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Abstract 

In this research, a class of nonlinear split plot design model where the mean function of the split-

plot model is not linearizable is presented. This was done by fitting intrinsically nonlinear split-plot 

design (SPD) models using Weibull function. The fitted model parameters were estimated using 

ordinary least square (OLS) and estimated generalized least square (EGLS) techniques based on 

Gauss-Newton with Taylor series expansion by minimizing their respective objective functions. The 

variance components for the whole plot and subplot random effects are estimated using maximum 

likelihood estimation (MLE) and restricted maximum likelihood estimation (REML) techniques. The 

adequacy of the fitted intrinsically nonlinear SPD model was tested using four median adequacy 

measures namely resistant coefficient of determination, resistant prediction coefficient of 

determination, resistant modeling efficiency statistic and median square error prediction statistic 

based on the residuals of the fitted models which are influenced by the two parameter estimation 

techniques being applied, that is, the OLS and EGLS. Akaike’s information criteria (AIC), Corrected 

Akaike’s information criteria (AICC) and Bayesian information criteria (BIC) statistics were used to 

select the best parameter estimation technique. The results obtained showed that the Weibull SPD 

model is adequate and a good fit based on OLS but of less reliability and stability when the standard 

errors of the parameter estimates were compared to EGLS-MLE and EGLS-REML parameter 

estimates standard errors. 

______________________________ 

Keywords:  Weibull function, intrinsically nonlinear, split-plot design, maximum likelihood estimation, 

restricted maximum likelihood estimation, median adequacy measures, information criteria. 

 

1. Introduction 

 Split-plot design (SPD) of experiment has since been used in all aspect of agricultural 

experiments as introduced by Sir R.A. Fishers in 1925 and in the industry too as a linear model (Myers 

et al. 2009, Jones and Nachtcheim 2009, Lu et al. 2011, Lu et al. 2012, Lu et al. 2012, Jones and Goos 

2012, Lu and Anderson-Cook 2014, Anderson and Whitcomb 2014, Lu et al. 2014, Anderson 2016, 

Kulahci and Menon 2017, Gao et al. 2017). However, intrinsically nonlinear SPD (NSPD) modeling 

has received little attention. This class of model has parameters that are not linearizable. Since the 
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SPD has two sources of random variations, that is, the WPE and SPE traditional nonlinear regression 

will not be suitable because it cannot handle more than one random error variation. If wrongly used 

the single mean square error (MSE) produced will be a compromise between the WPE and SPE 

variances (Gumpertz and Rawlings 1992, Knezevic et al. 2002, Blankenship et al. 2003). Gumpertz 

and Rawlings (1992) fitted and estimated the parameters of a Weibull unbalanced SPD of experiment 

for the effect of ozone (O3) exposure (WP treatment I) on soybean yield at two watering regimes (WP 

treatment II) on thirty chambers arranged in three randomized blocks (each block has 10 chambers). 

Two cultivars (SP treatments) are within each chamber were the soybean are grown. Knezevic et al. 

(2002) and Blankenship et al. (2003) modelled the WP and SP effect of three nitrogen rates on 

“critical period for weed control” (CPWC) in corn yield using logistic and Gompertz functions. 

Theoretical presentation on intrinsically nonlinear SPD modelling has been given by Gumpertz and 

Pantula (1992), David et al. (2018) and David et al. (2019).  

 In this research, an intrinsically nonlinear balanced SPD modeling is presented. The WP and SP 

are modeled using a three parameter Weibull function with fixed block effect. The variance 

covariance matrix, V  is estimated using maximum likelihood estimation (MLE) technique and 

restricted maximum likelihood estimation (REML) technique for estimated generalized least square 

(EGLS) where their results will be compared to ordinary least square (OLS) estimates of the fitted 

model. All fitted models are assessed for goodness of fit using median adequacy measures (MAM) 

by David et al. (2016) and information criteria.  

 

2. Methodology 

In this section, we present the NSPD models and a theoretical frame work for estimating the 

parameters of the models using an iterative Gauss-Newton procedure with Taylor series expansion. 

The NSPD model which has WPE and SPE are special case of nonlinear model with random effects 

(also called nonlinear model with V that is, WPE and SPE). The formulated model and assumptions 

are given as follows. Let 

 ( )ijk i j ij k jk ijkY w              (1)  

be the linear SPD model with two factors A  and .B  The corresponding NSPD model is given as 

follows. 

