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Abstract
We have formulated a new non-decreasing hazard rate model as a size biased version of Lindley-

quasi Xgamma distribution known as size biased Lindley-quasi Xgamma distribution. The
mathematical and statistical properties of the newly introduced model have been obtained. Method
of maximum likelihood estimation is employed for estimating unknown parameters of proposed
model. Simulation study for checking the performance of maximum likelihood estimates is
performed. Proposed model and its related models are fitted to two lifetime data sets and goodness
of fit of proposed model over its related models to two lifetime data sets is tested. For testing the
goodness of fit of our proposed model we have used Kolmogorov D statistic and loss of information
measures AIC, BIC, AICC, and HQIC.

Keywords: Hazard rate, simulation study, Renyi entropy, maximum likelihood estimation, goodness of fit.

1. Introduction

Probability models have found greater applicability in analyzing data and improving decision
making. Variety of probability models have been fitted by researchers over decades to different types
of real life problems. There are many cases where stochastic process produces observations with
unequal probability of being recorded, instead the observations are recorded according to some
weight function. When the observations are recorded with probability proportional to some measure
of unit size then the resulting distribution is known as size biased distribution. In the area of size
biased distributions lot of work has been done by researchers over decades. Warren (1975) applied
the size biased distributions in connection with sampling wood cells. Ayesha (2017) introduced size
biased Lindley distribution and discussed its various properties. Ducey and Gove (2015) introduced
size biased distributions in the generalized beta distribution family. Hassan et al. (2019) introduced a
new generalization of Ishita distribution and obtained vital mathematical properties of the distribution
along with applications of the proposed model. Das and Roy (2011) studied the length biased
weighted generalized Rayleigh distribution with properties and applications. Mir and Ahmad (2009)
introduced size biased distribution with applications. Beghriche and Zeghdoudi (2019) introduced
size biased gamma Lindley distribution. Rather et.al (2018) studied size biased Ailamujia distribution
and obtained its properties and applications. Patil and Rao (1978) introduced weighted distributions
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and size biased sampling with applications to wild life populations and human families and obtained
its properties. Hassan et al. (2018) formulated three parameter Quasi Lindley distribution by using
weighting technique and obtained various properties of that model. Hassan et al. (2020) introduced
Poisson Pranav distribution and obtained its various mathematical properties along with obtaining
applications of the proposed model. R core team (2019) developed R software version 3.5.3 which
we have used for analyzing data in this paper. Hassan et al. (2020) proposed an introduced Lindley-
quasi Xgamma distribution (LQXD) with probability density function (pdf), cumulative distribution
function (cdf) and mean E(X) given below in (1)-(3), respectively

f(x,a,e):sz((a+t9){a+x 4 J+9(9—1)(1+ax) ,x>0,0> 0,020, ()
(0+a) 2
| (a+9){2a+2—(2a+x292+29x+2)e‘g"}
Flx)=——s g , @
20+a) +2(0—1){0+a—(0+a9x+a)e’“‘}
. {0+ a)a+3)+O-10+20)} N

o0+a)
The important statistical properties along with application in real life were studied for the model given
in (1).

In this paper, we have obtained size biased version of Lindley-quasi Xgamma (LQXD)
distribution with pdf given in (1). The motivation and objective behind working on this paper is to
introduce the size biased version of Lindley-quasi Xgamma distribution for modeling of unequally
recorded observations. Proposed model is developed for increasing flexibility in respect of skewness,
kurtosis, etc., and for better fitting of complex data than base model and related models. The proposed
model is described in Section 2 of paper. In Section 3, need of proposed model is discussed.
Reliability analysis of proposed size biased Lindley-quasi Xgamma distribution distribution is
introduced in Section 4. Statistical properties of proposed model are obtained in Section 5.
Expressions for order statistics are obtained in Section 6. In Section 7, Bonferroni and Lorenz curves
and indices are discussed. Section 8 presents the Renyi entropy. Section 9 deals with estimation of
unknown parameters of proposed model. Section 10 deals with quantiles of proposed model.
Simulation analysis is provided in Section 11. Real life applications are presented in Section 12. In
Section 13, conclusions are presented. Appendix is given at the end of paper.

2. Size Biased Lindley-Quasi Xgamma Distribution
Suppose X is a non-negative random variable with pdf f (x) Then, the pdf of the size biased

random variable X, is given by

X (x)
x)=——=, x>0. 4
Lo(x)=7 ) “)
Using (4), (1) and (3), the probability density function f, (x) of size biased Lindley-quasi Xgamma
distribution (SBLQXD) with scale parameter € and shape parameter « is given in (5) obtained as
' xf (x
£u()=2),
E(X)
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0 [(a+0)(ax+)‘32‘92}9(9_1)(“”2)}_@

(92 +a +3a9+20+a)

fi(x)= ,x>0,0>0,a>0, (5)

where f(x) and E(X) are the pdf and the mean of Lindley-quasi Xgamma distribution given in (1)

and (3), respectively.

