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Abstract

The goal of this article is to investigate the moment aspects of generalized order statistics (GOS)
via power linear hazard rate distribution. The explicit formulation and relations between moments of
GOS are derived. In addition, various deductions and related results are reviewed. Some numerical
computations are accomplished. The characterization results are also presented by several techniques
at the end.
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1. Introduction
Kamps (1995) instigated the concept of generalized order statistics (GOS) as a combined
procedure of observing random variables (RV) arranged in ascending order. It is defined in the

following.
b-1
Let beN, b>2,a>l, ¢=(¢,Cpse0r0, ) €R™ and  C, =D c,, such that

m=g

¢, =a+(b-g)+C,>0 for all geil,2,....b—1} are the parameters of GOS. Further, let
Vise.ayse+sVigne.ay b€ DGOS having continuous distribution function 7'(.) and probability density
function #(.). If it assumes the following joint probability density function (pdf) as

a (H b, j(H[l —T)I"t(v, )j[1 =TIt v,), (1)

n=1
for T7'(0+) <v, <v, <---<v, <T'(1). Consider two cases:

Casel: ¢, =---=¢, , =c. Inview of Equation (1), density of g" GOS is

K _ _
Lopea (V) =——tWTW]* ™ pE[TW)], —0<v <o 2)
(g-D!
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— g
where T(v) =1-T(v), K, =]]4,. ¢, =a+(b-n)(c+1), n=1,...,b. The density of (g" —A")
GOSis (1< g<h<b)

Kh—l el m g-1
Lo bca URSE (g-D)(h-g—-1)! [TO)I"t(v) pE [TW)]

X4, (T0,) =, O [T 1), 0 <v, <v, <, 3

where

=T g 90,0
—In(1-v) , c=—1,
The pdf of (hth |g‘h)GOS is
e+l c+l h g-1 &=
f(vz |V1) — K Kh—l [(T(V )) (TEV )1) y [T(V )]
a(h—g-D! (c+ D) [T

Casell: ¢, #¢,, n#m, n,m=1,2,...,b—1. Considering Equation (1), the density of g"GOS

(Vz ), “4)

is

e =K, 1) w (T T, 5)
The pdf of (g" —4™)GOS is
w® oy L) = g | ) t(v,)
tonpia(VisV)) = Khlm% (h)(T( )] {Zl w, ([T (W)] }—T(vl)—f(vz)’ (6)
where ¢n=a+(b—”)+b§:cma
1
1<n<g<bh,
H(8)= ﬂl@ —gy F
h 1
d (&) () = , 1<n<h<b.
an w,e (h) = ml;,[H@ =) g+1<n
When ¢, #¢, but ¢, =---=¢, |, =c, then
w(g) =D ] i oy =D 1

(c+D (b-D!(g-1)! (c+D)"*" (m—g-D(h-n)!
Therefore, Equation (5) reduces to Equation (2) and Equation (6) reduces to Equation (3), (Khan et al.
2006). Special cases of GOS are listed in Table 1 (Cramer, 2002).

In the literature, numerous authors researched recurrence relations between moments of GOS .
Reference may be referred to Cramer and Kamps (2000), Bieniek and Szynal (2003), Khan et al.
(2008), Khan et al. (2015a, b), Khan and Khan (2016a, b), Faizan and Khan (2017), Singh et al. (2018),
Khan (2018), and Saran et al. (2018) and reference therein.

The basic principles of recurrence relations are to reduce the computation, labor, and time. In
addition, these are applied in characterizing the distributions too that is the main fields, granting the
recognition of population distribution from characteristics of sample.



534 Thailand Statistician, 2022; 20(3): 532-544

Table 1 GOS' variants

Models c ?, C,

1 Order statistics (O.S.) 1 b-g+1 0

ii Sequential O.S. w, b-g+) w, ¢,-(4,.,+D
iii  Progressively type-II b

censored O.S. R+l b-(g=D+ mZ::g R R

iv Records 1 1 -1

Power-linear hazard rate (P-LHR) distribution was introduced by (Tarvirdizade and Nematollahi
2019). This distribution induces several lifetime distributions (see Table 2).

The PLHRD is very simple and can cover constant, decreasing, increasing, bathtub-shaped and
non-monotone hazard rate too. These properties enable this distribution to be used in many
applications in several areas, such as reliability, survival analysis, life testing and others. For more
details, properties, and application of PLHRD, (see Tarvirdizade and Nematollahi, 2019).

