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Abstract
This paper proposes an adjusted rank test-7; to determine that two independent samples with

clustered data in unbalanced design are drawn from the same population. For a large number of
clusters, the paper finds that the test statistic-7, converges to normal distribution. In addition, the

clustered rank sum test- 7, is presented for three or more independent samples with clustered data. An
adjusted rank test- 7; is also proposed by adjusting the clustered rank sum test. For each adjusted rank

test, the same critical value is used for data sets with equivalence between the numbers of clusters and
cluster sizes, but the observations might differ. The critical values of two adjusted test statistics for
some numbers of clusters and cluster sizes are given at the significance levels of 0.10 and 0.05. To
compare the performances of the adjusted rank tests with the alternative tests, a simulation study is
necessary. Results show that the two adjusted tests can maintain the size of the tests for all situations.
For three samples, the Kruskal-Wallis test based on the observation mean of cluster gives the estimated
size of about 25% at the true significance level of 5%. The adjusted test- 7} has a higher power than

the Wilcoxon test based on the observation mean of cluster. The power of both adjusted rank tests
increases when the number of clusters, the number of observations per cluster, and the effect size all
increase. However, the power of the adjusted tests decreases when the correlation coefficient between
observations in a cluster increases.

Keywords: Clustered data, independent samples, clustered ranks sum test, central limit theorem.

1. Introduction

In many studies, researchers are interested in testing the null hypothesis that the two independent
samples have been drawn from the same population or from populations with equal means. In
parametric statistics, the two-sample independent t-test is widely used to test this hypothesis. The
t-test requires that the random samples are drawn from normal distribution. If the assumptions of the
t-test are violated, then the Wilcoxon rank sum test proposed by Wilcoxon (1945), which is the
nonparametric procedure, can be used. The common assumption of the t-test and Wilcoxon rank sum
test is that all observations are independent.
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For many situations, the data are collected from clusters of correlated observations. The cluster
may be a family, a litter, a laboratory, and a region of observation units. Examples of clustered data
are the repeated measurements of blood pressure for a single object, the socio-economic characteristics
of households in a block, and the body mass index of siblings. Wu et al. (1988) showed that using the
F-test for clustered data leads to an inflated type I error rate. Thus, the probability of type I error is
higher than a given significance level. In addition, the type I error rate increases as the intra-correlation
increases.

In the parametric approach, many researchers have considered the different procedures for testing
the hypothesis with correlated clustered data. Most of the theoretical research for clustered data
assumes a parametric model. Wu et al. (1988) adjusted the F-test statistic by using coefficient of intra-
correlation so that the adjusted statistic has the F distribution with the same degrees of freedom as
those of the F-test statistic. Rao et al. (1993) proposed a two-stage generalized least squares test in
regression analysis by transforming the observations to uncorrelated ones. The two mentioned tests
depend on an unknown intra-correlation coefficient. However, Lahiri and Yan (2009) proposed an
alternative test that does not require the estimation of the intra-correlation coefficient.

In the nonparametric approach, only a small body of literature exists for incorporating clustered
data. Rosner and Grove (1999) considered the generalization of the Mann-Whitney U test, also called
the Wilcoxon rank sum test, for clustered data. They used the estimates of correlation parameters to
correct the estimated variance of the test statistic. The test has appropriate type I error rate in balanced
design with as few as 20 clusters per group. Rosner et al. (2003) introduced a large sample
randomization test (abbreviated by the RGL test) for clustered data by using the rank sum of
observations. Rosner et al. (2006) extended the signed rank test to the clustered data setting. Rosner
and Glynn (2009) presented the approach to estimate the power of the RGL test and the sample size.
However, under the homogeneity of data sets with different observation values, the critical values of
the RGL test may differ when testing hypotheses with the same significance level. The researcher who
used the RGL test must find a critical value for one dataset. Sangngam and Laoarun (2021) presented
adjusted rank tests for clustered data in balanced design. The adjusted rank test uses the same critical
values for equivalent data sets, and it has more empirical power than the RGL test for a small number
of clusters in samples.

Clustered data may occasionally occur in the unbalanced design. Therefore, this paper adjusts the
RGL test statistic for clustered data using the rank of the mean of observation ranks, which is called
the adjusted rank test-7, in unbalanced design. For a large number of clusters, the asymptotic

distribution of the adjusted rank test-7, will be derived. To generalize the adjusted rank test, an
adjusted rank test- 7, is proposed for more than two samples with clustered data. Under small number

of clusters, the critical values of both adjusted rank tests will be given. The type I error rate and the
statistical power of the adjusted rank tests compared with the existing tests are considered in the
simulation study.

2. Clustered Rank Sum Test for Two Samples
Let X be the j™ observation in the cluster i for 1<i< N, 1< j<c,, where ¢, is the cluster

size of the i™ cluster. The indicator 0, denotes the group of samples; &, =1 if X belongs to the

first sample and 6, =0 if X belongs to the second sample. The data can be presented in the form

of (X,8) = {(ng’é‘,y ) 1<j<e,1<i< N}. When there are some clusters with unequal cluster sizes
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from the other, the design is called an unbalanced design. We assume that clusters are independent
while the observations within the cluster are not. The hypothesis to be tested is that there is no
difference between the location parameters of the two populations.