The plots of pdf for different values of parameters are given in Figure 1 below indicating that
proposed model is positively skewed for higher values of 6 i.e., for 6 >1.5 our model is leptokurtic
for € <1.5 our model is platykurtic.
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Figure 1 Graph of density function

The corresponding cdf of size biased Lindley-quasi Xgamma distribution is given in (6) and
obtained as

Hx((a+9)(2a+6+3x9+x26’2)+2(0—1)(9+2a+x6’a))

Fy(x)=1-|1+ e (6)

2(92+a2+3a9+29+a)

The cdf plots of SBLQXD are given in Figure 2 for different values of parameters.
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Figure 2 Graph of distribution function

3. Motivation and Need of Proposed Model

As can be seen from graph of hazard rate in Figure 4, the proposed model has non decreasing
hazard rate which is common phenomenon in many real life situations. Also from graphs of
probability density function it is observed that proposed model is platykurtic as well as leptokurtic
for different parameter values. Simulation, hazard rate and applicability for survival times have
shown flexibility and need of proposed model in real life. It’s the flexibility and applicability of
proposed model which motivated us to work on this model.

4. Reliability Measures
This division of paper presents survival function, hazard rate, reverse hazard rate of the proposed
size biased Lindley-quasi Xgamma distribution for random variable X, where X represents the

lifetime of a system.

4.1. Reliability function R(x)
The reliability function or survival function R(x) gives the numerical value of odds of surviving
of a system beyond a specified time (¢) .
Mathematically,
R,(x)= P(X >1)=1-F,(x).
The reliability function or the survival function of size biased Lindley-quasi Xgamma
distribution is obtained as

9x((a+6’)(2a+6+3x¢9+x26’2)+2(6’—1)(¢9+2a+x6’a))
Rsb(x)z 1+ — e
2(0 +a +3a9+2¢9+a)

—0x
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Figure 3 Graph of survival function
The above graph represents the survival function of SBLQXD for different parameter values.

4.2. Hazard function
The hazard function which is defined as chance that a system which is surviving up to time “¢”
will fail in the small time interval after “¢ " is obtained for SBLQXD as

H.R=h,(x)= —IJ;”(();;

20° [(a+6’)[ax+x32€2J+9(3_1)(x+ax2 )je_ax

[[2(6’2 va’ +3a6’+29+a)+9x((a+9)(2a+6+3x6’+x292)+2(6’—1)(9+2a+x9a))}679x }

The graphs of hazard rate of SBLQXD for different values of parameter are given below. From the
graphs of hazard rate, it is revealed that our proposed model possesses non-decreasing hazard rate
and it can be also seen that hazard rate becomes constant as value of . increases. There are many
situations in real life where hazard rate is non-decreasing, like lifetime of human beings, animals etc.

4.3. Reverse hazard rate
The reverse hazard rate of the size biased Lindley-quasi Xgamma distribution is given as

RHR=h,(x)= ®
sb
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Figure 3 Graph of hazard function

4.4. Mean residual life

e

For a continuous random variable X following size biased Lindley-quasi Xgamma distribution

mean residual life m(x) is

2((a+9)(a+6)+(9—1)(9+3a))
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m(x) =

The proof of (7) is given in Appendix II.
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5. Statistical Properties

Moments, characteristic function, mean deviation, skewness, coefficient of variation characterize
probability models. Here we have obtained these statistical properties for proposed size biased
Lindley-quasi Xgamma distribution.

5.1. Moments
Assuming X to be a random variable having size biased Lindley-quasi Xgamma distribution

with parameters @ and a. Then the »" moment about origin for a given probability distribution is
given by

J =E(X’)=Tx"f(x)dx; r=1,23...
0

3.2
92[(a+6’)[ax+xfJ+9(9—1)(x+ax2)JegX
:'[xr 2 2 dx
0 (9 +a +3a6’+29+a)

(r+1)!((a 4 49)[0( +(r+3)2(r+2)j+(0—1)(0+a(r+ 2)))

0'(02 +a’ +3a0+26+a)

!

/ur =
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Put » =1 in (8), we get
2((ar+0)(a+6)+(0-1)(0+3a))

!

M=

>

6’(92+a2+3a9+26’+a)

which is mean of the SBLQXD.
Put » =2 in (8), we get

.| 6((a+0)(a+10)+(0-1)(0+4a))

Hy =

02(92+a2+3a9+20+a)
Put » =3 in (8), we get
;| 24((a+0)(a+15)+(6-1)(0+5a))
o 0'(0'+a’ +3a0+20+a)
Put » =4 in (8), we get
u 120((a+0)(ar+21)+(0-1)(6+6a))
-

0'(0" +a’ +3a0+20+a)
The moments about mean are given as
{(6((a +0)(a+10)+(0-1)(0+4a))(0" +a” + 300 +20 +a )| -4((a +0)(« +6)+(6—1)(6+3a))2}

H2 = 2( 2 2 2
) (9 s +3a0+20+a)

which is the variance of SBLQXD.
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5.2. Coefficient of variation, skewness, kurtosis and Index of Dispersion of Size Biased Lindley-
Quasi Xgamma Distribution (SBLQXD).

