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Abstract 

Statistical process control methods are widely used in several fields for monitoring and detecting 

process problems. One of them is the control chart which is effective for monitoring process. 

Generally, the average run length (ARL) is measured the performance of control chart. The aim of the 

article is to derive explicit formulas of ARL using a Fredholm integral equation of the second kind on 

an extended exponentially weighted moving average (EEWMA) control chart for first-order 

autoregressive (AR(1)) process with exponential white noise. The accuracy of the solution obtained 

with the EEWMA control chart was compared to the numerical integral equation (NIE) method. The 

analytical results agree with NIE approximations with an absolute percentage difference less than 
41.191 10  and the computational times of NIE approximately 2-4 seconds whereas the 

computational time of the explicit formulas is less than one second. In addition, a performance 

comparison of the ARL using explicit formulas on the EEWMA and EWMA control charts show that 

they performed better on the EEWMA control chart for all shift sizes and cases. Besides, an 

exponential smoothing parameter of 0.05 is recommended. Moreover, the ARL performances on the 

EEWMA and EWMA charts were compared using real data on the concentration of the 24-hour 

average of particulate matter or PM10 (10 3/ )g m   in the air pollutant in the air which is an important 

indicator of air pollution and a major environmental problem. The results indicate that the EEWMA 

chart performed better than the EWMA chart for all situations. 

______________________________ 
Keywords:  EWMA control chart, change point detection, numerical integral equation, explicit formulas, 

autoregressive. 

 

Introduction 

The statistical process control (SPC) is widely used in the manufacture industry for monitoring, 

controlling, and improving process.  A control chart is an effective tool in statistical process control.  

It can be applied to other fields such as environment, finance, economics, medicine, health and others; 

see Lucas and Saccucci (1990) and Srivastava and Wu (1997). The Shewhart control chart was the 

first to be reported and is widely used for monitoring processes and detecting shifts in the process 
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mean. It is useful for detecting large changes in the process mean, but its performance is degraded 

when the changes are small (Shewhart 1931). Since then, many other control charts that are useful for 

detecting small changes in the process mean, such as the Cumulated Sum (CUSUM) (Page 1954) and 

exponentially weighted moving average (EWMA) control charts (Robert 1959), have been suggested 

by Yashchin (1993), Zhang (1998) and Prajapati (2015). Patel and Divecha (2011) proposed the 

modified EWMA control chart that is effective at detecting small and abrupt changes in the process 

mean for observations that are independent and normally distributed or autocorrelated. Later, Khan et 

al. (2017) redesigned the modified EWMA control statistic. Recently, Naveed et al. (2018) proposed 

the extended EWMA (EEWMA) control chart that performed better than other control charts for 

detecting small shifts in the mean of a monitored process. 

The comparative performance method for control charts is the ARL. The 0ARL is usually 

measured when the process is in-control and should be large and the 1ARL  is correctly signaled to be 

out of control and should be as small as possible. The exact solution of the ARL of control charts have 

been described in previous literature such as explicit formulas, Monte Carlo simulations (MC), 

Markov chain approach (MCA), martingale approach (MA) and numerical integral equation approach 

(NIE). 

Previous literature about approximation of the ARL to represent an efficient control chart using 

many methods. Crowder (1987) presented the evaluation of ARL for EWMA control chart using NIE 

method to an integral for Gaussian observation. Lucas and Saccucci (1990) proposed the evaluation 

of ARL for EWMA control chart using a finite state Markov chain approximation. Fu et al. (2002) 

determined the ARL on Shewhart, CUSUM and EWMA control charts based on the Markov chain 

approach. Sukparungsee and Novikov (2008) used the martingale approach to derive close-form 

formula for the ARL for EWMA control chart for a variety of light-tailed distributions. 

In addition, Areepong (2009) proposed analytical derivation to find explicit formulas for ARL of 

the EWMA chart when observations are exponential distributed. Suriyakat et al. (2012) presented an 

explicit formula for the ARL of EWMA control chart for autoregressive AR(1) process observation 

with exponential white noise. Petcharat et al. (2014) analyzed explicit formulas for ARL of CUSUM 

control chart for MA(1) process and compared them with the NIE method. 

Subsequently, Sukparungsee and Areepong (2017) presented an explicit formula for the ARL of 

EWMA control chart for AR( )p  process with exponential white noise. Peerajit et al. (2018) evaluated 

Numerical integral equation method for ARL of CUSUM chart for long-memory process with non-

seasonal and seasonal ARFIMA models. Later, Peerajit et al. (2019) compared the efficiency of 

explicit solutions to the NIE method of ARL on CUSUM control chart for a long memory process 

with a seasonally adjusted autoregressive fractionally integrated moving-average (ARFIMA) process 

model. 

Recently, Supharakonsakun et al. (2020) proposed explicit formulas of modified EWMA and 

compared the efficiency of the EWMA and modified EWMA control charts. The performance 

comparison shows that the modified EWMA control chart is outperforms the EWMA control chart for 

almost all of exponential smoothing parameters and shift sizes. 