 ( , ) ,ijk ijk ij ijky f x w      (2)  

where, ijky  is the response variable; i = 1,..., s  replicates (Reps) or block;  j = 1, ..., a levels of the 

WP factor ;A  1,...,k b  levels of the SP factor ;B  ijw  is the WP error and ijk  is the SP error; 

( , )ijkf x   is the nonlinear function for the mean describing the relationship of fixed main and 

interaction effects to the response .ijky  The parameters Reps, A and B are assumed fixed. 

Assumption 1: It is presumed that the WPE and SPE are random effects. Also, it is assumed that 
. . .

2(0, )~ WP

i i d

ijw N   and 
. . .

2(0, ).~ SP

i i d

ijk N   

Assumption 2: Let ̂   be the model parameter estimate of   which follows an asymptotic 

normal distribution with mean   and variance 2 1( ) , F F  where F  is the n u  matrix with elements 

  ijkf x ,     where the columns, u  of the matrix is a full rank.  
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Assumption 3: If the number of parameters in the mean function, ( , )ijkf x   is p  and the number 

of random effects is ,r  then the number of measurements in the data set, ,n  must be at least 1p r   

in order to estimate all of the parameters. This implies that 1.n p r    

 

3. Split-Plot Model with Weibull Function as the Mean Curve 

 The mean curve, ( , )ijkf x   in (2) is substituted with the Weibull function. The Weibull function 

used for this research is a three-parameter function. Let ( , )ijkf x   be a Weibull function. Therefore, 

  1( , ) exp ,ijk ijk ijkf x x


     
  

                            (3) 

where ijk  is the asymptote and it is tailored as ( )ijk i j k jkRep A B AB .       Hence, (3) can be 

rewritten as follows 

  1( , ) ( )ijk i j k jk ijkf x Rep A B AB exp x .


             
            (4) 

The SPD model with the Weibull function as the mean curve is therefore given as follows 

  1( ) exp ,ijk i j k jk ijk ij ijky Rep A B AB x w


               
            (5) 

where   is the average yield at zero rate or dose, iRep  is the thi  replicate or block, jA  is the effect 

of the thj  levels of factor ,A  kB  is the effect of the thk  levels of factor ,B  ( ) jkAB  is the thj  and 

thk  levels interaction effect of the factors A  and ,B  respectively, ijkx  is the mean covariate effect 

in the thi  replicate at the thj  factor A  and thk  factor ,B    and    are the Weibull scale and shape 

parameters respectively, ijw  is the WP error and ijk  is SP error. 

 

4. Method of Estimated Generalized Least Square (EGLS) 

 When the covariance matrix of y  is known then the GLS estimator, GLS
ˆ ,  is found by 

minimizing the objective function (Gumpertz and Rawlings 1992, David et al. 2019) 

    1( , ) ( , )
t

y f X y f X  V               (6) 

with respect to ,  where V  is a known positive definite (non-singular) covariance matrix which 

arises from the model 

  = ( , ) ,ijk ijk ij ijky f x w                 (7) 

where ( ) 0,ijE w   2
N( ) ,ij wCov w  I ( ) 0,ijkE    and 2

N( ) .ijkCov   I  Let the V  matrix of the 

observations var( )y  be written as 

V = 2 2 2
N NI I .w     I  

By Cholesky decomposition, multiply model (7) by 1J  on both sides yield that 

 1 1 1 1J  J ( , )  J ( )  J ( ).ijk ijk ij ijky f x w                     (8) 

Let 1 t = T  = JJI  then the Cholesky factorization of the error variance is as follows: 

           

 

1 t 1 t 1 t 1 t

1 2 t 2 1 t t 2

J J J J J J J J

J J J JJ J .

ijk ij ijk ij ijk ijCov Cov w Cov Cov w Cov Cov w  

  

       

   

          

  I I
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Define 1 =  J ,ijk ijkyT  1( , ) = J ( , )ijk ijkx f x M  and 1 1 = J ( )  J ( ).ijk ij ijkw     Then (8) 

becomes 

  = ( , ) + ,ijk ijk ijkx   T M               (9) 

where ( ) = 0 ijkE  and 2( ) = .ijk V I  Thus, the GLS model has been transformed to an OLS model. 

Hence, model (9) is to be solved using the OLS technique as follows. Taking the summation of both 

sides of (9) and squaring we have   

 
2

2 ( , ) ,T M
s a b s a b

ijk ijk ijk

i j k i j k

x                   (10) 

Let 
2

2( *) = ( , ) ,T M
s a b s a b

ijk ijk ijk

i j k i j k

L x         minimize ( )L *  w.r.t. ,*  equate to 

zero and divide through by –2, we have 

 
*

*

* *
ˆ

( , )( )
( , ) 0.

