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Abstract

In this research, a class of nonlinear split plot design model where the mean function of the split-
plot model is not linearizable is presented. This was done by fitting intrinsically nonlinear split-plot
design (SPD) models using Weibull function. The fitted model parameters were estimated using
ordinary least square (OLS) and estimated generalized least square (EGLS) techniques based on
Gauss-Newton with Taylor series expansion by minimizing their respective objective functions. The
variance components for the whole plot and subplot random effects are estimated using maximum
likelihood estimation (MLE) and restricted maximum likelihood estimation (REML) techniques. The
adequacy of the fitted intrinsically nonlinear SPD model was tested using four median adequacy
measures namely resistant coefficient of determination, resistant prediction coefficient of
determination, resistant modeling efficiency statistic and median square error prediction statistic
based on the residuals of the fitted models which are influenced by the two parameter estimation
techniques being applied, that is, the OLS and EGLS. Akaike’s information criteria (AIC), Corrected
Akaike’s information criteria (AICC) and Bayesian information criteria (BIC) statistics were used to
select the best parameter estimation technique. The results obtained showed that the Weibull SPD
model is adequate and a good fit based on OLS but of less reliability and stability when the standard
errors of the parameter estimates were compared to EGLS-MLE and EGLS-REML parameter
estimates standard errors.

Keywords: Weibull function, intrinsically nonlinear, split-plot design, maximum likelihood estimation,
restricted maximum likelihood estimation, median adequacy measures, information criteria.

1. Introduction

Split-plot design (SPD) of experiment has since been used in all aspect of agricultural
experiments as introduced by Sir R.A. Fishers in 1925 and in the industry too as a linear model (Myers
et al. 2009, Jones and Nachtcheim 2009, Lu et al. 2011, Lu et al. 2012, Lu et al. 2012, Jones and Goos
2012, Lu and Anderson-Cook 2014, Anderson and Whitcomb 2014, Lu et al. 2014, Anderson 2016,
Kulahci and Menon 2017, Gao et al. 2017). However, intrinsically nonlinear SPD (NSPD) modeling
has received little attention. This class of model has parameters that are not linearizable. Since the
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SPD has two sources of random variations, that is, the WPE and SPE traditional nonlinear regression
will not be suitable because it cannot handle more than one random error variation. If wrongly used
the single mean square error (MSE) produced will be a compromise between the WPE and SPE
variances (Gumpertz and Rawlings 1992, Knezevic et al. 2002, Blankenship et al. 2003). Gumpertz
and Rawlings (1992) fitted and estimated the parameters of a Weibull unbalanced SPD of experiment
for the effect of ozone (O3) exposure (WP treatment I) on soybean yield at two watering regimes (WP
treatment II) on thirty chambers arranged in three randomized blocks (each block has 10 chambers).
Two cultivars (SP treatments) are within each chamber were the soybean are grown. Knezevic et al.
(2002) and Blankenship et al. (2003) modelled the WP and SP effect of three nitrogen rates on
“critical period for weed control” (CPWC) in corn yield using logistic and Gompertz functions.
Theoretical presentation on intrinsically nonlinear SPD modelling has been given by Gumpertz and
Pantula (1992), David et al. (2018) and David et al. (2019).

In this research, an intrinsically nonlinear balanced SPD modeling is presented. The WP and SP
are modeled using a three parameter Weibull function with fixed block effect. The variance
covariance matrix, V is estimated using maximum likelihood estimation (MLE) technique and
restricted maximum likelihood estimation (REML) technique for estimated generalized least square
(EGLS) where their results will be compared to ordinary least square (OLS) estimates of the fitted
model. All fitted models are assessed for goodness of fit using median adequacy measures (MAM)
by David et al. (2016) and information criteria.

2. Methodology

In this section, we present the NSPD models and a theoretical frame work for estimating the
parameters of the models using an iterative Gauss-Newton procedure with Taylor series expansion.
The NSPD model which has WPE and SPE are special case of nonlinear model with random effects
(also called nonlinear model with V that is, WPE and SPE). The formulated model and assumptions
are given as follows. Let

Y;jk:ﬂ+y[+aj+wij+ﬂk+(aﬂ)jk+g[jk (1
be the linear SPD model with two factors A and B. The corresponding NSPD model is given as
follows.

Vi = F G, 0) +w; +&5, 2)
where, ;. is the response variable; i = 1,..., s replicates (Reps) or block; j =1, ..., a levels of the
WP factor A; k=1,..,b levels of the SP factor B; W} is the WP error and &, is the SP error;
S (x;x,0) is the nonlinear function for the mean describing the relationship of fixed main and
interaction effects to the response y,,. The parameters Reps, A and B are assumed fixed.