As previously mentioned, indicate that the ARL is useful for efficiency comparison of the control 

charts and that explicit formulas take much less computational time to evaluate the ARL than the other 

methods. The EWMA control chart is more performance than the others but less performance than 

modified EWMA control chart, the modified EWMA control chart is more effective than the EWMA 

control chart for small detecting small shifts in process mean. However, derivation of the explicit 
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formulas for the average run length (ARL) on the EEWMA control chart and comparing them with 

other control charts has not previously been reported. 

Therefore, the objective of this study is to derive explicit formulas of the ARL on the EEWMA 

control chart for a first-order autoregressive (AR(1)) process with exponential white noise. The 

explicit formulas for 0ARL and 1ARL were compared with the numerical integral equation (NIE) 

method as the benchmark. Besides, the performance of the explicit formulas for deriving the ARL on 

the EEWMA control chart was compared with those on the EWMA chart. 

 

2. Materials and Methods 

2.1. Exponentially weighted moving average (EWMA) control chart 

The EWMA control chart was initially proposed by Robert (1959) (see also Crowder (1978), 

Lucas and Saccucci (1990), Suriyakat et al. (2012)). It is usually used to monitor and detect small 

changes in process mean. The EWMA control chart can be expressed by the recursive equation below 

1(1 ) , 1, 2,...t t tZ Z X t                                                   (1) 

where tX  is a process with mean,   is an exponential smoothing parameter with 0 1   and 0Z  

is the initial value of EWMA statistics, 0 .Z u  The upper control limit (UCL) and Lower control limit 

(LCL) of EWMA control chart are given by 

 0 ,
2

UCL Q


 


 


                (2) 

 0 ,
2

LCL Q


 


 


                (3) 

where 0  is the target mean,   is the process standard deviation and Q  is suitable control limit 

width. The stopping time of the EWMA control chart is given by  

inf{ 0 : }, ,h tt Z h h u                                                    (4) 

where h  is the stopping time, h  is UCL.  

 

2.2. Extended exponentially weighted moving average (EEWMA) control chart 

The extended EWMA control chart was proposed by Naveed et al. (2018). It is developed form 

the EWMA control chart. This is effective to monitored and detected small changes in process mean. 

The EWMA control chart can be expressed by the recursive equation below 

1 2 1 1 2 1(1 ) , 1,2,...t t t tE X X E t          ,                                      (5) 

where 1  and 2  are exponential smoothing parameters with 10 1   and 2 10     and the 

initial value is a constant, 0 .E u  The upper control limit (UCL) and Lower control limit (LCL) of 

the extended EWMA control chart are given by 

2 2
1 2 1 2 1 2

0 2
1 2 1 2

2 (1 )
,

2( ) ( )
UCL L

     
 

   

   
 

  
                                        (6) 
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1 2 1 2 1 2
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,
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                                        (7) 

where 0  is the target mean,   is the process standard deviation and L  is suitable control limit 

width. The stopping time of the EEWMA control chart is given by 

inf{ 0 : }, ,b tt E b b u                                                          (8) 
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where b  is the stopping time, b  is UCL.  

 

3. Explicit formulas of ARL on the EEWMA control chart of AR(1) 

Let ( )L u  denote the ARL for the first-order autoregressive process, to define function ( )L u  as 

 ( ) ( ) ,bARL L u E T                   (9) 

where E  is the expectation. The first-order autoregressive process denoted by AR(1) can be 

described by 

 1 1 ,t t tX X                    (10) 

where   is a constant and autoregressive coefficient 1( 1 1),    t  is the error term of time t  and 

assumed to be a white noise process with exponential distribution, ( ).t Exp   The probability 

density function of t  is given by 
1

( ) .

x

f x e 




  

Let ( )L u  denote the ARL for AR(1) process, the EEWMA statistics tE  can be written as 

1 2 0 1 1 2 0 1 1(1 ) ( ) ,t tE Z X              

where 10 1,   2 10     and the initial value 0 ,E u 0 .X v  Thus, the EEWMA statistics 1E  

can be written as 

1 2 1 1 2 1 1(1 ) ( )t tE u v              

If 0,t  0LCL   and ,UCL b  respectively. Then 

1 2 1 1 2 1 1 10 (1 ) ( ) .u v b               

Let ( )L u denote the ARL on the EEWMA control chart. The function ( )L u  can be derived by 

Fredholm integral equation of the second kind, ( )L u  is defined as follows 

 1 1 1( ) 1 ( ) ( ) .L u L Z f d                  (11) 

Consequently, the function ( )L u  is obtained as follows 

1 2 1 1 1 2 1 1 1 1( ) 1 (1 ) ( ) ) ( ) .L u L u v y f y dy              

Changing the integration variable, the function ( )L u  is given by 

1 2 1 1 2

1 10

(1 ) ( )1
( ) 1 ( ) .

b
y u v

L u L y f dy
    


 

     
   

 
                         (12) 

The ( )L u is Fredholm integral equation of the second kind. If ( )t Exp  , then  

1 2 1 1 2

1 1

(1 ) ( )

1 0
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u vyb
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                      (13) 

Suppose that ( )G u  by given by 

1 2 1 1 2

1

(1 ) ( )

( )

u v

G u e

     

  

   


  and 1

0

( ) .

yb

d L y e dy 
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10
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G y

d d e dy 

 

 
    

 
  solving the constant ,d   
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Finally, substituting constant d  in (13), then 

 

 

1 2

1 1

1 1 2 1 2

1 1

(1 )

1 2

( ) ( )

1 2

( ) ( 1)
( ) 1 .

