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Abstract 

The goal of this article is to investigate the moment aspects of generalized order statistics (GOS) 

via power linear hazard rate distribution. The explicit formulation and relations between moments of 

GOS are derived. In addition, various deductions and related results are reviewed. Some numerical 

computations are accomplished. The characterization results are also presented by several techniques 
at the end.  

______________________________ 
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1. Introduction 

Kamps (1995) instigated the concept of generalized order statistics (GOS) as a combined 

procedure of observing random variables (RV) arranged in ascending order. It is defined in the 

following. 
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Case II: ,n m   ,n m  , 1, 2, , 1.n m b   Considering Equation (1), the density of thGOSg  

is 

 1

: , , 1
1

( ) ( ) ( )[ ( )] ,n

g

g b c a g n
n

t v K t v w g T v  




                  (5) 

The pdf of th th( )GOSg h  is 
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Therefore, Equation (5) reduces to Equation (2) and Equation (6) reduces to Equation (3), (Khan et al. 

2006). Special cases of GOS are listed in Table 1 (Cramer, 2002). 

In the literature, numerous authors researched recurrence relations between moments of GOS . 

Reference may be referred to Cramer and Kamps (2000), Bieniek and Szynal (2003), Khan et al. 

(2008), Khan et al. (2015a, b), Khan and Khan (2016a, b), Faizan and Khan (2017), Singh et al. (2018), 

Khan (2018), and Saran et al. (2018) and reference therein. 

The basic principles of recurrence relations are to reduce the computation, labor, and time. In 

addition, these are applied in characterizing the distributions too that is the main fields, granting the 

recognition of population distribution from characteristics of sample. 
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Table 1 GOS variants 

 Models c  g  gc  

i Order statistics (O.S.) 1 1b g   0 

ii Sequential O.S. bw  ( 1)b g   gw  1( 1)g g     

iii Progressively type-II  

censored O.S.  
1bR   ( 1)

b

m
m g

b g R


     gR  

iv Records 1 1 −1 

 

Power-linear hazard rate (P-LHR) distribution was introduced by (Tarvirdizade and Nematollahi 

2019). This distribution induces several lifetime distributions (see Table 2). 

 The PLHRD is very simple and can cover constant, decreasing, increasing, bathtub-shaped and 

non-monotone hazard rate too. These properties enable this distribution to be used in many 

applications in several areas, such as reliability, survival analysis, life testing and others. For more 

details, properties, and application of PLHRD, (see Tarvirdizade and Nematollahi, 2019). 

A RV ~ PLHRD( , , ),V     if its distribution function and density are as follows: 
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where , 0, 1,      and 1.   The sub-models of the PLHRD are shown in Table 2. 

 

Table 2 Sub-models of PLHRD  

Model       cdf References 

Exponential - 0 0 1 ve   Bain (1974) 

Rayleigh 0 2  0 
2

1 ve   Bain (1974) 

LHR - 2  0 
2{ }1 v ve    Bain (1974) 

QHR 0 - 2  2 2

2 31
v v

e
 



  Bain (1974) 

Weibull   0 1   1 ve
  Weibull (1951) 

PHR - 0 - 
1

11
v

e



 

 
   

Mugdadi (2005) 

 

We note that the characterizing differential equation for PLHRD from Equations (7) and (8) is  

 ( ) ( )[1 ( )].t v v v T v                  (9) 

 

Equation (9) will be considered to find: (i) explicit expressions, (ii) relations for moments of GOS 

and (iii) the characterization results. The intent of this research is to exhibit moment properties of GOS 

derived from PLHRD. Characterization results are given through several techniques. The formulation 

of the paper is as follows. Outright expression, single moments and numeric computations are 

addressed in Section 2. Product moments are dealt in Section 3. The characterization outcomes are 

proved in last section.  
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2. Single Moments 

Firstly, existence of [ ( : , , )]mE V g b c a  is set up,  

 : , ,0
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Now inserting Equation (13) in (12), one obtains 
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When c  tending to 1 , 
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From Ruiz (1996), we have  
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Now substituting Equation (17) in (16) and simplifies 
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where 
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Special cases: 

 (i) The exact expression for O.S. can be derived from Equation (14) as follows 
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 (ii) From Equation (18), the explicit formula for upper record as follows 
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The expressions presented in (19) and (20) enable to compute the moments of O.S. and upper 

record values for specific parameters and distinct sample size. Tables 3 and 4 consists of these values 

respectively. 