Assumption 1: It is presumed that the WPE and SPE are random effects. Also, it is assumed that
W, U N(0,62,) and & N(0,63).
Assumption 2: Let 6 be the model parameter estimate of & which follows an asymptotic

normal distribution with mean @ and variance o*(F'F)~!, where F isthe nxu matrix with elements

(af (xijk,é?) /69') where the columns, u of the matrix is a full rank.
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Assumption 3: If the number of parameters in the mean function, f(x;;,6) is p and the number
of random effects is 7, then the number of measurements in the data set, n, must be at least p + 7 +1

in order to estimate all of the parameters. This implies that n> p +r+1.

3. Split-Plot Model with Weibull Function as the Mean Curve
The mean curve, f(x;,0) in (2) is substituted with the Weibull function. The Weibull function

used for this research is a three-parameter function. Let f(x;,,6) be a Weibull function. Therefore,

S i, 0) = a x exp |:_(xijkw_] )ﬁ } (3)

where a;; is the asymptote and it is tailored as a;; = a + Rep, + 4; + B, +(4B) ;. Hence, (3) can be

rewritten as follows
2
[ G-0) =[ @+ Rep; + A; + By +(4B) jk]exp[—(xé/«ka)_l) } 4
The SPD model with the Weibull function as the mean curve is therefore given as follows

A
Vi =[ @+ Rep, + 4;+ B, +(4B),; ]exl:»[—(x,-jkaf1 ) ] + W+ Ees 5)

where « is the average yield at zero rate or dose, Rep, is the i" replicate or block, 4 ; is the effect
of the j" levels of factor 4, By is the effect of the k™" levels of factor B, (4B), is the ;™ and

k™ levels interaction effect of the factors 4 and B, respectively, x,, is the mean covariate effect

ijk
inthe i" replicate at the ;" factor 4 and k™ factor B, @ and A are the Weibull scale and shape

parameters respectively, w; is the WP error and & is SP error.

4. Method of Estimated Generalized Least Square (EGLS)
When the covariance matrix of y is known then the GLS estimator, éGLS, is found by
minimizing the objective function (Gumpertz and Rawlings 1992, David et al. 2019)
(y-/X.0) V' (y-f(X.0)) (©)
with respect to 6, where V is a known positive definite (non-singular) covariance matrix which

arises from the model

Vi = (i 0) + Wy + &5 (7
where E(w;)=0, Cov(w;)=o0.ly, E(g;)=0, and Cov(g;)=o0;1y. Let the V matrix of the
observations var(y) be written as

V= olly +oly =02l
By Cholesky decomposition, multiply model (7) by J=! on both sides yield that

I = T () + T (W) + T (8). ®)

Let I =T7! =JJt then the Cholesky factorization of the error variance is as follows:

J! [Cov(e,-j,()+ Cov(w,;,- )] = J’lCov(g,-jk )J’t +J’1C0v(wij)J’t =J1J [Cov(gi,-k)+ Cov(m-j )]

= (e)Jt =c2 I =0’L
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Define Ty = J7'y;, My, 0%)=1"f(xu,0) and €y =J"(w;)+ J"(g4). Then (8)
becomes
Ty = M(x,07) + Q. )

where E(Q,)=0 and V(Q;;) = o?1. Thus, the GLS model has been transformed to an OLS model.

Hence, model (9) is to be solved using the OLS technique as follows. Taking the summation of both
sides of (9) and squaring we have

s _a_ b s _a_ b
Y0 =Y ST M. 6], (10)
ik i j k
Let L(6%) =iiZb:Q§k :iii[tjk —M(x,.jk,ﬁ*)]z, minimize L(6*) w.r.t. 6% equate to
ik i j Kk

zero and divide through by -2, we have

AL(O) 0 [oM,, 0
( - ) =22 2 [T ~MGy. 0 )]{L)} =0. (11)
26, T T o0, .

At this point, (11) has no closed form hence will be solved iteratively using the Gauss-Newton

method with Taylor series expansion of M(x;;,,6") at first order. Therefore, we have

* £ s * aM(‘xi' 79*) * £ aM(xl 56*)
M(x,0") = M(x, 6)+ (6, —9@# +(6; “9”)@—5*
1 0 =6 2 o =6
OM(x;;,,6"
(G G D7) (12)
00, -6
* % aM(xijkaH*) " *
Let M(x;, 0 )=n(0") and djy =—— 77— for all N cases and 0 =6" -6, then (12)
00 0" =6;
becomes
1(6") =1(65) + Dy6, (13)

where D, isthe N x H derivative matrix with elements {d[j } at h iterations and this is equivalent

to approximating the residuals for the model, that is, Q(6*)=T—-7,(6") by
Q") =T~[1(6;)+Dy5 | =T~1(6) = DS = z = Dy, (14)
where z, =T-1(6;) and 5 =6"-6,.