ARV V ~PLHRD(e, f, 1), ifits distribution function and density are as follows:

7{& ,:Jrlv).n}
Twy=1-e'* *' J v>0, @)
and
—{E»'ZJer“'}
)y =(Bv+avie > ) v>0, 8)

where a, >0, A > -1, and A #1. The sub-models of the PLHRD are shown in Table 2.

Table 2 Sub-models of PLHRD

Model a B A cdf References
Exponential - 0 0 I—e™ Bain (1974)
Rayleigh 0 2u 0 l—e " Bain (1974)
LHR . 2u 0 = gloveans Bain (1974)

QHR 0 ; 2 | o] Bain (1974)
Weibull o0 0 o-1 1—e " Weibull (1951)
PHR ; 0 - = Mugdadi (2005)

We note that the characterizing differential equation for PLHRD from Equations (7) and (8) is
1) =(Bv+av)1-T)]. )

Equation (9) will be considered to find: (i) explicit expressions, (ii) relations for moments of GOS
and (iii) the characterization results. The intent of this research is to exhibit moment properties of GOS
derived from PLHRD. Characterization results are given through several techniques. The formulation
of the paper is as follows. Outright expression, single moments and numeric computations are
addressed in Section 2. Product moments are dealt in Section 3. The characterization outcomes are
proved in last section.
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2. Single Moments
Firstly, existence of E[V"(g :b,c,a)] is setup,

E[V”’(g:b,c,a)]:j: oo (V) V. (10)
When c¢ # -1, using Equation (2) in (10) and apply binomial expansion. It gives
t %
1 sF 2 (11

-1
where [ = (1)'(—1)“2( * { j Further, on using Equation (9) in (11), we obtain
g +

¢ (/ﬁ+ v)

——.[ ————— |dv. Integrating by parts now yields

m+DI po 4 (Br+DH)
ujo v"e A dv.

g-x

Now expanding exp(—¢, . Sv) in Taylor series, it gives
0P ey P
1 IO Vv re dv, (12)

where I’ =Mi(—1y

g—x »=0

. Here, we use

(Bg,..)"
y'

o Gamma(r +1)/s
Jy e av VETT A

Now inserting Equation (13) in (12), one obtains

Kg—l(m+1) o g-l e ,B (¢g y)l —1=(m+y+1)/ 2
(g—l)!ﬂ,(c+l)g'l yZOX:O( ) '(aj(m-ﬂ-H)M
y: 2

gl -1
When ¢ tending to -1, E[V"(g,b,c,a)] :% as 2(—1)X (g ]: 0. Since Equation (14) holds the
x=0 X

, B,r,s>0. (see Gradshetyn and Ryzhik 2007). 13)

gamma{(m+y+1)/1}.  (14)

form of (%) at ¢ = —1, we simplify the expression as

[a+(b—g+x)(c+ D] /s
’ v > 15
Z( : ( j (c+1)*"! (15)
m K
where B = K,- 1(1)% z( )ya gammc;{(flij/):l)//l}, Differentiating Equation (15) (r—1)
y=0 ’ a
y(z)

times about to m and adopting L’ Hospital's rule, we come across

{(m+y+D)/ A +1=y].. . [{(m+y+1)/ A} +g—(1+ )]
(g_1)!a{(m+y+1)/,1}+g_y

g1 -1
xZ(—l){gx j(g—b—x)g'l.

]imlE[V”’(g:b,c,a)]zB

(16)

From Ruiz (1996), we have
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Z( )* [ ](v z)" = b!. (for all integers b >0 and for all real numbers v).

Now substituting Equation (17) in (16) and simplifies

(a )

EW, )

m+1

—DIAE

(a)
where V, represents the a™ upper record.

Special cases:
(1) The exact expression for O.S. can be derived from Equation (14) as follows

where K,

b!

