     
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If  X  follows KL2PFD, the moment generating function may be derived as 
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2.3. Random number generator 

The random number may be obtained from  
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3. Inverse Moments 
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3.1. Mean residual function 

The mean residual function tells us the time to be expected for survival of an individual provided 

that one already has reached this time point   
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function distribution (KL2PFD), we get mean residual function as 
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3.2. Vitality function 

The  vitality  function  is  obtained  for  KL2PFD  as   
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3.3. Information function 

The information function is given as    
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4. Reverse Hazard Function 

The reverse hazard function may be written as   
 
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4.1. Mills ratio 

We may write mills ratio as   
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4.2. Order statistics 

The pdf of the order statistic may be written as 
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4.3. Shanon entropy and Renyi entropy 

The Shanon entropy may be defined as      log ,H x E f x   
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5. Incomplete Moments 

The  incomplete  moments  are  given  as       | , , , , ; 0
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5.1. Conditional moments 

The  conditional  moments  may  be  obtained  as 
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5.2. Lorenz and Bonferroni curve 

The Lorenz and Bonferroni curve may be obtained as 
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6. Characterization of KL2PFD 

Let  X  be KL2PF variable with probability density function 
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and let   F x  be the survival function respectively. Then, the random variable  X  has KL2PFD if and 
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Equate (10) and (11), we get 
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7. Comparison between Maximum Likelihood and Percentile Estimation Methods of the 

Parameters of KL2PFD 

7.1. Maximum likelihood method (MLM) 

Let  1,..., nx x  be a random sample of size  n  from the KL2PFD. The log-likelihood function for 

the KL2PFD is given by 
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The score vector are 
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The parameters of KL2PFD can be obtained by solving the above equations resulting from setting 

the five partial derivatives of   , , , ,L       equals to zero. 

 

7.2. Estimation of KL2PFD parameters from common percentiles 

Dubey (1967) proposed a percentile estimator of the shape parameter, based on any two sample 

percentiles. After Marks (2005) also discussed it,  in which he estimated the parameters of Weibull 

distribution using percentiles. Marks (2005) called it common percentile method. 

Let  1,..., nx x   be  a  random  sample  of  size  n   drawn  from  the  probability  density  function  of 

KL2PFD. The cumulative distribution function of a KL2PFD with shape and scale parameters    and 

,  respectively is 

  1 1 1 1 .
x

F x





      
               

 

By solving, we get 

    
1/

1/
1/

1/
1 1 1 ,x R

  
     

   
                 (12) 

where  ( ).R F x  Let  75P  and  25P  are the 75th and 25th percentiles, therefore (12) becomes 

    
1/

1/
1/

1/

75 1 1 1 0.75  ,P



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               (13) 
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    
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1/
1/

1/
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
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                 (14) 

Solving the above equations, we get 

  
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generally 
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where  H  is  the maximum percentage,  L  is the minimum percentage and  P  is the percentile. 

A  simulation  study  is  used  in  order  to  compare  the  performance  of  the  proposed  estimation 

methods. We carry out this comparison taking the samples of sizes as  n  = 40 and 150 with pairs of 

  ,   = {(1, 2), (2, 1) and (1.5, 1.5)}. We generated random samples of different sizes by observing 

that  if  iR   is  random  number  taking  (0,1),  then    
1/

1/
1/

1/
  1 1 1ix R

  
     

   
  is  the                      

random number generation from KL2PFD with   ,  ,  ,   and       parameters. All results are based 

on 5,000 replications. 

Such generated data have been used to obtain estimates of the unknown parameters. The results 

obtained from parameters estimation of KL2PFD using different sample sizes and different values of 

parameters with mean square error MSE. 

   
2
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 and     
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       –  .MSE E   
   
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Table 1 Estimates for the parameters of Kw-Leh2 power function distribution with different 

estimation methods under the sample size 40 when  1,   2    and  3   

Methods 
True Values Estimated Values MSE 

    ̂  ̂  ̂  ̂  

MLM 1 2 0.9392683 2.6823127 0.0228598 0.3413591 

 2 1 2.0233855 0.9402877 0.1368475 0.1182024 

 1.5 1.5 1.5500040 1.2956750 0.0796184 0.1662227 

PE 1 2 0.9876744 2.1523000 0.0046620 0.2404506 

 2 1 1.9638820 1.0783290 0.0723532 0.0594456 

 1.5 1.5 1.4803110 1.6134530 0.0185282 0.1367111 
 

Table 2 Estimates for the parameters of Kw-Leh2 power function distribution with different 

estimation methods under the sample size 150 when  1,   2    and  3   

Methods 
True Values Estimated Values MSE 

    ̂  ̂  ̂  ̂  

MLM  1  2  1.0000880  2.0857430  0.0148897  0.13281223 

  2  1  2.0655667  0.9422703  0.0703308  0.06061753 

  1.5  1.5  1.4887550  1.5887790  0.0309661  0.10352545 

PE  1  2  0.9968213  2.0430360  0.0013130  0.05096839 

  2  1  1.9924040  1.0188100  0.0211052  0.01256001 

  1.5  1.5  1.4933580  1.5292180  0.0052700  0.02862667 
 

Table 3 Estimates for the parameters of Kw-Leh2 power function distribution with different 