To achieve numerical stability of the parameter estimates D, is decomposed using QR
decomposition into the product of an orthogonal matrix and an inverted matrix (Klotz 2006, David et
al. 2019). A point 7, =1(8") =1(6; +S,) should now be closer to y than 7(6;), and then move to
a better parameter value 6 = 8; + 5, and perform another iteration by calculating new residuals
z, =T-7n(6), a new derivative matrix D,, and a new increase. This process is reiterated until
convergence is achieved, that is, until the increment is so small that there is no useful change in the
elements of the parameter vector (Bates and Watts 1988). A small step in the direction &, is
introduced if the new value is not small as expected. A step factor A is introduced such that
O =0, + 15, where 1 is chosen to ensure that the new residual sum of squares is less than the initial



424 Thailand Statistician, 2022; 20(2): 420-434

estimate. As suggested by Bates and Watts (1988) it is to start with 4 =1 and halve it until it is
satisfied that the new residual sum of squares is less than the initial estimate.

5. Variance Component Estimation via MLE

To estimate V, the mean function M(x;;,6"), is first approximated by a Taylor series at first

order centered at éo* . Therefore, the log-likelihood function is given as
InL(A)= —%1n(27r) —%1n|V| —%(y ~f(X, 0)) V7 (y-f(X,0)), (15)

where A’ = [6” , (o-,zyp, o )t] is then approximated by the surface and (15) becomes
InL(A)= —%ln(27r) —%ln|V| —%(z0 ~Dy8) V(2o - DyS), (16)

) 2
where z, =T-1(8;), 6 =60"-6,, V=0c1= Zo*,-zl,-l,-’, Vvl = ZO'[ZV'II,-If then (16) becomes
=l i=l

InL(A)= —gln(Zn)—%ln

2 1 2 -!
Zo-,-zl,-lf-‘ —5(20 -D,[6-6]) [Zo,.zl,.lgj x(zo—D,[0" -6, ])
i=1 i=1

a7)
and the gradient is given by partially differentiating (17) w.r.t. 8* and o} we have
OInL (A 1 e ‘
a(TS)t) = —E(ZO =Dy [0 =6, ) V' [-Dy] = (2 - D) V' [-Dy] (18)
and
alnL(A) 1 1 1 2 -1 2 -1
T LI+ (20 —Dyo)' | X 0[21[15) LI;| X szlflfj (20 — Do)
907 > a?l.lf.‘ 2 - -
io1 1 s
1 1 2 -1 2 -1
= W)~ - D) (z G?I,-Iﬁj L (2 afl,-lf-j (20~ D)
2|z O'?I-I'-‘ - -
i-1 1 Al
1 2 -1 P -1 2 -1
=3 tr (Zl J}Iilﬁj LIY) | —(zo — Do) (Zl afl,-lﬁj LI (Zlo-izlilﬁ) (zo —Dy0)
= —%(tr(l,-lﬁV’l )= (20— Dyd) V' LI V7' (z, — D). (19)

Note that 67 = 67p,02 in (19) hence i =2 for the two error variance. Multiplying the partial

derivative first terms of (18) and (19) by the identity, VV~' and equate to zero, gives the estimating
equations

—~(z0—Dy8) V' [-D,]=0
(z0—Dy0) V' [-D, | =0
V'Diz, —D{V'D,5 =0
DYV'DyS = DiV-'z,, (20)
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and

—%(tr(ll.lgv-1 )=(zy=Dy8) VLIV (z, - D,5)) =0
or(LEV™) = (z, = D,8) VLIV (z, - D,6) = 0
VYV [r(LEV ™) |~ (2, = Dyd) VLIV (z, - D,5) = 0

VWV r(LIV )] = (z, - D,8) VLIV (z, - D,0)

J
Yo VILL[r(LIVT) | = (2, - D,S) VLIV (z, - D,5)
i=0

J
oY VILL[tr (V)] = (z,— D,8) VTV (z, - D,5)
i=0

(r (VLI V)0 = (2, = Dy8) VLIV (2, ~ D6)). 1)