The coefficient of variation (CV), coefficient of skewness (\/El ), coefficient of kurtosis (5,)
and index of dispersion (y) of the SBLQXD are determined as

1

v = (/Uz)2

o

=
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5.3. Mean deviation about mean and median of size biased Lindley-quasi Xgamma distribution
(SBLQXD)
We have derived the expressions for mean deviation about mean and median of SBLQXD in this
section.

Theorem 1 If X has the SBLQXD(B,O{), then the mean deviation about mean (J,(X)) and mean

deviation about median (6,(X)) are given as

_2 l Hy((a+9)(2a+6+3y9+y292)+2(6’—1)(9+2a+y9a)) »
-1+
2(6° +a* +3a0+20+a) ¢

6, (X)= {(a+9)(4a+2ay6’+24+12y9+4y292 +,u393)+]
17
—6u

/]
2(0-1)(20+ u6’ +6a +3uabd+ 1’ 0’a)

2|\ pu—=|pu+ €
29(6’2+a2+3a6’+29+a)

and

(0an6’)(4¢1+2on¢9+24+12M¢9+4M26’2 +M393)+
oM
2(0-1)(20+ M6 +6a+3Mab+ M6 a)

S.(X)=| =2 || u+ e
: a i 29(6’2+a2+3a9+29+a)

—OM

respectively.

Proof: Mean deviation about mean and mean deviation about median are defined as
5(X)= “x — 4 f5(x)dx and &,(X) = “x ~ M| £, (x)dx,
0 0

respectively, where ¢ and M are mean and median respectively of random variable X ~ SBLOXD.

The measures 6,(X) and J,(X) can be obtained by using the simplified relationships.
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8,(X) = [(u=x) £,y (¥ + [ (x = p0) £, () = 24, (1) = 2] 1, (x)dx. ©)
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5,000 = [ (M =) £, () + [ (x=M) £, () = =2 of, (1), (10)

392

6 ((a+9)(0{x+ xze ]+‘9(9—1)(X+ax2 ))e_ax

(92 +a’ +3a9+26’+a)

where f,, (x)=

Now,
(a+(9)(4a+2a,u0+24+12,u0+4/12(92+,u393)+
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u ., 2(0—1)(2¢9+,u6' + 60 +3ucl+ 1’0 a)
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=\p—|u+

}[xf(x) s 20(0° +a” +3a0+20+a)

e . (12)

Using expressions (9), (10), (11) and (12) and expression for cdf in (6), we obtain mean deviation
about mean (J,(X)) and mean deviation about median (J, (X)),

Qul(a+0)(2a+6+3u0+ 176> )+2(6-1)(0+2a + 1ba

2(02+a2 +3a0+20+a)
6(X) = ) (a+9)(4a+2ay9+24+12y6+4y262 +y393)+ » and
u
2(6’—1)(2¢9+,u6’2 +6a +3,ua6’+,uzc92a) »
26’(6’2 +a’ +3a0+29+a)

2 |\u—|u+

(a+9)(4a+2aM6’+24+12M9+4M292 +M393)+
oM
2(6-1)(20+ MO +6a+3Mabd+ M*0c)

26’(6’2 +a’ +3a9+29+a)

—OM

O(X)=| u=2|pu—|pu+

5.4. Probability weighted moments
The probability weighted moment M), , 5 of size biased Lindley-quasi Xgamma distribution is
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The proof of M, , , is given in Appendix I.

5.5. Moment generating function, characteristic function and probability generating function
of size biased Lindley-quasi Xgamma distribution (SBLQXD)
We will derive moment generating function, characteristic function and probability generating

function of SBLQXD in this segment of paper.

Theorem 2 If X ~ SBLOXD(0,cx) then the moment generating function M y (t) and characteristic

function @y (t) are

M, (1)= & (a+9)(L2+L24j+9(0—1)(;2+2—a3] ,
(92+a2+3a9+26’+a) @-1° (@-1 @-0° @-1)

e a 36 2a
¢X(t)_[(92+a2+3a9+29+a)((a+9)((9—it)2+(9—it)4) (_)((9 )2+(6""’)3D]’

and

P(s):{, 7 ((aw)( @, 3¢ J+9(9—1)( L2 m
(0°+a +3a0+20+a) (6-1logs)* (6-logs) (6-logs)* (6-logs)

respectively.
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Proof: We begin with the well-known definition of the moment generating function given by

©

M, @)= E(e’X)=J.e'x S (X)dx

0

392

62{(a+9)(ax+xf j+9(9—1)(x+ax2)Je“

_Oo o
_ie (0 +a* +3a0+20+a)