( ) 1

u b

v b

e e
L u

e e

 

 

    

  

 

 

 


   
   
  

  
 

  

             (14) 

As mentioned above, the value of the parameter   is equal to 0  when the process is “in-control”.  

Therefore, substituting 0   in (14) give the explicit formulas of the 0ARL  for the first-order 

autoregressive process on the EEWMA control chart can be defined as: 

 
 1 2

1 0 1 0

1 1 2 1 2

1 0 0 1 0

(1 )

1 2
0 ( ) ( )

1 2

( ) 1
1 .
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             (15) 

The explicit formulas of 1ARL  can be obtained in a similar manner. When the process is “out-

of-control”, the value of parameter ,  substituting 1   in (14) give the explicit formulas of 1ARL  

for the first-order autoregressive process on the EEWMA control chart can be defined as: 

 
 

1 2

1 1 1 1

1 1 2 1 2

1 1 1 1 1

(1 )

1 2
1 ( ) ( )

1 2

( ) 1
1 .

( ) 1

u b

v b

e e
ARL

e e

 

  

     

    

 

 

 


   
   
  

  
 

  

                              (16) 

The performance of control chart is measured by the ARL. The 0ARL  is defined as the expected 

of false alarm time ( )  before an in-control process is taken to signal to be out of control. A sufficient 

large in-control 0ARL  is desired. When the process is out-of-control, the performance of control chart 

is usually used as 1ARL .  It is the expected number of observations taken from out-of-control process 

until the control chart signals that the process is out-of-control. Ideally, 1ARL  should be small.  

As mentioned above, the explicit formulas of 1ARL  on the EEWMA control chart should be less 

than the explicit formulas of 1ARL  on the EWMA control chart (Suriyakat et al. 2012). 

 

4. Existence and Uniqueness of ARL 

The solution of ARL shows that there uniquely exists the integral equation for explicit formulas 

by the Banach’s fixed-point theorem. In this research, let T  be an operation in the class of all 

continuous functions defined by 

1 2 1 1 2

1 10

(1 ) ( )1
( ( )) 1 ( ) .

b
y u v

T L u L y f dy
    


 

     
   

 
                             (17) 
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According to Banach’s fixed-point theorem, if an operator T  is a contraction, and then the fixed-

point equation ( ( )) ( )T L u L u  has a unique solution (Supharakonsakun et al. 2020). To show that 

(17) exists and has a unique solution, theorem can be used Banach fixed-point Theorem. The Banach 

fixed-point theorem is also called the contraction mapping theorem, appeared in explicit form in 

Banach’ thesis in 1922 (Banach 1922). It is in general use to establish the existence of a solution to an 

integral equation. Since then, because of its simplicity and usefulness, it has become a very popular 

tool in solving existence problems in many branches of mathematical (Jleli and Samet 2014). The 

details are as follows below. 

 

Theorem 1 (Banach fixed-point) Let ( , )X d be a complete metric space and :T X X  be a 

contraction mapping with contraction constant 0 1r   such that 1 2 1 2( ) ( ) ,T L T L r L L  

1 2, .L L X   Then there exists a unique ( )L X   such that ( ( )) ( ),T L u L u  i.e., a unique fixed-point 

in X  (Sofonea et al. 2005). 

 

Proof: To show that T  defined in (17) is a contraction mapping for 1 2, [0, ],L L G b  such that

1 2 1 2( ) ( ) ,T L T L r L L    1 2, [0, ]L L G b   with 0 1r   under the norm 
[0, ]

sup ( ) .
u b

L L u




  

From (13) and (17), 
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where 
1 2 1 1 2

1 1

(1 ) ( )

[0, ]

sup 1 ,

u v b

u b

r e e

     

    

   
 



   0 1.r   Therefore, the existence and the uniqueness 

of the solution are guaranteed by Banach’s fixed-point theorem. 

