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Abstract

This work aims to establish a new family of distributions, namely the beta Topp-Leone generated
family of distributions. The proposed family of distributions is combined from two families: the beta
generated family and the Topp-Leone generated family. Some statistical properties of the proposed
family are derived, e.g., linear representation, ordinary moments, and moment generating function.
Furthermore, a new modification of Weibull distribution, namely the beta Topp-Leone Weibull dis-
tribution, is studied. The beta Topp-Leone Weibull distribution has flexible hazard shapes. Some
statistical properties of the proposed distribution are studied, e.g., transformation, quantile function,
ordinary moments, and moment generating function. The distribution parameters are estimated with
the methods of maximum likelihood estimation. The proposed distribution shows more appropriate
than other candidate distributions for fitting with the complete and censored datasets based on the val-
ues of Akaike’s information criterion, Bayesian information criterion, Akaike’s information corrected
criterion, and Hannon and Quinn’s information criterion.

Keywords: Beta generated family, Topp-Leone generated family, 7-X family, Weibull distribu-
tion, lifetime distribution, censored data.

1. Introduction

Several classical continuous distributions are widely used for modeling data in many areas such
as biostatistics, business analytics, econometrics, environmental statistics, reliability engineering, and
others. Recent developments focus on defining the new families of distributions that extend classical
distributions and, meanwhile, offer considerable flexibility in modeling data. Hence, several families
of distributions have been proposed by adding more (location, shape, or scale) parameters to generate
new distributions in the statistical literary work recently.

Eugene et al. (2002) introduced the beta generated (BG) family of distributions and noted that
the BG family provides excellent flexibility for modeling data. Jones (2004) studied some proper-
ties of BG family. Let G(x; &) be a baseline cumulative distribution function (cdf), let g(x; &) =
dG(x; &) /dx be a baseline probability distribution function (pdf) of a random variable X and £ the
p X 1 vector of associated parameter. The BG family pdf is expressed as

fra(z;a,b,€) = 9(z;&)G(2; €)1 - G(z; )Y, a,b>0, (1)

B(a,b)
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where B(a,b) fO - 1 b Ldt is the complete beta function. Thus, the BG family of
distributions has its cdf as
FB(;(Q?;CL, b,f) = IG(I;&)(aa b)7 (2)

where the function . G(x:8) (a, b) denotes the incomplete beta ratio function defined by

B,(a,b

I,(a,b) = Mj

B(a,b)

where By ( fO U b Ldt, 0 < t < 1, is the incomplete beta function.

In addltlon some Well known famlhes are proposed, such as the Kumaraswamy generated
(Cordeiro and de Castro, 2011), McDonald generated (Alexander et al., 2012), and Kummer beta
generated (Pescim et al., 2012) families of distributions. Furthermore, Alzaatreh et al. (2013) devel-
oped a new method for generating family distributions, referred to as the T'- X family of distributions.
A good review of methodologies for generating continuous distributions is referred to the work of Lee
etal. (2013).

Sangsanit and Bodhisuwan (2016) introduced the Topp-Leone generated (TLG) family of distri-
butions, its pdf and cdf are, respectively,

fria(z;e,€) = 2cg(z;€)(1 - G(2;€))[1 — (1 = G(x;€))’]°™F, ¢ >0, 3)

and

FPrig(z;c,€) =[1— (1 - G(x;€))%°, 4)

Using this method, the Topp-Leone generalized exponential distribution was proposed by Sangsanit
and Bodhisuwan (2016) with applying to maximum stress per cycle 31,000 psi and breaking stress of
carbon fibers datasets.

The rest of paper is structured as follows. Section 2 is the definition of the beta Topp-Leone
generated (BTLG) family. In Sections 3 and 4, linear representation of the proposed family and some
of its statistical properties are obtained. In Section 5, we propose a new modification of Weibull
distribution called the beta Topp-Leone Weibull (BTLW) distribution. In Section 6, some of its statis-
tical properties are investigated. In Section 7, the distribution parameters are estimated by maximum
likelihood estimation (MLE). In Section 8, the flexibility of the proposed distribution will be explored
through two applications to real datasets. Finally, Section 9 is the conclusion.