 

Table 3 First four moments of O.S. for PLHRD 

n  r  
1, 3, 1      1, 3, 2      

1m   2m   3m   4m   1m   2m   3m   4m   

1 1 0.3867 0.3277 0.3264 0.4564 0.2121 0.1935 0.1401 0.1121 

2 1 0.1524 0.0631 0.0204 0.0985 0.1245 0.0234 0.0352 0.0304 

 2 0.4179 0.4820 0.5221 0.7141 0.3940 0.2713 0.2045 0.1715 

3 1 0.0584 0.0635 0.0112 0.0329 0.0442 0.0352 0.0211 0.0120 

 2 0.3322 0.1249 0.1598 0.2257 0.1671 0.0375 0.0568 0.0119 

 3 0.6241 0.6506 0.7523 0.9086 0.5012 0.1828 0.1262 0.1109 

4 1 0.0074 0.0287 0.0161 0.0052 0.1056 0.0211 0.0086 0.0093 

 2 0.1054 0.0873 0.1168 0.0731 0.0202 0.0437 0.0122 0.0202 

 3 0.3755 0.2555 0.3928 0.1552 0.2339 0.1262 0.0234 0.0736 

 4 0.6453 0.7080 0.0401 0.7587 0.5673 0.4257 0.3225 0.2083 

5 1 0.0776 0.0311 0.0147 0.0078 0.0785 0.0274 0.0110 0.0046 

 2 0.0264 0.1100 0.0511 0.0440 0.1132 0.0761 0.0367 0.0164 

 3 0.3256 0.2882 0.2103 0.1640 0.3798 0.2163 0.1323 0.0860 

 4 0.4739 0.5321 0.2144 0.2877 0.3710 0.2028 0.1007 0.1344 

 5 0.9137 0.9169 0.9963 0.9776 0.6192 0.5429 0.5079 0.5018 
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Table 3 (cont.) 

n  r  
2, 3, 1      2, 3, 2      

1m   2m   3m   4m   1m   2m   3m   4m   

1 1 0.1696 0.1131 0.0862 0.0651 0.1523 0.0433 0.0107 0.0785 

2 1 0.0094 0.0465 0.0240 0.0135 0.1063 0.0387 0.0150 0.0131 

 2 0.2477 0.2665 0.2414 0.2255 0.1772 0.1355 0.1133 0.0912 

3 1 0.0568 0.0116 0.0106 0.0030 0.0284 0.0140 0.0057 0.0032 

 2 0.1867 0.1167 0.0652 0.0542 0.1986 0.0872 0.0501 0.0188 

 3 0.4667 0.4421 0.4106 0.4420 0.4634 0.2153 0.2110 0.2212 

4 1 0.0213 0.0110 0.0022 0.0020 0.0219 0.0101 0.0032 0.0014 

 2 0.0987 0.0342 0.0206 0.0165 0.1156 0.0413 0.0121 0.0098 

 3 0.2317 0.1927 0.1287 0.0982 0.1764 0.1287 0.0767 0.0872 

 4 0.4545 0.4815 0.4923 0.5858 0.5128 0.4030 0.3189 0.3070 

5 1 0.0224 0.0066 0.0020 0.0008 0.0242 0.0061 0.0019 0.0006 

 2 0.0706 0.0207 0.0127 0.0059 0.0737 0.0190 0.0091 0.0042 

 3 0.1712 0.0773 0.0458 0.0341 0.1860 0.1982 0.0231 0.0198 

 4 0.3127 0.1874 0.1098 0.1450 0.3128 0.1872 0.1345 0.0785 

 5 0.7123 0.6134 0.6753 0.6512 0.6094 0.3452 0.4087 0.6028 

 

In Table 3, the relation :
1

( ) ( )
b

m m
n b

n

E V bE V


   is satisfied (David and Nagaraja 2003). 

 

Table 4 First four moments of upper record for PLHRD 

n  
1, 3, 1      1, 3, 2      

1m   2m   3m   4m   1m   2m   3m   4m   

1 0.4387 0.4218 0.4093 0.4321 0.4914 0.3277 0.2542 0.2183 

2 0.8123 0.9015 0.9751 0.9342 0.6542 0.5420 0.6177 0.5619 

3 0.9864 0.8754 0.9842 1.6757 0.8971 0.9097 0.8976 1.0783 

4 0.9456 0.8423 1.7789 2.0375 0.0957 0.8935 0.9571 0.9822 

5 0.9753 1.2407 2.5406 3.7487 0.9903 0.9869 0.9004 1.4961 

n  
2, 3, 1      2, 3, 2      

1m   2m   3m   4m   1m   2m   3m   4m   

1 0.2965 0.1539 0.1037 0.0864 0.2564 0.1013 0.1366 0.1461 

2 0.5674 0.5064 0.5105 0.5431 0.5143 0.3583 0.3818 0.3463 

3 0.8730 0.8145 0.7865 0.9520 0.6059 0.5212 0.4572 0.6754 

4 1.1873 1.3608 1.7572 2.3884 0.9536 0.9724 1.0463 1.1779 

5 1.2543 1.6535 2.0349 2.5674 1.0451 1.0137 1.1218 1.8743 

 