The estimates of @' and o2 =03,,0% are iteratively obtained at (h+1)*" iteration by

substituting a prior estimate of ¢ into (20) to get an updated estimate of &*, then the updated o

and prior estimate of o are substituted into (21) to obtain updated estimates of the V. These two
steps are iterated till convergence is achieved. Therefore, (20) and (21) becomes

DA(;\A](AI)DAO (0" - 9(:) = DA(t)V&ll)Zo >

n n PO R
9(/”1) =0 +[ (;V(h 0] (I)V(hl)zo’ (22)
and

A

A A -1 A A A\ A ~ A A
Gy = (r (LI VALIVG)) x<(zo—Do(9M— ) Va1V x(20 - D@, - @),

(23)
When further iteration does not improve the log-likelihood, the solutions to the equations may
turn out to be negative. In such scenario, the negative value is retuned to zero before the next iteration.

6. Variance Component Estimation via REML

The REML system does not include 6" in the estimation of V. The log-likelihood function is
based on vectors in the error space, that is, on linear combinations of y which have expectation to

be zero rather than y itself. To obtain these vectors in the error space the linear approximation of the
residuals is used z, = Dyo +¢. To estimate the V from the nonlinear functions of y that will not
involve 6*, vectors of the form K y are formed whereby K is chosen so that K'Dy =0 which falls
in the linear approximation to the error space. Elements of K'y are called error contrasts (Harville
1977), that is, the part of the data that is orthogonal to the fixed effects (not dependent on the values

of the fixed effect estimates), K is a full rank matrix satisfying K'D, =0 and applying maximum

likelihood to K'y, the log likelihood function of K’y is
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InZ(©)= —%1n(271') —%1n|K’VK| —%(K’y —K'f(X.0)) x(K'VK) ' (K'y-K'f(X,0)),

24
where ©' = (07,03 ) is then approximated by the surface and (24) becomes -
InL(®)= —%ln(Zn') —%1n|K’VK| —%(K’ y-K'f(x,0) (K'VK) " (K'y—K'f(x,0))
:C—%]n|K’VK| —%(K’y— K'f(x,0)) (Kfy(KfVK)" ~K'f(x,6)(K'VK) " )
=C—%1n|K’VK| —%((K'y—K’f(xﬁ))t K’y(K’VK)fl)
Jr%((Kr YK f(x,0) K f(x, 9)(KfVK)’1). (25)

By matrix algebra on the third and fourth terms of (25) respectively and inserting

V=0l = KZGZI I'K' and

i=l1

W =(KVK ) (KVK') =V (K (KVK') K1) = 01(Q,) = 07 (Q.Y,), (29) becomes

1

2
InL.(©)=C=~—In|K' D oI K

i=0

—%(y K’(K’ZUZI I’K)_ K - f(x,0) K" (K’ZO’ZI I’K)_ yKJ

i=0 i=0
| -1 ) -1
+5£ K (K’ > o, IfKJ f(x,0)K — f(x,0) K’ (K’ Zo-}lilﬁKj f(x,H)K]. (26)
i=0 i=0
Differentiate partially (26) w.r.t. o} and equate to zero. By transformation all other terms in the

equation becomes zero since K'D, = K' f(x,60) =Kf (x,0)" = 0. Hence we have

omL(®) 1 1 , . -
o = ol (K'LLK)+— yK(KZO'fI‘I, j K'TIK (KZO'AZIAI, j yK

t
i 211K i=0

-1
- ;(K’I[IjK) :%yK’(K Zaﬁll[{j (K'LLK )(K Zaﬁll[{j yK. (27

2111< i=0

—_—

-1
Let Q,V =K' (K Zo-zl I'Kj K then (27) becomes

i=0

1 1
E(tr(Q,,Vi)) = E(y'th,th). (28)

Multiply the left hand side of (28) by VV™' we have
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%(II”(Q,,VI-))O'?(,M) (thj) = %(thhVi th)9 29)
(r(QuV, QY )y x((6%)) = (7 Q) Vs Qi) (30)
<(6-§(h+1) )> = <Zr(6(h)<,i é(h)vj )>71 X<(J’t()(h)<’i (A)(h)y)>. 31)

The solutions to the equations may turn out to be negative when further iteration does not
improve the log-likelihood. In such a case, the negative value is changed to zero before the next
iteration.