Rosner et al. (2003) proposed the clustered rank sum test for clustered data abbreviated by RGL.
Let R; be the rank of X based on the combined two samples of all observations. The sum of ranks

from the first sample is assigned to be the test statistic. Let o, =0, forall 1< j<c, The RGL test
statistic is defined as

T=)6R,, (1)

i=1
where R, = ZRij is the sum of observation ranks in the i" cluster.
J=1
The clustered rank sum method assumes that the observations in a given cluster are exchangeable.
The exact distribution of the RGL test statistic is considered based on random permutation

conditioning on the sum of observation ranks in the i" cluster, R,,. To derive the distribution of the
cluster test under null hypothesis, the clusters are partitioned by using the cluster size. Let G be the
maximum of cluster sizes. The test statistic- 7' can be written as

Ginay Ginag
=S Yan, - Sw,
g=1

g=l iel,

where [, is the set of indices of cluster size g from the first sample, and W, = Z OR,,. Let N, be

iel,
the number of clusters of size g. Let m, and n, be the number of cluster of size g from the first and
second samples, respectively. If N is small, the distribution of statistic-7 conditioning on R,, can
be generated by combining all possible permutations of R, in ¥, for a given cluster of size g .

If N is large, the computation of the permutation is intensive. The RGL asymptotic statistic is
given by

G

‘max

T- m(R./N,)
& —N(0,1), )

7 =
Var(T)

Gmax m.n R++ ’
where R, =Y R, and Var(T)= ZﬁZ(RH —N—g] .
-

iel, g=1 Ng iel, g

Under some conditions, the test statistic Z has an asymptotic standard normal distribution. For
an unbalanced number of clustered sizes between two samples, the RGL test may result in inefficiency
(Rosner et al. 2003). If some clusters from either sample have a different size from other clusters, then
the permutation of these clusters will be ignored as no permutation of these clusters can be made.

If there is homogeneity of data sets of (X,8) ’s with different observation values, the set of R,

in each data set may be different. Thus, if N is small, the different critical values of test statistic- T
for these data sets might be used at the same nominal level.
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3. Adjusted Rank Sum Test for Two Samples
Under the presented data of (X, 8), let L be the number of distinct cluster sizes. To compute the

proposed test statistic, the data are stratified into L strata by cluster size. Assume that the first stratum
contains the observations with the smallest cluster size, the second stratum contains the observations
with the next higher cluster size, and so on. The L" stratum contains the observations with the largest
cluster size. Let N, be the number of clusters from the stratum 4. Let m, and n, be the number of

cluster in the stratum / from the first and second samples, respectively. We denote that X, is the
7" observation in the cluster ; from the 4™ stratum for 1< j <c,, where ¢, is the cluster size of the

be the observation rank of X

A" stratum. Let R i

” based on the combined samples of all

observations. The indicator &,, denotes the group of the samples; 6, =1 if R, belongs to the first

sample and J,, =0 if R, belongs to the second sample.

hij

. . = 1
The cluster mean of ranks from the i" cluster in the 4" stratum is calculated as R,, = —Z R,;
Ch =1

forall #=1,2,...,L and 1<i < N,. We define the cluster mean as the mean of observation ranks in a

cluster. The new ranks are assigned to the cluster means for each stratum, namely, R;;.. In the first

stratum, we assign rank 1 for the cluster with the smallest cluster mean, rank 2 for the cluster with the
next higher cluster mean, and so on. The rank N, is assigned to the cluster with the highest cluster

mean. In the second stratum, we assign rank N, +1 for the cluster with the smallest cluster mean, rank
N, +2 for the next higher cluster mean, and so on. The rank N, + N, is assigned to the cluster with

the highest cluster mean. The ranks are continuously assigned to the next stratum. In the L" stratum,
L-1 L-1

the rank ZN , +1 is assigned to the cluster with the smallest cluster mean, the rank ZN , 2 1s
h=1 =1

L
assigned to the cluster with the next higher cluster mean, and so on. The rank ZN , =N is assigned
h=1
to the cluster with the largest cluster mean. In case of ties at each stratum, the average of the ranks is
assigned to those clusters. The adjusted rank test statistic- 7] is proposed by

L L
L=22.8,R, =2 W, 3)

Ny,

where W, = Zé‘hiR; is the sum of cluster ranks in the first sample from stratum /4. If the total
i=1

number of cluster N is small, the distribution of 7, conditioning on R, can be generated by

combining all possible permutations of R, in W, for a given stratum h. The total number of