M, (1)= o (a+9)( 2 _+ 3924]+e(9—1){ ! _+ ZO‘J ,
(6’2+a2+3a6+29+a) @-0" @-1 @-1° @-1

which is the moment generating function of size biased Lindley-quasi Xgamma distribution. Also we
know that ¢, (#) =M (it). Therefore,

0? a 36° 1 2a
- ) 001
oy (1) [(92+az+3a9+29+a)[(“+ ){(Q—it)z +(t9—it)4]+ ( )((9—11)2 +(0—it)3m’

which is the characteristic function of SBLQXD distribution. Also we know the relationship between

dx

moment generating function is e’ = s. So probability generating function of SBLQXD is

P(s)=|: o [(ma)[ a . 3 j+6?(9—1)[ 1 2 m
(0°+a” +3a0+20+a) (6—1logs)”  (O—logs)’ (6—1logs)” (O—logs)

6. Order Statistics of Size Biased Lindley-Quasi Xgamma Distribution
Consider X, X ,,..., X, to be the ordered statistics of the random sample x,x,,...,x,

obtained from the size biased Lindley-quasi Xgamma distribution with cumulative distribution
function F, (x) and probability density function f, (x), then the probability density function of v"

order statistics X ) is given by

Joso (x)szsb () F,(x)] [1-F,(x)]", v=1,2,3...n

Using the equations (5) and (6), the probability density function of v order statistics of size biased
Lindley-quasi Xgamma distribution is given by
392

. 92[(a+9)[ax+x2‘9 ]+9(9—1)(x+ax2)Jeex

(v=1)!(n—v)! (0" +a’ +3a0+20+a)

[ ox((a+0)(2a+6+3:0+x°0°)+2(0-1)(0+2a+x0a))| |
-1 T
" 2(92+a2+3a9+2¢9+a) ‘

_ 9x((“+9)(2a+6+3x9+x292)+2(9_1)(9+2a+x9a)) p B
1+ N
2(92+0‘2+3a9+29+a) e

Then, the pdf of first order statistic X 0 of size biased Lindley-quasi Xgamma distribution is given

by
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32

92[(a+e)[ax+"f ]+6’(0—1)(x+ax2)]e'9"

6 +a’ +300+20+c
f(l)sb (x)z ( ) >

6’x((a+9)(2a+6+3x6’+x292)+2(9—1)(6’+2a+x9a)) "
2(6’2 +a? +3a6’+26’+a)

n

—0Ox

1+

and the pdf of n" order statistic X, (n) of size biased Lindley-quasi Xgamma distribution is given as
3n2

¢’ ((a+9)(ax+ xf ]+¢9(9—1)(x+ax2))eex

(92 +a? +3a9+26’+a)

n

f(n)xb (x) =

ly Hx((a+9)(2a+6+3x6’+x292)+2(9—1)(6’+2a+x9a)) ) "
— —+ -
2(6° +a* +3a0+20+a) ‘

7. Bonferroni and Lorenz Curves and Indices of SBLQXD
The Bonferroni curve (B(p)), Lorenz curve (L(p)), Bonferroni index (B) and Gini index (G)

have find applicability in fields of economics, demography, reliability, life testing and medical
sciences. The Bonferroni and Lorenz curves are defined as

l q
B(p) =— [ f,, (x)dk, (13)
PHY
1 q
L(p)=— [+, (x)dx, (14)
H
where u=E(X) is the mean of SBLQXD and ¢=F . (p). The Bonferroni and Gini indices are
defined as
1
B:I—IB(p)dp, (15)
0
1
G=1—2jL(p)dp. (16)
0
Using the pdfin (5) of SBLQXD, we get
(a+e)(4a+2aq9+24+12q9+4q292 +q393)+
%4 2 2.2
q 2(9—1)(29+q6’ +60+3qab+q 0 a) )
J'xf(x)dxz u—|u+ —— SM an
0 29(9 +a +3a9+29+a)

Using Equation (17) in (13) and (14), we get
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(a +9)(4a +20q0+24+12¢0 + 4470 +q393)+
0
1 2 2.2
2(0-1)|20+q0" +6a +3qab+q 6" a

1 -6
B(p)=—o| u—|u+ — e 1, (18)
PH 29(9 +a +3a9+29+a)
and
I 22 3.3 ]
(a+0)(4a+2aq9+24+12q9+4q 0" +q0 )+
% 2 2,2
| 2(9—1)(2¢9+q9 +6a+3qal+q 0 a) )
L(p)=—| u—|u+ — el 19
H 29(9 +a +3a9+29+a)
Using Equations (18) and (19) in (15) and (16), we get
(a+t9)(4a+2aq¢9+24+12q9+4q2¢92+q3¢93)+
%4 2 2,2
| 2(9—1)(29+q9 +6a+3gqal+q° 0 a) )
B=1-—|py—|u+ ) e 1,
H 26’(6’ +a +3a6’+20+a)
I 2,2 3.3 ]
(a+0)(4a+2aq9+24+12q9+4q 0 +q°6 )+
%4 2 22
5 2(9—1)(2¢9+q9 +6a+3qal+q 0 a) )
L=1-—|u—|u+ R e 1.
H 29(9 +a +3a0+29+a)

