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Abstract 

This paper proposes an adjusted rank test- 1T  to determine that two independent samples with 

clustered data in unbalanced design are drawn from the same population. For a large number of 

clusters, the paper finds that the test statistic- 1T  converges to normal distribution. In addition, the 

clustered rank sum test- 2T  is presented for three or more independent samples with clustered data. An 

adjusted rank test- 3T  is also proposed by adjusting the clustered rank sum test. For each adjusted rank 

test, the same critical value is used for data sets with equivalence between the numbers of clusters and 

cluster sizes, but the observations might differ. The critical values of two adjusted test statistics for 

some numbers of clusters and cluster sizes are given at the significance levels of 0.10 and 0.05. To 

compare the performances of the adjusted rank tests with the alternative tests, a simulation study is 

necessary. Results show that the two adjusted tests can maintain the size of the tests for all situations. 

For three samples, the Kruskal-Wallis test based on the observation mean of cluster gives the estimated 

size of about 25% at the true significance level of 5%. The adjusted test- 1T  has a higher power than 

the Wilcoxon test based on the observation mean of cluster. The power of both adjusted rank tests 

increases when the number of clusters, the number of observations per cluster, and the effect size all 

increase. However, the power of the adjusted tests decreases when the correlation coefficient between 

observations in a cluster increases. 

______________________________ 
Keywords: Clustered data, independent samples, clustered ranks sum test, central limit theorem. 

 

1. Introduction 

In many studies, researchers are interested in testing the null hypothesis that the two independent 

samples have been drawn from the same population or from populations with equal means. In 

parametric statistics, the two-sample independent t-test is widely used to test this hypothesis. The  

t-test requires that the random samples are drawn from normal distribution. If the assumptions of the 

t-test are violated, then the Wilcoxon rank sum test proposed by Wilcoxon (1945), which is the 

nonparametric procedure, can be used. The common assumption of the t-test and Wilcoxon rank sum 

test is that all observations are independent. 
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For many situations, the data are collected from clusters of correlated observations. The cluster 

may be a family, a litter, a laboratory, and a region of observation units. Examples of clustered data 

are the repeated measurements of blood pressure for a single object, the socio-economic characteristics 

of households in a block, and the body mass index of siblings. Wu et al. (1988) showed that using the 

F-test for clustered data leads to an inflated type I error rate. Thus, the probability of type I error is 

higher than a given significance level. In addition, the type I error rate increases as the intra-correlation 

increases. 

In the parametric approach, many researchers have considered the different procedures for testing 

the hypothesis with correlated clustered data. Most of the theoretical research for clustered data 

assumes a parametric model. Wu et al. (1988) adjusted the F-test statistic by using coefficient of intra-

correlation so that the adjusted statistic has the F distribution with the same degrees of freedom as 

those of the F-test statistic. Rao et al. (1993) proposed a two-stage generalized least squares test in 

regression analysis by transforming the observations to uncorrelated ones. The two mentioned tests 

depend on an unknown intra-correlation coefficient. However, Lahiri and Yan (2009) proposed an 

alternative test that does not require the estimation of the intra-correlation coefficient. 

In the nonparametric approach, only a small body of literature exists for incorporating clustered 

data. Rosner and Grove (1999) considered the generalization of the Mann-Whitney U test, also called 

the Wilcoxon rank sum test, for clustered data. They used the estimates of correlation parameters to 

correct the estimated variance of the test statistic. The test has appropriate type I error rate in balanced 

design with as few as 20 clusters per group. Rosner et al. (2003) introduced a large sample 

randomization test (abbreviated by the RGL test) for clustered data by using the rank sum of 

observations. Rosner et al. (2006) extended the signed rank test to the clustered data setting. Rosner 

and Glynn (2009) presented the approach to estimate the power of the RGL test and the sample size. 

However, under the homogeneity of data sets with different observation values, the critical values of 

the RGL test may differ when testing hypotheses with the same significance level. The researcher who 

used the RGL test must find a critical value for one dataset. Sangngam and Laoarun (2021) presented 

adjusted rank tests for clustered data in balanced design. The adjusted rank test uses the same critical 

values for equivalent data sets, and it has more empirical power than the RGL test for a small number 

of clusters in samples. 

Clustered data may occasionally occur in the unbalanced design. Therefore, this paper adjusts the 

RGL test statistic for clustered data using the rank of the mean of observation ranks, which is called 

the adjusted rank test- 1T  in unbalanced design. For a large number of clusters, the asymptotic 

distribution of the adjusted rank test- 1T  will be derived. To generalize the adjusted rank test, an 

adjusted rank test- 3T  is proposed for more than two samples with clustered data. Under small number 

of clusters, the critical values of both adjusted rank tests will be given. The type I error rate and the 

statistical power of the adjusted rank tests compared with the existing tests are considered in the 

simulation study. 