M
T M

s a b
ijk

ijk ijk

i j kh h

xL
x

 




   





 
         
           (11) 

At this point, (11) has no closed form hence will be solved iteratively using the Gauss-Newton 

method with Taylor series expansion of ( , )M ijkx    at first order. Therefore, we have  

0 0

0 1 10 2 20

1 2

( , ) ( , )
( , ) ( , ) ( ) ( )

M M
M M

* * * *

* *
ijk ijk* * * * * *

ijk ijk * *

x x
x x ...

   

 
     

 
 

 
     

 
 

 
0

0

( , )
( )

M

* *

*
ijk* *

h h *
h

x
.

 


 





 



  

            (12) 

Let ( , ) ( )*
ijkx   M  and 

0

( , )M

* *

*
ijk

ijkl *
h

x
d

 










 for all N  cases and 0

*     then (12) 

becomes 

 *
0 0( ) ( ) ,D                    (13) 

where 0D  is the N H  derivative matrix with elements  ijkd  at h  iterations and this is equivalent 

to approximating the residuals for the model, that is, ( ) ( )     T  by 

 * *
0 0 0 0 0 0( ) ( ) ( ) ,T TD D z D                             (14)  

where *
0 0( )Tz     and 0

* .     

 To achieve numerical stability of the parameter estimates 0D  is decomposed using QR 

decomposition into the product of an orthogonal matrix and an inverted matrix (Klotz 2006, David et 

al. 2019). A point 1 1 0 0( ) ( )* *̂         should now be closer to y  than *
0( ),   and then move to 

a better parameter value 1 0 0
* *     and perform another iteration by calculating new residuals 

*
1 1z  = ( ),T    a new derivative matrix 0 ,D  and a new increase. This process is reiterated until 

convergence is achieved, that is, until the increment is so small that there is no useful change in the 

elements of the parameter vector (Bates and Watts 1988). A small step in the direction 0  is 

introduced if the new value is not small as expected. A step factor   is introduced such that 

1 0 0
* *     where   is chosen to ensure that the new residual sum of squares is less than the initial 
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estimate. As suggested by Bates and Watts (1988) it is to start with 1   and halve it until it is 

satisfied that the new residual sum of squares is less than the initial estimate. 

 

5. Variance Component Estimation via MLE    

 To estimate ,V  the mean function  ( , ),ijkx M  is first approximated by a Taylor series at first 

order centered at 0 *ˆ .  Therefore, the log-likelihood function is given as 

      11 1
ln ln(2 ) ln ( ,  ) ( , ) ,

2 2 2
Δ V V

tn
L y f X y f X                        (15) 

where  2 2, ,Δ
t

t t
WP SP   

 
 is then approximated by the surface and (15) becomes 

      1
0 0 0 0

1 1
ln ln(2 ) ln ,

2 2 2
Δ V V

tn
L π z D z D                  (16) 

where *
0 0( ) ,z T    *

0 ,   
2

2 2

1

,V I t
i i i

i

I I 


  
2

1 2 -1

1

t
ii i

i





VV V I I  then (16) becomes 

     
1

2 2
2 2

0 0 0 0 0 0

1 1

1 1
ln ln(2 ) ln

2 2 2
Δ I I I I

t
t * t *

i i i i i i

i i

n
L π z D z D     



 

 

 
               

 
   

(17) 

and the gradient is given by partially differentiating (17) w.r.t.    and 2
i  we have   

 
         * 1 1

0 0 0 0 0 0 0*

ln 1

( ) 2

Δ
V V

t t

t

L
z D D z D D  


  


          

               (18) 

and 

  1 12 2
2 2

0 0 0 02 2 1 1
2

1

ln 1 1 1
( ) ( ) ( )

2 2

Δ
I I I I I I I I

I I

t t t t t
i i i i i i i i i i

i i
ti

i i i
i

L
z D z D   

 

 

 



             
    

 

 
1 1

2 2
2 2

0 0 0 02 1 1
2

1

1 1
( ) ( ) ( )

2
I I I I I I I I

I I

t t t t t
i i i i i i i i i i

i i
t

i i i
i

z D z D   


 

 



 
 

             
     

 

 

 
1 1 1

2 2 2
2 2 2

0 0 0 0
1 1 1

1
( ) ( ) ( )

2
I I I I I I I I I I  t t t t t t

i i i i i i i i i i i i i
i i i

tr z D z D    
  

  

                           
 

   1 1 1
0 0 0 0

1
( ) ( ) .