8. Renyi Entropy
Entropy measures the variation of uncertainty of random variable. Renyi entropy Ty (y) of

random variable X following size biased Lindley-quasi Xgamma distribution is obtained as
o0
1 %
Te() = log| [ 17 (s |
0

where y >0 and y #1,

3,2 Y
| m@zy((a+t9)[ax+x29 j+¢9(¢9—1)(x+ax2)] e
Te()=1—log| [ -
4 0 (92+a2+3a9+29+a)

Using the binomial expansion,

dx | (20)

3.2

{(a+9){ax+ xf J+9(¢9—1)(x+ax2)j7
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L(r L = t 92[ r—t r—t r—t v y+2l+v
;[J(aw) az[l](m),e -1 Z{;( ) ]ax : (21)

Using (21) in (20), we get

V4 0 o 3 -
Z(Vj(a+6)t Z(tjll(g_l)r—zz(r tjav+[—193;/+21—lIxy+21+ve—y6xdx
1 =\ 1=0 ! (2) A )
Tr(n) = 1Tlog . |
! (92+a2+3a9+29+a)

D o

=0\ (2) V=0

(6’2 +a2 +3a9+29+a)y (}/)ﬁz}w

9. Estimation of Parameters of SBLQXD
We used method of maximum likelihood estimation for estimating the unknown parameters of

proposed model. Considering X;, X ,),...., X, to be the random sample of size n drawn from size

biased Lindley-quasi Xgamma distribution having probability density function given by (5), then the
likelihood function of SBLQXD is given as

L(x|0,a)= H o [(a+9)[ax+’63262}0(0—1)(“”2 )Je-ex

i (02+a2+3a0+20+a)

Taking log on both sides of likelihood function we get log likelihood function as:
2nlog6’—nlog(a'2 +6° +3a9+26’+a)—
logL =

x;gz )+ 00 -1)(x +ax’)

n n . (22)
Qle. +Zlog{(a+6’)(ax+ j

Differentiating the log-likelihood function with respect to € and «.This is done by partially
differentiate (22) with respect to 8 and o and equating the result to zero, we obtain the following

normal equations,

3 3 32 2
510gL: ﬂ_ n(29+3a+2) . n abx +0{x+5x9 +(x+0£x )(26—1) _ix _o
a0 0 (0+a’ = 9> =
(0° +a’ +3a0+20+a) S [(a+6’)(ax+X20 )+6’(6’—1)(x+ax2)j p
(23)
x3 2
dlogL | & 200x + +6x+20(0-Dax ) n(2a+30+1) »
5 T4 392 2 2 o
o im1 ((a+6’)(ax+X29 )+9(6’—l)(x+ax2)] (9 +a +3a6’++26’+a)

24
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MLEs of 0 and « cannot be obtained by solving above complex equations (23) (24) as these
equations are not in closed form. So we solve above equations by using iteration method through R
software.

10. Quantile and Random Number Generation from WQLD

Inverse CDF method is one of the methods used for the generation of random numbers from a
particular distribution. In this method the random numbers from a particular distribution are generated
by solving the equation obtained on equating the CDF of a distribution to a number u. The number

u is itself being generated from U(0,1). Thus following the same procedure for the generation of

random numbers from the WQLD we will proceed.
F,(x)=u

Ox((a+0)(2a+6+3x0+x20*)+2(6-1)(6 +2c + x0c
-1+ ((=+0) J+2(0-1)( ) e =u. 25)
2(6° +a” +3a0+20+a)

Equation (25) is a complex equation. It can’t be solved manually. It is solved through
Mathematica software to find the value of x and hence find the quantiles of the proposed model.

11. Simulation Study

In this part of paper, we have carried out the simulation study for checking the performance of
maximum likelihood (ML) estimates by taking different sample sizes (n=20, 40, 60, 100). We have
used the inverse CDF technique for data simulation for SBLQXD using R software. The process was
repeated 1,000 times for calculation of bias, variance and mean square error (MSE) as are given
values in Table 1. For two parameter combinations of SBLQXD, decreasing trend is being observed
in average bias, variance and MSE as we increase the sample size. Hence, the performance of ML
estimators is quite good and consistent in case of size biased Lindley-quasi Xgamma distribution.

Table 1 Simulation study of ML estimators for SBLQXD

a=05,60=15 a=02,0=0.5

Parameter n

Bias Variance MSE Bias Variance MSE

20  0.7666484 1.6234460 2.2111960 0.5808761 1.4819190 1.8193360
0.2959874 0.4141496 0.5017582 0.2961204 0.4066763 0.4943636

40 0.5278281 1.0201080 1.2987100 0.3489703  0.8939187 1.0156990
0.2400262 0.1896502  0.2472628 0.2210686 0.1823114 0.2311827

60 0.3961951 0.7833881 0.9403586 0.2673077 0.7405056 0.8119590
0.2214441 0.1241444 0.1731819 0.2209415 0.1249370 0.1737520

100 0.2073943 0.4892112 0.5322236 0.0741192  0.4796740 0.4851676
0.2209416 0.0678405 0.1166556 0.2115969 0.0773928 0.1221659

RN R KRR

12. Applications of Size Biased Lindley-Quasi Xgamma Distribution
We fitted size biased Lindley-quasi Xgamma distribution and its related distributions to two
lifetime data sets to check the superiority of our model over its related models.