2. The Beta Topp-Leone Generated Family of Distributions

Let r(t) be the pdf of a random variable T’ € [p, g] for —0o < p < ¢ < oo and let W[G(z)]
be a function of the cdf of a random variable X satisfying the following conditions:

i) W[G(z)] € [p, dl,

(ii) W[G(x)] is differentiable and monotonically non-decreasing,
(i) W[G(z)] = pasx — —oo and W[G(x)] — qas z — oo.
The cdf of the T-X family defined by Alzaatreh et al. (2013) is

WIG(2)]

F(x) = / r(t)dt 5)
where W[G(z)] satisfies the above conditions. The pdf corresponding to Equation (5) is given by

@) = { WG] Vi) ©
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Setting W[G(x)] = Frra(x;c, &) and r(t) is the pdf beta distribution, we define the cdf of
BTLG family by

Fprra(z;a,b,¢,8) = In_q—G(ue))2)- (@, ). (7

The pdf corresponding to Equation (7) is

rrn(a:a.b.e.§) = o o)1~ G )1 - (1 - Glas)
X [1—[1—(1-G(x:€)%9", (8)

where G(x; €) is the baseline with a parameter vector € and a,b,c > 0 are shape parameters.
Hereafter, a random variable X with cdf in Equation (7) is denoted by X ~ BT LG(a,b,c,§).
Further, the parameters a, b, ¢ and the vector of the baseline parameter & can be omitted. That is, we
can write G(z) = G(z; &) and F(z) = F(z;a,b, ¢, §).

The importance of the BTLG family is that there are contained several sub-family generated of
distributions. The BTLG family reduces to the TLG family (Sangsanit and Bodhisuwan, 2016) when
a =1landb = 1. If ¢ = 1 it reduces to the beta transmuted generated (BTG) family (Afify et
al., 2017) with transmuted parameter equals to 1. If b = 1, it gives as special case the exponenti-
ated Topp-Leone generated (ETLG) family. The exponentiated transmuted generated (ETG) family
(Merovci et al., 2017) with transmuted parameter equals to 1 is also a sub-family when b = 1 and
¢ = 1. The transmuted generated (TG) family (Shaw and Buckley, 2009) with transmuted parameter
equals to 1 is clearly a special case fora = 1,b = 1 and ¢ = 1. In Table 1, the relationship between
sub-family defined from the BTLG family is provided.

Table 1 Sub-families of the BTLG family of distributions

Parameters

Families ——————— F(x) References
a b ¢ &
BTG a b 1 ¢ 1[17(17G(x;5))2] (a, b) Afify et al. (2017)
ETLG a 1 ¢ & [1—-(1-G(x;¢8))% -
ETG a 1 1 & [2G(x;¢) — G(x;€)?)* Merovci et al. (2017)
TLG 1 1 ¢ & [1-(1-G(;¢)%° Sangsanit and Bodhisuwan (2016)
TG 1 1 1 & 2G(x;:€) —G(w;6)? Shaw and Buckley (2009)

The survival function and hazard function of the BTLG family are, respectively,

S($7 a, b7 Cy €) =1- I[l—(l—G(r;g))z]“(aa b) = Il—[l—(l—G(m;E))2]“(b7 a)a (9)
and

2c
; 1—G(x; 10
B(a,b)li-p-a-c e b, a)g<x’€>( (2:€)) (10)

X [1— (1= G(a;6)° 1= [1— (1 - G(x; €))%

h($, a, b7 c, E) =

The quantile function of the BTLG family can be derived by solving Equation (7) as
QBTLG’(U; a, b7 C, 5) = Fg%LG(u; a, b7 c, E) = G_l{l - [1 - (Iu_l(aa b))l/c]l/Q; 5}7 (1 1)

where I 1(a,b) represents the inverse of the incomplete beta ratio function (Majumder and Bhat-
tacharjee, 1973).
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3. Linear Representation of the BTLG Family

Some useful expansions of Equation (7) and Equation (8) can be derived using the exponentiated
generated (EG) family of distributions. For any baseline cdf G (), a random variable X is distributed
as the EG family of distributions with power parameter 8 > 0, Xy ~ EG(6) and the pdf and cdf of
EG family are fy(z) = ag(x)G?~!(x) and Fy(z) = G(x) respectively.