estimation methods under the sample size 40 when and  3,   2    and  1   

Methods 
True Values Estimated Values MSE 

    ̂  ̂  ̂  ̂  

MLM  1  2  0.9753603  2.4580265  0.0327993  0.2748554 

  2  1  2.1779746  0.9633238  0.2371783  0.1196290 

  1.5  1.5  1.5324380  1.4151410  0.0991182  0.1647704 

PE  1  2  0.9834422  2.162290  0.0090098  0.2321259 

  2  1  1.9624570  1.0742530  0.1437567  0.0547915 

  1.5  1.5  1.4698180  1.6188390  0.0361879  0.1287172 
 

Table 4 Estimates for the parameters of Kw-Leh2 power function distribution with different 

estimation methods under the sample size 150 when  3,   2    and  1   

Methods 
True Values Estimated Values MSE 

    ̂  ̂  ̂  ̂  

MLM  1  2  1.0402820  1.9212690  0.0272471  0.1188129 

  2  1  1.9357860  1.1052690  0.0910156  0.0696257 

  1.5  1.5  1.5384420  1.4183290  0.0524595  0.0863524 

PE  1  2  0.9972467  2.0340660  0.0025526  0.0466708 

  2  1  1.9902580  1.0195430  0.0402431  0.0117741 

  1.5  1.5  1.4935130  1.5276010  0.0103143  0.0258056 
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8. Applications 

In  this  section,  we  have  analyzed  four  real  life  data  sets  to  demonstrate  the  performance  of 

KL2PFD. The comparison of the probability distributions has been made in all the data sets on the 

basis  of  Akaike  information  criterion  (AIC),  the  correct  Akaike  information  criterion  (CAIC), 

Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC). Finally, using 

the above mentioned criteria’s, our proposed KL2PFD is better than the different competitor models 

for the same data sets. 

 

Data Set 1 

We have adopted the data set given by Bader and Priest (1982) to demonstrate the performance 

of our proposed model. The data shows the measure of strength measured for single carbon fibers and 

soak at gauge lengths of 1.0, 10.0, 20.0 and 50.0 millimeter. The soaked tows of 100 fibers were tested 

at gauge lengths (in mm) of 20.0, 50.0, 150.0 and 300.0 mm. Here, we consider that the data set of 

single fibers of 20 mm in gauge with a sample of size 63. The data are: 1.901, 2.132, 2.203, 2.228, 

2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 

2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 

3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 

3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

 

 
Figure 4 TTT plot for carbon fibers data 

 

The TTT plot is displayed in Figure 4, which indicates that the HRF associated with the data set 

has an increasing shape, since the plot shows a first concave curvature. So, we can easily fit KL2PFD 

on the carbon fibers data. We have compared KL2PFD with the Kumarswamy Marshall-Olkin family 

of distribution (Kw-MO) (see Morad et al. (2015)) and other comparative models: the Beta-Frechet 

(BFr) (Barreto et al. 2011), the exponentiated Fréchet (EFr) (Nadarajah and Kotz 2003), the Marshall-

Olkin extended Fréchet (MO-Fr) (Krishna and Ristic 2013). The proposed model KL2PFD is showing 

better results as compare to the other competitive models by providing smallest AIC, BIC, CAIC and 

HQIC for the given data. 
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Table 5 Statistics of carbon fibers data 

Models  AIC  BIC  CAIC  HQIC 

KL2PFD 110.8663 117.2477 111.2801 113.3718 
KwMO-Fr  121.867  132.583  122.920  126.082 

BFr  120.594  129.166  121.283  123.965 

EFr  118.700  125.130  119.107  121.229 

MO-Fr  119.746  126.175  120.153  122.275 

Fr  121.804  126.091  122.004  123.490 

 

From Table 5, it is clear that the KL2PFD provides better fit for the above data set as it provides 

minimum AIC, BIC, CAIC and HQIC. 

 

 
Figure 5 Estimated density plot for carbon fibers data 

 

Data Set 2    

We  have  adopted  the  data  set  consisting  the  remission  time  of  128 bladder cancer  patients  to 

demonstrate the performance of our proposed KL2PFD.  These data were also studied by Tahir et al. 

(2014), Lemonte (2014), Zea et al. (2012), Lee and Wang (2003) and Lemonte and Cordeiro (2013). 

The remission  times  in month are given below: 0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 

1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 

2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 

4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 

6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 

8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34,  10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 

12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 

17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 

79.05. 
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Figure 6 TTT Plot for bladder cancer data 

 

The TTT plot of the remission time (in month) for bladder cancer patients is exhibited in Figure 

6, we may see that the hazard rate function has little bit bathtub shape, so we may easily fit KL2PFD 

on the bladder cancer data. 