The single moments of GOS from PLHRD are presented below. 

 

Theorem 1 For PLHRD reported in (7) and ,b N  2,b   
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Using Equation (5), we have 
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Inserting the value of 1( )A v  and 2 ( )A v  in (23), we attain the required result. Relation (21) follows 

from relation (22) by proceeding (0 : , , ) 0.V b c a   

 

Corollary 1 For Case I, term for single moments of PLHRD has the form 

         1 1 2 2
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1 2
m m m m m
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Other model of GOS can be extracted from Theorem 1 at the different values of parameters. 

Furthermore, several author's works can be extracted as a remark from Equation (22) for different 

values of parameters satisfying the term for single moments via GOS as follows. 
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Remarks: 

 (i) For 0   , the Equation (22) reduces to exponential distribution (Saran and Nain 2014). 

 (ii) Putting 0   in Equation (22), we get linear exponential distribution (Ahmad 2008). 

 (iii) Setting 0,   2   in Equation (22), we have Rayleigh distribution (Mohsin et al. 

2010). 

 (iv) Setting 0    in  Equation (22), we obtain PHR distribution (Khan 2017).  

 (v) Setting 2    in Equation (22), we get tha  upper record valued from PHR distribution 

(Khan and Khan 2019). 

(vi) Setting 1,  0    and 1    in Equation (22), we get Weibull distribution (Saran and Nain 

2014). 

 

3.    Product Moments 

This section contains the product moments for PLHRD through GOS. 
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Similarly  
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 Using the values of 1 1( )A v  and 2 1( )A v  in Equation (26), then Equation (26) putting into Equation 

(25), we attain the required result.  

 

Note: At 0n  , product moments correspond to single moments. 

 

Corollary 2 For Case I, the term for product moments of PLHRD is 

         , , 1 , 1 , 2 , 2

, : , , , : , , , 1: , , , : , , , 1: , , .
1 2

n m n m n m n m n m

g h b c a h g h b c a g h b c a h g h b c a g h b c aE V E V E V E V E V
m m

  
 



     

 
      
     

      

 

On the choice of parameter, several model of GOS can be set up from Theorem 2. In addition, 

several remarks can be produced from Equation (24) for product moments of GOS as mentioned 

below. 

 

Remarks: 

(i) Setting 0    in Equation (24), we obtain exponential distribution (Saran and Nain 2014).  

(ii)  Setting 0   in Equation (24), we get L.E. distribution (Ahmad, 2008). 

(iii)  Setting 0,   2    in Equation (24), we attain Rayleigh distribution (Mohsin et al. 

2010)  
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(iv)  Setting 0    in Equation (24), we get PHR distribution (Khan 2017). 

(v)  Setting 2    in Equation (24), we get tha  record values from PHR distribution (Khan and 

Khan 2019).  

(vi)  Setting 0  , 0   and 1    in Equation (24), we get Weibull distribution (Saran and 

Nain 2014). 

 

4.    Characterizations 

We discuss the characterizations of PLHRD using the different technique namely (i) recurrence 

relations (ii) minimal O.S. (iii) conditional moments based on GOS and (iv) truncated moment. 

 

Theorem 3 If ~ ( , , ),V PLHRD    then the necessary and sufficient condition for RV, V is given as  

 

1 1

2 2

[ ( : , , )] [ ( : , , )] [ ( 1: , , )]
1

[ ( : , , )] [ ( 1: , , )] .
2

m m

m m

m
g

g

E V g b c a E V g b c a E V g b c a
m

E V g b c a E V g b c a
m

 







   

 

   
  

   
 

  

 

            (27) 

 

Proof: From Corollary 1, necessary part follows, if the expression in (27) is fulfilled, then RHS of 

Equation (27) can be simplified as  

 

11 11 1

0 0

1 2

0

[ ( )] ( ) [ ( )] ( )
( 1)! ( 1) ( 1)!