 

2. Clustered Rank Sum Test for Two Samples 
Let ijX  be the thj  observation in the cluster i  for 1 ,i N   1 ,ij c   where ic  is the cluster 

size of the thi  cluster. The indicator ij  denotes the group of samples; 1ij   if ijX  belongs to the 

first sample and 0ij   if ijX  belongs to the second sample. The data can be presented in the form 

of     , , :1 , 1 .ij ij iX j c i N    X   When there are some clusters with unequal cluster sizes 
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from the other, the design is called an unbalanced design. We assume that clusters are independent 

while the observations within the cluster are not. The hypothesis to be tested is that there is no 

difference between the location parameters of the two populations. 

Rosner et al. (2003) proposed the clustered rank sum test for clustered data abbreviated by RGL. 

Let ijR  be the rank of ijX  based on the combined two samples of all observations. The sum of ranks 

from the first sample is assigned to be the test statistic. Let ij i   for all 1 .ij c   The RGL test 

statistic is defined as 

 
1

,
N

i i
i

T R 


   (1) 

where 
1

ic

i ij
j

R R


   is the sum of observation ranks in the thi  cluster. 

The clustered rank sum method assumes that the observations in a given cluster are exchangeable. 

The exact distribution of the RGL test statistic is considered based on random permutation 

conditioning on the sum of observation ranks in the thi  cluster, .iR   To derive the distribution of the 

cluster test under null hypothesis, the clusters are partitioned by using the cluster size. Let maxG  be the 

maximum of cluster sizes. The test statistic-T  can be written as 
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   Let gN  be 

the number of clusters of size .g  Let gm  and gn  be the number of cluster of size g  from the first and 

second samples, respectively. If N  is small, the distribution of statistic-T  conditioning on iR   can 

be generated by combining all possible permutations of iR   in gW  for a given cluster of size g . 

If N  is large, the computation of the permutation is intensive. The RGL asymptotic statistic is 

given by 
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Under some conditions, the test statistic Z  has an asymptotic standard normal distribution. For 

an unbalanced number of clustered sizes between two samples, the RGL test may result in inefficiency 

(Rosner et al. 2003). If some clusters from either sample have a different size from other clusters, then 

the permutation of these clusters will be ignored as no permutation of these clusters can be made. 

If there is homogeneity of data sets of  ,X  ’s with different observation values, the set of iR   

in each data set may be different. Thus, if N  is small, the different critical values of test statistic- T  

for these data sets might be used at the same nominal level. 
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3. Adjusted Rank Sum Test for Two Samples 

Under the presented data of  , ,X   let L  be the number of distinct cluster sizes. To compute the 

proposed test statistic, the data are stratified into L  strata by cluster size. Assume that the first stratum 

contains the observations with the smallest cluster size, the second stratum contains the observations 

with the next higher cluster size, and so on. The thL  stratum contains the observations with the largest 

cluster size. Let hN  be the number of clusters from the stratum .h  Let hm   and hn  be the number of 

cluster in the stratum h  from the first and second samples, respectively. We denote that hijX  is the 

thj  observation in the cluster i  from the thh  stratum for 1 ,hj c   where hc  is the cluster size of the 

thh  stratum. Let hijR  be the observation rank of hijX  based on the combined samples of all 

observations. The indicator hi  denotes the group of the samples; 1hi   if hijR  belongs to the first 

sample and 0hi   if hijR  belongs to the second sample. 

The cluster mean of ranks from the  thi  cluster in the thh  stratum is calculated as 
1

1 hc

hi hij
jh

R R
c 

   

for all 1,2, ,h L   and 1 .hi N   We define the cluster mean as the mean of observation ranks in a 

cluster. The new ranks are assigned to the cluster means for each stratum, namely, * .hiR  In the first 

stratum, we assign rank 1 for the cluster with the smallest cluster mean, rank 2 for the cluster with the 

next higher cluster mean, and so on. The rank 1N  is assigned to the cluster with the highest cluster 

mean. In the second stratum, we assign rank 1 1N   for the cluster with the smallest cluster mean, rank 

1 2N   for the next higher cluster mean, and so on. The rank 1 2N N  is assigned to the cluster with 

the highest cluster mean. The ranks are continuously assigned to the next stratum. In the thL  stratum, 

the rank 
1

1

1
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h
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N

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  is assigned to the cluster with the smallest cluster mean, the rank 
1

1
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

  is 

assigned to the cluster with the next higher cluster mean, and so on. The rank 
1