L (N,

permutation is H[ " j Given stratum % and under the null hypothesis, a subset of the clustered
=1 \ 7,

sum ranks is randomly assigned to the first sample (Rosner et al. 2003), so the subset of the new

clustered ranks is also equally likely to be observed from the first sample. When the hypothesis about

the difference between two location parameters is tested, the null hypothesis will be rejected for either

a sufficiently small or a sufficiently large value of 7,. Therefore, we reject null hypothesis at a
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significance level o if the computed statistical value of 7, is less than or equal to the critical value

of £, or greater than or equal to the critical value of #,_ These critical values ¢, and ¢, ,, are

al2® al2

the (r/2)100%" and (1—a/2)100%" quantiles of 7;, respectively. From the adjusted rank test-

T,, when there are many data sets with the equal numbers of L and of (mh,nh) for h=12,...,L,

the same critical value will be used to test the hypothesis at the same significance level «.
If the total number of clusters is large, the asymptotic normal distribution of the adjusted rank test
statistic- 7, will be established. Note that the indicator function J,, is correlated, the Central Limit

Theorem cannot be directly applied. The distribution of W* in stratum /4 is equivalent to the

distribution of the sample total of R,. when the subset of R;. is drawn by simple random sampling

hi hi

without replacement with sample size m, from the finite population size N,. In addition, the samples

between strata are independent. In stratum /4, the probability that the i™ cluster belongs to the first

m,n
sample is equal to 2. Thus, P(5,. =1)="%. P(5,. =0 , and Cov(6,,,6,, )= ——5—"—.
p q Nh ( hi ) N;, ( hi ) N;, ( hi hj) th (N;, _1)
The expected value of the adjusted rank test statistic- 7, and its variance are given by
L
E(Y})=Z "(N, +2N;, +1), (4)
h=1
and
L S2
Var(]’;)zzmhnh h , (5)
h=1 N/z
N, +1

. 4 1 & = = A
respectively, where N, =0, N, =Y N,, S = I Z(R,”. -R; ), and R, +N, , +
=1

h i=1

Theorem 1 Suppose that we have two independent samples X and Y stratified into L strata by

L L
cluster size. The numbers of clusters of X and Y consist of m = th and n= Znh, respectively
h=1 h=1

where m, and n, are numbers of clusters in stratum h of X and Y, respectively. The cluster sizes
in stratum h are equal to c, for h=12,...,L. Let T,, E(Tl), and Var( ) be defined in (3), (4),

and (5), respectively. Under null hypothesis that the two samples are drawn from the same population,
the sufficient conditions for the standardized statistic

(©)

to be asymptotically normal distributed according to N (0,1) are that (a) the number of strata (L)

is finite, (b) for all strata %—) £,,0<&, <Lh=12,...,L as N — o provided that m, and n,
h

trends to infinity.
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Proof. Let {H N }::L be a sequence of finite populations portioned into L strata. IT, consists of N,

L
elements of R;,’s where N, >1 and Z N, = N. Suppose that from each stratum of the population
h=1

IT,, arandom sample without replacement of size m, is drawn from a population with stratum size

N>°

N,. The selection of samples between strata is independent. The total sample size is equal to

L
m= Z m,. The adjusted rank test is defined as the sum of the sampled ranks:
h=1

m,

I, ZZRm

=1 i=1

Given that the terms of 7,, are dependent, the central limit theorem cannot be applied. We will
construct another sequence, which is asymptotically equivalent to 7, in terms of corollary 2 from
Lehmann (1975, p.349). The statistic S, will be constructed such that
[Sy—E(Sy ]/ Var(Sy)—> N(0,1) and E(S, -T, /Var )—>0 as N —oo. Theorem 5 of
Lehmann (1975, p.345) will be used to create the statistic S, .

Let U,, be independent random variables with uniform distribution on the interval (0,1) for
i=12,.,N, and h=1,2,..,L. In stratum #, the process of drawing a random sample of size m,
from the population IT,, can be defined by including the rank R, if and only if U,, is one of the m,
smallest U,, thatis if O,, <m, where O, is the rank of U,,. Given that each set of m, of U,, is

N
equally likely to create the set of m, smallest of U,,, each of the ( !
m,

j possible sample is equally

m
1 ifU, <—2
likely. We define the independent variables K, = " N, and define the statistic

0 otherwise,

LN, _
= ZZ[(R,” -R )K +m, R ] Using algebra, we can prove the asymptotic normality of S,
h=1 i=1

provided that conditions (a) and (b) hold.
To complete the proof of Theorem 1, we must prove that E[S, —T,, ]Z/Var(SN )—>0as N - oo,

1 if u, <— R,
Let ay, (u,)= N, be an indicator function for stratum h. Let J,, =a,, 7’” and
0 otherwise,

K, =ay(U,)=ay (U(Rm)) where Uy, <U;, <...<U,,, denote the ordered U,, and R, is the

rank of U,,. After extensive algebra and using sampling theory together with the condition (a), we

have



Prayad Sangngam et al. 441

L N
m,n, 1 h . _
— R —R
E(SN_TN)2<;|: N, Nh_lizl( hi h)}

Var(Sy) L = 2myn
R.—R h'h
Z( ) N;
S 52 m,n,
="\ N, 2 1 G m
= where §, = —— (ha —Rh)
ZSZ[Nh—I]mhnh N,-13
h=1 " Nh Nh
m,n
Shz h'"h
Nh
< L-max
$2 N, -1\mn,
! Nh Nh
§2 [Ty
=T ' Nh*

N,.—1)\\m,n,

where /" is the stratum that contains the maximum value. Without loss of generality, assume that

1 N, -1 My N, -1 2
m, >n,,, so that mh*>5N,,*. Then L-( L ] il SL-( b ] — —>0 as m, and
e

N,. N,. m,
N, tend to infinity .This completes the proof of Theorem 1.