Firstly, for non-integer real value b > 0, the term of (1 — #)*~! under the integral is replaced by
the power series, and is expressed as

oo

/Ox 171 — 1)Lt = 2(71)1 (bj 1) /0 "

J*O

. (b 1)xa+j’
= J

b—1
where the binomial coefficient ( ) ) I'(b)/T(b— 5)j! is defined for any real value of b and I'(+)
J

is gamma function. Consequently, we obtain

Fori(eiab.e§) = g Z " (b; 1) (1~ (1~ Glas ).

= J

Furthermore, by using binomial expansion, the cdf of BTLG family will be

FBTLG(xabCS Zzwjkm $§ Zzwjkm Z‘S) (12)
j,k=0m=0 J,k=0m=0

where,

won =g 1) () ()

By differentiating Equation (12), we obtain

S 2k oo 2k
forre(@ab,c.€) = > Y wirmmg(;€)G(@: €)™ = > > wikmfm(z:€). (13)
J,k=0m=0 7,k=0m=0

If b > 0 is an integer, the index j in Equations (12) and (13) will run from O to b — 1, and if both
a and c are integers, then the index & will run from 0 to c(a + 7).

Equation (13) shows that the pdf of BTLG distribution can be expressed as a linear representation
of the pdf of EG distribution. Thus, several statistical properties of the BTLG family can be derived
from the EG family. Many members of EG family are studied over the past three decades or so, for
instance, exponentiated Weibull (Mudholkar and Srivastava, 1993), exponentiated exponential (Gupta
and Kundu, 1999) and exponentiated Gumbel (Nadarajah, 2006) distributions.

4. Statistical Properties of the BTLG Family

In this section, the ordinary moments and moment generating function (mgf) of the BTLG family
are derived. The derived formulas will be processed in computer programming languages, such
as Matlab, Maple, Mathematica, and R, which currently can handle with analytical expressions of
enormous size and complexity. The infinite limit in the sums may be replaced by a large positive
integer for most practical purposes.
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4.1. Ordinary moments
The three formulas for the rth ordinary moment . = E(X") of X are derived. The first formula
for ordinary moments can be straightforwardly obtained from Equation (13) as

[eS) 2k

=3 > wikmE(X]). (14)

J,k=0m=0

The second formula is simply obtained as in term of the probability weighted moments 7, s =
E(Y"G(Y)#®), where Y have the baseline distribution G (), for r, s = 0,1, . ... The term of G(x)?
for real non-integer # > 0 can be expressed as

G(z)” = t.(0)G(x)*, (15)
s=0

where
wn-Eero())

By substituting Equation (15) in Equation (13) yields

oo
Ky = E(X") = ZFSTT,Sa (16)
s=0
where
0o 2k
Ty = Z Z MWw; kmts(m —1).
§,k=0m=0

The third formula for p!. can be derived from Equation (16) in terms of the baseline quantile
function Qg (u) = G~1(u)

[e'e) 1
Tre = / yG(y) g(y)dy = / Q) udu. a7
0 0

In addition, the central moments (u,-) and cumulants (x,.) of X are obtained by employing the
ordinary moments as

r r—1
r k r—1
=Y (k) (—0*pi iy and mp =gl = (k - 1) Ky
k=0 k=1

respectively, where x1 = ). The skewness and kurtosis of X can be derived from the second, third
and fourth cumulants with their relationships.