2
I I V V I I Vt t t

i i i itr z D z D                    (19) 

Note that 2 2 2
i WP SP,    in (19) hence 2i   for the two error variance. Multiplying the partial 

derivative first terms of (18) and (19) by the identity, 1VV  and equate to zero, gives the estimating 

equations 

 1
0 0 0( ) 0Vtz D D      

 1
0 0 0( ) 0Vtz D D     

1 1
0 0 0 0 0V Vt tD z D D     

 1 1
0 0 0 0 ,V Vt tD D D z                             (20) 



David Ikwuoche John et al. 425 

and 

 1 1 1
0 0 0 0

1
( ) ( ) ( )  = 0

2
t t t

i i i itr z D z D      I I V V I I V  

  1 1 1
0 0 0 0( ) ( ) ( ) = 0t t t

i i i itr z D z D     I I V V I I V  

   1 1 1 1
0 0 0 0( ) ( ) ( ) = 0t t t

i i i itr z D z D         VV I I V V I I V  

   1 1 1 1
0 0 0 0( )  = ( ) ( )t t t

i i i itr z D z D        VV I I V V I I V  

   2 1 1 1 1
0 0 0 0

0

( )  = ( ) ( )
j

t t t t
i i i i i i i

i

tr z D z D     



     V I I I I V V I I V  

   2 1 1 1 1
0 0 0 0

0

( )  = ( ) ( )
j

t t t t
i i i i i i

i

tr z D z D     



    V I I I I V V I I V  

    1 1 2 1 1
0 0 0 0( ) ( ) .I I V I I V V I I Vt t t t

i i j j i itr z D z D                  (21) 

 

The estimates of ̂   and 2 2 2
WP SP,    are iteratively obtained at st( 1)h   iteration by 

substituting a prior estimate of 2  into (20) to get an updated estimate of ˆ ,  then the updated ̂ 

and prior estimate of 2  are substituted into (21) to obtain updated estimates of the .V  These two 

steps are iterated till convergence is achieved. Therefore, (20) and (21) becomes 
1 * 1

0 ( ) 0 0 0 ( ) 0
ˆ ˆˆ ˆ ˆ ˆ ˆ( ) = ,V Vt t

h hD D D z     

1 1 * 1
0 ( ) 0 0 ( ) 0 0 0 ( ) 0

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ = ,V V Vt t t
h h hD D D D D z      

1 1 * 1
0 ( ) 0 0 ( ) 0 0 0 ( ) 0

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ = ,V V Vt t t
h h hD D D D D z      

 
1

* * 1 1
( 1) 0 0 ( ) 0 0 ( ) 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ = ,V Vt t

h h hD D D z 


 


 
 

            (22) 

and 

       
1

2 1 1 * * 1 1 * *
( ) ( ) 0 0 ( 1) 0 ( ) ( ) 0 0 ( 1) 01

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ   .I I V I I V ( ) V I I V ( )
t

t t t
j j h i i h h h j j h hh

tr z D z D    


   
 

        

(23) 

 When further iteration does not improve the log-likelihood, the solutions to the equations may 

turn out to be negative. In such scenario, the negative value is retuned to zero before the next iteration. 

 

6. Variance Component Estimation via REML 

The REML system does not include ̂   in the estimation of .V  The log-likelihood function is 

based on vectors in the error space, that is, on linear combinations of y  which have expectation to 

be zero rather than y  itself. To obtain these vectors in the error space the linear approximation of the 

residuals is used 0 0z D .    To estimate the V  from the nonlinear functions of y  that will not 

involve ,̂  vectors of the form tK y  are formed whereby K  is chosen so that 0 0tK D   which falls 

in the linear approximation to the error space. Elements of tK y  are called error contrasts (Harville 

1977), that is, the part of the data that is orthogonal to the fixed effects (not dependent on the values 

of the fixed effect estimates), K  is a full rank matrix satisfying 0 0tK D   and applying maximum 

likelihood to ,tK y  the log likelihood function of tK y  is 
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         11 1
ln ln(2 ) ln , , ,
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t
t t t t t t

n
L π K K K y K f X K K K y K f X 


      Θ V V  

 (24) 

where  2 2 = ,
t

t
WP SP Θ  is then approximated by the surface and (24) becomes 
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By matrix algebra on the third and fourth terms of (25) respectively and inserting
2
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Differentiate partially (26) w.r.t. 2
i  and equate to zero. By transformation all other terms in the 

equation becomes zero since 0 ( , ) ( , ) 0.t t tK D K f x Kf x     Hence we have 
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Let 
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     
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 Q V Q V Qt
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Multiply the left hand side of (28) by 1VV  we have  
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The solutions to the equations may turn out to be negative when further iteration does not 

improve the log-likelihood. In such a case, the negative value is changed to zero before the next 

iteration. 