 

5. Numerical Integral Equation Method of ARL for the EEWMA Control Chart of AR(1) 

From a Fredholm integral equation of the second kind in (12) is given as 

1 2 1 1 2

1 10

(1 ) ( )1
( ) 1 ( ) .

b
y u v

L u L y f dy
    


 

     
   

 
  

It cannot be solved analytically for ( )L u  and it is necessary to use numerical methods to solve 

them. A quadrature rule is used to approximate the integral by a finite sum of areas of rectangles with 

base b m  and heights chosen as the values of ( )jf a  at the midpoints of intervals of length beginning 

at zero. Specifically, once the choice of a quadrature rule is made, the interval [0, ]b  is divided into 

1 20 ... ma a a b      with a set of constant weights 0.jw b m    

The approximation for an integral is evaluated by the quadrature rule as follows 
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10

( ) ( ) ( ).
b m

j j
j

L y f y dy w f a


                                                (16) 

Let ( )iL a  be a numerical approximation to the integral equation which can be found as the 

solution of linear equations as follows 

1 2 1 1 2

1 11

(1 ) ( )1
( ) 1 ( ) , 1,2,..., .

m
j i

i j j

j

a a v
L a w L a f i m

    


 


     
     

 
        (17) 

The system of m linear equation is showed as 

1 1 11m m m m mL R L      or  1 1( ) 1m m m m mI R L     or 1
1 1( ) 1 .m m m m mL I R 

     

If the inverse 1( )m m mI R 
  exists, then a unique solution of equation is 

1
1 1( ) 1 .m m m m mL I R 

     

where 

1

2
1

( )

( )
,

( )

m

m

L a

L a
L

L a



 
 
 
 
 
  








 (1,1,...,1)mI diag  and 
1

1

1
1 .

1

m

 
 
 
 
 
  


 

Let m mR   be a matrix, the definition of the m  to thm  element of the matrix R  is given by 

1 2 1 1 2

1 1

(1 ) ( )1
.

j i
ij j

a a v
R w f

    


 

     
       

 
 

Finally, substituting, ia  by u  in ( ).iL a  

Therefore, the approximation of ARL is evaluated by the numerical integral equation (NIE) 

method for the function ( )L u  is as follows 

1 2 1 1 2

11 1

(1 ) ( )1
( ) 1 ( ) ,

m
j

j j
j

a u v
L u w L a f

    


 

     
   

 
                     (18) 

where 
1

2
j

b
a j

m

 
  

 
 and , 1,2,..., .j

b
w j m

m
   

 

6.    Numerical Results 

In this section, the ARL was approximated by NIE method using the Gauss-Legendre quadrature 

rule on the EEWMA control chart with 500 nodes (see Areepong and Sukparungsee 2015, Petcharat 

et al. 2015, Phanyaem 2017). The absolute percentage difference to measure the accuracy of ARL is 

defined as: 

( ) ( )
(%) 100,

( )

L u L u
Diff

L u


 



                                               (19) 

where ( )L u  is explicit formulas and ( )L u  is approximation of ARL using NIE method. The numerical 

results are computed by Mathematica. The explicit formulas of ARL (15), (16) and NIE method (18) 

on the EEWMA control chart for the first-order autoregressive process when given 0ARL = 370, 1 = 

0.05, 0.10, 2 =0.04 and 1 = 0.1,−0.1, 0.2, −0.2. The ‘in-control’ process had parameter value as 

0 1    with shift size ( 0).   On the other hand, the ‘out-of-control’ process was presented with 

parameter values as 1 0 (1 )     with  = 0.01, 0.03, 0.05, 0.07, 0.09, 0.10, 0.30, 0.50, and 1.00, 
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respectively were determined. The results in Tables 1 and 2 show that the ARL values and in 

parentheses ( ) the computation time for calculation. The ARL values derived from explicit formulas 

give results close to those from NIE. The analytical results agree with NIE approximations with an 

absolute percentage difference of less than 41.191 10  and computational times of approximately 2-

4 seconds. The computational time of the explicit formulas is less than one second. 

 

7. Performance comparison of the ARL on the EWMA and EEWMA control charts for AR(1) 

In the section, the numerical comparative results of ARL on the EWMA and the EEWMA control 

charts are investigated. Tables 3 and 4 present the ARL of explicit formulas on the EWMA and 

EEWMA control charts for first-order autoregressive process when 0ARL 370,500,  1, 

1 0.05,0.10,  2 10.04, 0.1, 0.1,0.2, 0.2      which are obtained by the upper control limit (Table 

5). For 0ARL 370,  the results are shown in Table 3 and the details are as follows. 

Under 1 0.05,   shows that the EEWMA control chart reduced the 1ARL  more than the EWMA 

control chart when the shift sizes (=0.01 to 0.03) whereas the large shift size (=0.05 and 1.00), the 

performance of the EEWMA control chart is close to the EWMA control chart both 1 0.1   and 

1 0.1.    Under 1 0.10,   shows that the EEWMA control chart reduced the 1ARL  more than the 

EWMA control chart whereas only the large shift size (=1.00), the performance of the EEWMA 

control chart is close to the EWMA control chart. For 0ARL 500,  the results are shown in Table 4 

and the details are related the results in Table 3. 

As mentioned above, the results indicated that the EEWMA control chart reduced the 1ARL  more 

than the EWMA control chart when detecting shift sizes process. Therefore, the performance of the 

EEWMA control chart is more efficient than the performance of EWMA control chart for all shift 

sizes and exponential smoothing parameters whereas the large shift size (=1.00), the performance of 

the EEWMA control chart is close to the EWMA control chart. 