4.2. Moment generating function
The three formulas for the mgf of X, say My (t) = E(e*X), are provided. First, it requires the
following series expansion:

T

tx - 12
: :Z<H)~

r=0
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Hence, the first for mgf of BTLG family can be expressed in terms of the rth ordinary moment
from Equation (14) as

.
Y2

>t
Mx(t) = “; . (18)
i=0 !

The second formula for the mgf of BTLG family can be written from Equation (13)

0o 2k
Mx(®) =Y > wjrmMx,, (t), (19)
4,k=0 m=0

where M, (t) is the mgf of X,,,. Therefore, the mgf of BTLG can be determined from the mgf of
EG such as those determined by Nadarajah and Kotz (2006).
Lastly, the third formula for the mgf of BTLG family can be expressed from Equation (13) as

00 2k
Mx(t) =Y > mwjkimp(t,m—1), (20)
J,k=0m=0

where

5. The Beta Topp-Leone Weibull Distribution

The Weibull distribution (Weibull, 1951) with exponential and Rayleigh distributions are special
cases which is one of the most commonly used distributions for monotone hazards modeling. Never-
theless, it does not provide an appropriate fit for modeling lifetime data with non-monotone hazards
such as bathtub-shaped and unimodal hazards.

For the reasons outlined above, the primary purpose of the modification or extension of the
Weibull distribution is to describe and fit the data sets with non-monotonic hazard, such as, the
bathtub-shaped and unimodal hazards. Some modifications of Weibull distribution are exponentiated
Weibull (EW) (Mudholkar and Srivastava, 1993), modified Weibull (Lai et al., 2003), beta Weibull
(BW) (Lee et al., 2007), generalized modified Weibull (Carrasco et al., 2008), Kumaraswamy Weibull
(KW) (Cordeiro et al., 2010), beta modified Weibull (Silva, 2010), generalized modified Weibull
power series (Bagheri et al., 2016) and Topp-Leone Weibull (TLW) (Aryal et al., 2017) distributions.
Furthermore, the Almalki and Nadarajah (2014) provide review of the literature on modifications of
Weibull distribution.

The two-parameter Weibull distribution is specified by its cdf

Gw(zia,\)=1—e " 23>0 @1

where a > 0 and A > 0 are the scale and shape parameters, respectively. The corresponding pdf is

A

gw(z o, \) = axz* e @ > 0. (22)
The corresponding hazard function is
hw (z;0,\) = adz*™t, >0, (23)

which can be increasing, decreasing or constant depending on A > 1, A < 1 or A = 1, respectively.
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In this work, a new modification of Weibull distribution called the BTLW distribution is intro-
duced by using the BTLG family. Substituting Equation (21) and Equation (22) in Equation (7) and
Equation (8), the cdf and pdf of BTLW distribution (a, b, ¢, v, A > 0) are obtained as

Fpriw (z;a,b,¢c,a,\) = I(lfe,z(wx)c(a, b), x>0, (24)

and

2ca\
B(a,b)
X [1— (1 —e 20 yep=1 g >0,

ferow(x;a,b,c,a,\) = ajA_le_2“f”A(1 - (3_2()""’3A)“C_1 (25)

respectively. A random variable X is distributed according to the cdf Equation (24) is denoted by
X ~ BTLW (a,b,c,a, A).

Some pdf plots of BTLW distribution with specified parameter values a, b, c, « and A are illus-
trated as in Figure 1.

The survival function and hazard function of the BTLW distribution are, respectively,

Spriw(z;a,b,c,a,\) =1 — I(l_e,mzx)c(m b) = Il_(l_e,mzx)c(b, a), x>0, (26)

and

. _ 2ca)\ A—1 —2az> —2az™yac—1
hBTLW(-T,Uu;b, C7a7)‘) _B(a,b)ll_(l_e—zwm/\)c (b, a).’E € (1 € ) (27)

) [1—(1—e 200yl 150,

Some BTLW hazard plots for different values of a, b, ¢, &« and A are shown in Figure 2. The
BTLW hazard can be monotonically increasing, monotonically decreasing, bathtub-shaped, upside-
down bathtub-shaped and modified bathtub-shaped depending on the values of its parameters.
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Figure 1 Some pdf plots of the BTLW distribution with specified parameter values
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Figure 2 Some BTLW hazard shapes (a) increasing, (b) decreasing, (c) bathtub-shaped, (d) upside-
down bathtub-shaped and (e) modified bathtub-shaped
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6. Statistical Properties of the BTLW Distribution

In this section, some statistical properties of the BTLW distribution, including transformation,
quantile function, ordinary moments and moment generating function, are provided.