7. Median Adequacy Measure (MAM) Statistics
Four proposed median adequacy measure (MAM) statistics for assessing the adequacy of linear
SPD models (David et al. 2016) are used for this research to assess the adequacy of the fitted NSPD

models. The four statistics used are resistant coefficient of determination (r”) proposed by Kvalseth

(1985), resistant prediction coefficient of determination ( Pred —7?), resistant modeling efficiency
(RMEF) and median square error prediction (MedSEP). Procedures for calculating the WP and SP

respective models residuals are given by Almimi et al. (2009) and David et al. (2016). These statistics
are called resistant due to their ability of withstanding outliers or extreme values and not to increase
or decrease unnecessarily when a variable is added or removed from the original model. The four
statistics are presented as follows.

8. Resistant Coefficient of Determination (r’)

The statistic to calculate the WP and SP rr2 values are as follows:

(35)

(36)

where M is the median of the absolute values from i =1 to » and e, is the fitted models residuals.
The statistic (35 and 36) above uses the median instead of the mean in obtaining a coefficient of
determination value that is highly resistant to outliers as proposed by Kvalseth (1985), 0<r’ <1.
However, for nonlinear models the coefficient of determination value can be negative when the fit is

worse, thatis —1<7” <1.

9. Resistant Prediction Coefficient of Determination (Pred —r?)

The statistic to calculate the WP and SP, Pred —r? values are as follows:

3 L n (‘L’t‘) 2 n v -2
ypPred—r2 =1 (Ml[ W] [V =Tom| ] ) (37)

et et T v
Pred—r? =1 (Ml[ W | 3t [[¥n~Tn|] | (38)
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where M is the median of the squared values from i =1 to n, ¢, is the residual, 4, is the hat matrix
and 1<Pred—r? <1. However, for nonlinear models the prediction coefficient of determination

value can be negative when the fit is worse, that is 1< Pred —r? <1.

10. Resistant Modeling Efficiency (RMEF)
The statistic to calculate the WP and SP RMEF values are as follows:

M"n:l |:|Y’_f(X”X”) ]WP 2
e (v 7)), ’

2
:|SP

where M the median of the absolute is values from i =1 to n and f(X,,.,X,), is the model-

i

RMEF,, =1- (39)

i

My, UY — /(X X))

RMEF,, =1-

= , (40)
i)

SP

predicted values. In a perfect fit RMEF would result in a value equal to one. The upper bound is one
and the (theoretical) lower bound is negative infinity (—o < RMEF <1).

11. Median Square Error Prediction (MedSEP)
The statistic to calculate the WP and SP, MedSEP values are as follows:

w»MedSEP = (n) " (M,.z, DY - f(Xin X, )I_HWP)Z , (41)

L) @

where M is the median of the absolute values from i=1 to n and f(X,,.,X,), is the model-

i

& MedSEP = (1), (M,.":1 UY — /(X X))

predicted values. A model with the smallest MedSEP value is termed as more adequate.

12. Information Criteria Statistics

In this research, Akaike’s information criteria (AIC), corrected AIC (AICC) and Bayesian
information criteria (BIC) are used for testing the goodness of fit of the models and to complement
the results obtained from MAM. The statistic for each criterion is given as follows:

AIC=21(0)+2p, (43)

AICC =21 (0)+—2P (44)
n—p-1

BIC =2 £(6) + plog(s), (45)

where f(-) is the negative of the marginal log-likelihood function, 6 is the vector of parameter
estimates, p is the number of parameters, # is the number of observations and s is the number of

subjects.

13. Experimental Data and Analysis Procedure

The data used for this research is a balanced 3'x4? replicated mixed level SP experimental design
data is used. The WP has two factors which are irrigation and rice varieties. The irrigation was
administered three different times, 7 days, 14 days and 21 days on four different rice varieties,
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NERICA 2, NERICA 3, NERICA 4 and NERICA 14. The SP factor is nitrogen fertilizer and it was
administered at four different rates, 30 kg N ha'!, 60 kg N ha'!, 90 kg N ha'! and 120 kg N ha! on
each of the four varieties of rice. The aim of the field trial was to determine irrigation effect on the
yield of rice. The research was conducted by Institute of Agricultural Research, Ahmadu Bello
University, Zaria, at their experimental field station in Kano State, Nigeria. The procedures for
analysis are as follows.

1. Performed a traditional SP experimental design analysis. This was done to see which of the
effects are significant because only the significant effects will be included for the main nonlinear
model. Another reason is to avoid unnecessary inclusion of factors in the model and to decrease the
number of parameter estimates. To achieve this step using SAS software, the Proc Mixed code is
used.

2. After identifying the significant effects, a reanalysis is performed to obtain the parameter
estimates in terms of regression model. The reason is the size of parameters to be estimated will be
too large for meaningful nonlinear modeling and as well interpretation of results. At this stage, the
main effects, and their significant interaction effects, the WP and SP V are estimated using the MLE
and REML methods as implemented in SAS software through Proc Mixed. A total of 11 parameters
are estimated including the asymptote, scale and shape parameters. These parameter estimates are
used as initial values for the main NSPD models under study.