4. Adjusted Rank Test for Three or More Samples

In this section, we propose the clustered rank sum test and adjusted rank test for three or more
independent samples with clustered data in unbalanced design. Assume that the observations consist
of k>3 samples. The null hypothesis is that the & samples have been drawn from the same

population. Let X, be the r" observation in the cluster j of the i" sample for i=12,....k,

j=12,..n,and k=12,...c

,» where n, is the number of clusters in the i * sample and ¢, 1s the
cluster size of the ;™ cluster in the i sample. We also consider the case of unbalanced design, i.e.,
the unequal numbers of clustered sizes for some i=12,....k and j=12,...,n,.

To compute the clustered rank sum test statistics, we stratify the observations into L strata by
cluster size. Assume that the first stratum contains the observations with the smallest cluster size, the
second stratum contains the observations with the next higher cluster size, and so on. The L" stratum
contains the observations with the largest cluster size. Let #,, be the number of cluster in the stratum

h fromthe i" sample and ¢, be the cluster size in stratum /. The total number of clusters in the /4

k
-stratum is denoted by N, =>"n,. We denote that X, is the ™ observation in the cluster j from

i=1
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the 2™ stratum of sample i. Let R, be the observation rank of X s based on all observations from

ihjr
k samples. If two or more observations are equal, assign each a rank of the mean of the rank positions.

L My S Ly
The sum of ranks from the i-sample is defined as ﬂ:ZZZR,hjr:ZZR[h/+ where

h=1 j=1 r=1 h=1l j=1

)

R, = Z}R,.,y.,.
Assume that the observations in a given cluster are exchangeable. Under the null hypothesis, the
distribution of the statistic-7, conditioning on R,, can be generated by combining all possible
permutations of R, in 7, for a given cluster of size ¢,. The total number of permutation is equal to
N,!

— - Moreover, we can derive that the expected value of the statistic 7, is equal to
My Ty et Ty, -

i

L N,
E(T)= ZZ%Rﬂfﬂ' If the null hypothesis is true, we expect that the sum of ranks is equal to its
=1 j=1 1V},

expected value. The clustered rank sum test statistic- 7, is defined as the weighted sum of squares of

deviations of sums of ranks from its expected value:

L Ny

2
n,
k (z _ZZ ]\}h Rihj+]
h=1 j=1 h
-3 .

L
il Z iy
h=1 h

N
If N is small, the exact distribution of statistic-7, conditioning on R

(7

R[hj+
J=1
i+ can be generated by
combining all possible permutations of R, . for a given cluster of size ¢,. The total number of

L N, !

permutation for all strata is equal to . To conduct an « -level test of the null

ot My, g, leemy, !
hypothesis that the k& samples are drawn from the same population, the test statistic of 7, can be
compared with the (1 - 0{)100%th percentile of 7, so that the null hypothesis is rejected if the statistic
of T, is greater than or equal to this percentile. If there are many equivalent datasets but different
observations, the (1 —a’)lOO%th percentile of statistic- 7, may vary between datasets. To obtain the
same percentile of a test statistic, we propose an adjusted rank test- 7, as follows.
1 &

Z R, be the mean of ranks fromthe j * cluster

From the sum of observation ranks, let Rz'h/' =
’ C, =
hor=1

in stratum 4 of the /™ sample. Similar to Section 3, for the first stratum, we assign rank 1 for the
cluster with the smallest cluster mean, rank 2 for the cluster with the next higher cluster mean, and so
on. The highest cluster mean is assigned with the rank N,. For the second stratum, we assign rank

N, +1 through N, + N, for the cluster with the smallest cluster mean to the cluster with the highest

cluster mean. The ranks are continuously assigned to the next stratum. For the L" stratum, the rank

L-1 L
ZN , +1 is assigned to the cluster with the smallest cluster mean, and so on. The rank ZN , =N is
h=1 h=1
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assigned to the cluster with the largest cluster mean. The average of the ranks is assigned to clusters
with the same cluster mean. Let Z,, be the rank of I?ihj. The sum of new ranks from the i -sample is

defined as 7= ZL:iZ

h=1l j=1

y for i =1,2,...,k. Under null hypothesis, the expected value of the statistic-

h
T is equal to E(];’):Zn" (N,1 +2N, +1) where N, =0 and N, =ZN1. The adjusted test

m 2 I

statistic- 7; is defined as

T; :i|: Lh:1.2 } . (8)

In stratum /4, the probability of observing each the rank values from the i-sample

N,!

(thlathz"" z ) is also equally likely from the
n,'ny, l.n,,!