6.1. Transformation
If the random variable B follows beta distribution with parameters a and b, denoted by Beta(a, b),
then the random variable

e /A
X = [log(l&f)] (28)

follows a BTLW distribution with parameters a, b, ¢, « and A. A random variable X ~ BTLW (a,b, ¢, o, \)
can be generated by utilizing the transformation in Equation (28).

6.2. Quantile function
The quantile function of the BTLW distribution is

1/x

_ (71 1/c
@priw(u;a,b,c,a, A) = {log[l (?%Ea,b)) ]} , 0<u<l, (29)

where I 1(a,b) represents the inverse of the incomplete beta ratio function (Majumder and Bhat-
tacharjee, 1973).

6.3. Ordinary moments
Nadarajah (2006) show that the rth ordinary moment of the EW distribution for any » > —\ are

r]__ —r/A ﬁ N (1 _0)2
E[X}] = 0"/ T (A +1) ; FTERIGETEY (30)

where Xy is the EW random variable with parameters «, A and power parameter 6, I'(p) = |, 0°° tr—letdt
is the gamma function and (1 — 6); = (—1)'T()/T'(0 — ).

From Equations (14) and (30), the rth ordinary moment of BTLW distribution can be expressed
as

> 1—m)
— *T/AF( ) E E —( n 31
'U, = mwjk‘ﬂ’) r+A) /N ( )
j,k,n=0m=0 ! +1)( /

for any r > —).

6.4. Moment generating function
The mgf of BTLW distribution can be derived using Equations (18) and (31) as

Mx(t) = f:

i,4,k,n=0

—z/)\tz

. (1= m),
( +1)mejknwv (32)

for any ¢ > —A\.
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7. Maximum Likelihood Estimation

Let x = (x1,...,2,) be a random sample of size n from the BTLW distribution and let F' and
C be the sets of individuals for which z; is the failure or censoring time, respectively. The likelihood
function for the vector of parameters © = (a, b, ¢, a, )T of the BTLW distribtuion can be written as

H ferow (zi;© H Spriw (zi; ©)

i€EF ieC

_ 2ca) A—1_—2az) —2azM\ac—1 —2az}\c1b—1
=11 [B(a,b)xi e 720w (1 — g7 2amiyac ] _ (] — gm 2097

XH{I 122 (ba)]

eC
The log-likelihood (LL) function is

£(©;x) =log L(©; x)
= log ferow(2:;0) + Y _log Sprow (25 0)
i€k ieC
= —nlog B(a,b) + nlog(2) + nlog(c) + nlog(a) + nlog(c)

A—1) Zlog(mi) - QQng\ + (ac—1) Zlog(l —v?)

i€eF i€F i€F
+(b—=1) logl — (1= v})T+ Y log I;_(1_2 (b, a), (33)
i€EF i€C

where v; = e —az} js a transformed observation. X
The maximum likelihood estimate © = (a, b, ¢, &, \)T of the vector of unknown parameters in
Equation (33) can be obtained by the score function
0l(O; x)
00

The asymptotic distribution of \/n(© — ©) is multivariate normal N5 (0, [I(©)]~") where I(©)
is the expected Fisher information matrix which is given by

U®) = =0. (34)

(35)

1)~ 5[ 2100

0000T

However, the expected Fisher information matrix I(©) is not available unless the censoring
process is fully specified. Therefore, the asymptotic covariance Var(©) = [I(0)]~! can be approx-
imated by using the observed Fisher information matrix, which is defined as