 

7. Median Adequacy Measure (MAM) Statistics 

Four proposed median adequacy measure (MAM) statistics for assessing the adequacy of linear 

SPD models (David et al. 2016) are used for this research to assess the adequacy of the fitted NSPD 

models. The four statistics used are resistant coefficient of determination 2( )rr  proposed by Kvalseth 

(1985), resistant prediction coefficient of determination ( 2Pred rr ), resistant modeling efficiency 

(RMEF) and median square error prediction (MedSEP). Procedures for calculating the WP and SP 

respective models residuals are given by Almimi et al. (2009) and David et al. (2016). These statistics 

are called resistant due to their ability of withstanding outliers or extreme values and not to increase 

or decrease unnecessarily when a variable is added or removed from the original model. The four 

statistics are presented as follows. 

 

8.    Resistant Coefficient of Determination ( 2
rr ) 

The statistic to calculate the WP and SP 
2

rr  values are as follows:   
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            (36) 

where M  is the median of the absolute values from  = 1i  to n  and ie  is the fitted models residuals. 

The statistic (35 and 36) above uses the median instead of the mean in obtaining a coefficient of 

determination value that is highly resistant to outliers as proposed by Kvalseth (1985), 20 1.rr   

However, for nonlinear models the coefficient of determination value can be negative when the fit is 

worse, that is 21 1.rr    

 

9.    Resistant Prediction Coefficient of Determination ( 2Pred  rr ) 

The statistic to calculate the WP and SP, 2Pred rr  values are as follows:   
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where M  is the median of the squared values from  = 1i  to ,n  ie  is the residual, iih  is the hat matrix 

and 21 Pred 1.rr    However, for nonlinear models the prediction coefficient of determination 

value can be negative when the fit is worse, that is 21 Pred 1.rr    

 

10.  Resistant Modeling Efficiency (RMEF) 

The statistic to calculate the WP and SP RMEF values are as follows:   
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where M the median of the absolute is values from  = 1i  to n  and ( , , )i p if X ... X  is the model-

predicted values. In a perfect fit RMEF would result in a value equal to one. The upper bound is one 

and the (theoretical) lower bound is negative infinity ( RMEF 1).    

 

11.  Median Square Error Prediction (MedSEP) 

The statistic to calculate the WP and SP, MedSEP values are as follows: 
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where M is the median of the absolute values from  = 1i  to n  and ( , , )i p if X ... X  is the model-

predicted values. A model with the smallest MedSEP value is termed as more adequate. 

 

12.  Information Criteria Statistics 

In this research, Akaike’s information criteria (AIC), corrected AIC (AICC) and Bayesian 

information criteria (BIC) are used for testing the goodness of fit of the models and to complement 

the results obtained from MAM. The statistic for each criterion is given as follows: 

 ˆAIC 2 ( ) 2 ,f p               (43)  

 
2ˆAICC 2 ( ) ,

1

np
f

n p
 

 
            (44) 

 BIC 2 ( ) log( ),ˆf p s              (45) 

where ( )f   is the negative of the marginal log-likelihood function, ̂  is the vector of parameter 

estimates, p  is the number of parameters, n  is the number of observations and s  is the number of 

subjects.  

 

13. Experimental Data and Analysis Procedure 

The data used for this research is a balanced 31×42 replicated mixed level SP experimental design 

data is used. The WP has two factors which are irrigation and rice varieties. The irrigation was 

administered three different times, 7 days, 14 days and 21 days on four different rice varieties, 
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NERICA 2, NERICA 3, NERICA 4 and NERICA 14. The SP factor is nitrogen fertilizer and it was 

administered at four different rates, 30 kg N ha-1, 60 kg N ha-1, 90 kg N ha-1 and 120 kg N ha-1 on 

each of the four varieties of rice. The aim of the field trial was to determine irrigation effect on the 

yield of rice. The research was conducted by Institute of Agricultural Research, Ahmadu Bello 

University, Zaria, at their experimental field station in Kano State, Nigeria. The procedures for 

analysis are as follows. 

1. Performed a traditional SP experimental design analysis. This was done to see which of the 

effects are significant because only the significant effects will be included for the main nonlinear 

model. Another reason is to avoid unnecessary inclusion of factors in the model and to decrease the 

number of parameter estimates. To achieve this step using SAS software, the Proc Mixed code is 

used. 