> “ihny,

of all possible permutations. To test

the hypothesis at & -level test, the test statistic of 7, be compared to the critical value #," which is

the (1 - a)lOO%th percentile of 7, so that the null hypothesis is rejected if the statistic of 7, greater

than or equal to #,'. Moreover, if there are many equivalence datasets, the test statistic- 7, use the

same critical value at the same size of the test.

5. Critical Values
In this section, we generate the critical values for the adjusted rank test statistic-7, and the

approximate critical values for the adjusted rank test- 7, at alpha values of 0.10 and 0.05. The exact
significance levels of the statistic- 7] are also presented in Table 1. We consider that the number of

strata is equal to 2. In each stratum, we set the numbers of clusters in the samples to be equal. The
numbers of clusters in the first stratum are equal to 3, 4, and 5; the numbers of clusters in the second
stratum are set to be 3, 4, 5, and 6.

The critical values ¢, and ¢, ,, for the adjusted rank test statistic- 7, are determined by cutting
the most extreme (a / 2)100% and (l -a/ 2)100% of the exact distribution of the test statistic- 7},
where « is the level of significance. These critical values are obtained from the enumeration of all
possible distinct permutations of the rank (R,,) in 7; for a given stratum /. An exact significance

level is also obtained by enumeration of the statistic values of 7}, which extend to the critical value.

The approximate critical values #," of the adjusted rank test statistic- 7, are also obtained in Table
2 for k =3. These values are constructed by generating the random ranks in each stratum # from
N, , to N, into k samples of sizes n,,,n,,,n,,. We then calculate the rank sum of each sample and
compute the test statistic- 7;,. The procedure is replicated a number of 1,000,000 times. The percentile

values of 0.90 and 0.95 are selected to be the critical values at alpha values of 0.10 and 0.05,
respectively.
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Table 1 Critical values of the adjusted rank statistic- 7| at significance levels of 0.10 and 0.05

with L =2
a=0.10 a =0.05
Number of Clusters " " " "

Lo0s foos Lo.00s Woo7s
m =3,n =3 33 45 32 46
0.04500) 0.95500) 0.02000) (0.98000
m, =3,n, =3 ( ( ( )
m =3,n =3 45 60 43 62
(0.04571) (0.95429) (0.01286) (0.98714)

m,=4,n, =4
m =3,n =3 58 78 57 79
m=5n=5 (0.03611) (0.96389) (0.02242) (0.97758)
m =3,n =3 74 97 72 99
m, =6,m, =6 (0.049406) (0.95054) (0.02408) (0.97592)
m =4,n =4 45 60 43 62
m =3, =3 (0.04571) (0.95429) (0.01286) (0.98714)
m =4,n =4 59 77 58.475 77.525
my=dn =4 (0.04102) (0.95898) (0.02510) (0.97490)
m =4,n =4 75 96 73 98
my=5m =5 (0.04535) (0.95465) (0.01984) (0.98016)
m =4,n =4 92 118 90 120
m =6,m, =6 (0.03980) (0.96020) (0.01991) (0.98009)
m=5n=>5 58 78 57 79
m =3,n, =3 (0.03611) (0.96389) (0.02242) (0.97758)
m=5n=>5 75 96 73 98
my=dn, =4 (0.04535) (0.95465) (0.01984) (0.98016)
m =5,n =5 93 117 91 119
m=5n =5 (0.04472) (0.95528) (0.022006) (0.97794)
m =5mn=>5 113 140 110 143
(0.04951) (0.95049) (0.02001) (0.97999)

m,=6,n,=6
The values in bracket are P(T, <¢, ,) and P(T, <t _,,).

Figure 1 shows the distribution of the adjusted rank test statistic-7; for different numbers of
clusters. We find that the distribution of the adjusted rank test statistic-7; is symmetric. When the
number of clusters of m, and n, increase, the mean and variance of this test statistic also increase.
Figure 2 shows the distribution of the adjusted rank test statistic-7; for k£ =3 samples at different

numbers of clusters. The adjusted rank test statistic- 7, is presents a right-skewed distribution.
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Figure 1 Distribution of the adjusted rank statistic- 7, (a) for m, =3,n, =3, m, =5,n, =5 and

(b)for m, =4,n, =4,
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Figure 2 Distribution of the adjusted rank statistic- 7, with k£ =3 samples
(a) for (nll CTY n13) = (37 37 3): (n21 5T n23) = (57 57 5)7 and (b) for (l/lll CTY n13) = (37 39 3) >

6. Simulation Study

(111,155, 15,) = (6,6,6)

In this section, we study the properties of the adjusted rank tests consisting of the probability of
type I error and the power of the tests via simulation study. The properties of the adjusted rank test- 7]

are compared with those of the RGL test- 7' and the Wilcoxon rank sum test based on the cluster means
of the observations denoted by 7}, . The properties of the adjusted rank test- 7, are also compared with

the Kruskal-Wallis test based on the cluster means of the observations denoted by T, . The control

of probability of type I error is evaluated based on the criterion of Bradley (1978). If the type I error
rate belongs to (0.0250, 0.0750) for a significance level of 0.05, then the test can protect the probability

of type I error.