J(m, Jab Jac Jaa Ja)\

9%0(0; z) Joo Jve  Jba Jba

J(©)=-—55er =~ J.cc jca j]’c)/; (36)
VN

The score function and the observed Fisher information matrix corresponding to Equations (34)
and (36) are too complicated to be presented in close-form expressions. Therefore, the LL function
can be maximized to obtained © by a procedure of Newton-Raphson iteration utilizing the opt imr
package (Nash, 2016) in the R programming language (R Core Team, 2020). Furthermore, the second
partial derivatives for the observed Fisher information matrix can be numerically computed by using
numDeriv package (Gilbert and Varadhan, 2019).
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8. Simulation Study

A Monte Carlo simulation study is conducted to investigate the performance of the maximum
likelihood estimates based on bias and root mean square error (RMSE). We consider sample sizes
n = 15,25,50, 100, 250, 500 and the different values of the parameters a, b, ¢, & and A of the BTLW
distribution: 1. ¢ = 0.5,b = 2,c =8, a =04and A =4and 2. a = 2,b = 0.4,c = 4, = 2
and A\ = 0.2. The experiment is repeated 2000 times. An algorithm for generating a BTLW random
variable X with parameters a, b, ¢, & and A:

(i) Generate B ~ Beta(a,b).

log(1 — Bl/c)} /A

(i) Set X = { g

Table 2 gives the average parameter estimates, average bias, and average RMSE of the maximum
likelihood estimates. The results show that the maximum likelihood estimates are the asymptotically
unbiased and consistent, i.e., the bias and RMSE decrease when the sample size increases.
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Table 2 The average parameter estimates, average bias, and average RMSE

. BTLW(0.5,2,8,0.4,4) BTLW(2,0.4,4,2,0.2)
Sample size  Parameters Parameter Parameter
. Bias RMSE . Bias RMSE
estimates estimates

15 a 1.650 1.150 3.420 5.297 3.297 13.867
b 8.416 6.416 27.268 0.471 0.071 1.153
c 15.655 7.655 22.550 7.733 3.733 11.928

« 0.723 0.323  0.878 3.359 1.359 2.345

A 7.086 3.086 5471 0.337 0.137 0.273
25 a 1.261 0.761 2.694 4.595 2.595 10.004
b 6.027 4.027 15.823 0.487 0.087 1.100

c 14.057 6.057 19.218 6.514 2.514 7.757

« 0.650 0.250 0.744 3.004 1.004 1.864

A 5.927 1.927  3.799 0.277 0.077 0.166

50 a 0.855 0.355 1.336 3.640 1.640 5.555
b 4.257 2.257 8.679 0.513 0.113 0.640

c 11.644 3.644 11.351 5.990 1.990 6.856

« 0.530 0.130 0.467 2.696 0.696 1.451

A 4.926 0.926 2.309 0.234 0.034 0.099

100 a 0.717 0.217 0918 3.175 1.175 3.738
b 3.324 1.324 4983 0.516 0.116 0.581

c 10.922 2.922  9.800 5.080 1.080 4.225

« 0.481 0.081 0.295 2.469 0.469 1.096

A 4.509 0.509 1.747 0.218 0.018 0.071

250 a 0.572 0.072 0.356 2.737 0.737 2.478
b 2.636 0.636  2.408 0.499 0.099 0.460

c 9.946 1.946 7.284 4.603 0.603 2.408

« 0.431 0.031 0.162 2.282 0.282 0.767

A 4.303 0.303 1.381 0.206 0.006 0.052

500 a 0.545 0.045 0.296 2.446 0.446 1.494
b 2.298 0.298 1.630 0.491 0.091 0.362

c 9.415 1.415 5.628 4.424 0.424 2.029

« 0.421 0.021 0.128 2.152 0.152 0.588

A 4.287 0.287 1.234 0.200 <0.001 0.042

9. Applications

In this section, we compare the fitted results of the BTLW, BW, KW, TLW, EW and Weibull
distributions with two datasets to demonstrate the flexibility and applicability of the proposed model
among the other lifetime parametric distributions. In order to evaluate whether the model is appro-
priate, the many statistical tools are considered.