2. After identifying the significant effects, a reanalysis is performed to obtain the parameter 

estimates in terms of regression model. The reason is the size of parameters to be estimated will be 

too large for meaningful nonlinear modeling and as well interpretation of results. At this stage, the 

main effects, and their significant interaction effects, the WP and SP V are estimated using the MLE 

and REML methods as implemented in SAS software through Proc Mixed. A total of 11 parameters 

are estimated including the asymptote, scale and shape parameters. These parameter estimates are 

used as initial values for the main NSPD models under study. 

3. The asymptote, shape and scale parameters for each of the nonlinear functions used for 

remodeling the traditional SPD model where estimated using Proc Nlin code in SAS. 

4. The 11 parameter estimates are used as initial estimates for the nonlinear models formulated 

in this research. The SAS Proc Nlmixed code is used at this stage of the research to obtain the results 

for EGLS. While the Proc Nlin code is used for obtaining the OLS results. 

5. The residuals obtained from each fitted NSPD models are used to calculate all four median 

adequacy measures introduced in the research for assessing the adequacy of each fitted models so as 

to identify which model is a better adequate model. 

 

14.  Results 

Tables 1 and 2 below present the analysis of variance tables. Table 1 shows that all main effects 

and two factor interaction effects are significant at 5% significance level since their respective p-

values are all less than 5%. However, the three factor interaction effect is not significant because its 

p-value of 0.1271 is greater than 5% significance level. Based on the outcome of the analysis, the 

three factor interaction effect is removed and a reanalysis is performed. Table 2 presents the reanalysis 

which is a regression SPD analysis results. It was adopted to reduce the large treatments combinations 

from 48 to 11.  

The results shows that all the main effects and interaction effects are significant at 5% 

significance level except for I*V (Irrigation by variety) and V*N (variety by nitrogen) interaction 

effects. This is because I*V and V*N respective p-values are greater than 5%. However, these two 

interaction effects are not dropped for further analysis because their respective main effects (I, V and 

N) are all significant at 5% level of significance. The covariance components estimates for the WP 

and SP are obtained based on this final regression analysis with SP errors. The two methods adopted 

for estimating the covariance components for this research are MLE and REML techniques. Table 3 

presents their respective results.     
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Table 1 A 3×42 split-plot design ANOVA table 

Source DF Sum of Square Mean Square  F Value     Pr > F 

Rep  1   17.1653   17.1653    2.8700    0.1184 

I  2 742.9498 371.4749  62.0800 < 0.0001 

V  3 118.0203   39.3401    6.5700    0.0083 

I*V  6 113.7322   18.9554    3.1700    0.0467 

WP Error 11   65.8245     5.9840   

N  3 198.1499   66.0500  22.0000 < 0.0001 

I*N  6 156.6210   26.1035    8.6900 < 0.0001 

V*N  9 187.8973   20.8775    6.9500 < 0.0001 

I*V*N 18   84.0821     4.6712    1.5600    0.1271 

SP Error 36 108.0991     3.0028     

Total 95 1792.5415    

 

Table 2 A 3×42 regression analysis with split-plot errors ANOVA table 

Source DF Sum of Square Mean Square F Value Pr > F 

Rep 1 412.5178 412.5178 26.96 < 0.0001 

I 1 342.7304 342.7304 22.40 < 0.0001 

V 1 290.5514 290.5514 18.99 < 0.0001 

I*V 1     0.3910 0.391008   0.03    0.8734 

WP Error 1 248.3836 248.3836   

N 1 799.9866 799.9866 52.28 < 0.0001 

I*N 1 407.1343 407.1343 26.61 < 0.0001 

V*N 1  27.3536 27.35356  1.79    0.1847 

SP Error 88      1346.5585 15.30180    

Total 95      3875.607113    

 

Table 3 Covariance parameter estimates 

Parameter MLE REML 
2
  0 0.01648 
2
  16.6140 15.3018 

 

The VC estimates presented in Table 3 above shows that the WP variance estimate for MLE is 

zero which is smaller than the estimates form REML (0.01648). However, for the SP variance 

estimate, the MLE estimate (16.6140) is larger than the estimates from REML (15.3018). 

Table 4 presents the Weibull SPD model parameter estimates, standard errors and p-values from 

the OLS and EGLS via MLE and REML. It is shown in Table 4 that the parameter estimates obtained 

from OLS estimation technique is quite different from the EGLS estimation technique via MLE and 

REML. Also, it can be observed that the EGLS estimates via MLE are very similar to that of REML. 