( ) .
( 2) ( 1)!

gg gm g m
c

g m

K K
v T v f v p T v dv v I v dv

g m g

K
v I v dv

m g

 






    

 


   


 

 



          (28) 

where 1( ) [ ( )] [ ( )].g g
cI v T v p T v

                 (29) 

Integrating RHS of (28), by parts and employing value of ( )I v  from (29), it gives 

 11 1 1

0
[ ( )] [ ( )][ ( ) ( )[1 ( )] 0.

( 1)!
gg m g

c

K
v T v p T v t v v v T v dv

g

  
      

              (30) 

Applying the Müntz-Szász' generalized Theorem to (30), one gets, 

( ) ( )[1 ( )].t v v v T v     

Hence, Theorem 3 is proved. 

 

Theorem 4 Let k  be a non-negative integer and conditions stated in Theorem 3. Then relation for 

minimal O.S. is given as, 

1 2
1: 1: 1:

1 1
[ ] [ ] [ ].

1 2
k k k
b b bE V b E V b E V

k k
 


   

  
 

Proof: Theorem 4 can be justified in the same way as in Theorem 3.  

 

Theorem 5 Let ( , , , )V b g c a  be the thg GOS  fixed on continuous DF and expectation exists. Then 

1 , 1,...,g h b g b     

  
2 1

1 1
2 1

| : , ,
1

,
1

h lv v
l n

h l b c a
n l n

E V v e
 

 




    
  

 

 
       

  , 1,l g g              (31) 
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if and only if Equation (7) holds, where 
2 1

2 2
2 1

2( ) .
v v

v e
 


 

  
   

 

Proof: From Equation (4),  
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1
1
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 Setting 
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1 2 1
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   in Equation (32),  
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2 1
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1 12 1

0
(1 ) .h

v v
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                  (33) 

Again, by setting 1ca z   in Equation (33), gives  

 | : , ,h l b c aE V v   

2 1
1 1

1
11
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0
(1 ) .

hv v
h gcDe a a da

  


     
      

On simplification, the necessary part is determined, as 1

11

.
h g

h
g n

ng

K

K








   For sufficiency part. Assume 

Equation (4) and (7), 
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1 1
1

1

11 1 12 1
1 2 2 2 2 | 1 1[( ( )) ( ( )) ] [ ( )] ( ) ( )[ ( )] ,gh
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where 
2 1

1 1
2 1

| 1
1
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1

h gv v
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P v e
 






      

 

 
    

  Differentiating Equation (34) about 1v , obtains 
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1 21 | 1 1

| 1 1 1 | 1 1 1 1

1
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where 
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and  
2 1

1 11 2 1
| 1 1
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1
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Therefore, 
| 11

1 1 | 1 1 | 1

( )( ) 1

( ) ( ) ( )

h g

g h g h g

P vt v

T v P v P v  

 
   

  
 (Khan et al. 2006). After simplification, 

1
1 1

1

( )
.

( )

t v
v v

T v
    Hence, it is the result. 

 

Theorem 6 Let V  be a continuous RV with df ( )T v  and pdf ( )t v . Further assume that ( )t v  and 

( | )E V V v  exists. Then 

 ( | ) ( ) ( ),E V V v v v     0 ,v                 (35) 

where 
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2 1 2 1
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v v u uv
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  and 
( )

( )
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v
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if and only if Equation (7) holds. 

 

Proof: Since 
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0 0

1 1
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                  (36) 

Integrating Equation (38) by parts treating 
2 1

2 1( )
u u

u u e
 

  
 

  
   for integration, one obtains, 

 
2 1 2 1

2 1 2 1

0

1
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             (37) 

Divide and multiply by ( )t v  in Equation (37), the relation (35) holds. For the sufficiency part. From 

Ahsanullah et al. (2016), we have the following 

 
0

1 ( ) ( )
( ) .

( ) ( )

v v f v
u t u du

T v T v


               (38) 

Differentiating above equation both sides regarding ,v  it gives 

 
( ) ( )

.
( ) ( )

t v v v

t v v





 
                (39) 

Performing integration both sides in Equation (39) concerning ,v  one gets, 

2 1

2 1( ) ( ) .
v v

t v K v v e
 

  
 

  
    

Using the fact 
0

( ) 1t v dv


  and 1K  . This implies 

2 1

2 1( ) ( ) ,
v v

t v v v e
 

  
 

  
    0,v  , 0,   1,    1.   
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