Data set 1: The data set given in Table 2 represents the survival times (in days) of guinea pigs injected
with different doses of tubercle bacilli observed and reported by Bjerkedal (1960). It is known that
guinea pigs have high susceptibility of human tuberculosis and that is why they were used in this
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particular study. The regimen number is the common logarithm of the number of bacillary units per
0.5 ml. (log(4.0) 6.6). Corresponding to regimen 6.6, there were 72 observations as listed in Table 2.
This data set was recently used by Shukla (2019).

Table 2 Survival times (in days) of 72 guinea pigs injected with different doses of tubercle bacilli

12 15 22 24 24 32 32 33 34
38 38 43 44 48 52 53 54 54
55 56 57 58 58 59 60 60 60
60 61 62 63 65 65 67 68 70
70 72 73 75 76 76 81 83 84
85 87 91 95 96 98 99 109 110
121 127 129 131 143 146 146 175 175
211 233 258 258 263 297 341 341 376

Data Set 2: The non-censored data given in Table 3 represents the survival times (in months) of 46
patients of melanoma (non-censored data) has been taken from Kayid et.al. (2010).

Table 3 Survival times (in months) of 46 patients of melanoma (non-censored data)

3.25 3.50 4.75 4.75 5.00 5.25 5.75 5.75
6.25 6.50 6.50 6.75 6.75 7.78 8.00 8.50
8.50 9.25 9.50 9.50 10.00 11.50 12.5 13.25
13.5 14.25 14.50 14.75 15.00 16.25 16.25 16.50
17.5 21.75 22.50 24.50 25.50 25.75 27.50 29.50
31.00 32.50 34.00 34.50 35.25 58.50

These data sets are used here only for illustrative purposes. The required numerical evaluations
are carried out using R software version 3.5.3. We have fitted size biased Lindley-quasi Xgamma
distribution, Lindley-quasi Xgamma distribution, another two-parameter Sujatha distribution and
exponential distribution to these two real life data sets. The summary statistic of these two data sets
is given in Table 4. The MLEs of the parameters with standard errors in parentheses, model functions
are displayed in Table 5 for these two data sets. The corresponding log-likelihood values, AIC,
AICC, HQIC, BIC, Kolmogorov statistic, p-value and Shannon’s entropy are given in Tables 6 and
7 for data sets 1 and 2, respectively.

Table 4. Summary statistic of data sets 1 and 2

Data No. of . First . Third
. Min. . median mean . Max.

Set observations quartile quartile
1 72 12.00 54.75 70.00 99.82 112.75 376.00

2 46 3.25 6.75 12.88 15.66 22.81 58.50
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Table 5 ML Estimates, standard error of estimates in parenthesis, model function of related models
and proposed model for data sets 1 and 2

Data

ML estimates

Set Distribution with standard Model function
© errors
Size Biased )
0=0.02198 ) x3¢92 N\ | —ox
Lindley-Quasi O | (a+0)| ax+ +0(0-1)|x+ax ) e
Xgamma (9.00263) [( ){ 2 ( )
Distribution a=19.5497 (02 o 30420+ a)
(SBLQXD) (22.2551)
?nmhef Two- §-2991697¢ 02 0 (1 e ) _ox
arameter — ax+ax |e
Sujatha (2.037893¢—03 0% + a0 +2a)
Distribution & =1.028127¢+01
I (aTPSD) (1.648809¢ -+ 03)
Exponential 0 =99.8193 X
Distribution ' le 0
(ED) (11.7638) P2
o— | Omomm ™ {(a o+ o0+ ax)}
gamma -
Distribution (f) 00295%) (@t 0)2 ?
(0.0634)
Size Biased )
0=0.13412 ) x3€2 N | —ox
Lindley-Quasi O | (a+0)| ax+ +0(0-1)|x+ax ) e
Xgamma (9'0372) L( )[ 2 -
Distribution a=41.4168 (92 o +3a¢9+20+a)
(SBLQXD) (231.3287)
?nother Two- 0 =0.1858 63 (1 s 2) o
arameter — ax+ax |e
Sujatha (0.01589) 0" +ab+2a)
5 Distribution a =6.3286
(ATPSD) (30.2251)
Exponential 0=15.6582 X
Distribution ' le 0
(ED) (2.3086)
;indley_QuaSi 0=0.06482 o {(a +0)(a+ 0’ )+ 600 -1 (1+ ax)}
gamma -
Distribution (?'009840) (e +0)" ?