EWV!)=K_,B Y Y (-

(g' DIb-g)!

o g-l1

y=0x=0

g ) P

A

a (m+y+1)/ A
1=
y(ﬂj

(i1) From Equation (18), the explicit formula for upper record as follows

EWVjig]=

m+l &
1),ﬂ':E:( 1)

i( 1y’ o’ gamma{(m+ y+1)/ Aygamma{(m+y+1)/A)—y+g}

(m+u+1)/ A
y !a{(m+y+1)//1}—,v (jj gamma{((m +y+ 1) / ﬂ,) —y+ 1}

-1
(g ](b_g_"_x_i_l)yl(nwyﬂ)/l’
X

gamma{(m+y+1)/ A}

a7

, (18

(19)

, B gamma{(m+ y+1)/ A} gamma{((m+y+1)/A)—y+g}

A

(m+y+1)/ A
j cammal((m+y+1)/ 1)~ y+1}

yl("

(20)

The expressions presented in (19) and (20) enable to compute the moments of O.S. and upper
record values for specific parameters and distinct sample size. Tables 3 and 4 consists of these values

respectively.
Table 3 First four moments of O.S. for PLHRD
p=1L1=3a=1 p=LA=3 a=2
. g m= m=2 m=3 m=4 m=1 m=2 m=3 m=4
1 1 0.3867 0.3277 0.3264 0.4564 0.2121 0.1935 0.1401 0.1121
2 1 0.1524 0.0631 0.0204 0.0985 0.1245 0.0234 0.0352 0.0304
2 0.4179 0.4820 0.5221 0.7141  0.3940 0.2713 0.2045 0.1715
3 1 0.0584 0.0635 0.0112 0.0329  0.0442 0.0352 0.0211 0.0120
2 0.3322 0.1249 0.1598 0.2257 0.1671 0.0375 0.0568 0.0119
3 0.6241 0.6506 0.7523 0.9086 0.5012 0.1828 0.1262 0.1109
4 1 0.0074 0.0287 0.0161 0.0052 0.1056 0.0211 0.0086 0.0093
2 0.1054 0.0873 0.1168 0.0731  0.0202 0.0437 0.0122 0.0202
3 0.3755 0.2555 0.3928 0.1552  0.2339 0.1262 0.0234 0.0736
4 0.6453 0.7080 0.0401 0.7587 0.5673 0.4257 0.3225 0.2083
5 1 0.0776 0.0311 0.0147 0.0078 0.0785 0.0274 0.0110 0.0046
2 0.0264 0.1100 0.0511 0.0440 0.1132 0.0761 0.0367 0.0164
3 0.3256 0.2882 0.2103 0.1640 0.3798 0.2163 0.1323 0.0860
4 0.4739 0.5321 0.2144 0.2877 0.3710 0.2028 0.1007 0.1344
5 0.9137 0.9169 0.9963 0.9776  0.6192 0.5429 0.5079 0.5018
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Table 3 (cont.)
p=2,1=3 a=1 p=2,A=3a=2
" : m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4
1 1 0.1696 0.1131 0.0862 0.0651  0.1523 0.0433  0.0107 0.0785
2 1 0.0094 0.0465  0.0240 0.0135  0.1063 0.0387  0.0150 0.0131
2 0.2477 0.2665  0.2414 0.2255 0.1772 0.1355 0.1133 0.0912
3 1 0.0568 0.0116  0.0106 0.0030 0.0284 0.0140  0.0057 0.0032
2 0.1867 0.1167  0.0652 0.0542  0.1986 0.0872  0.0501 0.0188
3 0.4667 0.4421 0.4106 0.4420 0.4634 0.2153 0.2110 0.2212
4 1 0.0213 0.0110  0.0022 0.0020 0.0219 0.0101 0.0032 0.0014
2 0.0987 0.0342  0.0206 0.0165 0.1156 0.0413  0.0121 0.0098
3 0.2317 0.1927  0.1287 0.0982 0.1764 0.1287  0.0767 0.0872
4 0.4545 0.4815  0.4923 0.5858 0.5128 0.4030  0.3189 0.3070
5 1 0.0224 0.0066  0.0020 0.0008  0.0242 0.0061 0.0019 0.0006
2 0.0706 0.0207  0.0127 0.0059  0.0737 0.0190  0.0091 0.0042
3 0.1712 0.0773  0.0458 0.0341 0.1860 0.1982  0.0231 0.0198
4 0.3127 0.1874  0.1098 0.1450 0.3128 0.1872  0.1345 0.0785
5 0.7123 0.6134  0.6753 0.6512  0.6094 0.3452  0.4087 0.6028
b
In Table 3, the relation £ Z V1 )=bE(V™) is satisfied (David and Nagaraja 2003).
n=1
Table 4 First four moments of upper record for PLHRD
p=1,1=3a=1 p=1L1=3a=2
8 m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4
1 0.4387 0.4218 0.4093 0.4321  0.4914 0.3277 0.2542 0.2183
2 0.8123 0.9015 0.9751 0.9342  0.6542 0.5420 0.6177 0.5619
3 0.9864 0.8754 0.9842 1.6757  0.8971 0.9097 0.8976 1.0783
4 0.9456 0.8423 1.7789 2.0375  0.0957 0.8935 0.9571 0.9822
5 0.9753 1.2407 2.5406 3.7487  0.9903 0.9869 0.9004 1.4961
p=2,1=3a=1 p=2,A=3,a=2
8 m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4
1 0.2965 0.1539 0.1037 0.0864  0.2564 0.1013 0.1366 0.1461
2 0.5674 0.5064 0.5105 0.5431  0.5143 0.3583 0.3818 0.3463
3 0.8730 0.8145 0.7865 0.9520  0.6059 0.5212 0.4572 0.6754
4 1.1873 1.3608 1.7572 2.3884  0.9536 0.9724 1.0463 1.1779
5 1.2543 1.6535 2.0349 2.5674  1.0451 1.0137 1.1218 1.8743
The single moments of GOS from PLHRD are presented below.
Theorem 1 For PLHRD reported in (7) and be N, b>2,
E[V"(1:b,¢,a)] = 9, [ B (1:b,,a)] ] +%[E[V"“(1 :b,¢,a)]| 1)
m+A+1 m+2