9.1. Complete Data: Aarset Data

We consider the bathtub-shaped hazard data from (Aarset, 1987). The Aarset data consist of
times to failure (in weeks) of 50 industrial devices put on life test at time 0.

Firstly, the Weibull distribution parameters are estimated by MLE to use as initial values for
the numerically computed. Table 3 shows the maximum likelihood estimates (the standard errors are
given in parentheses) of model parameters and Table 4 gives the values of Akaike’s information cri-
terion (AIC) by (Akaike, 1974), Bayesian information criterion (BIC) by Schwarz (1978), Akaike’s
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information corrected criterion (AICC) by Hurvich and Tsai (1989) and Hannon and Quinn’s infor-
mation criterion (HQIC) by Hannan and Quinn (1979). These are defined as, respectively,

AIC = —20(6; x) + 2k,
BIC = —2((0; x) + klog(n),

A n
AICC = —20(6; ) + 2k <n—k—1> ,

HQIC = —20(6; z) + 2k log(log(n)),

where f(é; x) is the LL of maximum likelihood estimate O, k is the number of parameters and n is
the sample size.

The lower the values of these statistics indicate a better fit to the data. Since these findings
suggest that the BTLW distribution has the lowest AIC, BIC, AICC and HQIC values, it follows that
the BTLW distribution could be a suitable model for the fitting of the data. In order to identify the type
of empirical behavior of the hazard function, the total time on test (TTT) plot (Aarset, 1987) is used.
Figure 3(a) shows that TTT plot for the data is initially a convex shape and then a concave shape.
It points out that the data have a bathtub-shaped hazard. Also the estimated hazard function plot of
the BTLW distribution in Figure 3(b) is bathtub-shaped. The histogram and the estimated pdf plots
of the Aarset data are illustrated in Figure 4(a). In Figure 4(b), the empirical cdf and the estimated
cdf plots for the Aarset data are shown. Furthermore, the goodness-of-fit plots for BTLW distribution
that consist of Q-Q and P-P plots are presented in Figure 5(a) and Figure 5(b), respectively. The
conclusion of these plots indicates that BTLW distribution provides a better fit for the Aarset data.

Table 3 Maximum likelihood estimates of the model parameters for the Aarset data

Parameter estimates

Distributions
b c « A

BTLW 0.0818  0.0761 09582 4.347e-11  5.8936
(0.0154) (0.0161) (0.0001) (<0.0001) (0.0002)

BW 0.1331  0.0703 ] 1.63e-05  3.2032
(0.0304)  (0.0239) (<0.0001) (0.0839)

KW 0.0706  0.2370 ] 1.607e-08  4.4762
(0.0235)  (0.0585) (<0.0001)  (0.0652)

0.1459  1.885e-10  4.8065
LW i (0.0211) (<0.0001) (0.0819)
EW ] ] 0.4670 0.0010 1.5940
(0.2260)  (0.0030)  (0.6250)

Weibull ] ] 0.027 0.949

(0.0139)  (0.1196)

Table 4 The measures of -LL, AIC, BIC, AICC and HQIC for the Aarset data

Distributions -LL AIC BIC AICC HQIC
BTLW 218.940 447.870 457.430 449.240 451.510
BW 223.470 454950 462.600 455.840 457.860
KW 222.480 452960 460.610 453.850 455.880
TLW 228.980 463.950 469.690 464.480 466.140
EwW 236.290 478.580 484.320 479.100 480.770

Weibull 241.000 486.000 486.000 486.260 487.460
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Figure 3 (a) TTT plot on the Aarset data (b) Estimated hazard function plot for the Aarset data
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Figure 4 (a) The histogram and the estimated pdf plots of the Aarset data (b) The empirical cdf and
the estimated cdf plots for the Aarset data
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Figure 5 Goodness-of-fit plots for BTLW distribution fitted to Aarset data (a) Q-Q plot (b) P-P plot
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9.2. Censored Data: Serum-Reversal Data