 

8. Application 

In the section, real data was applied to determine the ARL of explicit formulas on the EEWMA 

and the EWMA control charts for the concentration of 24-hour average of Particulate Matter or PM10 

in terms of 10 microgram per cubic meter (10 3/ )g m  pollutant in the air which is one of the major 

causes of air pollution in Thailand. The concentration of 24-hour average of PM10 pollutant observed 

form February 1st, 2020 to February 29th, 2020. This data is a stationary time series. By looking at the 

autocorrelation function (ACF) and partial autocorrelation function (PACF). The data was analyzed 

and fitted with first-order autoregressive process with the significant of mean and standard deviation 

equals 6.528571 and 3.381196, respectively, and then 0ARL = 370, 500, 1 = 0.05, 0.10, 2 = 0.04. 

Tables 6 and 7 show that the results for the ARL on EEWMA and EWMA control charts for real data 

are in similar agreement to the simulation results in Tables 3 and 4.  

1ARL  on the EEWMA control chart was reduced more sensitively than on the EWMA control 

chart for very small shift sizes whereas on the EWMA control chart, 1ARL  reduction was as sensitive 

as on the EEWMA control chart for large shift sizes and all exponential smoothing parameter values. 

These results indicate that the performance of the EEWMA control chart was more efficient than the 

EWMA control chart for all cases when monitoring and detecting changes in the process mean, as 

illustrated in Figure 1. 
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The concentration of 24-hour average of PM10 is an important indicator of air pollution, which is 

a major environmental problem and a concentration higher than the international standard can greatly 

affect public health. The concentration of 24-hour average of PM10 pollutant analyzed. There are 29 

observations of daily form February 1st, 2020 to February 29th, 2020. The upper and lower control 

limits were established by (2) and (3) for the EWMA control chart and then (6) and (7) for the 

EEWMA control chart. The detection of the process with real data for exponential smoothing 

parameter 0.05  is shown in Figure 2. The results show that the EEWMA control chart detected the 

out-of-control process at the 9th observation whereas the EWMA chart detected it at the 24th 

observation (these observations were plotted above the upper control limit).  

 

9.    Conclusions 

In this study, the results showed the derivation of explicit formulas of the ARL on the EEWMA 

control chart for a first-order autoregressive (AR(1)) process with exponential white noise. The 

accuracy of the solution obtained by deriving explicit formulas for the ARL on an EEWMA chart for 

an AR(1) process was compared to the NIE method as the benchmark. The analytical results agree 

with the NIE approximations with an absolute percentage difference of less than 41.191 10 .  A 

performance comparison of the ARL using explicit formulas on the EEWMA and EWMA control 

charts show that they performed better on the EEWMA control chart for all shift sizes and cases. 

Besides, an exponential smoothing parameter of 0.05 is recommended. Moreover, the ARL 

performances on the EEWMA and EWMA charts were compared using real data on the concentration 

of the 24-hour average of PM10 in the air. The results indicate that the EEWMA chart performed 

better than the EWMA chart for all scenarios. 
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Table 1 Comparison of ARL of the EEWMA control chart for AR(1) using explicit formulas against 

NIE when 1 21, 0.05, 0.04,      and 0ARL 370  

b 1  Shift sizes Explicit NIE (%)Diff  

1.
5

58
1

6
×

10
 -

11
 

0.1 

0.00 370.0023413617 370.0022779640 (2.734) 1.1713×10-5 
0.01 278.4400407776 278.4400524166 (3.312) 4.180×10-6 
0.03 160.4188440586 160.4188575594 (2.688) 8.416×10-6 
0.05 94.52256676494 94.52257068707 (2.813) 4.149×10-6 
0.07 56.94963892038 56.94964924043 (2.719) 1.812×10-5 
0.09 35.09708752734 35.09708130464 (2.703) 1.773×10-5 
0.10 27.79511028281 27.79510949752 (2.954) 2.825×10-6 
0.30 1.464428844114 1.464428863607 (2.549) 1.331×10-6 
0.50 
1.00 

1.023252801222 
1.000169552980 

1.023252797228 (2.891) 
1.000169552951 (2.657) 

3.903×10-7 
2.912×10-9 

2.
10

87
4

×
10

-1
2  

−0.1 

0.00 370.0024023440 370.0022343929 (3.031) 4.539×10-5 
0.01 273.0004290896 273.0001907503 (2.578) 8.730×10-5 
0.03 151.3974185330 151.3976034750 (2.844) 1.222×10-4 
0.05 86.02652619443 86.02663298535 (3.890) 1.241×10-4 
0.07 50.08780630459 50.08781627181 (3.109) 1.990×10-5 
0.09 29.90672934606 29.90671695217 (2.970) 4.144×10-5 
0.10 23.34052438882 23.34049657985 (2.765) 1.191×10-4 
0.30 1.292735646345 1.292735590186 (3.062) 4.344×10-6 
0.50 
1.00 