and for 2< g <b,
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E[V"(g:b,é a)] = ﬁ[@E[VWM (g b,a,a)ﬂ —EV" (g -1:b,8,a)]
P [@,E[V’”” (g:b,éa)-EV"" (g—1:b, 5,(1)]}. 22)
m+2

Proof: Making use of Equation (5) and (9), one gets,
EV"(g:b,¢,a)]= 4,(v)+ 4(v), (23)

where 4, (v) = Kgfla.[: yr Zg: w, (T dv and 4,(v) =K, ﬂj: il Zg: w (DT W] dv

Integrating A4, (v) by parts, it gives

m+A+1 @, -1
4 (v )——+ o I an(g)qﬁ,z[T(v)] H(v)dv
K 10! m+/1+1 -1 0! m+A+1 )y —1
= Zw(g)¢ [T r(v)dv+ [ (g TN 1)
K, «a —
_ g-1 m+/1+l 4, -1
= Zw<g>[¢ (@, + TN 1) dv
K a m+/1+1 &, 1
[V (@B TON 10y
K, «a
_ g-1 m+A+1 @, —1
= Zw(g DIT ) i(v)dv
Eel - f”“zw<g>[T<v>]“’ iy B [ sty (T W 10) .
T A+l T A+1%

Using Equation (5), we have

A= 4, EV" (g :b,¢,a)]- EV" (g-1:b,¢,a)] .

vl
Similarly,
2O R — [¢ E[V"(g:b,¢,a)]-EV"* (g —1:b,¢,a)] .

Inserting the value of A1 (v) and 4,(v) in (23), we attain the required result. Relation (21) follows
from relation (22) by proceeding V' (0:5,¢,a) =0.

Corollary 1 For Case I, term for single moments of PLHRD has the form

BV =g () - B ) Lo (g e () - E () )

Other model of GOS can be extracted from Theorem 1 at the different values of parameters.
Furthermore, several author's works can be extracted as a remark from Equation (22) for different
values of parameters satisfying the term for single moments via GOS as follows.
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Remarks:
(i) For A= =0, the Equation (22) reduces to exponential distribution (Saran and Nain 2014).
(ii) Putting A =0 in Equation (22), we get linear exponential distribution (Ahmad 2008).
(iii) Setting @ =4 =0, =26 in Equation (22), we have Rayleigh distribution (Mohsin et al.
2010).
(iv) Setting =0 in Equation (22), we obtain PHR distribution (Khan 2017).

(v) Setting =26 in Equation (22), we get a” upper record valued from PHR distribution

(Khan and Khan 2019).
(vi) Setting @ =1, #=0 and A =0J-1 in Equation (22), we get Weibull distribution (Saran and Nain

2014).