(54.4436)
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Table 6 Model comparison, Kolmogorov statistic, p-value of proposed model and its related models
for data set 1

K-S Shannon

Distribution ~ —logL AIC BIC AICC HQIC distance  p-value Entropy
(D) (H(X))

SBLQXD 393.792 791.584 796.137 791.757 793.396 0.1246 0.21360 5.469
LQXD 419.525 843.051 847.225 843.225 844.864 0.2292 0.00103 5.826
ATPSD 397.240 798.480 803.034 798.654 800.293 0.2144 0.00266 5.517
ED 403.442 808.884 811.160 808.941 809.790 0.2115 0.00317 5.603

Table 7 Model comparison, Kolmogorov statistic, p-value of proposed model and its related
models for data set 2

K-S Shannon
Distribution —logL AIC BIC AICC HQIC distance p-value  Entropy
(D) (H(X))
SBLQXD 165.831  335.663  339.320 335942 337.033 0.08597 0.88580 3.605
LQXD 172.8183 349.6367 3532939 349915 351.006 0.22031 0.02300 3.756
ATPSD 166.759  337.518  341.176 337.797 338.888 0.29129 0.00081 3.625
ED 172.545  347.091 348920 347.188 347.776  0.2181 0.02500 3.750
Histogram of data Histogram of data
B— SBLQXD B— SBLQXD
BE— - LQXD B— - LQXD
w = - - ATPSD w |t = - - ATPSD
S Y =— ED = I = ED
= o = .
2 3 41 EA 2 = .
o = [
b
“é | %k“ % | %/ “‘
g | e 2 | Zoda

data

T
0 100 200 300 400

Figure 5 Curve fitting of data set 1

0 10 20 30 40 50 60

data

Figure 6 Curve fitting of data set 2

For testing the goodness of fit of our proposed model size biased Lindley-quasi Xgamma
distribution and its related models, another two-parameter Sujatha distribution, Lindley-Quasi
Xgamma distribution and exponential distribution to the two data sets, we computed Kolmogorov
statistic and p-value. The better model possesses lesser Kolmogorov statistic value and higher p-value
It can be seen from Tables 6 and 7 that size biased Lindley-quasi Xgamma distribution possesses
lesser Kolmogorov statistic value and higher p-value for both the data sets as compared to Lindley-
quasi Xgamma distribution, another two-parameter Sujatha distribution and exponential distribution.
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Also for comparing models, we computed the criteria like AIC (Akaike information criterion),
AICC (corrected Akaike information criterion), BIC (Bayesian information criterion) and HQIC
which represent the loss of information resulting from fitting probability models to data. The better
distribution corresponds to lesser AIC, AICC, BIC and HQIC values. Also we computed the
Shannon’s entropy (H (X)) which represents the average uncertainty. The better model possesses

lesser Shannon’s entropy value,
2k(k+1)

n—k-1

AIC =2k -2logL, AICC = AIC + , BIC=klogn—2logL,

HOIC = 2klog(logm)+ 2log L, H(X)=—28%

where k is the number of parameters in the statistical model, n is the sample size and —2log L is

the maximized value of the log-likelihood function under the considered model. From Tables 6 and
7, it has been observed that the size biased Lindley-quasi Xgamma distribution possesses the lesser
AIC, AICC, BIC, HQIC and H(X) values as compared to Lindley-quasi Xgamma distribution,

another two-parameter Sujatha distribution and exponential distribution for data sets 1 and 2
respectively. Hence we can conclude that the Size Biased Lindley-Quasi Xgamma distribution leads
to a better fit than Lindley-quasi Xgamma distribution, another two-parameter Sujatha distribution
and exponential distribution for data sets 1 and 2, respectively.

13. Conclusions

We formulated a non-decreasing hazard rate model known as Size Biased Lindley-Quasi
Xgamma distribution as a size biased version of Lindley-quasi Xgamma distribution. We obtained
the important statistical properties like moments, reliability, moment generating function, order
statistics, Renyi entropy, Bonferroni and Gini indices of formulated model. For obtaining the
estimates of unknown parameters maximum likelihood estimation method is used. For testing the
suitability of ML estimates simulation study has been carried which showed that ML estimation
method performs well for proposed model. For testing the goodness of fit our model and for
investigating the application of our proposed model in real life we fitted our proposed model and its
related models to two real life data sets and computed log-likelihood values, AIC, AICC, HQIC, BIC,
Kolmogorov statistic, p-value and Shannon’s entropy. We observed that our model possesses lesser
values of AIC, BIC, AICC, HQIC, D, H(X) and possesses higher p value. Hence our model finds

greater applicability in modeling survival times.
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Appendix

Appendix I Probability Weighted Moments
Proof: The probability weighted moment M, , , of size biased Lindley-quasi Xgamma distribution

is computed as follows:
M,,,=E[X"F'(1-F)|= j[x(F)] F'(1-F)’dF :Txh [F] 1-F@)] f(x)dx,  (26)
where f(x) and F(x) are the pdf and cdf of SBLQXD.