Table 2 Critical values of the adjusted rank statistic- 7; at significance levels of 0.10 and 0.05 with

L =2 for k=3 samples
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—~

My Ty, 1y ) = (6,6,6)

(n,,15,m5, ) =(5,5,5) 5.54000 7.02000
(Myys 1100515 ) = (3,3,3)
(n,,15,,m5,) =(5,5,5) 5.44444 7.00000
(M sy, 11, ) = (4,4,4)
(n,,15,,m5, ) =(5,5,5) 5.89677 758710

—~

Myps Pyt ) = (5,5,5)

n o) =(5,5,5) 6.67380 8.48128

—_

Number of Clusters . s
(,15,,m5,)=(3,3,3) 3.61403 4.52632
(”12,”22,”32) =(3,3,3)

(15,15, ) =(3,3,3) 4.44156 5.63636
(n,1y,1,) = (4,4,4)
(n,,m,,m5,)=(3,3,3) 5.54000 7.02000
(”m Ty, n32) =(5,5,9)
(n,,15,,m5, ) =(3,3,3) 7.00000 8.87302
(nu,nzz,nn) =(6,6,6)
(nll,nzl,n3l) =(4,4,4) 4.44156 5.63636
(”12,”22,’132) =(3,3,3)
(1,1, ) = (4,4,4) 4.82000 6.02000
(n,15,1,) = (4,4,4)
(1,15, ) = (4,4,4) 5.44444 7.00000
(”m Ty, n32) =(5,5,9)
(,m5,,m5) = (4,4,4) 6.59355 8.40000

)

)

)

)

)

)

)

)

)

—_~

My Ty 1y, ) = (6,6,6)

The study is constructed under two and three samples with L =2 strata. The numbers of
observations in stratum (c,,c,) are equal to (2, 3), (3, 4) and (4, 5). In case of two samples, we set the
equal number of clusters in the samples m, =n,, m, =n, consisting of (3, 3) and (4, 4). In case of

three samples, we also set equal numbers of clusters, n,, =n,, =n,,, n, =n,, =n,, with (3, 3, 3) and
(4,4, 4).
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We generate data X, = exp(Yih/.,, ) +(i-1)d, where Y, = (Yi,y.1 D SPYTNS F ) is an independent

multivariate normal with mean vector 0 and exchangeable covariance matrix 2 = (1 - p) I+ pl, where
I is the identity matrix of size ¢, xc¢, and 1 is the ¢, xc, matrix of all elements equal to 1.
For each case, the coefficient of correlation between observations in a cluster (p) is set to be 0.1,

0.3, 0.5, 0.7, and 0.9. The effect size (d) is equal to 0.0, 0.3, and 0.5. For each situation, the rejection

rate is computed from 10,000 replicates. The results are summarized in Tables 3-6.

Table 3 Estimated probability of type I error (d = 0.0) of the test statistics 7;, T and T}, testsat the

significance level of 0.05
(my,m,) = (3,3), (my,m,) = (3,3) (my,m,) = (4,4), (my,n, ) = (4,4)

(¢,¢,) P
1 T Ty 0 T Ty
0.1 0.0346 0.0416 0.0436 0.0418 0.0425 0.0490
0.3 0.0360 0.0427 0.0420 0.0436 0.0423 0.0474
(2,3) 0.5 0.0357 0.0421 0.0430 0.0420 0.0418 0.0464
0.7 0.0362 0.0424 0.0416 0.0452 0.0431 0.0482
0.9 0.0378 0.0446 0.0418 0.0451 0.0441 0.0482
0.1 0.0342 0.0415 0.0393 0.0485 0.0484 0.0532
0.3 0.0342 0.0405 0.0409 0.0491 0.0476 0.0523
3.4 0.5 0.0363 0.0411 0.0396 0.0494 0.0489 0.0508
0.7 0.0359 0.0437 0.0397 0.0504 0.0488 0.0524
0.9 0.0384 0.0434 0.0396 0.0515 0.0500 0.0534
0.1 0.0413 0.0473 0.0419 0.0467 0.0440 0.0521
0.3 0.0405 0.0473 0.0426 0.0492 0.0439 0.0496
4,95) 0.5 0.0418 0.0469 0.0412 0.0495 0.0447 0.0493
0.7 0.0422 0.0487 0.0416 0.0494 0.0457 0.0495
0.9 0.0415 0.0495 0.0412 0.0495 0.0475 0.0487

Table 3 shows that the empirical probabilities of type I error of the adjusted rank test statistic- 7;
are within the Bradley’s criterion of the interval (0.025, 0.075). Under (mh,nh ) =(3,3) and (4,4) in

Table 1, the exact significance levels are equal to 0.040 and 0.052, respectively. The empirical
probability of type I error is close to the exact significance levels. The RGL test-7 and the Wilcoxon
test based on observation mean test- 7;, can also control the probability of type I error.