3. Product Moments
This section contains the product moments for PLHRD through GOS.

Theorem 2 For PLHRD reportedin (7)and 1< g<h<b, n,m=0,

E[Vn,m (g,h :b, 5’ a)] ¢hE[Vn Jm+A+1 (g,h b ¢, a)] E[Vn m+A+1 (g,h 1 b C a)]}

prvErL
LB
m+

: {$,EV""(g.h:b,E,a)] - EIV""(g,h—1:b,¢,a)]}. (24)

Proof: From Equation (6),

BV (b a) = [ T w@IT o) £ ))A( D, ()

where

TMv)) | Tv,)

S e Ly TSP

Using Equation (9) in 4'(v,), one gets
A' W) =A4/()+4,(0), (26)

as

1

( )¢m
4 =K, ) 2m+1 ' fng) h dv,.
L(1) =K, ] v { o ()[ (1)] }

Integrating 4/(v,) by parts, yields

' _ Kh—la ©mea+l h (g) T(V) ! I(V )
Al(V1)_m+ﬂ+_1J.V1 v, Zm —g+1 Win ( )¢ (T( )) T(V) %)

. K@ i @[T(”)) )

P
S e P L

m+A+1 Tw) ) T ) "2
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K _«a

= P
el L ma+ W T(v,) t(v,)
ik Lo I, =0+ ¢h)][f(vl)] Ty
K a o . (2) 7_w("'z) t(v, )
e (h)@(f(vl)) T,
P
M 7, mrAel W I(v,) 1(v,)
N m+l+1J‘V1 Zm g+1 Wi (h)(h D[T(VI)] T(vz)dv
M 7, meAel W T(v, " (v,)
+m+ﬂ+1jvl Z.. e Wh[T( )j Ty
K_a (= .0 (g) T(v,) ' t(v )
el (W”(T( )] T,
) = K@ [ e e T(v,) " 1(v,)
Al(vl)_ m+ﬂ+1J‘V' Zm g+1 W (h)(h )[T(V )] T(Vz)dv

K, a@, (= inxoh Wi T(v,) ! t("')
+m+/1+1'|‘v| KRN o )[ ]

m=g+1 Won T( ) T(V) Yy
Similarly

e R WL OIS 1)[””]"’(”

T(v)) T(,)
K, m+2 e T(v,) " H(v,)
+ m+2 J.vl Zm =g+l W ( )[T(Vl)] T(vz)dvz.

Using the values of A'(v,) and 4,(v,) in Equation (26), then Equation (26) putting into Equation
(25), we attain the required result

Note: At n =0, product moments correspond to single moments

Corollary 2 For Case I, the term for product moments of PLHRD is

O e 7 I | E e

nm+2
g,h-1:b,¢,a m+ 2 Vg,h:b,&,a ) - E(Vg,hfl:b,i‘,a ):| N

On the choice of parameter, several model of GOS can be set up from Theorem 2. In addition,
several remarks can be produced from Equation (24) for product moments of GOS as mentioned
below.

Remarks:

(1) Setting A = =0 in Equation (24), we obtain exponential distribution (Saran and Nain 2014)
(i) Setting A =0 in Equation (24), we get L.E. distribution (Ahmad, 2008)

(iii) Setting a =4=0, =26 in Equation (24), we attain Rayleigh distribution (Mohsin et al
2010)
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(iv) Setting £ =0 in Equation (24), we get PHR distribution (Khan 2017).

(v) Setting =26 in Equation (24), we get a" record values from PHR distribution (Khan and
Khan 2019).

(vi) Setting =0 ,4=0 and A =06-1 in Equation (24), we get Weibull distribution (Saran and
Nain 2014).

4. Characterizations
We discuss the characterizations of PLHRD using the different technique namely (i) recurrence

relations (ii) minimal O.S. (iii) conditional moments based on GOS and (iv) truncated moment.

Theorem 3 If V ~ PLHRD(e, 3, 1), then the necessary and sufficient condition for RV, V is given as

E[V"(g:b,¢,a)] = ﬁ[@E[VWM (g b,&,a)ﬂ —EV"" (g -1:b,¢,)]
(27)
b [¢gE[V’”” (g:b,6,a)]—EV"" (g—1:b, E,a)]].
m+2

Proof: From Corollary 1, necessary part follows, if the expression in (27) is fulfilled, then RHS of
Equation (27) can be simplified as

K * -1 a Kg 1 i
o TON SO Ty = e [ G dy o
+ s Ko J.wv"”zl'(v) dv.
(m+2) (g-1!7o
where 1) =ATO)" pT)]- (29)
Integrating RHS of (28), by parts and employing value of /(v) from (29), it gives
LJ‘ "W pE ITWE) — (By+av ) [1=T(v)]dv =0 (30)

(g-Dt7°
Applying the Miintz-Szasz' generalized Theorem to (30), one gets,
t(v) = (Bv+av)[1-TW)].