1.011938372222 
1.000143835187 

1.011938382502 (2.985) 
1.000062375037 (2.874) 

1.016×10-6 
8.145×10-5 

4
.2

35
5



10
-1

1
 

0.2 

0.00 370.0006850042 370.0007084819 (3.531) 6.345×10-6 
0.01 281.1994398816 281.1994378784 (2.516) 7.124 10-7 
0.03 165.1297229815 165.1297123448 (2.688) 6.441 10-6 
0.05 99.08334709714 99.08335012564 (2.672) 3.057 10-6 
0.07 60.73203935142 60.73203689086 (2.938) 4.052 10-6 
0.09 38.03177900107 38.03177694188 (2.986) 5.414 10-6 
0.10 30.34506028706 30.34506138600 (2.829) 3.621 10-6 
0.30 1.584977552377 1.584977513985 (2.860) 2.485 10-6 
0.50 
1.00 

1.032451757441 
1.000279544352 

1.032451755257 (2.985) 
1.000279544370 (2.609) 

2.115 10-7 
1.784 10-9 

7
.7

57
7



10
-1

3
 

−0.2 

0.00 370.0052053728 370.0059955846 (3.172) 2.136 10-4 
0.01 270.3238650623 270.3231506360 (3.891) 2.643 10-4 
0.03 147.0818611628 147.0817559030 (3.875) 7.157 10-5 
0.05 82.07375038550 82.07345992182 (4.046) 3.539 10-4 
0.07 46.97980745368 46.97972168631 (3.094) 1.826 10-4 
0.09 27.61601576727 27.61607467871 (4.640) 2.133 10-4 
0.10 21.39937463998 21.39933075146 (3.172) 2.051 10-4 
0.30 1.232411285532 1.232411783310 (3.984) 4.039 10-5 
0.50 
1.00 

1.008554324283 
1.000037832677 

1.008554311999 (3.156) 
1.000037832758 (3.453) 

1.218 10-6 
8.103 10-9 

The values in parentheses are the computation time in numerical integration methods (seconds). 
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Table 2 Comparison of ARL of the EEWMA control chart for AR(1) using explicit formulas against 

NIE when 1 21, 0.10, 0.04,      and 0 370ARL   

b 1  Shift sizes Explicit NIE (%)Diff  

5
.4

2
68



10
 -

5  

0.1 

0.00 370.0066203326 370.0066203326 (2.203) 7.989 10 -13 
0.01 320.4876367969 320.4876367969 (2.249) 1.499 10 -11 
0.03 242.4908534499 242.4908534499 (2.297) 1.814 10 -11 
0.05 185.4661106391 185.4661106391 (2.203) 9.164 10 -12 
0.07 143.3098777147 143.3098777147 (2.171) 5.573 10 -12 
0.09 111.8181680205 111.8181680205 (2.297) 2.682 10 -12 
0.10 99.11812076701 99.11812076701 (2.594) 1.520 10 -12 
0.30 13.61926715886 13.61926715886 (2.219) 1.248 10 -11 
0.50 
1.00 

3.756376503662 
1.220851083454 

3.756376503662 (2.360) 
1.220851083454 (2.360) 

4.256 10 -12 
3.274 10 -12 

7.
3

42
6



10
 -

6  

-0.1 

0.00 370.0014297063 370.0014297063 (2.233) 1.730 10 -11 
0.01 314.0403047463 314.0403047462 (2.219) 3.057 10 -11 
0.03 228.4826158938 228.4826158937 (2.204) 3.020 10 -11 
0.05 168.3416197999 168.3416197999 (2.437) 2.318 10 -11 
0.07 125.5206391243 125.5206391243 (2.375) 5.020 10 -11 
0.09 94.66215092741 94.66215092743 (2.187) 2.494 10 -11 
0.10 82.54496894955 82.54496894959 (2.250) 4.714 10 -11 
0.30 8.926815304909 8.926815304904 (2.437) 5.779 10 -11 
0.50 
1.00 

2.411454610704 
1.081133419333 

2.411454610704 (2.281) 
1.081133419333 (2.438) 

1.328 10 -11 
4.642 10 -12 

1.
4

75
81



10
 -

4  

0.2 

0.00 370.0024187541 370.0024187540 (2.953) 3.865 10 -11 
0.01 323.7574272230 323.7574272229 (2.656) 4.077 10 -11 
0.03 249.8214192146 249.8214192145 (3.780) 3.883 10 -11 
0.05 194.6899697138 194.6899697138 (2.969) 3.236 10 -11 
0.07 153.1576527480 153.1576527479 (2.719) 3.199 10 -11 
0.09 121.5662768719 121.5662768718 (2.782) 2.879 10 -11 
0.10 108.6543731987 108.6543731987 (2.749) 2.669 10 -11 
0.30 16.93403104606 16.93403104606 (2.875) 1. 653 10 -11 
0.50 
1.00 

4.855333862877 
1.364673834134 

4.855333862876 (2.687) 
1.364673834134 (2.735) 