3. The asymptote, shape and scale parameters for each of the nonlinear functions used for
remodeling the traditional SPD model where estimated using Proc Nlin code in SAS.

4. The 11 parameter estimates are used as initial estimates for the nonlinear models formulated
in this research. The SAS Proc NImixed code is used at this stage of the research to obtain the results
for EGLS. While the Proc Nlin code is used for obtaining the OLS results.

5. The residuals obtained from each fitted NSPD models are used to calculate all four median
adequacy measures introduced in the research for assessing the adequacy of each fitted models so as
to identify which model is a better adequate model.

14. Results

Tables 1 and 2 below present the analysis of variance tables. Table 1 shows that all main effects
and two factor interaction effects are significant at 5% significance level since their respective p-
values are all less than 5%. However, the three factor interaction effect is not significant because its
p-value of 0.1271 is greater than 5% significance level. Based on the outcome of the analysis, the
three factor interaction effect is removed and a reanalysis is performed. Table 2 presents the reanalysis
which is a regression SPD analysis results. It was adopted to reduce the large treatments combinations
from 48 to 11.

The results shows that all the main effects and interaction effects are significant at 5%
significance level except for [*V (Irrigation by variety) and V*N (variety by nitrogen) interaction
effects. This is because I*V and V*N respective p-values are greater than 5%. However, these two
interaction effects are not dropped for further analysis because their respective main effects (I, V and
N) are all significant at 5% level of significance. The covariance components estimates for the WP
and SP are obtained based on this final regression analysis with SP errors. The two methods adopted
for estimating the covariance components for this research are MLE and REML techniques. Table 3
presents their respective results.
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Table 1 A 3x42 split-plot design ANOVA table

Source DF Sum of Square Mean Square F Value Pr>F
Rep 1 17.1653 17.1653 2.8700 0.1184
I 2 742.9498 371.4749 62.0800 <0.0001
v 3 118.0203 39.3401 6.5700 0.0083
*V 6 113.7322 18.9554 3.1700 0.0467
WP Error 11 65.8245 5.9840
N 3 198.1499 66.0500 22.0000 <0.0001
I*N 6 156.6210 26.1035 8.6900 <0.0001
V*N 9 187.8973 20.8775 6.9500 <0.0001
I*V*N 18 84.0821 4.6712 1.5600 0.1271
SP Error 36 108.0991 3.0028
Total 95 1792.5415
Table 2 A 3x42 regression analysis with split-plot errors ANOVA table
Source DF Sum of Square Mean Square F Value Pr>F
Rep 1 412.5178 412.5178 26.96 <0.0001
I 1 342.7304 342.7304 22.40 <0.0001
A" 1 290.5514 290.5514 18.99 <0.0001
*V 1 0.3910 0.391008 0.03 0.8734
WP Error 1 248.3836 248.3836
N 1 799.9866 799.9866 52.28 <0.0001
I*N 1 407.1343 407.1343 26.61 <0.0001
V*N 1 27.3536 27.35356 1.79 0.1847
SP Error 88 1346.5585 15.30180
Total 95 3875.607113

Table 3 Covariance parameter estimates

Parameter MLE REML
0'§ 0 0.01648
o—gz 16.6140 15.3018

The VC estimates presented in Table 3 above shows that the WP variance estimate for MLE is
zero which is smaller than the estimates form REML (0.01648). However, for the SP variance
estimate, the MLE estimate (16.6140) is larger than the estimates from REML (15.3018).

Table 4 presents the Weibull SPD model parameter estimates, standard errors and p-values from
the OLS and EGLS via MLE and REML. It is shown in Table 4 that the parameter estimates obtained
from OLS estimation technique is quite different from the EGLS estimation technique via MLE and
REML. Also, it can be observed that the EGLS estimates via MLE are very similar to that of REML.
The OLS produced a smaller mean estimate of 13.8105 compared to the EGLS mean estimates via
MLE (22.3285) and REML (22.3183). Their respective p-values of 0.8630, 0.0001 and 0.0001 shows
that the EGLS estimates via MLE and REML are significant at 5% significance level but not
significant at 5% for the OLS estimate. However, the replicate effect estimates of 0.8458, —1.4140
and —1.4087 with p-values of 0.1503, 0.3052 and 0.0386 for OLS and EGLS via MLE and REML
respectively are not significant at 5% significance level except for EGLS via REML estimate which
has a p-value of 0.0386. It can be seen from Table 4 that variety effect estimates of —0.5767, —0.2242
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and —0.2378 with p-values of 0.4696, 0.8685 and 0.7748 for OLS and EGLS via MLE and REML
respectively are not significant at 5% significance level. Also, nitrogen fertilizer effect estimates of
0.0687, 0.0193 and 0.0197 with p-values of 0.011, 0.7819 and 0.5900 for OLS and EGLS via MLE
and REML respectively are not significant at 5% significance level except for the OLS estimate
whose p-value of 0.011 is less than 5%.