Hence, Theorem 3 is proved.

Theorem 4 Let k be a non-negative integer and conditions stated in Theorem 3. Then relation for
minimal O.S. is given as,

1 1
ElVi 1= ———ba E[VE*" 1+ ——bBEV .
V] P W ] 2 BEV, "]

Proof: Theorem 4 can be justified in the same way as in Theorem 3.

Theorem 5 Let V(b,g,c,a) be the g"GOS fixed on continuous DF and expectation exists. Then
1<g<h<b, g=1,..b

ﬂvl +— v1 1 h=l
E|:’//(th:b,c,a = V):' { /M (¢¢H:—l] =g,8+1, (1)
n= I+n
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_ £‘22+ vyl
if and only if Equation (7) holds, where y(v,)=e { Al }

Proof: From Equation (4),

~ Attt (T(v,) (T S t(v,)
EI:V/ (Vh\l:h,c,a - :I DJ ( T(Vl)j {1 [T(V )] } T(Vz) dv27 (32)

© _
where D = = —. Setting z = 7;(\/2) =¢ 5 in Equation (32),
K, (h—g-Dl(c+D)"* T(v) 6{5%}
E[y (Vipea =v)] = De o] [l a-zy s, (33)

Again, by setting a =z°" in Equation (33), gives

B ) | 4
(Vi =] - e }J‘J’w 00y da

-g

On simplification, the necessary part is determined, as ——— H .- For sufficiency part. Assume
g7 n=1

Equation (4) and (7)

Dj G~ Fa ) 1 < TP o, = G, DT I, (34)

,{ﬁvluivl }h—g ¢
where P, (v)=e > " T] ¢g—+"1 . Differentiating Equation (34) about v, , obtains
n=1 g+n +
| Jte DIT ()]
B OOIT @I 10) = By OOIT )1 1 = P ITOTE
¢g+l
h-g ¢ 7{E W+ Lvlml
where B (x)= H NPy +av e 2 ! J
n=l1 ¢g+n +1
+1 \h-e B ﬁvlerivl"“
and B =] L | P i)
¢g+l n=1 ¢g+n +1
t 1 Vv
Therefore, _(Vl) =—— h‘g ™) (Khan et al. 2006). After simplification,
T(vl) ¢g+1 })h\gﬂ(vl) h\g(v )

)

=" = Bv, +av’. Hence, it is the result.
T(v)
Theorem 6 Let V' be a continuous RV with df T(v) and pdf t(v) . Further assume that t'(v) and
EWV |V <v) exists. Then

EV|V<v)=(0w(v), 0<v<oo, (35)

where
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B @ o R B, a
é‘(\;):;/jL —v+e{2 241 }J’ e{z P }du and y(v) = t(v)
(ﬂv-ﬁ-av ) 0 T(V)
if and only if Equation (7) holds.
Proof: Since
,{é La M.}
E(V|V<v)——J. t(u)du = —— u(ﬁu+au )e /1+1 du. (36)

()
_ ﬁuerLu/m

Integrating Equation (38) by parts treating (SBu+au’)e {2 Al } for integration, one obtains,

1 - 7vz+ e }” — 7u 2, &
EV |V <v)=—ro —ve e +j = }du . (37)
T(v)

Divide and multiply by #(v) in Equation (37), the relation (35) holds. For the sufficiency part. From
Ahsanullah et al. (2016), we have the following

1 [ wt(uydu = OO (38)
T(v)-° T(v)
Differentiating above equation both sides regarding v, it gives
vy &)
Performing integration both sides in Equation (39) concerning v, one gets,

; —{£v2+iv"”}
tV)=K(fv+avie ' !

Using the fact J?t(v) dv=1 and K =1. This implies

ﬂza

Lyt —y*

t(v):(ﬂwav*)e*{ = }, v>0, 0,820, A>—1, A1#1.
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