1.277 10 -11 
1.464 10 -12 

2.
7

01
14



10
 -

6  

-0.2 

0.00 370.0027468348 370.0027468345 (2.375) 6.621 10 -11 
0.01 310.8704655454 310.8704655449 (2.251) 1.451 10 -10 
0.03 221.7962911027 221.7962911025 (2.360) 9.198 10 -11 
0.05 160.3995932946 160.3995932945 (2.188) 4.612 10 -11 
0.07 117.4948858085 117.4948858083 (2.453) 1.141 10 -10 
0.09 87.12448406709 87.12448406718 (2.188) 1.087 10 -10 
0.10 75.35645166739 75.35645166728 (2.234) 1.392 10 -10 
0.30 7.285835957278 7.285835957267 (2.297) 1.504 10 -10 
0.50 
1.00 

2.010580050905 
1.049195252943 

2.010580050903 (2.078) 
1.049195252943 (2.343) 

9.253 10 -11 
6.666 10 -12 

The values in parentheses are the computation time in numerical integration methods (seconds). 
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Table 3 Comparison of ARL of the EWMA and EEWMA control charts for AR(1) using explicit 

formulas when 1  , 1 = 0.05, 0.10, 2 =0.04, 1 = 0.1, −0.1  and 0 370,500ARL   

1  1    
0 370ARL   0 500ARL   

EWMA EEWMA EWMA EEWMA 

0.05 

0.1 

0.00 370.002 370.002 500.002 500.002 

0.01 303.697 278.440 410.337 376.182 

0.03 206.994 160.419 279.565 216.582 

0.05 143.202 94.523 193.300 127.471 

0.07 100.499 56.950 135.553 76.661 

0.09 71.514 35.097 96.357 47.109 

0.10 60.634 27.795 81.643 37.235 

0.30 4.539 1.464 5.786 1.628 

0.50 

1.00 

1.437 

1.014 

1.023 

1.000 

1.591 

1.019 

1.031 

1.000 

−0.1 

0.00 370.005 370.002 500.002 500.002 

0.01 297.765 273.000 402.312 368.826 

0.03 195.339 151.397 263.802 204.383 

0.05 130.285 86.027 175.831 115.981 

0.07 88.297 50.088 119.051 67.382 

0.09 60.781 29.907 81.841 40.091 

0.10 50.720 23.341 68.236 31.211 

0.30 3.231 1.293 4.016 1.396 

0.50 

1.00 

1.224 

1.005 

1.012 

1.000 

1.303 

1.007 

1.016 

1.000 

0.10 

0.1 

0.00 370.001 370.007 500.006 500.001 

0.01 335.120 320.488 452.795 432.814 

0.03 276.448 242.491 373.393 327.090 

0.05 229.671 185.466 310.100 249.885 

0.07 192.095 143.310 259.266 192.870 

0.09 161.695 111.818 218.145 150.317 

0.10 148.689 99.118 200.556 133.167 

0.30 36.374 13.619 48.737 17.941 

0.50 

1.00 

13.150 

3.0253 

3.756 

1.221 

17.382 

3.727 

4.696 

1.296 

−0.1 

0.00 370.003 370.001 500.004 500.003 

0.01 328.221 314.040 443.297 424.022 

0.03 260.074 228.483 350.883 308.019 

0.05 207.901 168.342 280.205 226.613 

0.07 167.588 125.521 225.645 168.732 

0.09 136.168 94.662 183.156 127.070 

0.10 123.092 82.545 165.484 110.723 

0.30 22.920 8.927 30.411 11.629 

0.50 

1.00 

7.111 

1.728 

2.411 

1.081 

9.182 

1.973 

2.891 

1.109  
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Table 4 Comparison of ARL of the EWMA and EEWMA control charts for AR(1) using explicit 