ANy ¢9x((a+9)(2a+6+3x:9+x2¢92)+2(6’—1)(9+2a+x6’a)) B '
J— + N
g 2(6’2+a2+3a6’+29+a) ¢

M, :]e UH 6’x((a+6’)(2a+6+23x9:x26’2)+2(9—1)(6’+2a+x6’a))]egx r
0 2(9 +a +3a¢9+26’+a)

32

92[(a+9)[ax+x29 J+9(6’—1)(x+ax2)}39*

(92 +a2+3a9+29+a)

dx

Using the binomial expansion,

Ox((a+0)(2a+6+3x0+x°0°)+2(0-1)(0+2a +x0)) | r
1-|1 o
" 2(6’2+a2+3a9+26’+a) ¢

27

i=0 \

_ im(—l)" {H Ox((a+6)(2a +6+3x0+x°0*)+2(0-1)(0+2a +xa9a))}i o

2(6° +a” +3a0+20+a)

Further using binomial expansion,

[1+ 9x((a+6’)(2a+6+3x9+x292)+2(6’—1)(9+2a+x9a))]i
2(6’2 +a’ +3a6’+29+a)

02j+k*l*p*\}(a+9)k 2;7+j7k (a+3)p31p\J

i( . ji{gi[ﬂi(;ji(i - k] ((9 —-1)/ 0+ 2a)va~f7k7"x2f+k*l*piv

=\ )% (2(0* +a* +3a0+20+a))

(28)

Using (28) in (27)

{1‘[“ ﬁx((a+¢9)(2a+6+3x9+x2¢92)+2(¢9—1)(9+2a+x¢9a))]eHx ]

2(6’2 +a2+3a9+26’+a)

(9”*""% (a+6) 2" (a + 3)1'31-1']
= (r RN A WNGAW: ! (=N (@ =1 (O +2a) a’ T xPrrtry
SR B e e

i=0 k=0 ! p=0 v=0 (2(6 +a +3a6’+26+a))

(29)
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8
Hx((a+9)(2a+6+3x6’+x292)+2(6’—1)(6’+2a+x9a))
Also, || 1+ e
2(6° +a” +3a0+20+a)

x

HZSH*mfch (a + 0)t20+sft (a + 3)c 3mfc J

jﬁ(sji(t jimz(_t} ((9—1)"'<9+2a>qa“‘""x2“"“'"”

=0\ )i\l =\ ¢ Ja=0\4 (2(92+a2+3a6’+29+a))
(30)
Putting the values of (29), (30), (5) in (26), we get
0’ IV T L1\ -k
Rt it
Tl EUEECEG S
{92j+klpv (O.’ + e)k 2p+j7k (a +3)p 31717
O@-1)"(O0+2a) a’* z s L\ (m\ & (st
2 2 J Z s Z m ¢ Z
(2(0* +a* +3a0+20+ ) =o\s )i\ mo\m s\ e Jil\g
625+r7mfch (a + 6))‘ 2c‘+sfr (a + 3)(‘ 3mfc
@-D)"(O+2a) a1
Mh,r,ﬂ = 2 5 K
(2(0* +a* +3a0+20+ )
" 2j—k—-1-v—p+2s | g 2j—k—-l-v—p+2s |
+Ht-m—-c—q+h+1 ) +H-m-c—q+h+3 )
(O.’ + 9) . 2j—k=l-v=p+2s+t—m—c—q+h+2 . 2j—k=l-v=p+2s+t-m—c—q+h+4
(9(1+l+s)) 2(9(1+l+s))
[2j—k—l—v—p+2s]' a[2j—k—l—v—p+2s |
+Ht—m—c—q+h+1 ) H-m—c—q+h+2 )
+0(9 - l) . 2j—k—l-v—p+2s+t—-m—-c—q+h+2 . 2j—k—l-v—p+2s+t—-m—-c—q+h+3
(6(1+i+5)) (6(1+i+s))
Appendix IT Mean Residual life
Proof: The mean residual life m(x) of SBLQXD is obtained as
m(x) = E[X —x| X >x]= = F( )j[l F(1)]d (31)
Using value of F(x) in (31), we get
2 o 6 0-1)(0+3
2(0° +a’ +3a0+20+a) (o ,)(OH: )+(0-1)(0:+3a)) -
0(6 +a’ +3a0+20+a)
2(6° +a’ +3a0+20+a)(l-e ") +(a+6)
é (Qa+6)(1-(x0+1)e”)+6—e"(30°x" +60x+6)+6—¢ " (x’0 +3x'0" +60x +6))
+20 -1 ((0+2a)1-(x0+ e ™) + a(2—e " (x*6" +260x+2)))
m(x) = (32)

[2(9z +a’ +3a0+20+ a) + Qx((a + 9)(20{ +6+3x0+ x:9:)+ 2(6-1)(0+2a+ x@a))}e’”
It can be seen from (32) that m(0) = E(X) = /.