 

Table 6 Statistics of Bladder Cancer Data 

Models  AIC  BIC  CAIC  HQIC 

KL2PFD 810.1383 810.4661 821.515 814.7605 
WP  818.9331  819.0298  824.6214  821.2442 

KwP  824.4200  832.9525  824.6151  827.8866 

BEP  826.1318  837.5085  826.4596  830.7540 

BP  843.8620  852.3946  844.0571  847.3287 

Pareto  1081.1820  1084.0260  1081.2140  1082.3380 
 

 
Figure 7 Estimated density plot for bladder cancer data 

 

From Table 6, we may see that KL2PFD provides better fit for the above data set as it provides 

minimum AIC, BIC, CAIC, HQIC. 
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Data Set 3 

The 3rd data set is reported by Bekker et al. (2000), which corresponds to the survival times (in 

years)  of a group  of patients  given  chemotherapy  treatment  alone. The data consisting  of  survival 

times  (in  years)  for  46 patients  are:  0.047,0.115, 0.121,0.132,0.164,0.197,0.203,0.260,0.282,0.296, 

0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 

1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 

3.658,  3.743,  3.978,  4.033.  We  have  compared  KL2PFD  with  the  Kumarswamy  Marshall-Olkin 

family of distribution (Kw-MO) (see Morad et al. 2015). 

 

 
Figure 8 TTT plot for chemotherapy treatment 

 

The TTT plot is displayed in Figure 8 which indicates that the HRF associated with the data set 

has a bathtub shape, so we can easily  fit KL2PFD on the Chemotherapy data. The proposed model 

KL2PFD is showing better results as compared to the (Morad et al. 2015) and the other competitive 

models by providing smallest AIC, BIC, CAIC and HQIC for the given data. 

 

Table 7 Statistics of chemotherapy treatment data 

Models  AIC  BIC  CAIC  HQIC 

KL2PFD 105.5555 106.6081 112.6003 108.1534 
KwMO-W  119.134  120.672  128.167  122.501 

BW  123.995  124.995  131.222  126.689 

KwW  124.189  125.189  131.416  126.884 

EW  122.087  122.673  127.507  124.108 

MOW  121.716  122.301  127.136  123.736 
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Figure 9 Estimated density plot for chemotherapy data 

 

Data Set 4 

The data have 63 observations about  the  strengths of 1.5 cm glass  fiber.  It was  obtained from 

workers at the UK National Physical Laboratory. The same data have also been examined by (Smith 

and Naylor 1987). The data are: 0.550, 0.740, 0.770, 0.811, 0.841, 0.932, 1.040, 1.111, 1.130, 1.240, 

1.251, 1.270, 1.281, 1.290, 1.301, 1.360, 1.390, 1.420, 1.480, 1.480, 1.490, 1.490, 1.500, 1.500, 1.510, 

1.520, 1.530, 1.540, 1.550, 1.550, 1.580, 1.590, 1.600, 1.610, 1.610, 1.610, 1.610, 1.621, 1.621, 1.630, 

1.640, 1.660, 1.660, 1.660, 1.670, 1.680, 1.680, 1.690, 1.701, 1.701, 1.730, 1.760, 1.760, 1.770, 1.780, 

1.810, 1.820, 1.840, 1.840, 1.890, 2.000, 2.010, 2.240. 

We  have  compared  KL2PFD  with  the  modified  Burr  III  Weibull  distribution  by  Arifa  et  al.  

(2017), modified Burr III and Weibull models. 

 

 
Figure 10 TTT plot for glass fiber data 

 

The TTT plot is displayed in Figure 10, which indicates that the HRF associated with the data set 

has an increasing shape, since the plot shows a first concave curvature. So, we can easily fit KL2PFD 

on the carbon fibers data. The proposed model KL2PFD is showing better results as compare to the 

other competitive models by providing smallest AIC, BIC, CAIC and HQIC for the given data. 
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Table 8 Statistics of glass fiber data 

Models  AIC  BIC  CAIC  HQIC 

KL2PFD  23.57246  29.95387 23.98626 26.07796 
MBIII Weibull  32.6   43.3  33.7   28.432 

MBIII  30.0   36.4  30.4   31.249 

Weibull  34.4   38.7  34.6   33.1565 

 

Table 8 provides minimum values of AIC, BIC, CAIC and HQIC for KL2PFD which means that 

proposed model provides better fit for the data. 

 
Figure 11 Estimated density plot for glass fiber data 

 

9. Conclusions 

We  have  proposed  a  new  distribution  called  Kumaraswamy  Lehmann-2  power  function 

distribution (KL2PFD). This distribution can have applications in the fields of reliability, economics, 

actuaries  and  survival  analysis.  We  have  studied  the  properties  of  the  new  distribution  including 

moments, survival function, hazard function, inverse moments, Shanon entropy, conditional moments, 

Lorenz curve, incomplete moments and order Statistics. We have also characterized the distribution 

by  conditional  moments  (right  and  left  truncated  mean)  and  doubly  truncated  mean  (DTM). Four 

different data sets from different scenarios of applied sciences are used to show the efficiency of the 

proposed model over the already available models. It is hoped that the findings of this paper will be 

useful for researchers in different field of applied sciences. 
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