L

h
h

N N


  is assigned 

to the cluster with the largest cluster mean. In case of ties at each stratum, the average of the ranks is 

assigned to those clusters. The adjusted rank test statistic- 1T  is proposed by 

 * *
1
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where * *

1
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   is the sum of cluster ranks in the first sample from stratum .h  If the total 

number of cluster N  is small, the distribution of 1T  conditioning on *
hiR  can be generated by 

combining all possible permutations of *
hiR  in *

hW  for a given stratum .h  The total number of 

permutation is 
1

.
L

h

h h

N

m

 
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 

  Given stratum h  and under the null hypothesis, a subset of the clustered 

sum ranks is randomly assigned to the first sample (Rosner et al. 2003), so the subset of the new 

clustered ranks is also equally likely to be observed from the first sample. When the hypothesis about 

the difference between two location parameters is tested, the null hypothesis will be rejected for either 

a sufficiently small or a sufficiently large value of 1.T  Therefore, we reject null hypothesis at a 
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significance level   if the computed statistical value of 1T  is less than or equal to the critical value 

of *
/2t  or greater than or equal to the critical value of *

1 / 2 .t   These critical values *
/2t  and *

1 /2t   are 

the   th/ 2 100%  and   th1 / 2 100%  quantiles of 1,T  respectively. From the adjusted rank test-

1,T  when there are many data sets with the equal numbers of L  and of  ,h hm n  for 1,2,..., ,h L  

the same critical value will be used to test the hypothesis at the same significance level .  

If the total number of clusters is large, the asymptotic normal distribution of the adjusted rank test 

statistic- 1T  will be established. Note that the indicator function hi  is correlated, the Central Limit 

Theorem cannot be directly applied. The distribution of *
hW  in stratum h  is equivalent to the 

distribution of the sample total of *
hiR  when the subset of *

hiR  is drawn by simple random sampling 

without replacement with sample size hm  from the finite population size .hN  In addition, the samples 

between strata are independent. In stratum ,h  the probability that the thi  cluster belongs to the first 

sample is equal to .h

h

m

N
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h

m
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The expected value of the adjusted rank test statistic- 1T  and its variance are given by 
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Theorem 1 Suppose that we have two independent samples X  and Y  stratified into L  strata by 

cluster size. The numbers of clusters of X  and Y  consist of 
1
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where hm  and hn  are numbers of clusters in stratum h  of X  and ,Y  respectively. The cluster sizes 

in stratum h  are equal to hc  for 1, 2, , .h L   Let 1,T   1 ,E T  and  1Var T  be defined in (3), (4), 

and (5), respectively. Under null hypothesis that the two samples are drawn from the same population, 

the sufficient conditions for the standardized statistic 
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to be asymptotically normal distributed according to  0,1N  are that (a) the number of strata ( )L  

is finite, (b) for all strata ,0 1, 1,2, ,h
h h

h

m
h L

N
       as N   provided that hm  and hn  

trends to infinity. 
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Proof. Let  N N L




  be a sequence of finite populations portioned into L  strata. N  consists of hN  

elements of *
hiR ’s where 1hN  and 
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.
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h
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  Suppose that from each stratum of the population

,N  a random sample without replacement of size hm  is drawn from a population with stratum size

.hN  The selection of samples between strata is independent. The total sample size is equal to

1

.
L

h
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m m
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   The adjusted rank test is defined as the sum of the sampled ranks: 
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Given that the terms of NT  are dependent, the central limit theorem cannot be applied. We will 

construct another sequence, which is asymptotically equivalent to NT  in terms of corollary 2 from 

Lehmann (1975, p.349). The statistic NS  will be constructed such that 
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1,2,..., hi N  and 1,2,..., .h L  In stratum ,h  the process of drawing a random sample of size hm  
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      Using algebra, we can prove the asymptotic normality of NS  

provided that conditions (a) and (b) hold. 
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where *h  is the stratum that contains the maximum value. Without loss of generality, assume that 
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 as *hm  and 

*hN  tend to infinity .This completes the proof of Theorem 1. 

 

4. Adjusted Rank Test for Three or More Samples 

In this section, we propose the clustered rank sum test and adjusted rank test for three or more 

independent samples with clustered data in unbalanced design. Assume that the observations consist 

of 3k  samples. The null hypothesis is that the k  samples have been drawn from the same 

population. Let ijrX  be the thr  observation in the cluster j  of the thi  sample for 1,2, ,i k  ,

1, 2,..., ij n , and 1, 2,..., ,ijk c  where in  is the number of clusters in the thi sample and ijc  is the 

cluster size of the thj  cluster in the thi  sample. We also consider the case of unbalanced design, i.e., 

the unequal numbers of clustered sizes for some 1,2,...,i k  and 1, 2,..., .ij n  

To compute the clustered rank sum test statistics, we stratify the observations into L  strata by 

cluster size. Assume that the first stratum contains the observations with the smallest cluster size, the 

second stratum contains the observations with the next higher cluster size, and so on. The thL  stratum 

contains the observations with the largest cluster size. Let ihn  be the number of cluster in the stratum 

h  from the thi  sample and hc  be the cluster size in stratum .h  The total number of clusters in the h
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the thh  stratum of sample .i  Let ihjrR  be the observation rank of ihjrX  based on all observations from 

k  samples. If two or more observations are equal, assign each a rank of the mean of the rank positions. 