Table 4 Weibull split-plot design model parameter estimates
EGLS EGLS

Parameter OLS (MLE) (REML) Std. Errora  Std. Errorb  Std. Error ¢ p-valuea p-valueb  p-valuec
a, 13.8105 22.3285 22.3183 79.8294 3.3316 1.3541 0.8630 <0.0001 <0.0001
a, 0.8458 —1.4140 —1.4087 0.5833 1.3715 0.6718 0.1503 0.3052 0.0386
a, —0.5767 —0.2242 -0.2378 0.7943 1.3506 0.8290 0.4696 0.8685 0.7748
a; 0.0687 0.0193 0.0197 0.0265 0.0694 0.0364 0.0110 0.7819 0.5900
a, —0.0439 —0.1057 —0.1046 0.0337 0.0252 0.0243 0.1963 <0.0001 <0.0001
as —0.0047 —0.0044 —0.0044 0.0011 0.0017 0.0011 <0.0001 0.0132  <0.0001
A 0.0159 0.0239 0.0239 0.0078 0.0128 0.0069 0.0428 0.0634 0.0009
@  —456810 —19.3449 -19.3722 1087.35 3.6365 1.4363 0.9666 <0.0001 <0.0001
A 21.3869 0.7678 0.7695 1835.19 0.2509 0.0798 0.9907 0.0029  <0.0001
o3 10.9228 3.6297 3.9387 79.8300 5.3432 3.1451 0.8915 0.4986 0.2135
c? 2.8574 19.7562 18.7310 0.2062 21.2235 8.8027 <0.0001 0.3543 0.0359

Letters a, b and ¢ represents OLS, EGLS (MLE) and EGLS (REML) respectively. Bold values imply significance at 5%.

Looking at the interaction effects (IrrigationxVariety [I*V], IrrigationxNitrogen [I*N] and
VarietyxNitrogen [V*N]) parameter estimates, the EGLS via MLE and REML produced similar
estimates of —0.1057 and —0.1046 respectively for [*V with respective p-values of 0.0001 which
implies their estimates are significant at 5%. However, the OLS estimate of -0.0439 with a p-value
0f 0.1963 is not significant at 5% significance level. While I*N interaction effect parameter estimates
0of —0.0047, —0.0044 and —0.0044 with p-values of 0.0001, 0.0132 and 0.0001 from OLS and EGLS
via MLE and REML respectively are all significant at 5% significance level. Similarly, V*N
interaction effect parameter estimates of 0.0159, 0.0239 and 0.0239 with p-values of 0.0428, 0.0634
and 0.0009 for OLS and EGLS via MLE and REML are significant at 5% except for EGLS via MLE
whose p-value of 0.0634 is greater than 5% significance level.

The OLS estimates for scale parameter, @ (—45.681) is smaller compared to the EGLS estimates
via MLE (—19.3449) and REML (-19.3722). Their respective p-values of 0.9666, 0.0001 and 0.0001
indicates a significant parameter estimate from EGLS via MLE and REML but the OLS estimate is
not significant at 5% significance level. Similarly, the shape parameter, 4 estimates from OLS
(21.3869) is greater than that of the estimates from EGLS via MLE (0.7678) and REML (0.7695) but
their individual p-values of 0.9907, 0.0029 and 0.0001 indicates that the EGLS estimates via MLE
and REML are significant at 5% significance level but the OLS estimate is not significant because its
p-value is greater than 5% significance level.

The final whole plot variance component ( &g ) parameter estimate from OLS (10.9228) is larger
than the EGLS via MLE (3.6297) and REML (3.9387) estimates. However, these estimates are not
significant because their respective p-values of 0.8915, 0.4986 and 0.2135 are all greater than 5%
significance level. While the split-plot variance component (2 ) estimate from OLS (2.8574) is
smaller compared to the EGLS via MLE (19.7562) and REML (18.731) estimates however, their p-
values of 0.0001, 0.3543 and 0.0359 indicates that the OLS and EGLS via REML estimates are
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significant at 5% significance level but the estimate from EGLS via MLE is not significant since its
p-value is greater than 5% significance level. Table 4 reveals clearly that the covariance estimate
from OLS is larger for the WP and smaller for the SP. However, this is not the case for the EGLS via
MLE and REML where their estimates are smaller for the WP but larger for the SP.