The OLS produced a smaller mean estimate of 13.8105 compared to the EGLS mean estimates via 

MLE (22.3285) and REML (22.3183). Their respective p-values of 0.8630, 0.0001 and 0.0001 shows 

that the EGLS estimates via MLE and REML are significant at 5% significance level but not 

significant at 5% for the OLS estimate. However, the replicate effect estimates of 0.8458, −1.4140 

and −1.4087 with p-values of 0.1503, 0.3052 and 0.0386 for OLS and EGLS via MLE and REML 

respectively are not significant at 5% significance level except for EGLS via REML estimate which 

has a p-value of 0.0386. It can be seen from Table 4 that variety effect estimates of −0.5767, −0.2242 
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and −0.2378 with p-values of 0.4696, 0.8685 and 0.7748 for OLS and EGLS via MLE and REML 

respectively are not significant at 5% significance level. Also, nitrogen fertilizer effect estimates of 

0.0687, 0.0193 and 0.0197 with p-values of 0.011, 0.7819 and 0.5900 for OLS and EGLS via MLE 

and REML respectively are not significant at 5% significance level except for the OLS estimate 

whose p-value of 0.011 is less than 5%.  

 

Table 4 Weibull split-plot design model parameter estimates 

Parameter OLS 
EGLS  

(MLE) 

EGLS  

(REML) 
Std. Error a Std. Error b Std. Error c p-value a p-value b p-value c 

0  13.8105 22.3285 22.3183 79.8294  3.3316 1.3541   0.8630 <0.0001 <0.0001 

1   0.8458 −1.4140 −1.4087   0.5833 1.3715 0.6718   0.1503   0.3052   0.0386 

2   −0.5767 −0.2242 -0.2378   0.7943 1.3506 0.8290   0.4696   0.8685  0.7748 

3  0.0687  0.0193  0.0197 0.0265  0.0694 0.0364   0.0110   0.7819  0.5900 

4  −0.0439 −0.1057 −0.1046 0.0337 0.0252 0.0243   0.1963 <0.0001 <0.0001 

5  −0.0047 −0.0044 −0.0044 0.0011 0.0017 0.0011 <0.0001   0.0132 <0.0001 

6   0.0159   0.0239   0.0239 0.0078 0.0128 0.0069   0.0428   0.0634   0.0009 

  −45.6810 −19.3449 −19.3722 1087.35 3.6365 1.4363   0.9666 <0.0001 <0.0001 

  21.3869   0.7678    0.7695 1835.19 0.2509 0.0798   0.9907   0.0029 <0.0001 

2
̂  10.9228   3.6297    3.9387 79.8300 5.3432 3.1451   0.8915   0.4986   0.2135 

2
̂  2.8574 19.7562 18.7310   0.2062 21.2235 8.8027 <0.0001   0.3543   0.0359 

Letters a, b and c represents OLS, EGLS (MLE) and EGLS (REML) respectively. Bold values imply significance at 5%. 

 

Looking at the interaction effects (Irrigation×Variety [I*V], Irrigation×Nitrogen [I*N] and 

Variety×Nitrogen [V*N]) parameter estimates, the EGLS via MLE and REML produced similar 

estimates of −0.1057 and −0.1046 respectively for I*V with respective p-values of 0.0001 which 

implies their estimates are significant at 5%. However, the OLS estimate of -0.0439 with a p-value 

of 0.1963 is not significant at 5% significance level. While I*N interaction effect parameter estimates 

of −0.0047, −0.0044 and −0.0044 with p-values of 0.0001, 0.0132 and 0.0001 from OLS and EGLS 

via MLE and REML respectively are all significant at 5% significance level. Similarly, V*N 

interaction effect parameter estimates of 0.0159, 0.0239 and 0.0239 with p-values of 0.0428, 0.0634 

and 0.0009 for OLS and EGLS via MLE and REML are significant at 5% except for EGLS via MLE 

whose p-value of 0.0634 is greater than 5% significance level.     

The OLS estimates for scale parameter,   (–45.681) is smaller compared to the EGLS estimates 

via MLE (–19.3449) and REML (–19.3722). Their respective p-values of 0.9666, 0.0001 and 0.0001 

indicates a significant parameter estimate from EGLS via MLE and REML but the OLS estimate is 

not significant at 5% significance level. Similarly, the shape parameter,   estimates from OLS 

(21.3869) is greater than that of the estimates from EGLS via MLE (0.7678) and REML (0.7695) but 

their individual p-values of 0.9907, 0.0029 and 0.0001 indicates that the EGLS estimates via MLE 

and REML are significant at 5% significance level but the OLS estimate is not significant because its 

p-value is greater than 5% significance level. 