The sum of ranks from the i -sample is defined as 
1 1 1 1 1

ih h ihn c nL L

i ihjr ihj
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Assume that the observations in a given cluster are exchangeable. Under the null hypothesis, the 

distribution of the statistic- iT  conditioning on ihR   can be generated by combining all possible 

permutations of ihjR   in iT  for a given cluster of size .hc  The total number of permutation is equal to 
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 Moreover, we can derive that the expected value of the statistic iT  is equal to 
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   If the null hypothesis is true, we expect that the sum of ranks is equal to its 

expected value. The clustered rank sum test statistic- 2T  is defined as the weighted sum of squares of 

deviations of sums of ranks from its expected value: 
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 (7) 

If N  is small, the exact distribution of statistic- 2T  conditioning on ihjR   can be generated by 

combining all possible permutations of ihjR   for a given cluster of size .hc  The total number of 

permutation for all strata is equal to 
1 1 2

!
.

! ! !

L
h

h h h kh

N

n n n



 To conduct an  -level test of the null 

hypothesis that the k  samples are drawn from the same population, the test statistic of 2T  can be 

compared with the   th1 100%  percentile of 2 ,T  so that the null hypothesis is rejected if the statistic 

of 2T  is greater than or equal to this percentile. If there are many equivalent datasets but different 

observations, the   th1 100%  percentile of statistic- 2T  may vary between datasets. To obtain the 

same percentile of a test statistic, we propose an adjusted rank test- 3T  as follows. 

From the sum of observation ranks, let 
1

1 hc

ihj ihjr
rh

R R
c 

   be the mean of ranks from the thj  cluster 

in stratum h  of the thi  sample. Similar to Section 3, for the first stratum, we assign rank 1 for the 

cluster with the smallest cluster mean, rank 2 for the cluster with the next higher cluster mean, and so 

on. The highest cluster mean is assigned with the rank 1.N  For the second stratum, we assign rank 

1 1N   through 1 2N N  for the cluster with the smallest cluster mean to the cluster with the highest 

cluster mean. The ranks are continuously assigned to the next stratum. For the thL  stratum, the rank 
1

1

1
L

h
h

N




  is assigned to the cluster with the smallest cluster mean, and so on. The rank 
1

L

h
h

N N


  is 
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assigned to the cluster with the largest cluster mean. The average of the ranks is assigned to clusters 

with the same cluster mean. Let ihjZ  be the rank of .ihjR  The sum of new ranks from the i -sample is 

defined as 
1 1 

 
ihnL

i ihj
h j

T Z  for 1,2,..., .i k  Under null hypothesis, the expected value of the statistic-

iT   is equal to  *
1

1

( ) 2 1
2

L
ih

i h h
h

n
E T N N 



     where 0 0N   and *

1

.
h

h l
l

N N


   The adjusted test 

statistic- 3T  is defined as 
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In stratum ,h  the probability of observing each the rank values from the i -sample 

 1 2, ,...,
ihih ih ihnz z z  is also equally likely from the 

1 2

!

! !... !
h

h h kh

N

n n n
 of all possible permutations. To test 

the hypothesis at  -level test, the test statistic of 3T  be compared to the critical value t   which is 

the   th1 100%  percentile of 3T  so that the null hypothesis is rejected if the statistic of 3T  greater 

than or equal to .t  Moreover, if there are many equivalence datasets, the test statistic- 3T  use the 

same critical value at the same size of the test. 

 

5. Critical Values 

In this section, we generate the critical values for the adjusted rank test statistic- 1T  and the 

approximate critical values for the adjusted rank test- 3T  at alpha values of 0.10 and 0.05. The exact 

significance levels of the statistic- 1T  are also presented in Table 1. We consider that the number of 

strata is equal to 2. In each stratum, we set the numbers of clusters in the samples to be equal. The 

numbers of clusters in the first stratum are equal to 3, 4, and 5; the numbers of clusters in the second 

stratum are set to be 3, 4, 5, and 6. 

The critical values *
/2t  and *

1 /2t   for the adjusted rank test statistic- 1T  are determined by cutting 

the most extreme  / 2 100%  and  1 / 2 100%  of the exact distribution of the test statistic- 1,T  

where   is the level of significance. These critical values are obtained from the enumeration of all 

possible distinct permutations of the rank *( )hiR  in 1T  for a given stratum .h  An exact significance 

level is also obtained by enumeration of the statistic values of 1,T  which extend to the critical value. 