formulas when 1,  1 = 0.05, 0.10, 2 =0.04 , 1 = 0.2, −0.2 and 0 370,500ARL   

1  1    
0 370ARL   0 500ARL   

EWMA EEWMA EWMA EEWMA 

0.05 

0.2 

0.00 370.009 370.001 500.002 500.003 

0.01 306.715 281.199 414.411 379.916 

0.03 213.086 165.130 287.798 222.954 

0.05 150.140 99.083 202.679 133.639 

0.07 107.228 60.732 144.650 81.776 

0.09 77.585 38.032 104.564 51.078 

0.10 66.310 30.345 89.317 40.684 

0.30 5.458 1.585 7.028 1.791 

0.50 

1.00 

1.610 

1.023 

1.032 

1.000 

1.825 

1.031 

1.044 

1.000 

−0.2 

0.00 370.001 370.005 500.007 500.001 

0.01 294.837 270.324 398.362 365.202 

0.03 189.758 147.082 256.260 198.544 

0.05 124.272 82.074 167.702 110.634 

0.07 82.768 46.980 111.577 63.178 

0.09 56.043 27.616 75.435 36.992 

0.10 46.399 21.399 62.394 28.586 

0.30 2.771 1.232 3.395 1.314 

0.50 

1.00 

1.161 

1.003 

1.009 

1.000 

1.217 

1.004 

1.012 

1.000 

0.10 

0.2 

0.00 370.003 370.002 500.001 500.005 

0.01 338.733 323.757 457.813 437.286 

0.03 285.296 249.821 385.693 337.088 

0.05 241.796 194.690 326.958 262.443 

0.07 206.146 153.158 278.801 206.258 

0.09 176.741 121.566 239.065 163.553 

0.10 163.981 108.654 221.817 146.108 

0.30 46.381 16.934 62.643 22.410 

0.50 

1.00 

18.392 

4.457 

4.855 

1.365 

24.661 

5.711 

6.173 

1.489 

−0.2 

0.00 370.004 370.003 500.006 500.004 

0.01 324.851 310.870 438.675 419.696 

0.03 252.325 221.796 340.273 298.921 

0.05 197.905 160.400 266.542 215.830 

0.07 156.657 117.495 210.727 157.855 

0.09 125.094 87.124 168.065 116.871 

0.10 112.135 75.356 150.564 101.003 

0.30 18.319 7.286 24.200 9.426 

0.50 

1.00 

5.357 

1.440 

2.011 

1.049 

6.825 

1.587 

2.353 

1.066  
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Table 5 Upper control limit of EWMA and EEWMA control charts using explicit formulas 

 0 370ARL   0 500ARL   

1  1  
EWMA 

h 

EEWMA 

b 

EWMA 

h 

EEWMA 

b 

 

0.05 

0.1 1.03372 10 -7 1.55816 10 -11 1.3979 10 -7 2.1071 10 -11 

−0.1 1.399 10 -8 2.10874 10 -12 1.89185 10 -8 2.85165 10 -12 

0.2 2.81 10 -7 4.2355 10 -11 3.7999 10 -7 5.7277 10 -11 

−0.2 5.14657 10 -9 7.7577 10 -13 6.9598 10 -9 1.04906 10 -12 

 

0.10 

0.1 4.4492 10 -3 5.4268 10 -5 5.9664 10 -3 7.2634 10 -5 

−0.1 5.9113 10 -4 7.3426 10 -6 7.8801 10 -4 9.827 10 -6 

0.2 1.25676 10 -2 1.47581 10 -4 1.70753 10 -2 1.9756 10 -4 

−0.2 1.27075 10 -4 2.70114 10 -6 2.8921 10 -4 3.61505 10 -6 

 

Table 6 Comparison of ARL of the EWMA and EEWMA control charts for AR(1) using explicit 

formulas when 2 = 0.04 , =1.189693, 1 = 0.632661, 0ARL = 370, and 0 = 0.532714 

  

1 0.05   1 0.10   

EWMA 

h = 0.012769 

EEWMA 

b = 0.000315005 

EWMA 

h = 0.2068145 

EEWMA 

b = 0.0356301 

0.00 370.005 370.006 370.001 370.002 

0.01 337.969 324.912 313.865 286.752 

0.03 283.413 252.537 236.116 190.843 

0.05 239.204 198.265 185.295 137.954 

0.07 203.129 157.136 149.839 104.957 

0.09 173.498 125.656 123.933 82.717 

0.10 160.679 112.727 113.490 74.184 

0.30 44.158 18.751 33.114 17.169 

0.50 

1.00 

17.207 

4.126 

5.552 

1.476 

15.686 

5.429 

7.388 

2.539 

 

Table 7 Comparison of ARL of the EWMA and EEWMA control charts for AR(1) using explicit 

formulas when 2 = 0.04,  = 1.189693, 1 = 0.632661, 0ARL = 500, and 0 = 0.532714 

  

1 0.05   1 0.10   

EWMA 

h = 0.01681 

EEWMA 

b = 0.00041388 

EWMA 

h = 0.2112752 

EEWMA 

b = 0.0367438 

0.00 500.004 500.006 500.001 500.006 
0.01 456.506 438.416 407.489 365.084 
0.03 382.475 339.830 290.484 227.551 
0.05 322.532 266.144 220.223 158.771 
0.07 273.656 210.459 173.853 118.149 
0.09 233.538 167.945 141.271 91.712 
0.10 216.192 150.514 128.437 81.765 
0.30 58.882 24.536 35.267 18.083 
0.50 
1.00 

22.667 
5.159 

7.013 
1.627 

16.409 
5.584 

7.679 
2.596 
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         Exponential smoothing parameter 0.05        Exponential smoothing parameter 0.10   

(a)                                                                              (b) 

 

                  Exponential smoothing parameter 0.05      Exponential smoothing parameter 0.10   

(c)                                                                        (d) 

Figure 1 The ARL on the EWMA and EEWMA control charts with real data: (a) 0.05   and 

(b) 0.10   for 0ARL = 370, (c) 0.05   and (d) 0.10   for 0ARL = 500 

 
(a)                                                               (b) 

Figure 2 The detection of the process with real data for exponential smoothing parameter 0.05  : 
(a) the EWMA control chart and (b) the EEWMA control chart 
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