Generally, the standard errors for each of the estimates from the OLS and EGLS via MLE and
REML in Table 4 shows that the EGLS via REML produced standard errors that are smaller compared
to the OLS and EGLS via MLE parameter estimates standard errors. This gives a pre-confirmation
that the EGLS via REML estimates for the Weibull SPD model are estimated adequately with better
stability. Hence, the technique is more proficient than the OLS and REML via MLE. The OLS,
EGLS-MLE and EGLS-REML estimated fitted models for the Weibull SPD model are presented as
follows:

13.8105 +0.8458Rep, —0.5767V, +0.06869N,
Vi =1 _0.04386(17) -~ 0.00473(IN), +0.01596(VN)

Jjl Jk

xexp| —((—45.681)' 7, ) " |, (46)
R M

22.3285—1.414Rep, —0.2242V, +0.01926N, o
= ‘ —((-19345) "1, Y
i =1 01057 (17), ~0.00441(IN), +0.02394(VN) XeXp[ ( ) "“) } @7

jl

22.3183-1.4087Rep, —0.2378V, +0.01968N, Lo
= xexp| ~((-19.3722) 10 ) | 48
Vi =1 _0.1046(17) - 0.00442(IN), +0.02389(VN) p[ (( ) L } “5)

Jt jk

The estimated (OLS and EGLS via MLE and REML) fitted Weibull SPD model adequacy
measures for the WP and SP sub design models are also presented in Table 5. The results revealed
that the OLS fitted model for both the WP and SP sub design models are adequately better than the
EGLS-MLE and EGLS-REML WP and SP sub design models. However, the WP sub design models
had larger adequacy measure values compared to the SP sub design models for 7?, Pred—r? and
RMEF. While the MedSEP values for the WP sub design models is smaller compared to the SP sub
design models. Although, all values for the fitted Weibull SPD models show that a large proportion
of variability is explained in the data, high prediction power, better model efficiency and better error
prediction strength for the OLS model

Table 5 Median adequacy measures results
72 Pred—r? RMEF MedSEP

WP SP WP SP WP SP WP SP

OLS  0.9969727  0.7379945 0.9965739  0.600662  0.996823  0.754624 5.55E-06 0.073296
MLE  0.9659263  0.3971088 0.9614376  0.081099  0.999227  0.786195 0.000703 0.388096
REML 0.9691298 0.3938414 0.9650632  0.076119 0.98899  0.760389 0.000577 0.392314

However, Table 6 below presents the goodness of fit results for the fitted models and it showed
that OLS produced the lowest AIC, AICC and BIC values of 496.0, 499.2 and 524.2 respectively.
This implies that the OLS estimation technique produces reliable and stable estimates compared to
EGLS via MLE and EGLS via REML parameters estimates.

Table 6 Model goodness of fit test results

Method AIC AICC BIC
OLS 496.0 499.2 524.2
MLE 597.6 600.8 587.7

REML 596 599.2 586.1
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12. Conclusions

Based on the research results from the analysis on a balanced 3! x 42 replicated mixed Level SP
experimental design data, it was observed that the fitted Weibull SPD model is a good fit for the OLS
estimated model. This is because all the four MAM for assessing the adequacy of the fitted model
produced larger 72, Pred—7? and RMEF values and smaller MedSEP values for the WP and SP
sub models and as well smaller AIC, AICC and BIC values compared to the EGLS-MLE and EGLS-
REML estimated models respectively. Also, all the respective OLS, EGLS-MLE and EGLS-REML
estimated fitted intrinsically NSPD models for the WP sub models produced better adequacy measure
values compared to the SP sub models. However, the OLS, EGLS-MLE and EGLS-REML respective
parameter estimates standard errors showed that some of the OLS parameter estimates may not be
stable and reliable because of high standard errors compared to EGLS-MLE and EGLS-REML
parameter estimates standard errors. Also, only four out of the eleven parameter estimates for the
OLS were significant at 5% significance level compared to EGLS-REML estimated fitted models
which produced the lowest standard errors with eight out of the eleven parameter estimates significant
at 5% significance level indicating better stability and reliability. Therefore, it can be concluded that
despite the OLS fitted model may be adequate and a good fit it may not be stable and reliable for
prediction.
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