The approximate critical values t   of the adjusted rank test statistic- 3T  are also obtained in Table 

2 for 3.k   These values are constructed by generating the random ranks in each stratum h  from 
*

1hN   to *
hN  into k  samples of sizes 1 2 3, , .h h hn n n  We then calculate the rank sum of each sample and 

compute the test statistic- 3.T  The procedure is replicated a number of 1,000,000 times. The percentile 

values of 0.90 and 0.95 are selected to be the critical values at alpha values of 0.10 and 0.05, 

respectively. 
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Table 1 Critical values of the adjusted rank statistic- 1T  at significance levels of 0.10 and 0.05  

with 2L   

Number of Clusters 
0.10   0.05    

*
0.05t  *

0.95t  *
0.025t  *

0.975w  

1 13, 3m n   

2 23, 3m n   

33 

(0.04500) 

45 

(0.95500) 

32 

(0.02000) 

46 

(0.98000) 

1 13, 3m n   

2 24, 4m n   

45 

(0.04571) 

60 

(0.95429) 

43 

(0.01286) 

62 

(0.98714) 

1 13, 3m n   

2 25, 5m n   

58 

(0.03611) 

78 

(0.96389) 

57 

(0.02242) 

79 

(0.97758) 

1 13, 3m n   

2 26, 6m n   

74 

(0.04946) 

97 

(0.95054) 

72 

(0.02408) 

99 

(0.97592) 

1 14, 4m n   

2 23, 3m n   

45 

(0.04571) 

60 

(0.95429) 

43 

(0.01286) 

62 

(0.98714) 

1 14, 4m n   

2 24, 4m n   

59 

(0.04102) 

77 

(0.95898) 

58.475  

(0.02510) 

77.525  

(0.97490) 

1 14, 4m n   

2 25, 5m n   

75 

(0.04535) 

96 

(0.95465) 

73 

(0.01984) 

98 

(0.98016) 

1 14, 4m n   

2 26, 6m n   

92 

(0.03980) 

118 

(0.96020) 

90 

(0.01991) 

120  

(0.98009) 

1 15, 5m n   

2 23, 3m n   

58 

(0.03611) 

78 

(0.96389) 

57 

(0.02242) 

79 

(0.97758) 

1 15, 5m n   

2 24, 4m n   

75 

(0.04535) 

96 

(0.95465) 

73 

(0.01984) 

98 

(0.98016) 

1 15, 5m n   

2 25, 5m n   

93 

(0.04472) 

117 

(0.95528) 

91 

(0.02206) 

119 

(0.97794) 

1 15, 5m n   

2 26, 6m n   

113 

(0.04951) 

140 

(0.95049) 

110 

(0.02001) 

143 

(0.97999) 

The values in bracket are *
1 / 2( )P T t  and *

1 1 / 2( ).P T t   

 

Figure 1 shows the distribution of the adjusted rank test statistic- 1T  for different numbers of 

clusters. We find that the distribution of the adjusted rank test statistic- 1T  is symmetric. When the 

number of clusters of hm  and hn  increase, the mean and variance of this test statistic also increase. 

Figure 2 shows the distribution of the adjusted rank test statistic- 3T  for 3k   samples at different 

numbers of clusters. The adjusted rank test statistic- 3T  is presents a right-skewed distribution. 
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 (a)  (b) 

Figure 1 Distribution of the adjusted rank statistic- 1T  (a) for 1 13, 3,m n   2 25, 5m n   and 

(b) for 1 14, 4,m n  2 25, 5m n   

 

 

 

 

 

 

 

 

 

 

 
 (a)  (b) 

 

Figure 2 Distribution of the adjusted rank statistic- 3T  with 3k   samples  

(a) for 11 12 13( , , ) (3,3,3),n n n   21 22 23( , , ) (5,5,5),n n n   and (b) for  11 12 13( , , ) 3,3,3 ,n n n   

21 22 23( , , ) (6,6,6)n n n   

 

6. Simulation Study 

In this section, we study the properties of the adjusted rank tests consisting of the probability of 

type I error and the power of the tests via simulation study. The properties of the adjusted rank test- 1T  

are compared with those of the RGL test- T and the Wilcoxon rank sum test based on the cluster means 

of the observations denoted by WT . The properties of the adjusted rank test- 3T  are also compared with 

the Kruskal-Wallis test based on the cluster means of the observations denoted by KWT . The control 

of probability of type I error is evaluated based on the criterion of Bradley (1978). If the type I error 

rate belongs to (0.0250, 0.0750) for a significance level of 0.05, then the test can protect the probability 

of type I error. 

 

 

 

Table 2 Critical values of the adjusted rank statistic- 3T  at significance levels of 0.10 and 0.05 with 

2L   for 3k  samples 
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Number of Clusters 0.90t  0.95t  

 11 21 31, , (3,3,3)n n n   

 12 22 32, , (3,3,3)n n n   

3.61403 4.52632 

 11 21 31, , (3,3,3)n n n   

 12 22 32, , (4,4,4)n n n   

4.44156 5.63636 

 11 21 31, , (3,3,3)n n n   

 12 22 32, , (5,5,5)n n n   

5.54000 7.02000 

 11 21 31, , (3,3,3)n n n   

 12 22 32, , (6,6,6)n n n   

7.00000 8.87302 

 11 21 31, , (4,4,4)n n n   

 12 22 32, , (3,3,3)n n n   

4.44156 5.63636 

 11 21 31, , (4,4,4)n n n   

 12 22 32, , (4,4,4)n n n   

4.82000 6.02000 

 11 21 31, , (4,4,4)n n n   

 12 22 32, , (5,5,5)n n n   

5.44444 7.00000 

 11 21 31, , (4,4,4)n n n   

 12 22 32, , (6,6,6)n n n   

6.59355 8.40000 

 11 21 31, , (5,5,5)n n n   

 12 22 32, , (3,3,3)n n n   

5.54000 7.02000 

 11 21 31, , (5,5,5)n n n   

 12 22 32, , (4,4,4)n n n   

5.44444 7.00000 

 11 21 31, , (5,5,5)n n n   

 12 22 32, , (5,5,5)n n n   

5.89677 7.58710 

 11 21 31, , (5,5,5)n n n   

 12 22 32, , (6,6,6)n n n   

6.67380 8.48128 

 