Table 4 Estimated power of the tests for 7;, T and 7,, at the significance level of 0.05

d (¢,¢,) P (ml,nl):(3,3),(mz,nz):(S,S) (ml,nl):(4,4),(mz,nz):(4,4)
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T T T, T T T,
0.1 0.1085 0.1157 0.0757 0.1424 0.1523 0.1016
0.3 0.0949 0.1028 0.0731 0.1229 0.1289  0.0977
(2,3) 0.5 0.0870 0.0919 0.0724 0.1109 0.1131  0.0964
0.7 0.0803 0.0858 0.0739 0.1007 0.1044  0.0966
0.9 0.0745 0.0804 0.0743 0.0933 0.0970  0.0972
0.1 0.1265 0.1380 0.0736 0.1860 0.1967 0.1132
0.3 0.0990 0.1109 0.0714 0.1470 0.1564  0.1065
0.3 (3,4 0.5 0.0877 0.0962 0.0689 0.1268 0.1300 0.1039
0.7 0.0779 0.0878 0.0697 0.1115 0.1131 0.1018
0.9 0.0729 0.0804 0.0708 0.1025 0.1041  0.1021
0.1 0.1470 0.1569 0.0798 0.2100 0.2249 0.1136
0.3 0.1091 0.1185 0.0733 0.1547 0.1616  0.1054
4,5) 0.5 0.0890 0.1013 0.0715 0.1268 0.1336  0.1008
0.7 0.0808 0.0908 0.0739 0.1103 0.1150  0.0997
0.9 0.0769 0.0837 0.0760 0.1015 0.1044  0.1027
0.1 0.2091 0.2318 0.1300 0.2974 0.3263  0.1919
0.3 0.1746 0.1937 0.1255 0.2498 0.2709  0.1842
(2,3) 0.5 0.1533 0.1729 0.1238 0.2121 0.2341 0.1817
0.7 0.1368 0.1545 0.1226 0.1923 0.2052  0.1841
0.9 0.1273 0.1404 0.1230 0.1763 0.1831  0.1854
0.1 0.2611 0.2903 0.1382 0.3798 0.4093 0.2146
0.3 0.1998 0.2254 0.1287 0.2955 0.3165 0.1966
0.5 (3,4) 0.5 0.1605 0.1854 0.1247 0.2441 0.2583  0.1918
0.7 0.1389 0.1595 0.1236 0.2132 0.2218 0.1872
0.9 0.1202 0.1425 0.1226 0.1902 0.1964  0.1898
0.1 0.2920 0.3337 0.1448 0.4430 0.4760  0.2195
0.3 0.2094 0.2406 0.1290 0.3221 0.3420  0.2000
4,5) 0.5 0.1654 0.1901 0.1253 0.2589 0.2757 0.1885
0.7 0.1427 0.1619 0.1230 0.2192 0.2307 0.1871
0.9 0.1222 0.1435 0.1233 0.1941 0.1962  0.1882

Table 4 shows that the RGL test- 7" can give the highest estimated power than the other tests for

almost all situations. The RGL test-T" is slightly more powerful than the adjusted rank test-7]. The

adjusted rank test- 7] gives the higher estimated empirical power than the test- 7,, in almost all cases.

When the effect size is fixed, the empirical power of the RGL and adjusted rank tests are slightly
different when the number of clusters increases. Moreover, the empirical powers of both tests increase

as the effect size, the number of clusters, or the cluster size increases when the other primer two factors
are fixed at the same level of correlation. However, when all three factors are given (i.e., the effect

size, the number of clusters, and the cluster size), the empirical power of both tests decreases as the

observations in the given cluster are highly correlated.

Table 5 Estimated probability of type I error (d = 0.0) of the test statistics- 7; and T}, testsat the

significance level of 0.05
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(n117n21>n31):(35353) (n117n217n31):(47474)
(¢,¢,) P (nlz,nzz,n32) =(3,3,3) (nlz,nzz,n32) =(4,4,4)
T Tiw T Tiw
0.1 0.0461 0.2486 0.0472 0.2668
0.3 0.0455 0.2594 0.0540 0.2626
(2,3) 0.5 0.0453 0.2523 0.0515 0.2598
0.7 0.0472 0.2465 0.0523 0.2702
0.9 0.0503 0.2570 0.0565 0.2666
0.1 0.0502 0.2558 0.0538 0.2561
0.3 0.0507 0.2562 0.0549 0.2574
(3,4) 0.5 0.0477 0.2520 0.0541 0.2638
0.7 0.0486 0.2514 0.0525 0.2624
0.9 0.0472 0.2598 0.0554 0.2627
0.1 0.0457 0.2570 0.0528 0.2612
0.3 0.0470 0.2511 0.0523 0.2562
4,5) 0.5 0.0454 0.2515 0.0540 0.2532
0.7 0.0490 0.2586 0.0567 0.2605
0.9 0.0456 0.2531 0.0505 0.2571