The final whole plot variance component ( 2ˆ
 ) parameter estimate from OLS (10.9228) is larger 

than the EGLS via MLE (3.6297) and REML (3.9387) estimates. However, these estimates are not 

significant because their respective p-values of 0.8915, 0.4986 and 0.2135 are all greater than 5% 

significance level. While the split-plot variance component ( 2ˆ  ) estimate from OLS (2.8574) is 

smaller compared to the EGLS via MLE (19.7562) and REML (18.731) estimates however, their p-

values of 0.0001, 0.3543 and 0.0359 indicates that the OLS and EGLS via REML estimates are 
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significant at 5% significance level but the estimate from EGLS via MLE is not significant since its 

p-value is greater than 5% significance level. Table 4 reveals clearly that the covariance estimate 

from OLS is larger for the WP and smaller for the SP. However, this is not the case for the EGLS via 

MLE and REML where their estimates are smaller for the WP but larger for the SP. 

Generally, the standard errors for each of the estimates from the OLS and EGLS via MLE and 

REML in Table 4 shows that the EGLS via REML produced standard errors that are smaller compared 

to the OLS and EGLS via MLE parameter estimates standard errors. This gives a pre-confirmation 

that the EGLS via REML estimates for the Weibull SPD model are estimated adequately with better 

stability. Hence, the technique is more proficient than the OLS and REML via MLE. The OLS, 

EGLS-MLE and EGLS-REML estimated fitted models for the Weibull SPD model are presented as 

follows: 
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The estimated (OLS and EGLS via MLE and REML) fitted Weibull SPD model adequacy 

measures for the WP and SP sub design models are also presented in Table 5. The results revealed 

that the OLS fitted model for both the WP and SP sub design models are adequately better than the 

EGLS-MLE and EGLS-REML WP and SP sub design models. However, the WP sub design models 

had larger adequacy measure values compared to the SP sub design models for 2 ,rr
2Pred rr  and 

RMEF. While the MedSEP values for the WP sub design models is smaller compared to the SP sub 

design models. Although, all values for the fitted Weibull SPD models show that a large proportion 

of variability is explained in the data, high prediction power, better model efficiency and better error 

prediction strength for the OLS model 

 

Table 5 Median adequacy measures results 

 2
rr  

2Pred rr  RMEF  MedSEP  

 WP SP WP SP WP SP WP SP 

OLS 0.9969727 0.7379945 0.9965739 0.600662 0.996823 0.754624 5.55E-06 0.073296 

MLE 0.9659263 0.3971088 0.9614376 0.081099 0.999227 0.786195 0.000703 0.388096 

REML 0.9691298 0.3938414 0.9650632 0.076119 0.98899 0.760389 0.000577 0.392314 

 

However, Table 6 below presents the goodness of fit results for the fitted models and it showed 

that OLS produced the lowest AIC, AICC and BIC values of 496.0, 499.2 and 524.2 respectively. 

This implies that the OLS estimation technique produces reliable and stable estimates compared to 

EGLS via MLE and EGLS via REML parameters estimates. 

 

Table 6 Model goodness of fit test results 

Method AIC AICC BIC 

OLS 496.0 499.2 524.2 
MLE 597.6 600.8 587.7 

REML 596 599.2 586.1 
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12.  Conclusions 

Based on the research results from the analysis on a balanced 31 x 42 replicated mixed Level SP 

experimental design data, it was observed that the fitted Weibull SPD model is a good fit for the OLS 

estimated model. This is because all the four MAM for assessing the adequacy of the fitted model 

produced larger 2 ,rr
2Pred rr  and RMEF values and smaller MedSEP  values for the WP and SP 

sub models and as well smaller AIC, AICC and BIC values compared to the EGLS-MLE and EGLS-

REML estimated models respectively. Also, all the respective OLS, EGLS-MLE and EGLS-REML 

estimated fitted intrinsically NSPD models for the WP sub models produced better adequacy measure 

values compared to the SP sub models. However, the OLS, EGLS-MLE and EGLS-REML respective 

parameter estimates standard errors showed that some of the OLS parameter estimates may not be 

stable and reliable because of high standard errors compared to EGLS-MLE and EGLS-REML 

parameter estimates standard errors. Also, only four out of the eleven parameter estimates for the 

OLS were significant at 5% significance level compared to EGLS-REML estimated fitted models 

which produced the lowest standard errors with eight out of the eleven parameter estimates significant 

at 5% significance level indicating better stability and reliability. Therefore, it can be concluded that 

despite the OLS fitted model may be adequate and a good fit it may not be stable and reliable for 

prediction.   
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