The disappearance of HIV antibodies in the patient blood that previously showed HIV-antibody-
positive on serological testing is called the serum-reversal process. In the work by Silva (2004), the
data pertains to the serum-reversal time (in days) of a random sample of 148 children born from
mothers infected with HIV who have not received HIV treatment before pregnancy at the university
hospital of the Ribeirdo Preto School of Medicine, Brazil from 1986 to 2001. Also the dataset contains
88 right-censoring observations which constitute 59.46% of all data.

Table 5 and Table 6 give the maximum likelihood estimates of the model parameters (the stan-
dard errors are given in parentheses) and the measures of AIC, BIC, AICC and HQIC, respectively.
Based on the lowest AIC, BIC, AICC and HQIC values, the BTLW distribution could be selected as
the best model among the other distributions. Figure 6(a) shows that the TTT plot for the dataset is
concave shape. It indicates that the data have a increasing hazard. Also the estimated hazard function
plot of BTLW distribution in Figure 6(b) is a increasing hazard. Furthermore, the Kaplan-Meier curve
(empirical survival function plot) (Kaplan and Meier, 1958) and the estimated survival function plots
are provided in Figure 7. The conclusion of these plots indicates that BTLW distribution provides a
better fit for the serum-reversal data.

Table 5 Maximum likelihood estimates of the model parameters for the serum-reversal data

Parameter estimates

Distributions
b c « A

BTLW 1.3661 0.0832 0.1470  4.065e-12  4.8550
(0.3218) (0.0092) (0.0002) (<0.0001) (0.0131)

BW 0.3749 0.0513 i 9.245e-10  4.1296
(0.0770)  (0.0069) (<0.0001) (0.0034)

KW 0.2824 0.0545 i 1.815e-08  3.6070
(0.0008) (0.0074) (<0.0001) (0.0098)

TLW i 0.5209  1.726e-12  4.5044
(0.0637) (<0.0001) (0.0361)

EW i 0.6374  7.843e-11 3.9943
(0.0801) (<0.0001) (0.0330)

Weibull i ) i 1.797¢-08  3.1130

(<0.0001) (0.0218)

Table 6 The measures of -LL, AIC, BIC, AICC and HQIC for the serum-reversal data

Distributions -LL AIC BIC AICC HQIC
BTLW 389.240 788.480 799.280 789.520 792.740
BW 392.420 792.830 801.470 793.510 796.230
KwW 392920 793.850 802.480 794.530 797.250
TLW 397.860 801.730 808.200 802.130  804.280
EW 398.790 803.590 810.050 803.980 806.130

Weibull 401.990 807.990 812.300 808.180  809.690
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Figure 6 (a) TTT plot on the serum-reversal data. (b) Estimated hazard function plot for the serum-
reversal data
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Figure 7 Kaplan-Meier curve (empirical survival function plot) and estimated survival function plots
for the serum-reversal data

10. Conclusion

A new family of distributions called BTLG family is introduced by combining two families: the
BG family and TLG family. Some of statistical properties for the proposed family consist of linear
representation, ordinary moments and moment generating function are derived. In this work, a special
case of the BTLG family namely the BTLW distribution is studied and some of its statistical prop-
erties are investigated containing transformation, quantile function, ordinary moments and moment
generating function. The shapes of hazard function are monotonically increasing, monotonically de-
creasing, bathtub-shaped, upside-down bathtub-shaped and modified bathtub-shaped. The parameters
of BTLW distribtuion for complete data and censored data are estimated by utilizing MLE. Two appli-
cations involving the Aarset and serum-reversal datasets has been analyzed. The BTLW distribution
outperform than the others distribution by considering the information criteria and goodness-of-fit
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plots and it is an interesting alternative distribution for lifetime data in a variety of fields.
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