The study is constructed under two and three samples with 2L   strata. The numbers of 

observations in stratum 1 2( , )c c  are equal to (2, 3), (3, 4) and (4, 5). In case of two samples, we set the 

equal number of clusters in the samples 1 1,m n  2 2m n  consisting of (3, 3) and (4, 4). In case of 

three samples, we also set equal numbers of clusters, 11 21 31,n n n   12 22 32n n n   with (3, 3, 3) and 

(4, 4, 4).
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We generate data    exp 1 ,ihjr ihjrX Y i d    where  1 2, , ,
hihj ihj ihj ihjcY Y YY   is an independent 

multivariate normal with mean vector 0 and exchangeable covariance matrix  1 ,    I 1  where 

I  is the identity matrix of size h hc c  and 1 is the h hc c  matrix of all elements equal to 1. 

For each case, the coefficient of correlation between observations in a cluster ( )  is set to be 0.1, 

0.3, 0.5, 0.7, and 0.9. The effect size ( )d  is equal to 0.0, 0.3, and 0.5. For each situation, the rejection 

rate is computed from 10,000 replicates. The results are summarized in Tables 3-6. 

 

Table 3 Estimated probability of type I error ( 0.0)d   of the test statistics 1,T  T  and WT  tests at the 

significance level of 0.05 

1 2( , )c c    
   1 1 2 2, (3,3), , (3,3)m n m n      1 1 2 2, (4,4), , (4,4)m n m n   

1T   T  WT  1T   T  WT  

(2, 3) 

0.1 0.0346 0.0416 0.0436 0.0418 0.0425 0.0490 

0.3 0.0360 0.0427 0.0420 0.0436 0.0423 0.0474 

0.5 0.0357 0.0421 0.0430 0.0420 0.0418 0.0464 

0.7 0.0362 0.0424 0.0416 0.0452 0.0431 0.0482 

0.9 0.0378 0.0446 0.0418 0.0451 0.0441 0.0482 

(3, 4) 

0.1 0.0342 0.0415 0.0393 0.0485 0.0484 0.0532 

0.3 0.0342 0.0405 0.0409 0.0491 0.0476 0.0523 

0.5 0.0363 0.0411 0.0396 0.0494 0.0489 0.0508 

0.7 0.0359 0.0437 0.0397 0.0504 0.0488 0.0524 

0.9 0.0384 0.0434 0.0396 0.0515 0.0500 0.0534 

(4, 5) 

0.1 0.0413 0.0473 0.0419 0.0467 0.0440 0.0521 

0.3 0.0405 0.0473 0.0426 0.0492 0.0439 0.0496 

0.5 0.0418 0.0469 0.0412 0.0495 0.0447 0.0493 

0.7 0.0422 0.0487 0.0416 0.0494 0.0457 0.0495 

0.9 0.0415 0.0495 0.0412 0.0495 0.0475 0.0487 

 

Table 3 shows that the empirical probabilities of type I error of the adjusted rank test statistic- 1T  

are within the Bradley’s criterion of the interval (0.025, 0.075). Under  , (3,3)h hm n   and (4,4) in 

Table 1, the exact significance levels are equal to 0.040 and 0.052, respectively. The empirical 

probability of type I error is close to the exact significance levels. The RGL test-T  and the Wilcoxon 

test based on observation mean test-  can also control the probability of type I error. 

 

 

 

 

 

 

 

Table 4 Estimated power of the tests for 1,T  T  and MT  at the significance level of 0.05 

d  1 2( , )c c           1 1 2 2, 3,3 , , 3,3m n m n          1 1 2 2, 4,4 , , 4, 4m n m n   

WT
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1T  T  MT  1T  T  MT  

0.3 

(2, 3) 

0.1 0.1085 0.1157 0.0757 0.1424 0.1523 0.1016 

0.3 0.0949 0.1028 0.0731 0.1229 0.1289 0.0977 

0.5 0.0870 0.0919 0.0724 0.1109 0.1131 0.0964 

0.7 0.0803 0.0858 0.0739 0.1007 0.1044 0.0966 

0.9 0.0745 0.0804 0.0743 0.0933 0.0970 0.0972 

(3, 4) 