In Table 5, the adjusted rank test- 7, protects better against type I error because its empirical type
I errors belong to the interval (0.025, 0.075). The empirical type I errors of the adjusted rank test- 7,

are close to the significance level of 0.05, whereas the type I error rates of the Kruskal-Wallis test
based on the cluster means- T, exceed the nominal level by about five times. The average of the

empirical type I error of the Kruskal-Wallis test based on the cluster means- 7, is equal to 0.2576.
In Table 6, the empirical power of the Kruskal-Wallis test based on the cluster means- T, is not

included in the table because it fails to maintain the probability of type I error. Given the effect size
(d), the cluster size (c,,c,), and the numbers of clusters, the empirical power of the test- 7, decreases

as the coefficient of correlation between observations increases. When the effect size (d), the cluster
size (¢,,¢c,), and the correlation coefficient are fixed, the empirical power of the test- 7, increases as

the number of clusters increases. Fixing the cluster size, the correlation coefficient, and the number of
clusters, the empirical power of the adjusted rank test- 7, increases when the effect size increases.

Finally, when the effect size, the coefficient of correlation, and the number of clusters are fixed, the
empirical power of the test- 7, increases as the cluster size increases. To increase the empirical power

of the test-7;, we can increase the number of observations. In case of (n,,,n,,,n,,) = (3,3,3), (c,,¢,)
=(3.4), and (n,,,n,,,ny,) = (4,4,4), (¢,,c,)= (2, 3), the total number of observation is about 60. The
empirical power from the situation of (n,,n,,,ny, )= (4, 4, 4), is higher than that from the case of

(my,.ny,,m5,) = (3,3,3), (¢,,¢,) = (3,4). Thus, under the same number of observations, increasing the

number of clusters will result in higher empirical power than increasing the cluster size.
Table 6 Estimated power of the tests for 7, and T, at a significance level of 0.05
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(nll’n215n31)=(393?3) (n1]9n2]’n3])=(47474)

d (¢,,¢,) Y (my,155,15,) = (3,3,3) (ny,,15y,15,) = (4,4,4)
]; TKW ]; TKW
0.1 0.2302 - 0.3345 -
0.3 0.2000 - 0.2809 -
(2,3) 0.5 0.1756 - 0.2432 -
0.7 0.1520 - 0.2185 -
0.9 0.1426 - 0.1992 -
0.1 0.2970 - 0.4289 -
0.3 0.2254 - 0.3279 -
03 3,4 0.5 0.1746 - 0.2537 -
0.7 0.1543 - 0.2262 -
0.9 0.1451 - 0.2006 -
0.1 0.3504 - 0.5035 -
0.3 0.2494 - 0.3453 -
4,5) 0.5 0.1936 - 0.2767 -
0.7 0.1592 - 0.2340 -
0.9 0.1445 - 0.1997 -
0.1 0.4850 - 0.6674 -
0.3 0.4166 - 0.5705 -
(2,3) 0.5 0.3625 - 0.4930 -
0.7 0.3081 - 0.4470 -
0.9 0.2802 - 0.4023 -
0.1 0.6072 - 0.7855 -
0.3 0.4763 - 0.6573 -
05 (3,4) 0.5 0.3790 - 0.5337 -
0.7 0.3260 - 0.4626 -
0.9 0.2860 - 0.4011 -
0.1 0.6932 - 0.8601 -
0.3 0.5187 - 0.6899 -
4,5) 0.5 0.4046 - 0.5646 -
0.7 0.3230 - 0.4721 -
0.9 0.2800 - 0.4148 -

7. Conclusions

An attractive feature of rank transformation is its ability to deal with any problem of skewness
because all ranks are equally far apart from each other. By ranking the data, the influence of outliers
is mitigated: regardless of how extreme an outlier is; it receives the same rank as if it were only slightly
larger than the second-largest observation. To test the equality of location parameters from the two or
more independent samples with clustered data in unbalanced design, this paper proposed the adjusted
rank tests by using the rank transformation of the cluster means of observation ranks. An assumption
of the adjusted rank tests is that all observations are exchangeable in a cluster. The adjusted rank tests
use the same critical value for data sets with equivalence such as the numbers of clusters and cluster
sizes at the same significance level. The critical values of both adjusted rank tests for some numbers
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of clusters with two strata are given at the nominal levels of 0.10 and 0.05. The efficiency of the
adjusted rank tests were compared with those of the alternative tests via simulation study. For all
situations, the adjusted rank tests can maintain the size of the test because the adjusted rank tests use
the permutation of ranks with exact significance level close to the nominal level 0.05. The Kruskal-
Wallis test based on the cluster means of observations - 7;,, cannot protect type I error. The adjusted

rank test-7, has more empirical power than the Wilcoxon test based on the cluster means of
observations. The empirical power of the adjusted rank test- 7; is slightly different from the empirical

power of the RGL test- 7. The empirical power of both adjusted rank tests increases as the cluster size
increases, and the number of clusters increases as the effect size increases. However, the empirical
power of both adjusted rank tests decreases as the correlation coefficient of observations in clusters
increases. To increase the power of the adjusted rank tests by increasing the number of observations,
we suggest that increasing the number of observations by increasing the number of clusters will result
in the power of the test to be higher than that by increasing the cluster size.
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