0.1 0.1265 0.1380 0.0736 0.1860 0.1967 0.1132 

0.3 0.0990 0.1109 0.0714 0.1470 0.1564 0.1065 

0.5 0.0877 0.0962 0.0689 0.1268 0.1300 0.1039 

0.7 0.0779 0.0878 0.0697 0.1115 0.1131 0.1018 

0.9 0.0729 0.0804 0.0708 0.1025 0.1041 0.1021 

(4, 5) 

0.1 0.1470 0.1569 0.0798 0.2100 0.2249 0.1136 

0.3 0.1091 0.1185 0.0733 0.1547 0.1616 0.1054 

0.5 0.0890 0.1013 0.0715 0.1268 0.1336 0.1008 

0.7 0.0808 0.0908 0.0739 0.1103 0.1150 0.0997 

0.9 0.0769 0.0837 0.0760 0.1015 0.1044 0.1027 

0.5 

(2, 3) 

0.1 0.2091 0.2318 0.1300 0.2974 0.3263 0.1919 

0.3 0.1746 0.1937 0.1255 0.2498 0.2709 0.1842 

0.5 0.1533 0.1729 0.1238 0.2121 0.2341 0.1817 

0.7 0.1368 0.1545 0.1226 0.1923 0.2052 0.1841 

0.9 0.1273 0.1404 0.1230 0.1763 0.1831 0.1854 

(3, 4) 

0.1 0.2611 0.2903 0.1382 0.3798 0.4093 0.2146 

0.3 0.1998 0.2254 0.1287 0.2955 0.3165 0.1966 

0.5 0.1605 0.1854 0.1247 0.2441 0.2583 0.1918 

0.7 0.1389 0.1595 0.1236 0.2132 0.2218 0.1872 

0.9 0.1202 0.1425 0.1226 0.1902 0.1964 0.1898 

(4, 5) 

0.1 0.2920 0.3337 0.1448 0.4430 0.4760 0.2195 

0.3 0.2094 0.2406 0.1290 0.3221 0.3420 0.2000 

0.5 0.1654 0.1901 0.1253 0.2589 0.2757 0.1885 

0.7 0.1427 0.1619 0.1230 0.2192 0.2307 0.1871 

0.9 0.1222 0.1435 0.1233 0.1941 0.1962 0.1882 

 

Table 4 shows that the RGL test-T can give the highest estimated power than the other tests for 

almost all situations. The RGL test-T  is slightly more powerful than the adjusted rank test- 1T . The 

adjusted rank test- 1T  gives the higher estimated empirical power than the test- MT  in almost all cases. 

When the effect size is fixed, the empirical power of the RGL and adjusted rank tests are slightly 

different when the number of clusters increases. Moreover, the empirical powers of both tests increase 

as the effect size, the number of clusters, or the cluster size increases when the other primer two factors 

are fixed at the same level of correlation. However, when all three factors are given (i.e., the effect 

size, the number of clusters, and the cluster size), the empirical power of both tests decreases as the 

observations in the given cluster are highly correlated. 

Table 5 Estimated probability of type I error ( 0.0)d   of the test statistics- 3T  and KWT  tests at the 

significance level of 0.05 
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1 2( , )c c    

 11 21 31, , (3,3,3)n n n 

 12 22 32, , (3,3,3)n n n   

 11 21 31, , (4, 4,4)n n n 

 12 22 32, , (4,4,4)n n n   

3T  KWT  3T  KWT  

(2, 3) 

0.1 0.0461 0.2486 0.0472 0.2668 

0.3 0.0455 0.2594 0.0540 0.2626 

0.5 0.0453 0.2523 0.0515 0.2598 

0.7 0.0472 0.2465 0.0523 0.2702 

0.9 0.0503 0.2570 0.0565 0.2666 

(3, 4) 

0.1 0.0502 0.2558 0.0538 0.2561 

0.3 0.0507 0.2562 0.0549 0.2574 

0.5 0.0477 0.2520 0.0541 0.2638 

0.7 0.0486 0.2514 0.0525 0.2624 

0.9 0.0472 0.2598 0.0554 0.2627 

(4, 5) 

0.1 0.0457 0.2570 0.0528 0.2612 

0.3 0.0470 0.2511 0.0523 0.2562 

0.5 0.0454 0.2515 0.0540 0.2532 

0.7 0.0490 0.2586 0.0567 0.2605 

0.9 0.0456 0.2531 0.0505 0.2571 

 

In Table 5, the adjusted rank test- 3T  protects better against type I error because its empirical type 

I errors belong to the interval (0.025, 0.075). The empirical type I errors of the adjusted rank test- 3T  

are close to the significance level of 0.05, whereas the type I error rates of the Kruskal-Wallis test 

based on the cluster means- K WT  exceed the nominal level by about five times. The average of the 

empirical type I error of the Kruskal-Wallis test based on the cluster means- KWT  is equal to 0.2576. 

In Table 6, the empirical power of the Kruskal-Wallis test based on the cluster means- KWT  is not 

included in the table because it fails to maintain the probability of type I error. Given the effect size 

( ),d  the cluster size 1 2( , ),c c  and the numbers of clusters, the empirical power of the test- 3T  decreases 

as the coefficient of correlation between observations increases. When the effect size ( ),d  the cluster 

size 1 2( , ),c c  and the correlation coefficient are fixed, the empirical power of the test- 3T  increases as 

the number of clusters increases. Fixing the cluster size, the correlation coefficient, and the number of 

clusters, the empirical power of the adjusted rank test- 3T  increases when the effect size increases. 

Finally, when the effect size, the coefficient of correlation, and the number of clusters are fixed, the 

empirical power of the test- 3T  increases as the cluster size increases. To increase the empirical power 

of the test- 3 ,T  we can increase the number of observations. In case of  1 2 3, ,h h hn n n = (3,3,3), 1 2( , )c c

= (3,4), and  1 2 3, ,h h hn n n = (4,4,4), 1 2( , )c c = (2, 3), the total number of observation is about 60. The 

empirical power from the situation of  1 2 3, ,h h hn n n = (4, 4, 4), is higher than that from the case of 

 1 2 3, ,h h hn n n = (3,3,3), 1 2( , )c c = (3,4). Thus, under the same number of observations, increasing the 

number of clusters will result in higher empirical power than increasing the cluster size. 

Table 6 Estimated power of the tests for 3T  and KWT  at a significance level of 0.05 
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d 1 2( , )c c    

 11 21 31, , (3,3,3)n n n 

 12 22 32, , (3,3,3)n n n   

 11 21 31, , (4, 4,4)n n n 

 12 22 32, , (4,4,4)n n n   

3T  KWT  3T  KWT  

0.3 

(2, 3) 

0.1 0.2302 - 0.3345 - 

0.3 0.2000 - 0.2809 - 

0.5 0.1756 - 0.2432 - 

0.7 0.1520 - 0.2185 - 

0.9 0.1426 - 0.1992 - 

(3, 4) 

0.1 0.2970 - 0.4289 - 

0.3 0.2254 - 0.3279 - 

0.5 0.1746 - 0.2537 - 

0.7 0.1543 - 0.2262 - 

0.9 0.1451 - 0.2006 - 

(4, 5) 

0.1 0.3504 - 0.5035 - 

0.3 0.2494 - 0.3453 - 

0.5 0.1936 - 0.2767 - 

0.7 0.1592 - 0.2340 - 

0.9 0.1445 - 0.1997 - 

0.5 

(2, 3) 

0.1 0.4850 - 0.6674 - 

0.3 0.4166 - 0.5705 - 

0.5 0.3625 - 0.4930 - 

0.7 0.3081 - 0.4470 - 

0.9 0.2802 - 0.4023 - 

(3, 4) 

0.1 0.6072 - 0.7855 - 

0.3 0.4763 - 0.6573 - 

0.5 0.3790 - 0.5337 - 

0.7 0.3260 - 0.4626 - 

0.9 0.2860 - 0.4011 - 

(4, 5) 

0.1 0.6932 - 0.8601 - 

0.3 0.5187 - 0.6899 - 

0.5 0.4046 - 0.5646 - 

0.7 0.3230 - 0.4721 - 

0.9 0.2800 - 0.4148 - 

 

7. Conclusions 

An attractive feature of rank transformation is its ability to deal with any problem of skewness 

because all ranks are equally far apart from each other. By ranking the data, the influence of outliers 

is mitigated: regardless of how extreme an outlier is; it receives the same rank as if it were only slightly 

larger than the second-largest observation. To test the equality of location parameters from the two or 

more independent samples with clustered data in unbalanced design, this paper proposed the adjusted 

rank tests by using the rank transformation of the cluster means of observation ranks. An assumption 

of the adjusted rank tests is that all observations are exchangeable in a cluster. The adjusted rank tests 

use the same critical value for data sets with equivalence such as the numbers of clusters and cluster 

sizes at the same significance level. The critical values of both adjusted rank tests for some numbers 
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of clusters with two strata are given at the nominal levels of 0.10 and 0.05. The efficiency of the 

adjusted rank tests were compared with those of the alternative tests via simulation study. For all 

situations, the adjusted rank tests can maintain the size of the test because the adjusted rank tests use 

the permutation of ranks with exact significance level close to the nominal level 0.05. The Kruskal-

Wallis test based on the cluster means of observations - KWT  cannot protect type I error. The adjusted 

rank test- 1T  has more empirical power than the Wilcoxon test based on the cluster means of 

observations. The empirical power of the adjusted rank test- 1T  is slightly different from the empirical 

power of the RGL test- .T  The empirical power of both adjusted rank tests increases as the cluster size 

increases, and the number of clusters increases as the effect size increases. However, the empirical 

power of both adjusted rank tests decreases as the correlation coefficient of observations in clusters 

increases. To increase the power of the adjusted rank tests by increasing the number of observations, 

we suggest that increasing the number of observations by increasing the number of clusters will result 

in the power of the test to be higher than that by increasing the cluster size. 
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